CDMA信道编码及结构解析剖析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CDMA信道编码及结构解析

随着亚太地区等新兴市场的潜力被大力开发,CDMA进入了高速发展期,在2002年一年中,全球共增用户数3400多万。截至2004年2月,中国联通在CDMA用户已达2000万用户,成为全球第二大cdma移动通信运营商。

cdma技术体制上的优势使其成为移动数据通信的首选,即将到来的第三代移动通信(3G)技术都是基于cdma技术体制的。cdma,即码分多址包含两个基本技术:一个是码分技术,其基础是扩频通信;另一个是多址技术。将这两个基本技术结合在一起,并吸收其他一些关键技术,形成了今天码分多址移动通信系统的技术支撑。本文将从这两个主要技术入手介绍cdma信道编码及前反向信道结构。

1扩频增益

扩频调制是一种无线通信技术。他所用的传送频带比任何用户的信息频带和数据速率都大许多倍。用W表示传送带宽(单位为Hz),用R表示数据速率(单位为bit/s),W/R被称为扩展系数或处理增益。W/R的值一般可以在一百到一百万的范围(20db—60db)。

1.1仙农容量公式(Shan non’scapacityequation)

C=Blog2[1 + S/N]

其中:B为传送带宽(单位为Hz);

C为信道容量(单位为bit/s);

S/N为信号噪声功率比。

1.2CDMA扩频增益

传统通信系统通常压缩信号速率至尽可能小的带宽信道进行传送,cdma系统则采用宽带信道传送信号,以获得处理增益,提高信道容量,如图1所示。根据仙农公式,增加信道带宽可以换取更高的信道容量或者是更低的信噪比,以提高收发双方通信的可靠性。

cdma扩频增益:

当一个用户以9600bps速率进行语音通信时,cdma的信道带宽是1,228,800hz,处理增益为1,228,800hz/9600= 128 = 21 db。以此推算,每当用户数增加一倍,信道处理增益下降3db,当用户数达到32个时,信噪比接近底线,达到单扇区容量极限。实际上,cdma系统对单载波单扇区通话的用户数进行了限制,以确保系统处理增益可以保持在理想的水平。

发信者把需传送的低速数据与一组快速扩频序列合成后通过发射机发射出去,接收者从空中借口截取信息流后,用同一快速扩频序列进行解扩频,从而得到原始信息。

2cdma信道编码

cdma系统通过码片(chip)来传输信号(signal),通常每一比特信息要占用几个码片。所有用户共用cdma信道资源,每个用户拥有自己唯一的码型以区别于其他用户,用户使用自己的码型(codepattern)与一长组码片进行合成处理,从中恢复出传给自己的信息,而其他用户信息则被丢弃,保证了多用户通信的安全性。

2.1cdma扩频序列

cdma信道合成了三种不同的扩频序列以实现信息传递安全、稳定和独立行。扩频序列很容易在收发双方间生成和合成,而不会耗费过多的处理资源,如图2。

2.1.1扩频序列A—沃尔什码(Walsh Codes)

沃尔什序列广泛的应用于cdma系统中。沃尔什函数是相互正交(MutualOrthogonality)的,以保证用户信号也是互相正交的。因此对于前向链路,cdma系统是一个正交扩频系统,沃尔什序列可以消除或抑制多址干扰(MAI)。理论上,如果在多址信道中信号是相互正交的,那么多址干扰可以减少至零。然而实际上由于多径信号和来自其他小区的信号与所需信号是不同步的,共信道干扰不会为零。异步到达的延迟和衰减的多径信号与同步到达的原始信号不是完全正交的,这些信号就带来了干扰。来自其他小区的信号也不是同步或正交的,这也会导致干

扰发生。

沃尔什序列在前向链路中用于复用目的,用来区分信道;在反向链路中,沃尔什码仅用作正交调制码。

64阶沃尔什码池如表1:

2.1.2扩频序列B和C—伪随机序列(PN,Pseudorandom Noise)

cdma系统中,伪随机序列(PN)用于数据的加扰和扩谱调制。在传送数据之前,把数据序列转化成“随机的”,类似于噪声的形式,从而实现数据加扰。接收机再用PN码把被加扰的序列恢复成原始数据序列。

需要指出的是,如果发送数据序列经过完全随机性的加扰,接收机就无法恢复原始序列。换句话说,如果接收机知道如何恢复原始数据,发送的数据序列就不可能完全随机化。因此,在实际cdma系统中使用的是一个足够随机的序列,一方面这个随机序列对非目标接收机是不可识别的,另一方面目标接收机能够识别并且很容易同步的产生这个随机序列。所以把这种序列成为伪随机序列(PN)。可以使用线性反馈移位寄存器(LFSR)生成这样的二进制序列,如图3。

1、伪随机序列特性:

1)自身的完全相关

2)移位近似正交

2、长PN码生成方式

PN码的生成方式不同于沃尔什码,需要更复杂的计算,以实现信息传递的安全性。如下图所示,不同的手机和基站信道单元都有一个长码生成器。其中长码状态寄存器(LCSR)保持与系统时间的同步,掩码寄存器(MR)存有只有用户可识别的码型。长码状态寄存器(LCSR)每个脉冲周期转变一次状态。状态寄存器(LCSR)和掩码寄存器(MR)合并至加和寄存器(SUMMER),SUMMER寄存器的数字单元在每个时钟周期内进行模2和计算,逐比特生成长码。生成的移位长码的是由用户唯一的偏制(User’sOffset)码型所决定的,加扰后其他用户将无法解调此用户信息。

如图6。

下面简要介绍一下在业务信道和介入信道中的长PN码是如何生成的。

通常在公共业务信道中,移动台用自己的电子序列号(ESNs)和系统公共长掩码(PublicLongCodeMask)共同生成可识别的长PN码偏置(Offset)。其中移动台的ESN代码是区别于其他移动用户的有效方式。典型情况下业务信道使用公共长

掩码(Public Long Code Mask)来生成长PN码偏置(Offset),生成过程如图7。

业务信道以外,移动台还通过接入信道(AccessChannel)向基站发送注册和呼叫建立消息。和公用业务信道相似,移动台也生成自己的接入信道长掩码(ACLongCode Mask),包括接入信道、基站ID、导频偏置等消息。基站通过寻呼

信道向周围移动台发送这些参数和消息。接入信道长码生成如图8。

3、短PN码生成方式

cdma系统中的短PN码由两组PN序列——I序列和Q序列正交生成。I序列和Q 序列的两组PN码是由15阶移位寄存器产生的M序列,并且每个周期在PN序列的特定位置插入一个码片,从而加长了一个码片。所以修正后的短PN码周期是普通序列长度215-1=32767再加一个码片,也就是32768个码片。不同基站用同向(I)和正交(Q)PN码序列的不同偏置θi进行区分。每个偏置是64码片的整数倍,总共有32768/64=512个可能的偏置。在1.2288Mcps的速率上,I路和Q 路序列每26.66ms重复一次,即每两秒75次。IS-95系统短PN码生成过程如图9。

相关文档
最新文档