2016学年上厦门市九年级数学质量检测

合集下载

第二学期期中教学质量检测(九年级数学)

第二学期期中教学质量检测(九年级数学)

2015-2016学年度第二学期期中教学质量检测九年级数学卷第一卷 客观题一、选择题(每小题3分,共36分)1.3-的绝对值是( ). A.13-B.13C. 3-D. 32.下面各图中∠1和∠2是对顶角的是( ).3.估计的值在( ).A. 2到3之间 B .3到4之间 C. 4到5之间 D.5到6之间 4.下列图形是中心对称图形而不是轴对称图形的是( ).5.为调查某校800名学生对新闻、体育、动画、 娱乐、戏曲五类电视节目的喜爱情况.随机抽取 部分学生进行调查,作出如图所示的扇形统计图. 根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有( ). A.160名 B. 240名 C.280名 D.320名 6.下列运算正确的是( ).A. 22x x x ⋅= B. 22()xy xy = C. 236()x x = D. 224x x x +=7.如图是一个几何体的三视图,根据图中提供 的数据(单位:cm )可求得这个几何体的体 积为( ).A.2cm 3B.3cm 3C.6cm 3D.8cm 3 8.把322a a a -+分解因式的结果是( ). A.()22aa a -+ B.()22a a a - C.()()11a a a -+ D.()21a a -第5题图 第7题图A CB DA B C D9.当a ≠0时,函数1y ax =+与函数ay x=在同一坐标系中的图象可能是( ).10.直线AB 与⊙O 相切于B 点,C 是⊙O 与OA 的交点,点D 是⊙O 上的动点(D 与B 、C 不重合),若∠A=40°,则∠BDC 的度数是( ).A.25°或155°B.50°或155°C.25°或130°D.50°或130° 11.20162个位上的数字是( ).A.2B.4C.6D.8 12. 如图,矩形ABCD 的边长AB =6,BC =8, 将矩形沿EF 折叠,使C 点与A 点重合,则折 痕EF 的长是( ).A.6.8B.7.2C.7.5D.7.8二、填空题(每小题3分,共24分)13.函数3y x =-的自变量x 的取值范围是 .14.若关于x 的方程0542=-+-k x x 有两个相等的实数根,则k = . 15.六个学生进行投篮比赛的结果分别为:5、3、2、13、3、10,则这六个数的中位数是 .16.如图,在△ABC 中,AB=6,将△ABC 绕点B 顺时针旋转60°后得到△DBE ,点A 经过的路径为弧AD ,则图中阴影部分的面积是 .17.已知二次函数()20y ax bx c a =++≠的图象如图所示,则以下结论:①abc >0;②2b >4ac ;③02=+b a ;④93a b c ++>0,错误的是 .(填序号)18.已知点D 与点(8,0),(0,6),(,)A B C a a -是一平行四边形的四个顶点,则CD 长的最小值为 .2015-2016学年度第二学期期中教学质量检测第16题图 第17题图A B C DFADCEB第12题图O九年级数学答题卷(考试时间:120分钟,满分:120分) 2016年4月第二卷 答题卷二、填空题(每小题3分,共18分)13. 14. 15.16. 17. 18.三、解答题(共66分)19.(6分)计算:1201601(1)(3.14)4cos603o π-⎛⎫-+-+-- ⎪⎝⎭.20.(6分)解方程:0122=--x x .21.(8分)甲口袋中装有两个相同的小球,它们的标号分别为2和5,乙口袋中装有两个相同的小球,它们的标号分别为4和9,丙口袋中装有三个相同的小球,它们的标号分别为1,6,7.从这3个口袋中各随机取出一个小球. (1)用树形图表示所有可能出现的结果;(2)若用取出的三个小球的标号分别表示三条线段的长,求这些线段能构成三角形的概率.22.(8分)如图,O 是坐标原点,点A 为双曲线)0(≠=k xk y 上一点,过点A 作AB ⊥x轴,垂足为B ,若OB=4,tan ∠AOB=21.⑴求双曲线的解析式;⑵直线AC 与y 轴交于点C (0,1),与x 轴交于点D ,求△AOD 的面积.23.(8分)如图,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,若MA=MC . (1)求证:CD=AN ;(2)若AC ⊥DN ,∠CAN=30°,MN=1,求四边形ADCN 的面积.24.(8分)某中学准备举行一年一度的篮球和足球比赛,计划购进一批篮球和足球.其中篮球的单价比足球的单价多60元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?第23题图第22题图 D A C O Bx y(2)该校打算用1500元购买篮球和足球,问恰好用完1500元,并且篮球、足球都买有的购买方案有哪几种?25.(10分)已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M.(1)求证:点P是线段AC的中点;(2)求sin∠PMC的值.第25题图26.(12分)如图,抛物线25 2y ax bx=+-经过(1,0),(5,0)A B-两点,且与y轴交于点C.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.第26题图(命题人:陈善锡)。

学上厦门市九年级质量检测数学试卷期末质检考试题答案评分标准

学上厦门市九年级质量检测数学试卷期末质检考试题答案评分标准

学上厦门市九年级质量检测数学试卷期末质检考试题答案评分标准The following text is amended on 12 November 2020.2016—2017学年(上)厦门市九年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号 注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.下列各式中计算结果为9的是A.(-2)+(-7)B.-32C.(-3)2 D . 3×3-12.如图1,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角 是同位角的是A.∠BAC 和∠ACBB.∠B 和∠DCEC.∠B 和∠BAD D .∠B 和∠ACDEDCB A 图13.一元二次方程x 2-2x -5=0根的判别式的值是A. 24B. 16C. -16 D . -24 4.已知△ABC 和△DEF 关于点O 对称,相应的对称点如图2所示, 则下列结论正确的是A. AO =BOB. BO =EOC.点A 关于点O 的对称点是点D D . 点D 在BO 的延长线上5.已知菱形ABCD 的对角线AC 与BD 交于点O ,则下列结论正确的是 A.点O 到顶点A 的距离大于到顶点B 的距离B.点O 到顶点A 的距离等于到顶点B 的距离C.点O 到边AB 的距离大于到边BC 的距离D.点O 到边AB 的距离等于到边BC 的距离6.已知(4+)·a =b ,若b 是整数,则a 的值可能是 A. B. 4+ -2 D . 2-7.已知抛物线y =ax 2+bx +c 和y =max 2+mbx +mc ,其中a ,b ,c ,m 均为正数,且m ≠1.则关于这两条抛物线,下列判断正确的是图2A.顶点的纵坐标相同B.对称轴相同C.与y轴的交点相同 D .其中一条经过平移可以与另一条重合8.一位批发商从某服装制造公司购进60包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫,每包混入的M号衬衫数及相应的包数如下表所示.一位零售商从60包中任意选取一包,则包中混入M号衬衫数不超过3的概率是A. B. C. D .与纵坐标y如下表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是A. a<-2B. -2<a<0C. 0<a<2 D .2<a<410. 一组割草人要把两块草地上的草割掉,大草地的面积为S,小草地的面积为S.上午,全体组员都在大草地上割草.下午,一半人继续留在大草地上割草,到下午5时将剩下的草割完;另一半人到小草地上割草,到下午5时还剩下一部分没割完.若上、下午的劳动时间相同,每个割草人的工作效率也相等,则没割完的这部分草地的面积是A. SB. SC. S D . S二、填空题(本大题有6小题,每小题4分,共24分)11. -3的相反数是 .12.甲、乙两人参加某商场的招聘测试,测试由语言和商品知识两个项目组成,他们各自的成绩(百分制)如下表所示.该商场根据成绩在两人之间录用了乙,则本次招聘测试中权重较大的是项目.13.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°得到点B ,则点B 的坐标是 .14.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t(单位:秒)的函数解析式是s =60t停止所用15.如图3,AB 为半圆O 的直径,直线CE 与半圆O 相切于点C ,点D 是的中点,CB =4,四边形ABCD 的面积为2AC , 则圆心O 到直线CE 的距离是 .16.如图4,在菱形ABCD 中,∠B =60°,AB =a ,点E ,F 分别是边AB ,AD 上的动点,且AE +AF =a ,则线段EF 的最小 值为 .三、解答题(本大题有9小题,共86分)17. (本题满分8分)解方程x 2+2x -2=0. 18. (本题满分8分)图4FEDCBA图3如图5,在四边形ABCD 中,AB =AD =5,BC =12,AC =13,∠ADC =90°. 求证:△ABC ≌△ADC . 19. (本题满分8分)2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图6所示.(1)这批工人前两天平均每天种植多少棵景观树木(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人请运用统计知识说明理由. 20.(本题满分8分)如图7,在平面直角坐标系中,已知某个二次函数的图象经过点A (1,m ),B (2,n ),C (4,t ),且点B 是该二次函数图象的顶点.请在图7中描出该函数图象上另21. (本题满分8分)图5 DCB A图6如图8,圆中的弦AB 与弦CD 垂直于点E ,点F 在上, =,直线MN 过点D ,且∠MDC =∠DFC ,求证:直线MN 是该圆的切线. 22. (本题满分10分)在平面直角坐标系中,一次函数y =kx +4m (m >0)的图象经过点B (p ,2m ),其中m >0.(1)若m =1,且k =-1,求点B 的坐标;(2)已知点A (m ,0),若直线y =kx +4m 与x 轴交于点C (n ,0),n +2p=4m ,试判断线段AB 上是否存在一点N ,使得点N 到坐标原点O 与到点C 的距离之和等于线段OB 的长,并说明理由.23. (本题满分11分)如图9,在矩形ABCD 中,点E 在BC 边上,动点P 以2厘米/秒的速度从点A出发,沿△AED 的边按照A →E →D →A 的顺序运动一周.设点P 从A 出发经x (x >0)秒后,△ABP图8NMFEDCBA的面积是y .(1)若AB =6厘米,BE =8厘米,当点P 在线段AE 上时,求y 关于x 的函数表达式;(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y =当点P 在线段AD 上时,y =32-4x .求y关于x 的函数表达式.24. (本题满分11分)在⊙O 中,点C 在劣弧上,D 是弦AB 上的点,∠(1)如图10,若⊙O 的半径为3,∠CDB =70(2)如图11,若DC 的延长线上存在点P ,使得PD =PB ,试探究∠ABC 与∠OBP 的数量关系,并加以证明.25. (本题满分14分)已知y 1=a 1(x -m )2+5,点(m ,25)在抛物线y 2=a 2 x 2+b 2 x +c 2上,其中m >0.(1)若a 1=-1,点(1,4)在抛物线y 1=a 1(x -m )2+5上,求m 的值;图9图10图11(2)记O为坐标原点,抛物线y2=a2x2+b2x+c2的顶点为M.若c2=0,点A(2,0)在此抛物线上,∠OMA=90°求点M的坐标;(3)若y1+y2=x2+16 x+13,且4a2c2-b22=-8a2,求抛物线y2=a2 x2+b2 x+c2的解析式.2016—2017学年(上) 厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11. 3. 12.语言. 13. (-5,4). 14. 20.15. 4-4. 16. a.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:∵ a =1,b =2,c =-2, ∴ △=b 2-4ac=12. ……………………………4分∴ x ==. ……………………………6分∴ x 1=-1+,x 2=-1-. ……………………………8分 18.(本题满分8分)证明: 在Rt △ADC 中, ∵ ∠D =90°, ∴ DC ==12. ………………………4分∴ DC =BC . ………………………5分 又∵ AB =AD ,AC =AC ,∴ △ABC ≌△ADC . ……………………………8分DCBA19.(本题满分8分)(1)(本小题满分4分)解:=220(棵).答:这批工人前两天平均每天种植220棵景观树木.……………………4分(2)(本小题满分4分)解:这批工人前五天平均每天种植的树木为:=207(棵).……………………6分估计到3月10日,这批工人可种植树木2070棵. ……………………7分由于2070<2200所以我认为公司还需增派工人. ……………………8分(也可应用前五天种植量的中位数202估计十天种植量为2020,在数据基础上,对是否需要增派工人进行合理解释即可)20.(本题满分8分)解:如图:……………………8分21.(本题满分8分)证明:设该圆的圆心为点O,在⊙O中,∵=,∴∠AOC=∠BOF.又∠AOC=2∠ABC,∠BOF=2∠BCF,∴∠ABC=∠BCF.…………………2分∴AB∥CF.…………………3分∴∠DCF=∠DEB.∵DC⊥AB,∴∠DEB=90°.∴∠DCF=90°.…………………4分∴DF为⊙O直径. …………………5分且∠CDF+∠DFC=90°.∵∠MDC=∠DFC,∴∠MDC+∠DFC=90°.N MFEDCB A即DF⊥MN.…………………7分又∵MN过点D,∴直线MN是⊙O的切线 . …………………8分22.(本题满分10分)(1)(本小题满分4分)解: ∵一次函数y=kx+4m(m>0)的图象经过点B(p,2m),∴ 2m =kp+4m.…………………2分∴kp=-2m.∵m=1,k=-1,∴p=2. …………………3分∴B(2,2). …………………4分(2)(本小题满分6分)答:线段AB上存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长. …………………5分理由如下:由题意,将B(p,2m),C(n,0)分别代入y=kx+4m,BN得kp+4m=2m且kn+4m=0.可得n=2p.∵n+2p=4m,∴p=m .…………………7分∴A(m,0),B(m,2m),C(2m,0).∵x B=x A,∴AB⊥x轴,…………………9分且OA=AC=m.∴对于线段AB上的点N,有NO=NC.∴点N到坐标原点O与到点C的距离之和为NO+NC=2NO.∵∠BAO=90°,在Rt△BAO,Rt△NAO中分别有OB2=AB2+OA2=5m2,NO2=NA2+OA2=NA 2+m2.若2NO=OB,则4NO2=OB2.即4(NA 2+m2)=5m2.可得NA=m.即NA=AB. …………………10分所以线段AB上存在一点N,使得点N到坐标原点O与到点C的距离之和等于线段OB的长,且NA=AB.23.(本题满分11分)(1)(本小题满分5分)解:∵四边形ABCD是矩形,∴∠ABE=90°.又AB=8,BE=6,∴AE==10. ……………………1分设△ABE中,边AE上的高为h,∵S△ABE=AE⋅h=AB⋅BE,∴h= . ……………………3分又AP=2x,∴y=x(0<x≤5). ……………………5分(2)(本小题满分6分)解: ∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=DC, AD=BC.∵E为BC中点,∴BE=EC.∴△ABE≌△DCE.∴AE=DE. ……………………6分当点P运动至点D时,S△ABP=S△ABD,由题意得x=32-4x,解得x=5. ……………………7分当点P运动一周回到点A时,S△ABP=0,由题意得32-4x=0,解得x=8. ……………………8分∴AD=2×(8-5)=6.∴BC=6.∴BE=3.且AE+ED=2×5=10.∴AE=5.在Rt△ABE中,AB==4. ……………………9分设△ABE 中,边AE 上的高为h , ∵ S △ABE =AE ⋅h =AB ⋅BE , ∴ h =.又 AP =2x ,∴ 当点P 从A 运动至点D 时,y =x (0<x ≤).…………10分 ∴ y 关于x 的函数表达式为:当0<x ≤5时,y =x ;当5<x ≤8时,y =32-4x . ………………11分24.(本题满分11分)(1)(本小题满分4分) 解:连接OC ,OB .∵ ∠ACD =40°,∠CDB =70°,∴ ∠CAB =∠CDB -∠ACD =70°-40°=30°.…………1分 ∴ ∠BOC =2∠BAC =60°, ………………2分∴ =180n r π=603180π⨯⨯=π. ………………4分 (2)(本小题满分7分)解:∠ABC+∠OBP=130°. ………………………5分证明:设∠CAB=α,∠ABC=β,∠OBA=γ,连接OC.则∠COB=2α.∵ OB=OC,∴ ∠OCB=∠OBC=β+γ.∵ △OCB中,∠COB+∠OCB+∠OBC=180°,∴ 2α+2(β+γ)=180°.即α+β+γ=90°. ………………………8分∵ PB=PD,∴ ∠PBD=∠PDB=40°+β. ………………………9分∴ ∠OBP=∠OBA+∠PBD=γ+40°+β=(90°-α) +40°=130°-α.………………………11分即∠ABC+∠OBP=130°.25.(本题满分14分)(1)(本小题满分3分)解:∵ a1=-1,∴ y1=-(x-m)2+5.将(1,4)代入y1=-(x-m)2+5,得4=-(1-m)2+5. …………………………2分m=0或m=2 .∵ m>0,∴ m=2 . …………………………3分(2)(本小题满分4分)解:∵ c2=0,∴ 抛物线y2=a2 x2+b2 x.将(2,0)代入y2=a2 x2+b2 x,得4a2+2b2=0.即b2=-2a2.∴ 抛物线的对称轴是x=1. …………………………5分设对称轴与x轴交于点N,则NA=NO=1.又∠OMA=90°,∴ MN= OA=1. …………………………6分∴ 当a2>0时, M(1,-1);当a2<0时, M(1,1).∵ 25>1,∴M(1,-1)……………………7分(3)(本小题满分7分)解:方法一:由题意知,当x=m时,y1=5;当x=m时,y2=25,∴ 当x=m时,y1+y2=5+25=30.∵ y1+y2=x2+16 x+13,∴ 30=m2+16m+13.解得m1=1,m2=-17.∵ m>0,∴ m=1. ……………………………9分∴ y1=a1 (x-1)2+5.∴ y2=x2+16 x+13-y1=x2+16 x+13-a1 (x-1)2-5.即y2=(1-a1)x2+(16+2a1)x+8-a1. ………………………12分∵ 4a2 c2-b22=-8a2,∴ y2 顶点的纵坐标为=-2.∴ =-2.化简得=-2.解得a1=-2.经检验,a1是原方程的解.∴ 抛物线的解析式为y2=3x2+12x+10. ……………………14分方法二:由题意知,当x=m时,y1=5;当x=m时,y2=25;∴ 当x=m时,y1+y2=5+25=30.∵ y1+y2=x2+16 x+13,∴ 30=m2+16m+13.解得m 1=1,m 2=-17. ∵ m >0,∴ m =1. ………………………………9分 ∵ 4a 2 c 2-b 22=-8 a 2,∴ y 2 顶点的纵坐标为 =-2 . ……………………10分 设抛物线y 2的解析式为y 2=a 2 (x -h )2-2. ∴ y 1+y 2=a 1 (x -1)2+5+a 2 (x -h )2-2. ∵ y 1+y 2=x 2+16 x +13,∴ 121221212216313a a a a h a a h ⎧+=⎪--=⎨⎪++=⎩解得h =-2,a 2=3.∴ 抛物线的解析式为y 2=3(x +2)2-2. ……………………………14分 (求出h =-2与a 2=3各得2分) 方法三:∵ 点(m ,25)在抛物线y 2=a 2 x 2+b 2x +c 2上, ∴ a 2 m 2+b 2 m +c 2=25. (*)∵ y1+y2=x2+16 x+13,∴12122121216513 a ama bm a c+=⎧⎪-+=⎨⎪++=⎩由②,③分别得b2 m=16m+2 m 2 a1,c2=8-m 2 a1.将它们代入方程(*)得a2 m 2+16m+2 m 2 a1+8-m 2 a1=25.整理得,m 2+16m-17=0.解得m1=1,m2=-17.∵ m>0,∴ m=1. ………………………………………9分∴1212121 2168a aa ba c+=⎧⎪-+=⎨⎪+=⎩解得b2=18-2 a2,c2=7+a2. ………………………12分∵ 4a2 c2-b22=-8a2,∴ 4a2(7+a2)-(18-2 a2)2=-8a2.∴ a2=3.∴ b2=18-2×3=12,c2=7+3=10.∴ 抛物线的解析式为y2=3x2+12x+10. ……………………………14分2016—2017学年(上) 厦门市九年级质量检测数学评分量表二、填空题12. 横、纵坐标都对才能得分.三、解答题17. 解方程x2+2x-2=0.∠ADC=90°.求证:△ABC≌△ADC. 图19.2016年3月1日,某园林公司派出一批工人去完成种植2200棵景观树木的任务,这批工人3月1日到5日种植的数量(单位:棵)如图6所示.(1)这批工人前两天平均每天种植多少棵景观树木图6(2)因业务需要,到3月10日必须完成种植任务,你认为该园林公司是否需要增派工人请运用统计知识说明理由.20.如图7,在平面直角坐标系中,已知某个二次函数的图象经过点A(1,m),B(2,n),C(4,t),且点B是该二次函数图象的顶点.请在图7中描出该函数图象上另21.如图8,圆中的弦AB 与弦CD 垂直于点E ,点F在上,=,直线MN 过点D ,且∠MDC =∠DFC , 求证:直线MN 是该圆的切线.图NMFEDC B A22.在平面直角坐标系中,一次函数y=kx+4m(m>0)的图象经过点B(p,2m),其中m>0.(1)若m=1,且k=-1,求点B的坐标;A BCN横纵坐标都正确才可得分.(2)已知点A (m ,0),若直线y =kx +4m 与x 轴交于点C (n ,0),n +2p =4m ,试判断线段AB 上是否存在一点N N 到坐标原点O 与到点C 的距离之和等于线段OB 的长,并说明理由.测量目标 能依据平面直角坐标系中点的坐标的数量特征,研究几何图形的形状以及位置关系.(6分) (运算能力、推理能力、空间观念)总体要求 若出现一个字母一次写错,但是思路正确且结合上下文可以认定是笔误的,不扣分;否则,不仅该步不得分,而且本题所有的后继部分都不得分,评卷终止.各子目标及获得三个参数n ,p ,m 之间的数量关系(2分) 1.本环节得分为2分,1分,0分.●本环节若得0分,则评卷终止.●若本环节中,p 与m 的数量关系错误,则该步不得分,且后继环节均不得分.23.如图9,在矩形ABCD中,点E在BC边上,动点P以2厘米/秒的速度从点A 出发,沿△AED的边按照A→E→D→A的顺序运动一周.设点P从A出发经x(x>0)△ABP的面积是y.(1)若AB=8厘米,BE=6厘米,当点P在线段AE上时,求y关于x的函数表达式;(2)已知点E 是BC 的中点,当点P 在线段ED 上时,y当点P 在线段AD 上时,y =32-4x .求y 关于x24.在⊙O中,点C在劣弧上,D是弦AB上的点,∠ACD=40°.(1)如图10,若⊙O的半径为3,∠CDB=70°,求的长;(2)如图11,若DC使得PD =PB ,试探究∠ABC 的数量关系,并加以证明.图11(3)图11(2)图11(1)25. 已知y1=a1(x-m)2+5,点(m,25)在抛物线y2=a2 x2+b2 x+c2上,其中m>0.。

厦门市九年级上学期期末质量检测数学试题及答案

厦门市九年级上学期期末质量检测数学试题及答案

厦门市九年级上学期期末质量检测数学试题一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1.计算-5+6,结果正确的是A .1B .-1C .11D .-11 2.如图1,在△ABC 中,∠C =90°,则下列结论正确的是 A . AB =AC +BC B .AB =AC ·BC C .AB 2=AC 2+BC 2 D .AC 2=AB 2+BC 2 3.抛物线y =2(x -1)2-6的对称轴是A .x =-6B .x =-1C .x =12 D .x =14.要使分式1x -1有意义,x 的取值范围是A .x ≠0B .x ≠1C .x >-1D .x >1 5.下列事件是随机事件的是A .画一个三角形,其内角和是360°B .投掷一枚正六面体骰子,朝上一面的点数小于7 C.射击运动员射击一次,命中靶心D .在只装了红球的不透明袋子里,摸出黑球6.图2,图3分别是某厂六台机床十月份第一天和第二天生 产零件数的统计图.与第一天相比,第二天六台机床生产零件数的平均数与方差的变化情况是 A .平均数变大,方差不变 B .平均数变小,方差不变 C .平均数不变,方差变小 D .平均数不变,方差变大7.地面上一个小球被推开后笔直滑行,滑行的距离s 与时间t 的函数关系如图4中的部分抛 物线所示(其中P 是该抛物线的顶点),则下列说法正确的是A .小球滑行6秒停止B .小球滑行12秒停止C .小球滑行6秒回到起点D .小球滑行12秒回到起点8.在平面直角坐标系xOy 中,已知A (2,0),B (1,-1),将线段OA 绕点O 逆时针旋转, 设旋转角为α(0°<α<135°).记点A 的对应点为A 1,若点A 1与点B 的距离为6,则 α为A .30°B .45°C .60°D .90°9.点C ,D 在线段AB 上,若点C 是线段AD 的中点,2BD >AD ,则下列结论正确的是 A .CD <AD -BD B .AB >2BD C .BD >AD D .BC >AD 10.已知二次函数y =ax 2+bx +c (a >0)的图象经过(0,1),(4,0).当该二次函数的自 变量分别取x 1,x 2(0<x 1<x 2<4)时,对应的函数值为y 1,y 2,且y 1=y 2.设该函数图象 的对称轴是x =m ,则m 的取值范围是A .0<m <1B .1<m ≤2C .2<m <4D .0<m <4 二、填空题(本大题有6小题,每小题4分,共24分)11.投掷一枚质地均匀的正六面体骰子,投掷一次,朝上一面的点数为奇数的概率是 .12.已知x =2是方程x 2+ax -2=0的根,则a = . 13.如图5,已知AB 是⊙O 的直径,AB =2,C ,D 是圆周上的点, 且∠CDB =30°,则BC 的长为 .14.我们把三边长的比为3∶4∶5的三角形称为完全三角形.记命题A :“完全三角形是直角三角形”.若命题B 是命题A 的逆命题,请写出命题B :;并写出一个例子(该例子能判断命题B 是错误的): .15.已知AB 是⊙O 的弦,P 为AB 的中点,连接OA ,OP ,将△OP A 绕点O 逆时针旋转到△OQB . 设⊙O 的半径为1,∠AOQ =135°,则AQ 的长为 .16.若抛物线y =x 2+bx (b >2)上存在关于直线y =x 成轴对称的两个点,则b 的取值范围 是 . 三、解答题(本大题有9小题,共86分) 17.(本题满分8分) 解方程x 2-3x +1=0.18.(本题满分8分)化简并求值:(1-2x +1)÷x 2-12x +2,其中x =2-1.19.(本题满分8分)已知二次函数y =(x -1)2+n ,当x =2时y =2.求该二次函数的解析式,并在平面直角坐标系中画出该函数的图象.20.(本题满分8分)如图6,已知四边形ABCD 为矩形.(1)请用直尺和圆规在边AD 上作点E ,使得EB =EC ; (保留作图痕迹)(2)在(1)的条件下,若AB =4,AD =6,求EB 的长.21.(本题满分8分)如图7,在△ABC 中,∠C =60°,AB =4.以AB 为直径画⊙O ,交边AC 于点D ,︵AD 的长为4π3.求证:BC 是⊙O 的切线.22.(本题满分10分) 已知动点P 在边长为1的正方形ABCD 的内部,点P 到边AD ,AB 的距离分别为m ,n .(1)以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系,如图8所示.当点P 在对角线AC 上,且m =14时,求点P 的坐标;(2)如图9,当m ,n 满足什么条件时,点P 在△DAB 的内部?请说明理由.23.(本题满分10分)小李的活鱼批发店以44元/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运 输过程中,有部分鱼未能存活.小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录. (1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案) (2)按此市场调节的规律,① 若该品种活鱼的售价定为52.5元/公斤,请估计日销售量,并说明理由; ② 考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只能卖活鱼),且 售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.24.(本题满分12分)已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点 A ,B (不与P ,Q 重合),连接AP ,BP . 若∠APQ =∠BPQ , (1)如图10,当∠APQ =45°,AP =1,BP =22时,求⊙O 的半径;(2)如图11,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P ,M 重合),连接ON ,OP ,若∠NOP+2∠OPN =90°,探究直线AB 与ON 的位置关系,并证明.25.(本题满分14分)在平面直角坐标系xOy 中,点A (0,2),B (p ,q )在直线l 上,抛物线m 经过点 B ,C (p +4,q ),且它的顶点N 在直线l 上. (1)若B (-2,1),① 请在图12的平面直角坐标系中画出直线l 与抛物线m 的示意图;表一表二 图10 图11② 设抛物线m 上的点Q 的横坐标为e (-2≤e ≤0),过点Q 作x 轴的垂线,与直线l 交于点H .若QH =d ,当d 随 e 的增大而增大时,求e 的取值范围;(2)抛物线m 与y 轴交于点F ,当抛物线m 与x 轴有唯一 交点时,判断△NOF 的形状并说明理由.数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每题4分,共24分)11.12. 12. -1. 13.1. 14.直角三角形是完全三角形;如:等腰直角三角形,或三边分别为5,12,13的三角形,或三边比为5∶12∶13的三角形等. 15.102. 16.b >3.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)解:a =1,b =-3,c =1. △=b 2-4ac=5>0. ……………………………4分 方程有两个不相等的实数根x =-b ±b 2-4ac 2a=3±52. ……………………………6分 即x 1=3+52,x 2=3−52. ……………………………8分18.(本题满分8分)解:(1-2x +1)÷x 2-12x +2=(x +1-2x +1)·2x+2x 2-1 ……………………………2分=x -1x +1·2(x +1)(x+1)(x -1) ……………………………5分 =2x +1……………………………6分当x =2-1时,原式=22= 2 …………………………8分19.(本题满分8分)解:因为当x =2时,y =2. 所以 (2−1)2 +n =2. 解得n =1.所以二次函数的解析式为:y =(x −1)2 +1…………………4分列表得:如图:…………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E 即为所求.…………………3分 (2)(本小题满分5分)解法一:解:连接EB ,EC , 由(1)得,EB =EC . ∵ 四边形ABCD 是矩形,∴ ∠A =∠D =90°,AB =DC .∴ △ABE ≌△DCE . …………………6分∴ AE =ED =12AD =3. …………………7分在Rt △ABE 中,EB =AB 2+AE 2. ∴ EB =5. …………………8分解法二:如图,设线段BC 的中垂线l 交BC 于点F , ∴ ∠BFE =90°,BF =12BC .EDCBAlFEDCBAl∵ 四边形ABCD 是矩形,∴ ∠A =∠ABF =90°,AD =BC .在四边形ABFE 中,∠A =∠ABF =∠BFE =90°, ∴ 四边形ABFE 是矩形. …………………6分 ∴ EF =AB =4. …………………7分 在Rt △BFE 中,EB =EF 2+BF 2.∴ EB =5. …………………8分21.(本题满分8分)证明:如图,连接OD , ∵ AB 是直径且AB =4, ∴ r =2.设∠AOD =n °, ∵ ︵AD 的长为4π3,∴ n πr 180=4π3.解得n =120 .即∠AOD =120° . ……………………………3分 在⊙O 中,DO =AO , ∴ ∠A =∠ADO .∴ ∠A =12(180°-∠AOD )= 30°. ……………………………5分∵ ∠C =60°,∴ ∠ABC =180°-∠A -∠C =90°. …………………………6分 即AB ⊥BC . ……………………………7分 又∵ AB 为直径,∴ BC 是⊙O 的切线. ……………………………8分 22.(本题满分10分)解(1)(本小题满分5分) 解法一:如图,过点P 作PF ⊥y 轴于F , ∵ 点P 到边AD 的距离为m .∴ PF =m =14.∴ 点P 的横坐标为14. …………………1分由题得,C (1,1),可得直线AC 的解析式为:y =x . …………………3分 当x =14时,y =14 . …………………4分所以P (14,14). …………………5分F解法二:如图,过点P 作PE ⊥x 轴于E ,作PF ⊥y 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m . ∴ P (m ,n ). …………………1分 ∵ 四边形ABCD 是正方形,∴ AC 平分∠DAB . …………………2分 ∵ 点P 在对角线AC 上,∴ m =n =14. …………………4分∴ P (14,14). …………………5分(2)(本小题满分5分)解法一:如图,以A 为原点,以边AB 所在直线为x 轴,建立平面直角坐标系. 则由(1)得P (m ,n ).若点P 在△DAB 的内部,点P 需满足的条件是:①在x 轴上方,且在直线BD 的下方; ②在y 轴右侧,且在直线BD 的左侧.由①,设直线BD 的解析式为:y =kx +b , 把点B (1,0),D (0,1)分别代入,可得直线BD 的解析式为:y =-x+1. ……………6分 当x =m 时,y =-m+1.由点P 在直线BD 的下方,可得n <-m+1. ……………7分 由点P 在x 轴上方,可得n >0 ……………8分 即0<n <-m+1.同理,由②可得0<m <-n+1. ……………9分所以m ,n 需满足的条件是:0<n <-m+1且0<m <-n+1. ……………10分解法二:如图,过点P 作PE ⊥AB 轴于E ,作PF ⊥AD 轴于F , ∵ 点P 到边AD ,AB 的距离分别为m ,n , ∴ PE =n ,PF =m .在正方形ABCD 中,∠ADB =12∠ADC =45°,∠A =90°.∴ ∠A =∠PEA =∠PF A =90°. ∴ 四边形PEAF 为矩形.∴ PE =F A =n . ……………6分 若点P 在△DAB 的内部,则延长FP 交对角线BD 于点M .在Rt △DFM 中,∠DMF =90°-∠FDM =45°. ∴ ∠DMF =∠FDM . ∴ DF =FM . ∵ PF <FM ,∴ PF <DF ……………7分 ∴ PE+ PF =F A+ PF <F A+ DF .· PEFM即m+ n <1. ……………8分 又∵ m >0, n >0,∴ m ,n 需满足的条件是m+n <1且m >0且n >0. ……………10分23.(本题满分10分) 解:(1)(本小题满分2分)估计运到的2000公斤鱼中活鱼的总重量为1760公斤.……………2分 (2)①(本小题满分3分)根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤.……………………5分②(本小题满分5分)解法一:由(2)①,若活鱼售价在50元/公斤的基础上,售价增加x 元/公斤,则可估计日销售量在400公斤的基础上减少40x 公斤,设批发店每日卖鱼的最大利润为w ,由题得w =(50+x -2000×441760) (400-40x ) ……………………7分=-40x 2+400x=-40(x -5)2+1000.由“在8天内卖完这批活鱼”,可得8 (400-40x )≤1760,解得x ≤4.5. 根据实际意义,有400-40x ≥0;解得x ≤10. 所以x ≤4.5. ……………………9分因为-40<0,所以当x <5时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分解法二:设这8天活鱼的售价为x 元/公斤,日销售量为y 公斤,根据活鱼的售价与日销售量之间的变化规律,不妨设y =kx +b .由表二可知,当x =50时,y =400;当x =51时,y =360,所以⎩⎨⎧50k +b =40051k +b =360,解得⎩⎨⎧k =-40b =2400,可得y =-40x +2400.设批发店每日卖鱼的最大利润为w ,由题得w =(x -2000×441760) (-40x +2400) ……………………7分=-40x 2+4400x -120000 =-40(x -55)2+1000.由“在8天内卖完这批活鱼”,可得8 (-40x +2400)≤1760,解得x ≤54.5. 根据实际意义,有-40x +2400≥0;解得x ≤60.所以x ≤54.5. ……………………9分因为-40<0,所以当x <55时,w 随x 的增大而增大,所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.……………………10分24.(本题满分12分)(1)(本小题满分6分) 解:连接AB . 在⊙O 中, ∵ ∠APQ =∠BPQ =45°,∴ ∠APB =∠APQ +∠BPQ =90°.…………1分 ∴ AB 是⊙O 的直径. ………………3分∴ 在Rt △APB 中,AB =AP 2+BP 2 ∴ AB =3. ………………5分 ∴ ⊙O 的半径是32. ………………6分(2)(本小题满分6分) 解:AB ∥ON .证明:连接OA ,OB ,OQ , 在⊙O 中,∵ ︵AQ =︵AQ ,︵BQ =︵BQ ,∴ ∠AOQ =2∠APQ ,∠BOQ =2∠BPQ . 又∵ ∠APQ =∠BPQ ,∴ ∠AOQ =∠BOQ . ……………7分 在△AOB 中,OA =OB ,∠AOQ =∠BOQ ,∴ OC ⊥AB ,即∠OCA =90°. ………………………8分 连接OQ ,交AB 于点C , 在⊙O 中,OP =OQ .∴ ∠OPN =∠OQP .延长PO 交⊙O 于点R ,则有2∠OPN =∠QOR . ∵ ∠NOP +2∠OPN =90°,又∵ ∠NOP +∠NOQ +∠QOR =180°,∴ ∠NOQ =90°. ………………………11分 ∴ ∠NOQ +∠OCA =180°.∴ AB ∥ON . ………………………12分25.(本题满分14分)(1)①(本小题满分3分)解:如图即为所求…………………………3分Q②(本小题满分4分)解:由①可求得,直线l :y =12x +2,抛物线m :y =-14x 2+2.……………5分因为点Q 在抛物线m 上,过点Q 且与x 轴垂直的直线与l 交于点H ,所以可设点Q 的坐标为(e ,-14e 2+2),点H 的坐标为(e ,1e +2),其中(-2≤e ≤0).当-2≤e ≤0时,点Q 总在点H 的正上方,可得 d =-14e 2+2-(12e +2) ……………6分=-14e 2-12e=-14(e +1)2+14.因为-14<0,所以当d 随e 的增大而增大时,e 的取值范围是-2≤e ≤-1.……………7分 (2)(本小题满分7分)解法一:因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2. 又因为抛物线m 与x 轴只有一个交点, 可设顶点N (p +2,0).设抛物线的解析式为y =a (x -p -2)2. 当x =0时,y F =a (p+2)2. 可得F (0,a (p+2)2). …………………9分 把B (p ,q )代入y =a (x -p -2)2,可得q =a (p -p -2)2. 化简可得q =4a ①. 设直线l 的解析式为y =kx +2, 分别把B (p ,q ),N (p +2,0)代入y =kx +2,可得 q =kp +2 ②,及0=k (p +2)+2 ③ .由①,②,③可得a =12+p.所以F (0,p +2). 又因为N (p +2,0), …………………13分 所以ON=OF ,且∠NOF =90°.所以△NOF 为等腰直角三角形.…………………14分解法二:因为直线过点A (0,2), 不妨设直线l :y =kx +2, 因为B (p ,q ),C (p +4,q )在抛物线m 上, 所以抛物线m 的对称轴为x =p +2.又因为抛物线的顶点N 在直线l :y =kx +2上,可得N (p +2,k (p +2)+2).所以抛物线m :y =a (x -p -2)2+k (p +2)+2.当x =0时,y =a (p +2)2+k (p +2)+2.即点F 的坐标是(0,a (p +2)2+k (p +2)+2). …………………9分 因为直线l ,抛物线m 经过点B (p ,q ),可得⎩⎨⎧kp +2=q 4a +k (p +2)+2=q, 可得k =-2a .因为抛物线m 与x 轴有唯一交点,可知关于x 的方程kx +2=a (x -p -2)2+k (p +2)+2中,△=0. 结合k =-2a ,可得k (p +2)=-2.可得N (p +2,0),F (0, p +2). …………………13分所以ON=OF ,且∠NOF =90°.所以△NOF 是等腰直角三角形. …………………14分。

厦门市2012-2013九年级质量检测_数学参考答案

厦门市2012-2013九年级质量检测_数学参考答案

2012—2013学年(上) 厦门市九年级质量检测数学参考答案及评分标准一、选择题(本大题共7小题,每小题3分,共21分)题号 123456 7 选项A B D C BAB二、填空题(本大题共10小题,每题4分,共40分)8. x ≥2; 9. ±3; 10. 30; 11. 2; 12. 4; 13. 13;14. -3; 15. 4πx 2=π(x +5)2; 16. 60; 17. 4.说明:☆ 第9题写对1个给2分; 第15题写成4x 2=(x +5)2不扣分. 三、解答题(本大题共9小题,共89分) 18.(本题满分18分)(1)解:2³(3+2)-26;=6+2-26 ……………………………………………………4分 =2-6. …………………………………………………………6分 说明:☆ 写出正确答案,至少有一步过程,不扣分,只有正确答案,没有过程,只扣1分;☆ 没有写正确答案的,按步给分.(2)能在图中看出对称点是C 点 ……………2分 能画出对称图形是三角形 ……………4分 以上两点都有 …………………6分(3)证明:∵ ∠ACB =90°,…………………………1分 ∴ AB 是直径. …………………………3分在Rt △ABC 中, ∵BC =3,AC =4,∴ AB =5. ……………………………6分19.(本题满分7分)解法一: x 2+2x -2=0,∵ b 2-4ac =22+8=12, …………………………………………2分 ∴ x =-b ±b 2-4ac2a ………………………………………… 4分=-2±122…………………………………………5分=-1±3. ………………………………………………6分 即x 1=-1+3,x 2=-1-3. ……………………………………………7分 解法二: x 2+2x -2=0,(x +1)2=3. ………………………………………………4分O CBA BCEDAx +1=±3. ………………………………………………6分 即x 1=-1+3,x 2=-1-3. ……………………………………………7分 说明:☆ x 1=,x 2=,写错一个扣1分.☆ 写出正确答案(即写出x 1=,x 2=,)且至少有一步过程,不扣分. ☆ 只有正确答案,没有过程,只扣1分. ☆ 没有写正确答案的,按步给分.☆ 如果12没有化简(即x 1=-2+122,x 2=-2-122),只扣1分.20.(本题满分7分) (1)解: P ( 恰好是黄球) ……………………………………………1分=23. …………………………………………………………………3分 (2)解: P (两球恰好都是黄球)=29 . ………………………………………7分说明:☆ 第(2)若答案不正确,但分母写对,则只扣2分.☆ 两小题的答案正确,但格式不对,如“事件”没写或写不对,只扣1分.21.(本题满分8分) (1)解法一:(4+2)与(4-2)不是互为倒数. …………………………………1分∵(4+2)(4-2) ……………………………………………………2分=14. ………………………………………………………3分 而14≠1,∴(4+2)与(4-2)不是互为倒数.解法二:(4+2)与(4-2)不是互为倒数. …………………………………1分14+2 ……………………………………………………2分=4-214………………………………………………………3分 ≠4-2.∴(4+2)与 (4-2)不是互为倒数.说明:☆ 若没有写“(4+2)与(4-2)不是互为倒数”但最后有写“(4+2)与(4-2)不是互为倒数”,则分数可不扣,若有写“(4+2)与(4-2)不是互为倒数”但最后没有“(4+2)与(4-2)不是互为倒数”,不扣分.☆ 若写成“(4+2)不是(4-2)的倒数”亦可.(2)解:∵实数(x +y )是(x -y )的倒数, ∴(x +y )(x -y )=1. ……………4分 ∴ x -y =1. ………………………5分∴ y =x -1. ………………………6分 画出坐标系,正确画出图象 …………8分说明:若图象画成直线、或自变量的取值不对, 可得1分.22.(本题满分8分)(1)解:2a +a (a -1)2 ……………………………………………………3分说明: 若没有写全对,则写出2a 得1分,写出a (a -1)2得2分.(2)解法一:不会发生. ……………………………………………………4分设参加会议的专家有x 人.若参加会议的人共握手10次,由题意 ……………………………5分 2x +x (x -1)2=10. ……………………………………………………6分 ∴ x 2+3x -20=0.∴ x 1=-3-892,x 2=-3+892. …………………………………7分 ∵ x 1、x 2都不是正整数, …………………………………8分 ∴ 所有参加会议的人共握手10次的情况不会发生. 解法二:不会发生. ……………………………………………………4分 由题意我们知道,参加会议的专家的人数越多,则所有参加会议的人握手 的次数就越多.当参加会议的专家有3人时,所有参加会议的人共握手9次; …6分 当参加会议的专家有4人时,所有参加会议的人共握手14次; …8分故所有参加会议的人共握手10次的情况不会发生.说明:☆ 若没有写“不会发生”但最后有下结论,则分数可不扣,若有写“不会发生”但最后没有下结论,不扣分.☆ 若没有写“若参加会议的人共握手10次”但列对方程,则此分不扣,列对方程可得2分; ☆ 没有写“x 1、x 2都不是正整数,不合题意”而是写“经检验,不合题意”亦可.23.(本题满分9分)(1)解:∵ AD ∥BC ,∠ABO =120°,∴ ∠BAD =60°. …………………………………………………………1分 ∵ AO 是∠BAD 的平分线, ∴ ∠BAO =30°. ∴ ∠AOB =30°. ………………2分 ∵ BC =2,∴ BO =1. ………………3分∴︵BM =30π180=π6. ……………4分(2)证明:由题意得,四边形ABCD 是等腰梯形, ∴ 四边形ABCD 是轴对称图形.∵ 点O 、E 分别是底BC 、AD 的中点,连结OE ,∴ OE 是等腰梯形ABCD 的对称轴. ………………………………………5分 ∴ OE ⊥AD . …………………………………………………………6分在Rt △AOE 中,∵ AE =3,OA =2,∴ OE =1. …………………………………………………………7分 即OE 是⊙O 的半径. ……………………………………………………8分M OE D CBA∴ 直线AD 与⊙O 相切. …………………………………………………9分 24.(本题满分10分)(1)解:∵b =2,且2是方程的根,代入原方程得(a 2+1) 22-2(a +2) 2+1+22=0. ……………………………………1分 即 4a 2-4a +1=0. …………………………………………2分 ∴ a =12 . ………………………………………………………4分(2)解:△=4(a +b )2-4(a 2+1)(1+b 2) ……………………………………5分 =8ab -4a 2b 2-4=-4(ab -1)2. ………………………………………………6分 ∵ 方程有实数根,∴ -4(ab -1)2≥0. 即 4(ab -1)2≤0.∴ 4(ab -1)2=0. ……………………………………………………7分 ∴ ab -1=0.∴b =1a . ……………………………………………………………8分∵1>0,∴ 在每个象限,b 随a 的增大而减小. ……………………………………9分 ∴ 当-3<a <-1时,-1<b <-13. ……………………………………………………………10分25.(本题满分10分) (1)解:∵k =2,m =3,∴ 点E (3,23),点F (23,3). …………………………………………2分设直线EF 的解析式为y =ax +b , 则得,⎩⎨⎧3a +b =23,23a +b =3. ……………………………………………………………3分解得, ⎩⎪⎨⎪⎧a =-1,b =113.∴直线EF 的解析式为y =-x +113…………4分(2)解法一:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形.又MA =MB =m ,∴ 四边形OAMB 正方形.点E (m ,k m ),F (km ,m ). ……………5分∴ OA =OB ,AE =BF .连结OE ,∴ Rt △OBF ≌Rt △OAE . ………………6分 ∴ ∠EOA =∠BOF =22.5°.∴ ∠FOE =45°. 连结EF 、OM 交于点C . 又 ∵∠MOA =45°, ∴ ∠MOE =22.5°. 同理得,∠FOM =22.5°. ∵ OF =OE ,∴ OC ⊥FE ,且点C 线段EF 的中点.∴ Rt △FOC ≌Rt △EOC . ………………………………………………7分Rt △COE ≌Rt △AOE . ………………………………………………8分∴ S △AOE =14S 五边形BOAEF . …………………………………………………9分∴ 12²m ²k m =12.∴ k =1. …………………………………………………………10分解法二:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°,∴ 四边形OAMB 是矩形. 又MA =MB =m ,∴ 四边形OAMB 正方形.点E (m ,k m ),F (km ,m ). ………………………………………………5分∴ OA =OB ,AE =BF .连结OE ,∴ Rt △OBF ≌Rt △OAE . ………………………………………………6分∴ ∠EOA =∠BOF =22.5°. OF =OE .将△OBF 绕点O 顺时针旋转90°,记点F 的对应点是P . ……………7分 则∠EOP =45°. ∵∠EOF =45°,∴ △EOF ≌△EOP . …………………………………………………8分 ∴ S △EOP =12S BOAEF . ……………………………………………………9分即S △EOP =1. 12²m (k m +km)=1 ∴ k =1. …………………………………………………………10分 解法三:由题意得,MA ⊥OA ,MB ⊥OB ,∠BOA =90°, ∴ 四边形OAMB 是矩形. 又MA =MB =m ,∴ 四边形OAMB 正方形.点E (m ,k m ),F (km ,m ). ………………………………………5分∴ ME =MF =m -km.连结EF ,则△MFE 是等腰直角三角形. 连结OM 交EF 于点C .则OM ⊥EF . ∵∠BOM =45°,∠BOF =22.5° ∴∠FOC =22.5°.∴ Rt △FOB ≌Rt △FOC . …………………………………………6分 ∴ OC =OB =m .∵点E (m ,k m ),F (km,m ).∴ 直线EF 的解析式是y =-x +m +km .∵ 直线OM 的解析式是y =x ,∴ 点C (m 2+k 2m ,m 2+k2m). ……………………………………7分过点C 作CN ⊥x 轴,垂足为N . 则(m 2+k 2m )2+(m 2+k 2m)2=m 2.解得,k =(2-1) m 2. ……………………………………8分由题意得,m 2-12(m -k m )2=2. ……………………………………9分即 m 2-12[ m -(2-1) m ] 2=2.解得,(2-1) m 2=1.∴ k =1. ……………………………………10分 26.(本题满分12分)(1)证明:∵ ︵CD =︵BD , ∴ CD =BD . ………………………1分 又∵∠CDB =60°,∴△CDB 是等边三角形. …………………2分 ∴ ∠CDB =∠DBC . …………………3分 ∴ ︵CD =︵BC .∴ ∠DAC =∠CAB .∴ AC 是∠DAB 的平分线. ………………………………………………4分 (2)解法一:连结DB .在线段CE 上取点F ,使EF =AE ,连结DF . ……………………………6分∵ DE ⊥AC ,∴ DF =DA ,∠DFE =∠DAE . ……………………………………7分 ∵ ︵CD =︵BD ,ODCBA∴ CD =BD .∴∠DAC =∠DCB . ∴ ∠DFE =∠DCB .∵ 四边形ABCD 是圆内接四边形,∴ ∠DAB +∠DCB =180°.………………8分 又∵∠DFC +∠DFE =180°,∴ ∠DFC =∠DAB . ………………………9分∵∠DCA =∠ABD ,∴△CDF ≌△BDA . ……………………………………………………10分 ∴CF =AB . …………………………………………………………11分 ∵AC =7, AB =5,∴ AE =1. …………………………………………………………12分 解法二:在︵CD 上取一点F ,使得︵DF =︵DA ,…………………………………5分 连结CF ,延长CF ,过D 作DG ⊥CF ,垂足为G . ……………6分 ∵ ︵DF =︵DA ,∴ ∠GCD =∠DCE . ∵ DC =DC ,∴ Rt △CGD ≌Rt △CED . ……………7分 ∴ CG =CE . ∴ DG =DE . ∵ ︵DF =︵DA , ∴ DF =DA .∴ Rt △DGF ≌Rt △DEA . ………………………………………8分 ∴ FG =AE . ………………………………………9分 ∵ ︵CD =︵BD ,︵DF =︵DA , ∴ ︵CF =︵AB .∴ CF =AB . ………………………………………10分 ∵ CG =CE ,∴ CF +FG =AC -AE ………………………………………11分 即 AB +AE =AC -AE ∵ AC =7, AB =5,∴ AE =1. …………………………………………………………12分FOEDCB AGA FOE DCB。

2017—2018学年(上)厦门市九年级质量检测及答案

2017—2018学年(上)厦门市九年级质量检测及答案

2017—2018学年(上)厦门市九年级质量检测数学(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.下列算式中,计算结果是负数的是( )A .(-2)+7B .-1C .3×(-2)D .(-1)22.对于一元二次方程x 2-2x +1=0,根的判别式b 2-4ac 中的b 表示的数是( ) A .-2 B .2 C .-1 D .13.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,E 是BC 边上的一点,连接AE ,OE , 则下列角中是△AEO 的外角的是( ) A .∠AEB B .∠AOD C .∠OEC D .∠EOC4.已知⊙O 的半径是3,A ,B ,C 三点在⊙O 上,∠ACB =60°, 则︵AB 的长是( )A .2πB .πC .32πD .12π5.某区25位学生参加魔方速拧比赛,比赛成绩如图2所示, 则这25个成绩的中位数是( ) A .11 B .10.5 C .10 D .66.随着生产技术的进步,某厂生产一件产品的成本从两年前的100元下降到现在的64元,求年平均下降率.设年平均下降率为x ,通过解方程得到一个根为1.8,则正确的解释是( )A .年平均下降率为80% ,符合题意B .年平均下降率为18% ,符合题意C .年平均下降率为1.8% ,不符合题意 D.年平均下降率为180% ,不符合题意 7.已知某二次函数,当x <1时,y 随x 的增大而减小;当x >1时,y 随x 的增大而增大,则该 二次函数的解析式可以是( ) A .y =2(x +1)2 B .y =2(x -1)2 C .y =-2(x +1)2D .y =-2(x -1)28.如图3,已知A ,B ,C ,D 是圆上的点,︵AD =︵BC ,AC ,BD 交于点E ,则下列结论正确的是( )A .AB =AD B .BE =CDC .AC =BD D .BE =AD 9.我国古代数学家祖冲之和他的儿子发展了刘徽的“割圆术”(即圆的内接正多边形边数不断 增加,它的周长就越接近圆周长),他们从圆内接正六边形算起,一直算到内接正24576边形,将圆周率精确到小数点后七位,使中国对圆周率的计算在世界上领先一千多年.依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .2.9B .3C .3.1D .3.1410.点M (n ,-n )在第二象限,过点M 的直线y =kx +b (0<k <1)分别交x 轴,y 轴于点A ,B .过点M 作MN ⊥x 轴于点N ,则下列点在线段AN 上的是( )A .((k -1)n ,0)B . ((k +3)n ,0) C . ((k +2)n ,0) D .((k +1)n ,0)ABDCE EODCBA图1图2学生数正确速 拧个数图3二、填空题(本大题有6小题,每小题4分,共24分)11.已知x =1是方程x 2-a =0的根,则a = .12.一个不透明盒子里装有4个除颜色外无其他任何差别的球,从盒子中随机摸出一个球,若 P (摸出红球)=14,则盒子里有 个红球.13.如图4,已知AB =3,AC =1,∠D =90°,△DEC 与△ABC 关于点C 成中心对称,则AE 的长是 .14.某二次函数的几组对应值如下表所示.若x 1<x 2<x 3<x 4<x 5, 则该函数图象的开口方向是 .15.P 是直线l 上的任意一点,点A 在⊙O 上.设OP 的最小值为m ,若直线l 过点A ,则m 与OA 的大小关系是 .16.某小学举办“慈善一日捐”演出,共有600张演出票,成人票价为60元,学生票价为20元.演出票虽未售完,但售票收入达22080元.设成人票售出x 张,则x 的取值范围是 . 三、解答题(本大题有9小题,共86分)17.(本题满分8分) 解方程x 2-4x =1.18.(本题满分8分)如图5,已知△ABC 和△DEF 的边AC ,DF 在一条直线上, AB ∥DE ,AB =DE ,AD =CF ,证明BC ∥EF .19.(本题满分8分)如图6,已知二次函数图象的顶点为P ,且与y 轴交于点A . (1)在图中再确定该函数图象上的一个点B 并画出; (2)若P (1,3),A (0,2),求该函数的解析式.如图7,在四边形ABCD 中,AB =BC ,∠ABC =60°,E 是CD 边上一点,连接BE ,以BE 为一边作等边三角形BEF .请用直尺在图中连接一条线段,使图中存在经过旋转可完全重合的两个三角形,并说明这两个三角形经过什么样的旋转可重合.21.(本题满分8分)某市一家园林公司培育出新品种树苗,为考察这种树苗的移植成活率,公司进行了统计, 结果如下表所示.现该市实施绿化工程,需移植一批这种树苗,若这批树苗移植后要有28.5万棵成活,则需一次性移植多少棵树苗较为合适?请说明理由.22.(本题满分10分)已知直线l 1:y =kx +b 经过点A (-12,0)与点B (2,5).(1)求直线l 1与y 轴的交点坐标;(2)若点C (a ,a +2)与点D 在直线l 1上,过点D 的直线l 2与x 轴的正半轴交于点E ,当AC =CD =CE 时,求DE 的长. F A B C D E 图7阅读下列材料:我们可以通过下列步骤估计方程2x 2+x -2=0的根所在的范围.第一步:画出函数y =2x 2+x -2的图象,发现函数图象是一条连续不断的曲线,且与x 轴的一个交点的横坐标在0,1之间.第二步:因为当x =0时,y =-2<0;当x =1时,y =1>0,所以可确定方程2x 2+x -2=0的一个根x 1所在的范围是0<x 1<1.第三步:通过取0和1的平均数缩小x 1所在的范围:取x =0+12=12,因为当x =12时,y <0,又因为当x =1时,y >0, 所以12<x 1<1.(1)请仿照第二步,通过运算,验证方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1;(2)在-2<x 2<-1的基础上,重复应用第三步中取平均数的方法,将x 2所在的范围缩小至m <x 2<n ,使得n -m ≤14.24.(本题满分11分)已知AB 是半圆O 的直径,M ,N 是半圆上不与A ,B 重合的两点,且点N 在︵MB 上. (1)如图8,MA =6,MB =8,∠NOB =60°,求NB 的长;(2)如图9,过点M 作MC ⊥AB 于点C ,P 是MN 的中点,连接MB ,NA ,PC ,试探究∠MCP ,∠NAB ,∠MBA 之间的数量关系,并证明.N MA B 图8在平面直角坐标系xOy 中,已知点A 在抛物线y =x 2+bx +c (b >0)上,且A (1,-1), (1)若b -c =4,求b ,c 的值;(2)若该抛物线与y 轴交于点B ,其对称轴与x 轴交于点C ,则命题“对于任意的一个k (0<k <1),都存在b ,使得OC =k ·OB .”是否正确?若正确,请证明;若不 正确,请举反例;(3)将该抛物线平移,平移后的抛物线仍经过(1,-1),点A 的对应点A 1为(1-m ,2b -1).当m ≥-32时,求平移后抛物线的顶点所能达到的最高点的坐标.2017—2018学年(上)厦门市九年级质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10选项 C A D A A D B C B D二、填空题(本大题共6小题,每题4分,共24分)11. 1. 12. 1.13.13.14.向下.15. m≤OA.16. 252<x≤368(x为整数)或253≤x≤368(x为整数)三、解答题(本大题有9小题,共86分)17.(本题满分8分)解:x2-4x+4=5.………………4分(x-2)2=5.由此可得x-2=±5.………………6分x1=5+2,x2=-5+2.………………8分18.(本题满分8分)证明:如图1,∵AB∥DE,∴∠BAC=∠EDF. ………………2分∵AD=CF,∴AD+DC=CF+DC.即AC=DF. ………………4分又∵AB=DE,∴△ABC≌△DEF.………………6分∴∠BCA=∠EFD.∴BC∥EF. ………………8分19.(本题满分8分)解:(1)如图2,点B即为所求. ………………3分(2)由二次函数图象顶点为P(1,3),可设解析式为y=a(x-1)2+3. ………………6分把A(0,2)代入,得a+3=2.解得a=-1. ………………7分所以函数的解析式为y=-(x-1)2+3. ………………8分图1F ABCDEA··P图2·B20.(本题满分8分)解:如图3,连接AF . ………………3分 将△CBE 绕点B 逆时针旋转60°,可与△ABF 重合. …………8分 21.(本题满分8分)解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定.当移植总数为10000时, 成活率为0.950,于是可以估计树苗移植成活率为0.950. ………………3分 则该市需要购买的树苗数量约为28.5÷0.950=30(万棵).答:该市需向这家园林公司购买30万棵树苗较为合适. ………………8分22.(本题满分10分)(1)(本小题满分5分)解:把A (-12,0),B (2,5)分别代入y =kx +b ,可得解析式为y =2x +1. ……………… 3分 当x =0时,y =1.所以直线l 1与y 轴的交点坐标为(0,1). ……………… 5分(2)(本小题满分5分)解:如图4,把C (a ,a +2)代入y =2x +1,可得a =1. ……………… 6分 则点C 的坐标为(1,3).∵ AC =CD =CE ,又∵ 点D 在直线AC 上,∴ 点E 在以线段AD 为直径的圆上.∴ ∠DEA =90°. ……………… 8分过点C 作CF ⊥x 轴于点F ,则 CF =y C =3. ……………… 9分 ∵ AC =CE , ∴ AF =EF 又∵ AC =CD ,∴ CF 是△DEA 的中位线.∴ DE =2CF =6. ……………… 10分 23.(本题满分11分) (1)(本小题满分4分)解:因为当x =-2时,y >0;当x =-1时,y <0,所以方程2x 2+x -2=0的另一个根x 2所在的范围是-2<x 2<-1. ……………… 4分(2)(本小题满分7分)解:取x =(-2)+(-1)2=-32,因为当x =-32时,y >0,又因为当x =-1时,y =-1<0,所以-32<x 2<-1. ……………… 7分F A B CDE 图3取x =(-32)+(-1)2=-54,因为当x =-54时,y <0,又因为当x =-32时,y >0,所以-32<x 2<-54. ……………… 10分又因为-54-(-32)=14,所以-32<x 2<-54即为所求x 2 的范围. ……………… 11分24.(本题满分11分)(1)(本小题满分5分)解:如图5,∵ AB 是半圆O 的直径,∴ ∠M =90°. ………………1分在Rt △AMB 中,AB =MA 2+MB 2 ………………2分 ∴ AB =10.∴ OB =5. ………………3分 ∵ OB =ON ,又∵ ∠NOB =60°,∴ △NOB 是等边三角形. ………………4分 ∴ NB =OB =5. ………………5分 (2)(本小题满分6分) 证明:方法一:如图6,画⊙O ,延长MC 交⊙O 于点Q ,连接NQ ,NB . ∵ MC ⊥AB , 又∵ OM =OQ ,∴ MC =CQ . ………………6分 即 C 是MN 的中点 又∵ P 是MQ 的中点,∴ CP 是△MQN 的中位线. ………………8分 ∴ CP ∥QN .∴ ∠MCP =∠MQN .∵ ∠MQN =12∠MON ,∠MBN =12∠MON ,∴ ∠MQN =∠MBN .∴ ∠MCP =∠MBN . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠MBN +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分图5∵ P 是MN 中点, 又∵ OM =ON ,∴ OP ⊥MN , ………………6分 且 ∠MOP =12∠MON .∵ MC ⊥AB ,∴ ∠MCO =∠MPO =90°. ∴ 设OM 的中点为Q , 则 QM =QO =QC =QP .∴ 点C ,P 在以OM 为直径的圆上. ………………8分 在该圆中,∠MCP =∠MOP =12∠MQP .又∵ ∠MOP =12∠MON ,∴ ∠MCP =12∠MON .在半圆O 中,∠NBM =12∠MON .∴ ∠MCP =∠NBM . ………………10分 ∵ AB 是直径,∴ ∠ANB =90°. ∴ 在△ANB 中,∠NBA +∠NAB =90°. ∴ ∠NBM +∠MBA +∠NAB =90°.即 ∠MCP +∠MBA +∠NAB =90°. ………………11分25.(本题满分14分) (1)(本小题满分3分)解:把(1,-1)代入y =x 2+bx +c ,可得b +c =-2, ………………1分 又因为b -c =4,可得b =1,c =-3. ………………3分 (2)(本小题满分4分)解:由b +c =-2,得c =-2-b . 对于y =x 2+bx +c ,当x =0时,y =c =-2-b .抛物线的对称轴为直线x =-b2.所以B (0,-2-b ),C (-b2,0).因为b >0,所以OC =b2,OB =2+b . ………………5分当k =34时,由OC =34OB 得b 2=34(2+b ),此时b =-6<0不合题意.所以对于任意的0<k <1,不一定存在b ,使得OC =k ·OB . ………………7分(3)(本小题满分7分)图7方法一:由平移前的抛物线y =x 2+bx +c ,可得y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b .因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分即y =(x +b 2+m )2-b 24-2+b .把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1.(1+b 2+m )2=b 24-b +1.(1+b 2+m )2=(b2-1)2.所以1+b 2+m =±(b2-1).当1+b 2+m =b2-1时,m =-2(不合题意,舍去);当1+b 2+m =-(b2-1)时,m =-b . ………………10分因为m ≥-32,所以b ≤32.所以0<b ≤32. ………………11分所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b .即顶点为(b 2,-b 24-2+b ). ………………12分设p =-b 24-2+b ,即p =-14 (b -2)2-1.因为-14<0,所以当b <2时,p 随b 的增大而增大.因为0<b ≤32,所以当b =32时,p 取最大值为-1716. ………………13分此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分方法二:因为平移后A (1,-1)的对应点为A 1(1-m ,2b -1)可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.y =(x +b 2)2-b 24+c ,即y =(x +b 2)2-b 24-2-b . 则平移后的抛物线解析式为y =(x +b 2+m )2-b 24-2-b +2b . ………………9分 即y =(x +b 2+m )2-b 24-2+b . 把(1,-1)代入,得(1+b 2+m )2-b 24-2+b =-1. 可得(m +2)(m +b )=0.所以m =-2(不合题意,舍去)或m =-b . ………………10分因为m ≥-32,所以b ≤32. 所以0<b ≤32. ………………11分 所以平移后的抛物线解析式为y =(x -b 2)2-b 24-2+b . 即顶点为(b 2,-b 24-2+b ). ………………12分 设p =-b 24-2+b ,即p =-14(b -2)2-1. 因为-14<0,所以当b <2时,p 随b 的增大而增大. 因为0<b ≤32, 所以当b =32时,p 取最大值为-1716. ………………13分 此时,平移后抛物线的顶点所能达到的最高点坐标为(34,-1716). ………………14分。

厦门市2014-2015学年初三质检考试模拟试卷

厦门市2014-2015学年初三质检考试模拟试卷

厦门市2014-2015学年初三数学质量检测模拟试卷(二)(试卷满分:150分考试时间:120分钟)一、选择题(本大题有10小题,每小题4分,共40分.每小题有四个选项,其中有且只有一个选项正确)1. 下列图案中不是中心对称图形的是()A.B.C.D.2. 下列事件中,属于确定事件的个数是()(1)打开电视,正在播广告;(2)投掷一枚普通的骰子,掷得的点数小于10;(2)射击运动员射击一次,命中10环;(4)在一个只装有红球的球袋中摸出白球A.0B.1C.2D.33. 配方:x²-3x+ =(x- )²A. 9,3B. 3,3C.3322,D.9342,4.如图,⊙O中,若∠AOC=150°,那么∠ABC=()A.150°B.125°C.105°D.100°A第4题第5题5. 如图,正方形OABC的边长为2,则该正方形绕点O逆时针旋转45°后,B点的坐标为()。

A.2,2()B.()C.(D.0,2()6.已知二次函数22(3)1y x =-+下列判断正确的是( )A 其图像的开口向下B 其图像的对称轴为直线=-3C 其最小值为1D 当x<3是,y 随着x 的增大而增大 7. 边长为a 的正六边形的面积等于( )A2a B 、2a C、2 D28. 根据下列表格对应值:判断关于x 的方程ax 2+bx +c =0(a ≠0)的一个解x 的范围是( )A .x <3.24B .3.24<x <3.25C .3.25<x <3.26D .3.25<x <3.28 9. 已知一个半径为6的扇形面积是4π,则这个扇形的圆心角是( ) A .30° B .40°C .45°D .60°10. 如图,已知抛物线y 1=-2x 2+2,直线y 2=2x +2,当x 任取一值时,x 对应的函数值分别为y 1、y 2.若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2.例如:当x =1时,y 1=0,y2=4,y 1<y 2,此时M =0. 下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在; ④使得M =1的x 值是12-或其中正确的是 ( )A . ①②B .①④C .②③D .③④二、填空题(本大题有6小题,每小题4分,共24分)11. “任意打开一本200页的数学书,正好是第50页”,这是_______事件(选填“随机”,“必然”或“不可能”). 12. 在平面直角坐标系中,将线段OA 绕原点旋转90°,已知OA =2且与x 轴正半轴的夹角是30°,记点A 的对应点为A 1,则A 1的坐标为 。

福建省厦门市2024-2025学年上学期九年级期中考试数学试卷(无答案)

福建省厦门市2024-2025学年上学期九年级期中考试数学试卷(无答案)

2024-2025学年第一学期九年级数学学科期中知识检索(满分:150分:考试时间:120分钟)一、选择题(本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求)1.方程的根是()A.B.C.D.2.用配方法解方程,下列配方结果正确的是()A.B.C.D.3.抛物线与相同的性质是()A.开口向下B.对称轴是y轴C.有最低点D.对称轴是x轴关于x的一元二次方程根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定5.二次函数的图象上有两点和,则此抛物线的对称轴是直线()A.B.C.D.6.某交易活动中,每两人都交换一次名片,共交换了110张名片,若有x人参加活动,可列方程为()A.B.C.D.7.在同一平而直角坐标系中,函数与的图象可能是()A.B.C.D.8.如图.在一块长为,究为的矩形绿化带的四周扩建一条宽度相等的小路(图中阴影部分),建成后绿化带与小路的总面积为,如果设小路的宽度为,那么下列方程正确的是()A.B.24x=2x=2x=-4,4x x==-2,2x x==-2280x x--=2(1)9x+=2(1)7x+=2(1)9x-=2(1)7x-=2y x=2y x=-2320x x+-=2y ax bx c=++(3,4)(5,4)-1x=-1x=2x=3x=1(1)1102x x-=(1)110x x-=211102x=2110x=2y ax bx=+y bx a=+20m15m2546m m x(20)(15)546x x--=(20)(15)546x x++=C .D .9.关于x 的方程的两个根互为相反数,则m 的值是( )A .B .C .D .10.如图,二次函数的部分图象如图所示,图象过点,对称轴为直线.下列结论:①;②;③;④.其中一定正确的结论有()A .①②B .①③C .③④D .①②③二、填空题(本大题共4个小题,每小题4分,共16分,把答案写在题中横线上)11.若关于x 的一元二次方程的一个根为2,则m 的值为_________。

2014-2015学年(上)厦门市九年级质量检测数学试卷

2014-2015学年(上)厦门市九年级质量检测数学试卷

2014-2015学年(上)厦门九年级质量检测数学试卷(后四题)
(试卷满分:150分考试时间:120分钟)
24.(本题满分7分)已知点P是直线y=3x-1与直线y=x+b(b>0)的交点,直线y=3x-1与x轴交于点A,直线y=x+b
与y轴交于点B,若△P AB的面积是2
3
,求b的值。

25. (本题满分7分)若x1,x2是关于x的方程x2+bx+c=0的两个实数根,且满足∣x1∣+2∣x2∣=∣c∣+2,则称方程x2+bx+c=0为“T系方程”.如方程x2-2x=0,x2+5x+6=0,x2-6x-16=0,x2+4x+4=0,都是“T系方程”.是否存在实数b,
使得关于x的方程x2+bx+是“T系方程”,并说明理由。

26. (本题满分12分)在平面直角坐标系中,原点为O ,直线l 经过点A (2,0)和点B (0,4),点P (m ,n )(mn ≠0)在直线l 上.
(1)若OP =2,求点P 的坐标;
(2)过点P 作PM ⊥x 轴,PN ⊥y 轴,垂足分别为M 、N .设矩形OMPN 周长的一半为t ,面积为s ,当m <2时,求s 关于t 的函数关系式.
27.(本题满分12分)已知四边形ABCD 内接于⊙O 对角线AC 与BD 交于点P .
(1)如图9,设⊙O 的半径为是r ,若AB CD r π+=.求证:AC ⊥BD .
(2)如图10,过点A 作AE ⊥BC ,垂足为G ,AE 交BD 于点M ,交⊙O 于点E ,过点D 作DF ⊥BC ,垂足为H ,DF 交AC 于点N 交于点F ,若AC ⊥BD ,求证:MN =EF .。

2022年福建省厦门第一中学九年级数学第一学期期末质量检测试题含解析

2022年福建省厦门第一中学九年级数学第一学期期末质量检测试题含解析

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将抛物线253y x =-+向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为( ) A .()2514y x =-++ B .()2512y x =-++ C .()2512y x =--+D .()2514y x =--+2.如图,在第一象限内,()23P ,,(,2)M a 是双曲线ky x=(0k ≠)上的两点,过点P 作PA x ⊥轴于点A ,连接OM 交PA 于点C ,则点C 的坐标为( )A .(2,1)B .32,4⎛⎫ ⎪⎝⎭C .22,3⎛⎫ ⎪⎝⎭D .42,3⎛⎫ ⎪⎝⎭3.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan ∠OBC 为( )A .13B .2C .24D .2234.2020的相反数是( ) A .12020B .12020-C .-2020D .20205.关于x 的二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .0.56.一张圆心角为α的扇形纸板和圆形纸板按如图方式剪得一个正方形,边长都为4,已知4tan 3α=,则扇形纸板和圆形纸板的半径之比是( )A .1304B .22C .23D .6727.已知二次函数2y ax bx c =++的y 与x 的部分对应值如表:x1- 0 23 4y54-3-下列结论:①抛物线的开口向上;②抛物线的对称轴为直线2x =;③当04x <<时,0y >;④抛物线与x 轴的两个交点间的距离是4;⑤若()()12,2,,3A x B x 是抛物线上两点,则12x x ≤,其中正确的个数是( ) A .2B .3C .4D .58.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C .依此方式,绕点O 连续旋转2020次,得到正方形202020202020OA B C ,如果点A 的坐标为()2,0,那么点2020A 的坐标为( )A .()2,0-B .()1,1C .(2D .()1,1-9.函数y =ax 2与y =﹣ax +b 的图象可能是( )A.B.C.D.10.如图,阳光透过窗户洒落在地面上,已知窗户AB高1.5m,光亮区的顶端距离墙角3m,光亮区的底端距离墙角1.2m,则窗户的底端距离地面的高度(BC)为()A.1m B.1.2m C.1.5m D.2.4m二、填空题(每小题3分,共24分)11.若点P(2a+3b,﹣2)关于原点的对称点为Q(3,a﹣2b),则(3a+b)2020=______.12.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.13.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P 在__________.14.已知函数22(0)(0)x x xyx x⎧-+>=⎨≤⎩的图象如图所示,若直线y x m=+与该图象恰有两个不同的交点,则m的取值范围为_____.15.在一个不透明的布袋中,有红球、白球共30个,除颜色外其它完全相同,小明通过多次摸球试验后发现,其中摸到红球的频率稳定在40%,则随机从口袋中摸出一个是红球的概率是_____.16.如图,A 是反比例函数(0)ky x x=>图象上的一点,点B 、D 在y 轴正半轴上,ABD ∆是COD ∆关于点D 的位似图形,且ABD ∆与COD ∆的位似比是1:3,ABD ∆的面积为1,则k 的值为____.17.已知关于x 的方程230x x m +-=的一个解为3-,则m=_______. 18.已知x-2y=3,试求9-4x+8y=_______ 三、解答题(共66分)19.(10分)如图,在△ABC 中,点P 、D 分别在边BC 、AC 上,PA ⊥AB ,垂足为点A ,DP ⊥BC ,垂足为点P ,AP BPPD CD=.(1)求证:∠APD =∠C ;(2)如果AB =3,DC =2,求AP 的长. 20.(6分)解方程 (1)2x 2﹣7x +3=1; (2)x 2﹣3x =1.21.(6分)一个不透明的口袋中有三个小球,上面分别标注数字1,2,3,每个小球除所标注数字不同外,其余均相同.小勇先从口袋中随机摸出一个小球,记下数字后放回并搅匀,再次从口袋中随机摸出一个小球.用画树状图(或列表)的方法,求小勇两次摸出的小球所标数字之和为3的概率.22.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC ,BC 于点D ,E ,过点B 作AB 的垂线交AC 的延长线于点F .(1)求证:BE DE=;(2)过点C作CG⊥BF于G,若AB=5,BC=25,求CG,FG的长.23.(8分)如图,将△ABC绕点B旋转得到△DBE,且A,D,C三点在同一条直线上。

2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题(含解析)

2023-2024学年福建省厦门市九年级上学期期中数学质量检测模拟试题一、选择题(本大题共10小题,共40分。

在每小题列出的选项中,选出符合题目的一项)1.下列计算正确的是()2=3=-C.=D.)213=2.若37m n =,则m n n +的值为()A.107 B.710 C.37 D.473.下列事件中,是随机事件的是()A.在一副扑克牌中抽出一张,抽出的牌是黑桃6B.在一个只装了红球的袋子里,摸出一个白球C.投掷一枚质地均匀的骰子,朝上一面的点数小于7D.画一个三角形,其内角和是180°4.用配方法解方程22470x x --=,下列变形结果正确的是()A.()2712x -=B.()2912x -=C.()223x -=D.2172x ⎛⎫-= ⎪⎝⎭5.已知关于x 的一元二次方程()22230m x mx m -+++=有实根,则m 的取值范围是()A.2m ≠ B.6m ≥-且0m ≠ C.6m ≤ D.6m ≤且2m ≠6.已知12p <<2+=()A.1 B.3C.32p -D.12p -7.如图,一枚运载火箭从地面L 处发射,雷达站R 与发射点L 距离6km ,当火箭到达A 点时,雷达站测得仰角为43︒,则这枚火箭此时的高度AL 为()A.6sin 43︒B.6cos 43︒C.6tan 43︒ D.6tan 43︒8.如图,D 是ABC 边AB 延长线上一点,添加一个条件后,仍不能使ACD ABC 的是()A.ACB D∠=∠ B.ACD ABC ∠=∠C.CD AD BC AC = D.AC AD AB AC=9.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为()A.()()402301686x x --=⨯ B.3040230401686x x ⨯-⨯-=⨯C.()()30240168x x --= D.()()40230168x x --=10.如图,四边形ABCD 中,AD CD ⊥于点D ,2BC =,8AD =,6CD =,点E 是AB 的中点,连接DE ,则DE 的最大值是()A.5B.42C.6D.2二、填空题(本大题共6小题,共24分)11.要使代数式3x -有意义,则x 的取值范围是__________.12.福建省体育中考的抽考项目为:篮球绕杆运球、排球对墙垫球、足球绕杆运球.2025年泉州市体育中考的抽考项目抽中“排球对墙垫球”的概率为__________.13.已知α、β是方程2210x x +-=的两个实数根,则23ααβ++的值为__________.14.如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的项点均是格点,则sin BAC ∠的值是__________.15.如图,ABD 中,60A ∠=︒.点B 为线段DE 的中点,EF AD ⊥,交AB 于点C ,若3AC BC ==,则AD =__________.16.若关于x 的一元二次方程20x bx c ++=有两个不相等的实数根1x ,212()x x x <,且110x -<<.则下列说法正确的有__________.(将正确选项的序号填在横线上)①若20x >,则0c <;②12x x +=③若212x x -=,则112426b c b c b c -+-++>++-;④若441222127x x x x +=⋅,则2b c =-.三、解答题(本大题共9小题,共86分)17.(8112tan 45sin 602-⎛⎫+︒-︒- ⎪⎝⎭18.(8分)解方程:2620x x ++=19.(8分)定义:如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程是“邻根方程”.例如:一元二次方程20x x +=的两个根是120,1x x ==-,则方程:20x x +=是“邻根方程”.(1)通过计算,判断下列方程220x x +-=是否是“邻根方程”(2)已知关于x 的一元二次方程2(3)30x k x k ---=(k 是常数)是“邻根方程”,求k 的值.20.(8分)如图,点C 是ABD 边AD 上一点,且满足CBD A ∠=∠.(1)证明:BCD ABD ;(2)若:3:5BC AB =,16AC =,求BD 的长.21.(8分)某景区在2022年春节长假期间,共接待游客达20万人次,预计在2024年春节长假期间,将接待游客达28.8万人次.(1)求该景区2022至2024年春节长假期间接待游客人次的年平均增长率;(2)该景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯.2024年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22.(10分)某校为了了解九年级男生的体质锻炼情况,随机抽取部分男生进行1000米跑步测试,按照成绩分为优秀、良好、合格与不合格四个等级,其中良好的学生人数占抽取学生总数的40%,学校绘制了如下不完整的统计图:(1)求被抽取的合格等级的学生人数,并补全条形统计图;(2)为了进一步强化训练,学校决定每天组织九年级学生开展半小时跑操活动,并准备从上述被抽取的成绩优秀的学生中,随机选取1名担任领队,小明是被抽取的成绩优秀的一名男生,求小明被选中担任领队的概率;(3)学校即将举行冬季1000米跑步比赛,预赛分为A ,B ,C 三组进行,选手由抽签确定分组,求某班甲、乙两位选手在预赛中恰好分在同一组的概率是多少?请画出树状图或列表加以说明.23.(10分)如图,在Rt ABC 中,90,ACB A B ∠∠∠=︒<.(1)在AB 的延长线上,求作点D ,使得CBD ACD (要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若5,5ABC AB S == ,求tan CDB ∠的值.24.(12分)如图,在ABC 中,90BAC ∠=︒,42AB AC ==,点D ,E 是边AB ,AC 的中点,连接DE ,DC ,点M ,N 分别是DE 和DC 的中点,连接MN .图1图2备用(1)如图1,MN 与BD 的数量关系是_________;(2)如图2,将ADE 绕点A 顺时针旋转,连接BD ,写出MN 和BD 的数量关系,并就图2的情形说明理由;(3)在ADE 的旋转过程中,当B ,D ,E 三点共线时,根据以上结论求线段MN 的长.25.(14分)问题背景:(1)如图1,点E 是ABC 内一点,且ABC DEC ,连接AD ,BE ,求证.ADC BEC (2)如图2,点C 是线段AB 垂直平分线上位于AB 上方的一动点,PCB 是位于AB 上方的等腰直角三角形,且PB BC =,则,①PA PC CB +________1(填一个合适的不等号);②PA PB 的最大值为________,此时CBA ∠=________°.问题组合与迁移:(3)如图3,AD 是等腰ABC 底边BC 上的高,点E 是AD 上的一动点,PEC 位于BC 的上方,且ABC PEC ,若2cos 5ABC =∠,求PA PB的最小值.图1图2图3答案和解析一.选择题(共10小题,40分)1.C2.A3.A4.B5.D6.A7.D8.C9.A 10.C 二.填空题(共6小题,24分)11.2x ≥-且3x ≠12.1313.1-14.5515.9216.①③16.【详解】解:(1)110x -<< ,20x >,120c x x c a∴==<,故①正确;110x -<< ,12x x <,1a =,112b x x ∴=-=,22b x -=,当20x >时,222b x x -==,1221x x x x ∴+=-=当20x <时,222b bc x x =-=,1221x x x x b ∴+=--=,故②错误;110x -<< ,12x x <,212x x -=,212x ∴<<,022b b x a --∴==>,0b ∴<,当=1x -时,10y b c =-+>,11b c b c ∴-+=-+,当1x =时,10y b c =++<,1(1)b c b c ∴++=-++,当2x =时,420y b c =++>,4242b c b c ∴++=++,1122b c b c c ∴-+-++=+,2426422b c b c ++-=++,22422c b c +>++ ,112426b c b c b c ∴-+-++>++-,故③正确;12x x b +=- ,12x x c =,22212x x c ∴=,44222222212121212[()2]2(2)2x x x x x x x x b c c ∴+=+--=--, 441222127x x x x +=⋅,2222(2)27b c c c ∴--=,222(2)90b c c ∴--=,22(23)(23)0b c c b c c ∴-+--=,22()(5)0b c b c ∴+-=,2b c ∴=-或25b c =,故④错误;故①③;三.解答题(共86分)17.(8分)【详解】112tan 45sin 602222-⎛⎫︒-︒-=-- ⎪⎝⎭32=-332= (8)分18.(8分)【详解】(1)解:2620x x ++=∴1,6,2a b c ===,2436828b ac ∆=-=-=,∴622b x a -±-±==,…………………………………6分解得:13x =-23x =-…………………………………………8分19.(8分)【详解】(1)解:∵()()2212x x x x +-=-+∴()()120x x -+=∴121,2x x ==-∵12>-,()121--≠,故该方程不是“邻根方程”……………………………4分(2)解:()()2(3)33x k x k x k x ---=-+∴()()30x k x -+=∴12,3x k x ==-由题意得:31k =-+或31k -=+解得:2k =-或4k =-……………………………8分20.(8分)【详解】(1)证明:在BCD 与ABD 中CBD A ∠=∠,D D ∠=∠,∴BCD ABD ;……………………4分(2)解:∵BCD ABD ,∴BC CD BD AB BD AD ==,即35CD BD BD AD ==,53AD BD =35CD BD =又∵AD AC CD =+,且16AC =∴15BD =……………………8分21.(8分)【详解】(1)解:设年平均增长率为x ,根据题意得:()220128.8x +=,解得:10.220%x ==,2 2.2x =-(不符合题意,舍去),∴年平均增长率为20%;……………………4分(2)解:设当每杯售价定为y 元时,店家在此款奶茶实现平均每天6300元的利润额,由题意得:()()630030256300y y -+-=⎡⎤⎣⎦,整理得:241420y y -+,解得:120y =,221y =,∵让顾客获得最大优惠,20y ∴=,∴当每杯售价定为20元时,店家在此款奶茶实现平均每天6300元的利润额.……………………8分22.(10分)【详解】(1)解:合格等级的人数为1640%121648÷---=,补全条形统计图如图:……………………2分(2)解:∵被抽取的成绩优秀的学生有12人,∴小明被选中担任领队的概率为112.……………………6分(3)解:根据题意画树状图如下:∵共有9种等可能的结果数,其中甲、乙两人恰好在同一组的结果数为3,∴甲、乙两人恰好分在同一组的概率是3193=.……………………10分23.(10分)【详解】(1)利用尺规作图如图,点D 为所求.依据:有作图,DCB A ∠=∠,∵BDC CDA ∠=∠,∴CBD ACD ;……………………5分(2)法一:如图,过点C 作CM AB ⊥于点M ,过点B 作BN CD ⊥于点N .5,5ABC AB S == ,152AB CM ∴⋅=,2CM ∴=.90,90BCM CBA A CBA ∠=-∠∠=-∠ ,BCM A ∴∠=∠,tan tan BCM A ∴∠=,即BM CM CM AM=,225BM BM ∴=-,解得1BM =,(5BM =舍去).设,BD x CD y ==,,BCD A CDB ADC ∠=∠∠=∠ ,CBD ACD ∠∴ ,CD BD AD CD∴=,2CD BD AD ∴=⋅,()25y x x ∴=+,在Rt CDM 中,222CD DM CM =+,222(1)2y x ∴=++,()225(1)2x x x ∴+=++,解得53x =,58133DM ∴=+=,23tan 843CM CDB DM ∴∠===.……………………10分法二:如图,过点C 作CM AB ⊥于点M ,取AB 的中点O ,连接OC.5,5ABC AB S == ,152AB CM ∴⋅=,2CM ∴=.90,90BCM CBA A CBA ∠=-∠∠=-∠ ,BCM A ∴∠=∠,tan tan BCM A ∴∠=,即BM CM CM AM=,225BM BM ∴=-,解得1,(5BM BM ==舍去).ABC 是直角三角形,AO BO =,1522OC AB OA OB ∴====,ACO A ∴∠=∠,BCD A ∠=∠ ,ACO BCD ∴∠=∠,90ACO OCB ∠+∠= ,90BCD OCB ∴∠+∠= ,即90DCO ∠= .90CDB COD ∴∠+∠= ,90OCM COD ∠+∠= ,CDB OCM ∴∠=∠,53122OM OB BM =-=-= ,332tan tan 24OM CDB OCM CM ∴∠=∠===24(12分)【详解】(1)解:∵点D ,E 是边AB ,AC 的中点,12CE AC ∴=,12BD AB =, AB AC ==,CE BD ∴=,∵点M ,N 分别是DE 和DC 的中点,MN ∴是DCE 的中位线,12MN CE ∴=,12MN BD ∴=,故答案.12MN BD =……………………2分(2)解:12MN BD =,理由如下:如图,连接EC ,由(1)同理可得:AD AE =,由旋转得:90BAC DAE ∠=∠=︒,DAB BAE EAC BAE ∴∠+∠=∠+∠,DAB EAC ∴∠=∠,在DAB 和EAC 中AD AE DAB EAC AB AC =⎧⎪∠=∠⎨⎪=⎩,ABD ACE ∴≅ (SAS ),BD CE ∴=,∵点M ,N 分别是DE 和DC 的中点,12MN CE ∴=,12MN BD ∴=.…………………6分(3)解:①如图,当点E 在线段BD 上时,过点A 作AP BD ⊥于点P ∴90APD ∠=︒,90BAC ∠=︒,42AB AC ==45ABC ACB ∴∠=∠=︒,在(1)中:∵点D ,E 是边AB ,AC 的中点,DE BC ∴∥,12AD AB ==∴45ADE AED ABC ∠=∠=∠=︒,90DAE ∠=︒ ,AD AE =,PD PA ∴=,222PD PA AD ∴+=,(222PD ∴=,2PD ∴=,在Rt ADB 中,PB ∴===2BD BP PD ∴=+=+;112MN BD ==……………………9分②如图,当点D 在线段BE 上时,过点A 作AQ BE ⊥于点Q ,在Rt ADQ 中,90AQD ∠=︒,45ADE ∠=︒,12AD AB ==,由①同理可求2AQ DQ ==,在Rt AQB 中,90AQB ∠=︒,AB =,2AQ =,BQ ∴=2BD BQ DQ ∴=-=;112MN BD ==.综上所述,1MN =+1-.……………………12分25(14分)【详解】解:(1)ABC DEC ,AC DC BC EC∴=,BCA ECD ∠=∠,,BCE BCA ECA ACD DCE ECA ∠=∠-∠∠=∠-∠ ,BCE ACD ∠∠∴=,ADE BEC ∴ ; (3)(2)①连接AC ,如图所示,图2∵点C 是线段AB 垂直平分线上位于AB 上方的一动点,AC BC ∴=,PA PA PC BC PC AC∴=++,AC PC PA +≥ ,1PA PC BC ∴≤+,故≤;……………………5分②由①得AC BC =,AC PC PA +>,PB BC =,PB BC AC ∴==,111PA PA AC PC PC PCPB AC AC AC PB+∴=<=+=+=+,……………………7分∴当点C 在AP 上时,此时AP 最大,为AC PC +,此时PA PB 也最大,为1+,如图所示,∵点C 是线段AB 垂直平分线上位于AB 上方的一动点,AC BC ∴=,CAB CBA ∴∠=∠,PCB 是等腰直角三角形,45BCP ∴∠=︒,BCP CAB CBA ∠=∠+∠ ,22.5CBA ∴∠=︒,……………………9分21+,22.5︒;(3)连接BE ,如图所示,图3AD 是等腰ABC 底边上的高,2,BC BD BE EC ∴==,2cos 5ABC ∠=,25BD AB ∴=,,2AB AC BC BD == ,54AC BC ∴=,ABC PEC ,AC PC BC EC ∴=,BCA ECP ∠=∠,,BCE BCA ECA ACP PCE ECA ∠=∠-∠∠=∠-∠ ,BCE ACP ∴∠=∠,APC BEC ∴ ,54AP AC BE BC ∴==,得:45BE EC AP ==,54PE AB EC BC == ,PE AP ∴=,PE BE PB +≥ ,4955AP AP AP PB ∴+=≥,59PA PB ∴≥,PA PB ∴最小值为59.……………………14分。

2024-2025学年福建省厦门市思明区第六中学九年级数学第一学期开学质量检测模拟试题【含答案】

2024-2025学年福建省厦门市思明区第六中学九年级数学第一学期开学质量检测模拟试题【含答案】

2024-2025学年福建省厦门市思明区第六中学九年级数学第一学期开学质量检测模拟试题题号一二三四五总分得分批阅人A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)若分式12x x -+的值为零,则x 的值是()A .2B .1C .1-D .2-2、(4分)如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是()A .32B .1C .D .3、(4分)若一个多边形的内角和为外角和的3倍,则这个多边形为()A .八边形B .九边形C .十边形D .十二边形4、(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A .B .C .D .5、(4分)下列条件中,不能判定四边形ABCD 是平行四边形的是()A .AB ∥CD ,AD=BC B .AB ∥CD ,∠B =∠DC .AB=CD,AD=BCD .AB ∥CD ,AB =CD6、(4分)已知:如图,在菱形OABC 中,8OC =,60AOC ∠=︒,OA 落在x 轴正半轴上,点D 是OC 边上的一点(不与端点O ,C 重合),过点D 作DE AB ⊥于点E ,若点D ,E 都在反比例函数()0k y x x =>图象上,则k 的值为()A .B .9C .D .167、(4分)(2)0x x -=根的情况是()A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8、(4分)已知反比例函数y =m x ,下列结论中,不正确的是().A .图象必经过点(1,m ).B .y 随x 的增大而减少.C .当m>0时,图象在第一、三象限内.D .若y =2m ,则x =12.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果一个多边形的每一个内角都是120°,那么这个多边形是____.10、(4分)如图,在直角梯形ABCD 中,//AB DC ,AD AB ⊥,3AD =,联结BD ,若△BDC 是等边三角形,那么梯形ABCD 的面积是_________;11、(4分)将点A (1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到的点A ′的坐标为______________.12、(4分)若0,0,a b c a b c ++=⎧⎨-+=⎩则关于x 的方程20(a 0)++=≠ax bx c 的解是___________.13、(4分)如图,在菱形ABCD 中,1AB =,120ADC =∠︒,以AC 为边作菱形11ACC D ,且11120AD C ∠=︒;再以1AC 为边作菱形122AC C D ,且22120AD C ∠=︒;.……;按此规律,菱形201820192019AC C D 的面积为______.三、解答题(本大题共5个小题,共48分)14、(12分)图①,图②都是4×6的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,且点A ,B 均在格点上.(1)在图①中以AB 为对角线画出一个矩形,使矩形的另外两个顶点也在格点上,且所画的矩形不是正方形;(2)在图②中以AB 为对角线画出一个菱形,使菱形的另外两个顶点也在格点上,且所画的菱形不是正方形;(3)图①中所画的矩形的面积为;图②中所画的菱形的周长为.15、(8分)某厂制作甲、乙两种环保包装盒.已知同样用6m 的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.16、(8分)某学校为了美化绿化校园,计划购买甲,乙两种花木共100棵绿化操场,其中甲种花木每棵60元,乙种花木每棵80元.(1)若购买甲,乙两种花木刚好用去7200元,则购买了甲,乙两种花木各多少棵?(2)如果购买乙种花木的数量不少于甲种花木的数量,请设计一种购买方案使所需费用最低,并求出该购买方案所需总费用.17、(10分)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,且2AB =.(1)菱形ABCD 的周长为;(2)若2BD =,求AC 的长.18、(10分)如图,在ABC 中,点D 为边BC 的中点,点E 在ABC 内,AE 平分,,BAC CE AE ∠⊥点F 在AB 上,//EF BC .(1)求证:四边形BDEF 是平行四边形;(2)线段,,AB BF AC 之间具有怎样的数量关系?证明你所得到的结论.B 卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图ABC 的三边长分别为30,48,50,以它的三边中点为顶点组成第一个新三角形,再以第一个新三角形三边中点为顶点组成第二个新三角形,如此继续,则第6个新三角形的周长为______.20、(4分)如图,在△ABC 中,D ,E 分别是边AB ,AC 的中点,若BC=6,则DE=_______.21、(4分)方程x 2=2x 的解是__________.22、(4分)如图,Rt △OAB 的两直角边OA 、OB 分别在x 轴和y 轴上,(2,0)A -,(0,4)B ,将△OAB 绕O 点顺时针旋转90°得到△OCD ,直线AC 、BD 交于点E .点M 为直线BD 上的动点,点N 为x 轴上的点,若以A ,C ,M ,N 四点为顶点的四边形是平行四边,则符合条件的点M 的坐标为______.23、(4分)当m=_____时,21(3)45m y m x x +=-+-是一次函数.二、解答题(本大题共3个小题,共30分)24、(8分)如图:在平行四边形ABCD 中,用直尺和圆规作∠BAD 的平分线交BC 于点E (尺规作图的痕迹保留在图中了),连接EF .(1)求证:四边形ABEF 为菱形;(2)AE ,BF 相交于点O ,若BF =6,AB =5,求AE 的长.25、(10分)如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s 时注满水槽.水槽内水面的高度y (cm )与注水时间x (s )之间的函数图象如图②所示.(1)正方体的棱长为cm ;(2)求线段AB 对应的函数解析式,并写出自变量x 的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.Array26、(12分)“书香校园”活动中,某校同时购买了甲、乙两种图书,已知两种图书的购书款均为360元,甲种图书的单价比乙种图书低50%,甲种图书比乙种图书多4本,甲、乙两种图书的单价分别为多少元?参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B 【解析】根据分式值为0的条件,分式为0则分子为0,分母不为0,由分子为0即可得.【详解】∵12x x -+=0,∴x-1=0,即x=1,故选:B .本题考查了分式值为0的条件,掌握分式值为0的条件是解题的关键.2、D 【解析】分三种情况讨论:①当点E 在BC 上时,高一定,底边BE 最大时面积最大;②当E 在CD 上时,△ABE 的面积不变;③当E 在AD 上时,E 与D 重合时,△ABE 的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E 在BC 上时,E 与C 重合时,△ABE 的面积最大,如图1,过A 作AF ⊥BC 于F ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt △ABF 中,∠BAF=30°,∴BF=12AB=1,AF=,∴此时△ABE 的最大面积为:12②当E 在CD 上时,如图2,此时,△ABE 的面积=12S ▱ABCD =12;③当E 在AD 上时,E 与D 重合时,△ABE 的面积最大,此时,△ABE 的面积综上,△ABE 的面积的最大值是故选:D .本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.3、C 【解析】设多边形的边数为n ,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4,解方程可得.【详解】解:设多边形的边数为n,而多边形的内角和公式为180(n-2)度,外角和为360度,则有:180(n-2)=360×4n-2=8解得:n=10所以,这是个十边形故选C .本题考核知识点,多边形的内角和外角.解题关键点,熟记多边形内角和计算公式.【解析】根据轴对称图形与中心对称图形的概念求解.【详解】A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选D.本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.5、A【解析】根据平行四边形的判定定理分别进行分析即可.【详解】解:A.不能判定四边形ABCD是平行四边形,四边形可能是等腰梯形,故此选项符合题意;B.AB∥CD,可得∠A+∠D=180°,因为∠B=∠D,∠A+∠B=180°,所以AD∥BC,根据两组对边分别平行的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;C.根据两组对边分别相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;D.根据一组对边平行且相等的四边形是平行四边形,可判定四边形ABCD是平行四边形,故此选项不合题意;故选:A.此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6、C【解析】过D 作//DH BC ,交AB 于H ,根据菱形的性质得出四边形BCDH 是平行四边形,8DH BC ==,60DHE B ∠=∠=︒,解直角三角形求得DE ,作DM x ⊥轴于M ,过E 点作EN DM ⊥于N ,解直角三角形求得DN ,EN ,设()D x ,则(E x +-,根据反比例函数系数k 的几何意义得出()6k x ==+-,解得3x =,从而求得k 的值.【详解】解:如图,过D 作//DH BC ,交AB 于H ,在菱形OABC 中,8OC =,60AOC ∠=︒,//OA BC ∴,OC //AB ,8BC OC ==,60B AOC ∠=∠=︒,60DHE B ∴∠=∠=︒,四边形BCDH 是平行四边形,8DH BC ∴==,DE AB ∵⊥于点E ,·sin60DE DH ∴=︒=,作DM x ⊥轴于M ,过E 点作EN DM ⊥于N ,//OC AB ,DE AB ⊥,DE OC ∴⊥,90ODM NDE ∴∠+∠=︒,90DOM ODM ∠+∠=︒,60NDE DOM ∴∠=∠=︒,DM ∴=,12DN DE ==62NE DE ==,设()D x ,则(E x +-,点D ,E 都在反比例函数(0)k y x x =>图象上,()6k x x ∴==+-,解得3x =,(3D ∴,,3k ∴=⨯=故选C .本题考查了反比例函数系数k 的几何意义,菱形的性质,解直角三角形等,求得D 点的坐标是解题的关键.7、A 【解析】原方程变形为:x²-2x=0,∵△=(-2)²-4×1×0=4>0,∴原方程有两个不相等的实数根.故选A .8、B 【解析】根据反比例函数的性质对各项进行判断即可.【详解】A.图象必经过点(1,m ),正确;B.当0m >时,在每一个象限内y 随x 的增大而减少,错误;C.当m>0时,图象在第一、三象限内,正确;D.若y =2m ,则x =12,正确;故答案为:B .本题考查了反比例函数的问题,掌握反比例函数的性质是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、六边形.【解析】依据多边形的内角和公式列方程求解即可.解:180(n﹣2)=120°n学校________________班级____________姓名____________考场____________准考证号…………………………密…………封…………线…………内…………不…………要…………答…………题…………………………解得:n=1.故答案为:六边形.10、2732【解析】【分析】作DE ⊥BC,先证四边形ABED 是矩形,得AD=BE=3,AB=DE,再根据等边三角形性质得到BC=2BE=6,∠BDE=60°,再利用勾股定理可求得高,再运用梯形面积计算公式可求得结果.【详解】作DE ⊥BC,因为四边形ABCD 的直角梯形,//AB DC ,AD AB ⊥,所以,四边形ABED 是矩形,所以,AD=BE=3,AB=DE,又因为,三角形BCD 是等边三角形,所以,BC=2BE=6,∠BDE=60°,所以,在直角三角形BED 中,BD=BC=6,由勾股定理可得DE=22226333BD BE -=-=,所以,AB=DE=33所以,梯形ABCD 的面积是:()()112736333222AD BC AB +=+⨯=故答案为:2732【点睛】本题考核知识点:直角梯形.解题关键点:作辅助线,把问题转化为直角三角形解决.11、(-2,2)【解析】由题意根据点向左平移横坐标减,向上平移纵坐标加求解即可.【详解】解:∵点A (1,-3)向左平移3个单位长度,再向上平移5个单位长度后得到点A ′,∴点A ′的横坐标为1-3=-2,纵坐标为-3+5=2,∴A ′的坐标为(-2,2).故答案为:(-2,2).本题考查坐标与图形变化-平移,注意掌握平移时点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12、1x =或1x =-【解析】由00a b c a b c ++=⎧⎨-+=⎩,即可得到方程的解.【详解】解:20ax bx c ++=令1x =时,有0a b c ++=;令1x =-时,有0a b c -+=;∴00a b c a b c ++=⎧⎨-+=⎩,则关于x 的方程20(a 0)++=≠ax bx c 的解是:1x =或1x =-;故答案为:1x =或1x =-.本题考查了一元二次方程的解,解题的关键是熟练掌握一元二次方程的解进行解题.13、40192或201932⨯.【解析】根据题意求出每个菱形的边长以及面积,从中找出规律.【详解】解:当菱形的边长为a ,其中一个内角为120°时,其菱形面积为:2a 2,当AB=1,易求得ABCD 的面积为:2=2×1,当时,易求得AC 1=3,此时菱形面积ACC 1D 1的面积为:2=2×2,当AC 1=3时,易求得AC 2,此时菱形面积AC 1C 2D 2的面积为:2=2×4,……,由此规律可知:菱形AC 2018C 2019D 2019的面积为2×2×2019=2019332⨯.,故答案为:40192或201932⨯.本题考查规律型,解题的关键是正确找出菱形面积之间的规律,本题属于中等题型.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)见解析;(3)8,.【解析】(1)根据矩形的性质画图即可;(2)根据菱形的性质画图即可;(3)根据矩形的面积公式和菱形的周长公式即可得到结论.【详解】解:(1)如图①所示,矩形ACBD 即为所求;(2)如图②所示,菱形AFBE 即为所求;(3)矩形ACBD 的面积=2×4=8;菱形AFBE 的周长=4,故答案为:8,.本题考查了作图-应用与设计作图.熟记矩形和菱形的性质以及正方形的性质是解题的关键所在.15、甲盒用1.6米材料;制作每个乙盒用1.5米材料;l=1.1n+1511,1711.【解析】首先设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料,根据乙的数量-甲的数量=2列出分式方程进行求解;根据题意得出n 的取值范围,然后根据l 与n 的关系列出函数解析式,根据一次函数的增减性求出最小值.【详解】解:(1)设制作每个乙盒用米材料,则制作甲盒用(1+21%)米材料由题可得:()662120%x x -=+解得x=1.5(米)经检验x=1.5是原方程的解,所以制作甲盒用1.6米答:制作每个甲盒用1.6米材料;制作每个乙盒用1.5米材料(2)由题2(3000)3000n n n ≥-⎧⎨≤⎩∴20003000n ≤≤0.60.5(3000)0.11500l n n n =+-=+∵0.10k =>,∴l 随n 增大而增大,∴当2000n =时, 1700l =最小考点:分式方程的应用,一次函数的性质.16、(1)购买甲种花木40棵,乙种花木60棵;(2)当购买甲种花木50棵,乙种花木50棵是所需费用最低,费用为7000元.【解析】(1)设购买甲种花木x棵,乙种花木y棵,根据题意可以列出相应的二元一次方程组,解方程组求出x、y的值即可得答案;(2)设购买甲种花木a棵,则购买乙种花木(100﹣a)棵,所需费用为w元,根据题意可以得到费用与甲种花木数量的函数关系式,然后根据购买乙种花木的数量不少于甲种花木的数量,可以得到购买甲种花木的数量的取值范围,再根据一次函数的性质即可解答本题.【详解】(1)设购买甲种花木x棵,乙种花木y棵,∵购买甲,乙两种花木共100棵,刚好用去7200元,∴100 60807200 x yx y+=⎧⎨+=⎩,解得:4060 xy=⎧⎨=⎩,答:购买甲种花木40棵,乙种花木60棵;(2)设购买甲种花木a棵,则购买乙种花木(100﹣a)棵,所需费用为w元,w=60a+80(100﹣a)=﹣20a+8000,∵购买乙种花木的数量不少于甲种花木的数量,∴a≤100﹣a,解得,a≤50,∵-20<0,∴w随a的增大而减小,∴当a=50时,w取得最小值,此时w=﹣20×50+8000=7000,100﹣a=50,答:当购买甲种花木50棵,乙种花木50棵是所需费用最低,费用为7000元.本题考查二元一次方程组的应用、一元一次不等式的应用及一次函数的性质,根据题意,正确得出等量关系和不等关系并熟练掌握一次函数的性质是解题关键.17、(1)1;(2)AC=【解析】(1)由菱形的四边相等即可求出其周长;(2)利用勾股定理可求出AO 的长,进而解答即可.【详解】解:(1)∵四边形ABCD 是菱形,AB =2,∴菱形ABCD 的周长为:1;故答案为1.(2)∵四边形ABCD 是菱形,BD =2,AB =2,∴AC ⊥BD ,BO =1,∴AO ==,∴AC =2AO =.本题主要考查菱形的性质,能够利用勾股定理求出AO 的长是解题关键,此题难度一般.18、(1)见详解;(2)()12BF AB AC =-,证明见详解.【解析】(1)延长CE 交AB 于点G ,证明AGE ACE ≅,可得GE EC =,结合题目条件//EF BC 利用中位线中的平行即可求证;(2)根据已知条件易得1BF DE BG 2==,根据全等可得AG AC =,从而得到,,AB BF AC 之间的数量关系.【详解】(1)延长CE 交AB 于点G ,如图所示:AE CE⊥AEG AEC 90︒∴∠=∠=∵AE 平分BAC∠∴GAE CAE∠=∠在AEG A C E 和中GAE CAE AE AE AEG AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩AGE ACE(ASA)∴≅GE EC ∴=∵点D 为边BC 的中点∴BD CD =∴DE 为CGB △的中位线∴//AB DE ∵//EF BC ∴四边形BDEF 是平行四边形(2)∵四边形BDEF 是平行四边形∴BF DE =∵D、E 分别是BC、GC 的中点1BF DE BG 2∴==AGE ACE ≅AG AC ∴=11BF (AB AG)(AB AC)22∴=-=-本题考查了平行四边形的判定和性质,全等三角形的性质,中位线的性质等知识点,解题的关键在于判断四边形BDEF 是平行四边形,DE 为CGB △的中位线,AGE ACE ≅,从而可解此题.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】根据三角形中位线定理依次可求得第二个三角形和第三个三角形的周长,可找出规律,进而可求得第6个三角形的周长.【详解】如图,E 、F 分别为AB 、AC 的中点,1EF BC 2∴=,同理可得1DF AC 2=,1DE AB 2=,()1EF DF DE AB BC CA 2∴++=++,即DEF 的周长1ABC 2=的周长,∴第二个三角形的周长是原三角形周长的12,同理可得GHI 的周长1DEF 2=的周长1ABC 4=的周长21()ABC 2=的周长,∴第三个三角形的周长是原三角形周长的21(2,∴第六个三角形的周长是原三角形周长的511()232=,原三角形的三边长为30,48,50,∴原三角形的周长为118,∴第一个新三角形的周长为64,∴第六个三角形的周长164232=⨯=,故答案为:1.本题考查三角形中位线定理,掌握三角形中位线平行第三边且等于第三边的一半是解题的关键.20、1.【解析】试题分析:由D 、E 分别是AB 、AC 的中点可知,DE 是△ABC 的中位线,利用三角形中位线定理可求出ED=12BC=1.故答案为1.考点:三角形中位线定理.21、x 1=0,x 2=2【解析】利用因式分解法解方程即可得到答案.【详解】解:原方程化为:220x x -=所以:(2)0x x -=所以:0x =或20x -=解得:120,2x x ==故答案为:120,2x x ==本题考查的是一元二次方程的解法,熟练掌握一元二次方程的解法是关键.22、()2,2或()6,-2.【解析】由B 、D 坐标可求得直线BD 的解析式,当M 点在x 轴上方时,则有CM ∥AN ,则可求出点M 的坐标,代入直线BD 解析式可求得M 点的坐标,当M 点在x 轴下方时,同理可求得点M 点的纵坐标,则可求得M 点的坐标;【详解】∵(2,0)A -,(0,4)B ,∴OA=2,OB=4,∵将△OAB 绕O 点顺时针旋转90°得到△OCD ,∴OC=OA=2,OD=OB=4,AB=CD ,可知()4,0D ,()0,4B ,设直线BD 的解析式为y kx b =+,把B 、D 两点的坐标代入得:404k b b ⎧+=⎨=⎩,解得14k b ⎧=-⎨=⎩,∴直线BD 的解析式为4y x =-+,当M 点在x 轴上方时,则有CM ∥AN ,即CM ∥x 轴,∴点M 到x 轴的距离等于点C 到x 轴的距离,∴M 点的纵坐标为2,在4y x =-+中,令2y =,可得2x =,∴()2,2M ,当M 点在x 轴下方时,M 点的纵坐标为-2,在4y x =-+中,令2y =-,可得6x =,∴()6,-2M ,综上所述,M 的坐标为()2,2或()6,-2.本题主要考查了一次函数的综合,准确利用知识点是解题的关键.23、3或0【解析】根据一次函数的定义即可求解.【详解】依题意得m-3≠0,2m+1=1或m-3=0,解得m=0或m=3,故填:3或0.此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)1.【解析】(1)先证四边形ABEF 为平行四边形,继而再根据AB=AF ,即可得四边形ABEF 为菱形;(2)由四边形ABEF 为菱形可得AE ⊥BF ,BO=12FB=3,AE=2AO ,在Rt △AOB 中,求出AO 的长即可得答案.【详解】(1)由尺规作∠BAF 的角平分线的过程可得AB=AF ,∠BAE=∠FAE ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠FAE=∠AEB ,∴∠BAE=∠AEB ,∴AB=BE ,∴BE=FA ,∴四边形ABEF 为平行四边形,∵AB=AF ,∴四边形ABEF 为菱形;(2)∵四边形ABEF 为菱形,∴AE ⊥BF ,BO=12FB=3,AE=2AO ,在Rt △AOB 中,=4,∴AE=2AO=1.本题考查了平行四边形的性质,菱形的判定与性质,熟练掌握相关知识是解题的关键.25、(1)10;(2)y =x +(12≤x ≤28);(3)4s.【解析】(1)直接利用一次函数图象结合水面高度的变化得出正方体的棱长;(2)直接利用待定系数法求出一次函数解析式,再利用函数图象得出自变量x 的取值范围;(3)利用一次函数图象结合水面高度的变化得出t 的值.【详解】(1)由题意可得:12秒时,水槽内水面的高度为10cm ,12秒后水槽内高度变化趋势改变,所以正方体的棱长为10cm ;故答案为10cm ;(2)设线段AB 对应的函数解析式为:y=kx+b ,∵图象过A (12,0),B (28,20),∴,解得:,∴线段AB 对应的解析式为:(12≤x≤28);(3)∵28﹣12=16(cm ),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.26、甲种图书的单价为每本45元,乙种图书的单价为每本90元【解析】设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元,根据题意列出分式方程,解之经检验后即可得出结论.【详解】设乙种图书的单价是每本x元,则甲种图书的单价是每本0.5x元根据题意得:3603604 05x x-=.解得:x=90经检验:x=90是分式方程的解答:甲种图书的单价为每本45元,乙种图书的单价为每本90元.本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.。

现代文阅读:厦门市2016年质检——《智慧人生 品味舍得》(曹南才)

现代文阅读:厦门市2016年质检——《智慧人生 品味舍得》(曹南才)

智慧人生品味舍得曹南才①有一句电视广告词:“智慧人生,品味舍得”。

我常想,为何把“舍得”提到“智慧人生”那么高?其实把这个词拆开为“舍”与“得”两个方面,“舍”与“得”的辩证统一,有舍有得,舍中有得,先舍后得,小舍大得,就是智慧的体现。

②得到和获取,是人们追求的目标。

但常常事与愿违,不是想得即得。

当条件不具备时,或机会未相遇时,能否有所舍弃、有所退让,是能否向“得”转化的关键。

③条件不具不如舍。

博大精深的《易经》有一个“屯”卦。

“屯”的意思是聚集、储存。

此卦告诫人们,人生与事业初起,就如草芽初长,被磐石压住,“刚柔始交而难生,动乎险中”,困难重重,条件不备,动则遇险。

这就“不如舍”,不宜贸然前往,先要聚存和囤积。

历史上这类事屡见不鲜,最为人熟知的是项羽刘邦的楚汉相争。

按约定,谁先入关谁为王。

刘邦先行占领了咸阳,但因羽毛未丰,自忖无法与项羽抗衡,便主动舍弃,让出关中。

连“王”都能舍弃,可见刘邦是何等睿智。

如不这样,历史会否重写又有谁知?④大得不得取小得。

有段子说:师父问,烧壶开水,火烧未半柴不够了怎么办?弟子或说去找、去借、去买,众说纷纭。

师父说,“何不把壶里的水倒掉一些?世事总不能万般如意,有舍才有得呀。

”这说明,当目标定得太高,超乎能力和条件,实在难以为继,灵活处理、适度调整一下,同样可以达到“得”的效果。

⑤先予后取获大得。

“舍不得孩子套不着狼”。

“舍”就是付出、贡献、投入。

没有舍而得是不实际的。

不舍得下种施肥喂饲灌食,何有五谷丰登六畜兴旺?不舍得辛勤劳作、出力流汗,何能成就事业?乐善好施、周济穷人更是一种高尚的舍得,散掉千金却换来快乐无比精神富有,才是大“得”。

随便读一本名人传记,成功之前,他们谁没有无数的付出、代价乃至牺牲?相反,这也“不舍得”,那也“舍不得”,总是不愿施予投入,不想牺牲丁点,老想不劳而获,不予而取,就只能自寻烦恼、于事无补。

⑥不该得者而舍之。

按你的主客观条件确实不可能得到的,或者是不义之财,或者是不切实际过分追求的金钱地位名誉,以及由此产生的精神负累等等,都只能放弃,无须惋惜。

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度九年级数学(上)期末质量检测试题

2014-2015学年度(上)期末数学九年级质量检测试题(满分:120分; 时间 90分钟)一、选择题(每小题3分,共30分)1、已知135=a b ,则b a ba +-的值是( )A 、32B 、23C 、49D 、942、关于x 的一元二次方程22(1)10a x x a --+-=的一个根是0,则a 的值为( ) A 、1或-1. B 、-1 C 、1 D 、123、已知x -1x =3,则4-12x 2+32x 的值为( ) A 、1 B 、32 C 、52 D 、724、如图,在平面直角坐标系中,点A 的坐标为(0,3),△OAB 沿x 轴向右平移后得到△O ′A ′B ′,点A 的对应点A ′在直线y=34x 上,则点B 与其对应点B ′间的距离为( ) A 、94B 、3C 、4D 、55、如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1,S 2,S 3,则S 1,S 2,S 3的大小关系是( ) A 、S 1>S 2>S 3 B 、 S 3>S 2>S 1C 、S 2>S 3>S 1D 、S 1>S 3>S 26、如图,在平面直角坐标系中,点A 1,A 2在x 轴上,点B 1,B 2在y 轴 上,其坐标分别为A 1(1,0),A 2(2,0),B 1(0,1),B 2(0,2),分别以 A 1,A 2,B 1,B 2其中的任意两点与点O 为顶点作三角形,所作三角形 是等腰三角形的概率是( )A 、34B 、13C 、23D 、127、在同一时刻,身高1.6m 的小强的影长是1.2m ,旗杆的影长是15m ,则旗杆高为(A 、16mB 、18mC 、20mD 、22m8、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2则S 1+S2的值为( )A 、16 B 、17 C 、18 D 、199、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 与点D 、F,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF,则四边形BCDE 的面积是( )A 、32B 、33C 、4D 、34第4题图第5题图10、已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0根的存在情况是()A、没有实数根B、有两个相等的实数根C、有两个不相等的实数根D、无法确定二、填空题(每小题3分,共24分)11、如图,点D,E分别在AB,AC上且∠ABC=∠AED,若DE=4cm,AE=5cm, BC=8cm,则AB的长为 .12、关于x的方程ax2-(3a+1)x+2(a+1)=0有两个不相等的实根x1、x2,且有x1+x2-x1·x2=1-a,则a= .13、如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为.14、一水塘里有鲤鱼、鲫鱼、鲢鱼共10000尾,一渔民通过多次捕捞试验后发现,鲤鱼、鲫鱼出现的频率是31%和42%,则这个水塘里大约有鲢鱼 _____尾.15、在平面直角坐标系中,已知A(6,3),B(6,0)两点,以坐标原点为位似中心,位似比为3∶1,把线段AB缩小后得到线段A′B′,则A′B′的长度为 .16、如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是菱形.17、在锐角三角形ABC中,已知∠A,∠B满足2sin2A⎛-⎝⎭+tan B|=0,则∠C=______.18、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,则AD= .三、解答题(本题共八小题,共66分)19、(本题6分)作出如下图所示的三种视图.G第16题图E第18题图第19题第13题图20、(本题6分)已知()()0622222=-+-+b ab a ,求:22b a +的值。

(解析版)福建省厦门市2016届九年级上学期质量检测数学试卷

(解析版)福建省厦门市2016届九年级上学期质量检测数学试卷

2015—2016学年(上) 厦门市九年级质量检测数学参考答案解析一、选择题(每小题4分,共24分)1、在四个数3、2、1.7、2中,最大的是( )A.3B.2C.1.7D.2解析:本题考查实数比较大小,414.12,732.13≈≈,故答案选D 。

2、下列图形中,属于中心对称图形的是( )A.锐角三角形B.直角三角形C.菱形D.对角互补的四边形解析:本题考查中心对称图形定义,旋转180后和图形本身重合,选项中只有菱形满足条件,故答案选C 。

3、关于x 的一元二次方程)04,0(022>-≠=++ac b a c bx ax 的根是( )A.aacb b 242-±B.a ac b b 242-+-C.242ac b b -+-D.aac b b 242-±-解析:本题考查了一元二次方程求根公式的识记,故答案选D 。

4、如图1,已知AB 是O 的直径,E D C 、、是O Θ上的三个点,在下列各组角中,相等的是( )A.C ∠和D ∠B.DAB ∠和CAB ∠C.C ∠和EBA ∠D.DAB ∠和DBE ∠解析:本题考查了同圆中,相等的圆周角,C ∠和D ∠都是直径所对的圆周角为90,故答案选A 。

5、某公司欲招聘一名工作人员,对甲应聘者进行面试和笔试,面试成绩为85分,笔试成绩为90分,若公司分别赋予面试成绩和笔试成绩7和3的权,则下列算式表示甲的平均成绩的是()A.29085+ B.2390785⨯+⨯C.10390785⨯+⨯D.103.0907.085⨯+⨯解析:此题考查加权平均数的计算。

加权平均数的公式为的权为为数据,x w x w w w w x w x w x nnn ,212211+⋯⋯+++⋯⋯++。

题中甲的面试成绩为85分,对应权重为7;面试成绩为85分,对应权重为3。

代入公式即可,故答案选C 。

6、如图2,点E D 、在ABC ∆的边BC 上,CAE BAD AED ADE ∠=∠∠=∠,,则下列结论正确的是( )A.ABD ∆和ACE ∆成轴对称B.ABD ∆和ACE ∆成中心对称C.ABD ∆经过旋转可以和ACE ∆重合D.ABD ∆经过平移可以和ACE ∆重合解析:此题考查外角、等腰三角形及轴对称。

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷附答案

2015~2016学年度第一学期期末教学质量检测九年级数学试卷说明:1、全卷共4页,五道大题。

2、考试时间100分钟,满分120分。

一、单项选择题(共10小题,每小题3分,共30分)1、在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D2、下列事件是必然事件的是()A、明天太阳从西边升起B、掷出一枚硬币,正面朝上C、打开电视机,正在播放“新闻联播”D、任意画一个三角形,它的内角和等于180°3、一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋里随机摸出一个球,摸出的球是红色的概率是()A 、B 、 C、D 、4、在半径为6的⊙O中,60°圆心角所对的弧长是()A、 B、2 C、4 D、65、用配方法解方程x2+10x+9=0,配方后可得()A、(x+5)2=16B、(x+5)1=1C、(x+10)2=91D、(x+10)2=1096、若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A、-1B、-2C、-3D、-47、如图,∠O =30°,C为OB上的一点,且OC=6,以点C为圆心、半径为3的圆与OA的位置关系是()A、相离B、相交C、相切D、以上三种情况均有可能8、如图,在⊙O中直径垂直于弦AB,若∠C=25°则∠BOD的度数是()A、25°B、30°C、40°D、50°9、某校准备修建一个面积为180平方米的矩形活动场所,它的长比宽多11米,设场地的宽为x米,则可列出的方程为()A、x(x-11)=180B、2x+2(x-11)=180C、x(x+11)=180D、2x+2(x+11)=18010、二次函数y=ax2+bx+c(a≠0)的大致图像见如图,关于该函数的说法错误的是()A、函数有最小值第7题图第8B 、对称轴是直线x=1/2C 、当x ﹤1/2,y 随x 增大而减小D 、当-1﹤x ﹤2时,y ﹥0二、填空题(共6小题,每小题4分,共24分)11、如图,将△ABC 绕点A 按顺时针方向旋转60°,得△ADE ,则∠BAD= 度。

九年级数学第一学期第二次质量检测试题 (新人教版 第75套)

九年级数学第一学期第二次质量检测试题 (新人教版 第75套)

高桥初中教育集团第一学期第二次质量检测九年级数学试题卷请同学们注意:1、考试卷分试题卷和答题卷两部分,满分120分,考试时间为90分钟.2、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.3、考试结束后,只需上交答题卷。

祝同学们取得成功! 一、仔细选一选(本题有10小题,每题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。

注意可以用多种不同的方法来选取正确答案。

1.下列各点中在反比例函数的图象上的点是( ) A .(-1,-2)B .(1,-2)C .(1,2)D .(2,1)2.抛物线的对称轴是( ) A .直线B .直线C .直线D .直线 3.有三个二次函数,甲:;乙:;丙:。

则下列叙述中正确的是( ) A .甲的图形经过适当的平行移动后,可以与乙的图形重合 B .甲的图形经过适当的平行移动后,可以与丙的图形重合 C .乙的图形经过适当的平行移动后,可以与丙的图形重合 D .甲,乙,丙3个图形经过适当的平行移动后,都可以重合 4.下列函数:①;②;③;④中,随的增大而减小的函数有( )A .1个B .2个C .3个D .4个 5.在反比例函数的图像上有两点(-1,y 1),(-,y 2),则y 1-y 2的值是( )A .负数B .非正数C .正数D .不能确定 6.二次函数的图象可能是( )xy 2-=242+-=x y 2-=x 41-=x 0=x 41=x 12-=x y 12+-x 122-+=x x y 12-=x y ()01<-=x x y ()01682>--=x x x y 34x y =y x ()0<=k xky 41122-++=a x ax yA B CD7.二次函数的图象如图所示,则的值是( ) A .-8 B .8 C . ±8 D .68.已知二次函数中,其函数与自变量之间的部分对应值如下表所示:… 0 1 2 3 4 ……4114…点A (,)、B (,)在函数的图象上,则当,时,与的大小关系正确的是( )A .B .C .D . 9.如图,Rt △OAB 的顶点A (-2,4)在抛物线y=ax 2上,将Rt △OAB 绕点O 顺时针旋转90°,得到△OCD ,边CD 与该抛物线交于点P ,则点P 的坐标为( ) A .(,) B .(2,4) C .(,2)D .(2,)10.如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为( ) A . 1 B . 2 C . 3 D . 4二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.若双曲线的图象经过第二、四象限,则的取值范围是 822++=mx x y m c bx ax y ++=2y x x y 1x 1y 2x 2y 211<<x 432<<x 1y 2y 21y y ≥21y y ≤21y y >21y y <2222xk y 12-=k (第7题)(第10题) (第9题)12.若函数与轴的一个交点坐标是(2,0),则它与轴的另一个交点坐标是 13.已知,当时,的取值范围是 14.将抛物线的图象先向右平移个单位,再向上平移个单位,得到的抛物线经过点(1,3),(4,9)则= ,=15.已知函数的图象与轴有一个交点,则的值是 .16.如图,是二次函数的图象的一部分,图象过A 点(3,0),对称轴为,给出三个结论:①;②;③的两根分别为-1和3;④。

福建省厦门市2022-2023学年九年级上学期期末质量检测数学试卷

福建省厦门市2022-2023学年九年级上学期期末质量检测数学试卷

福建省厦门市2022-2023学年九年级上学期期末质量检测数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.⊙O 的半径为4,点A 在⊙O 内,则OA 的长可以是( ) A .3B .4C .5D .62.抛物线()213y x =-+的对称轴是( ) A .1x =B .=1x -C .3x =D .3x =-3.如图,圆上依次有A ,B ,C ,D 四个点,AC ,BD 交于点P ,连接AB ,CD ,则图中与C ∠相等的角是( )A .A ∠B .B ∠C .D ∠ D .APD ∠4.如图,正方形ABCD 的对角线,AC BD 交于点O ,点M 在AOD △内,将点M 绕点O 逆时针旋转90︒,则M 的对应点M '在( )A .AOB V 内 B .BOC V 内 C .COD △内 D .DOA △内5.某园林公司购进某种树苗,为了解该种树苗的移植成活率,现对购进的第一批树苗进行随机抽样并统计,结果如图所示.若该公司第二批还需移植成活1800棵该种树苗,根据统计结果,则第二批树苗购买量较为合理的是( )二、填空题9.掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率是________.10.已知1x =是方程230x mx -+=的解,则m 的值为____________.11.在⊙O 中有两个三角形:AOB V 和COD V ,点A ,B ,C ,D 依次在⊙O 上,如图所示.若这两个三角形关于过点O 的直线l 成轴对称,则点B 关于直线l 的对称点是____________.12.如图,在ACB V 中,90C ∠=︒,10AB =,8AC =,D 是AC 的中点,点B ,E 关于22y ax bx c =++与x 轴交于C ,D 两点(C 在D 的左侧),其中A ,B ,C ,D 的横坐标分别为A x ,B x ,C x ,D x ,若当0B x x <<时,120y y <<,则当210y y <<时,x 的取值范围是____________.三、解答题24a a -。

2011—2012学年(上)_厦门市九年级质量检测数学参考答案

2011—2012学年(上)_厦门市九年级质量检测数学参考答案

2011—2012学年(上) 厦门市九年级质量检测数学参考答案一、选择题(本大题共7小题,每小题3分,共21分)8. 2;9. 2;10. ±1;11. 10;12. 乙;13. 30;14. 0;15. 1-2;16. 58³(1-x);58³(1-x)2=43;17.8.三、解答题(本大题共9小题,共89分)18.(本题满分18分)(1)解:2³3-12 6=6-26……4分=-6. ……6分(2)解:正确画出坐标系……8分正确写出两点坐标……10分画出直线……12分(3)证明:∵AC∥EF ……13分∴∠ACB=∠DFE……15分又∵∠A=∠E……16分∴△ABC∽△EDF. ……18分FED CBA19.(本题满分7分)解法1: x 2+4x -2=0,∵ b 2-4ac =(4)2+8=24, ……2分 ∴ x =-b ±b 2-4ac2a ……3分=-4±242 ……4分=-2±6. ……5分 即x 1=-2+6,x 2=-2-6. ……7分解法2: x 2+4x -2=0,(x +2)2=6 ……3分 x +2=± 6 ……5分 即x 1=-2+6,x 2=-2-6. ……7分 20.(本题满分8分)(1)解: P ( 数字恰好是偶数) ……1分 =715 . ……3分(2)解1: ∵ P ( 能被5整除)=315 ……4分=15, ……5分∴ P (不能被5整除)=1-15 ……7分=45. ……8分解2: P (不能被5整除)=1215 ……7分=45. ……8分21.(本题满分8分)(1)解:画出线段OA ; ……1分 标出字母A ; ……2分 在正东方向上标出字母B . ……3分 (2)解:连结AB ,由题意得,在Rt △AOB 中, ……4分∠AOB = 30°,∠ABO =90°. ……5分 ∴ cos ∠AOB =OB OA =32. ……6分∵ AO =323,∴ OB =48. ……7分∴ 这艘船的速度是每小时24海里. ……8分 22.(本题满分8分)(1) -1, ……1分 -3+ 2 ……3分 (2)解1:不是. ……4分 ∵ (m +3)³(1-3)=m -3m +3-3, ……5分又∵ (m +3)³(1-3)=-5+33,∴ m -3m +3-3=-5+33. ……6分 ∴ m -3m =-2+23. 即 m (1-3)=-2(1-3).∴ m =-2. ……7分∴(m +3)+(5-3) =(-2+3)+(5-3)= 3 . ……8分∴(-2+3)与(5-3)不是关于1的平衡数.解2:若m +3与5-3是关于1的平衡数,则m =-3. ……4分 ∵ (m +3)³(1-3)=(-3+3)³(1-3) ……5分 =-3+33+3-3=-6+4 3 ……6分 ≠-5+3 3 ……7分 ∴(-2+3)与(5-3)不是关于1的平衡数. ……8分 解3:不是. ……4分∵ (m +3)³(1-3)=-5+33,∴ (m +3)=-5+331-3……5分=-4-232=-2+3. ……6分 m =-2. ……7分∴ ( m +3)+(5-3)=(-2+3)+(5-3)= 3 . ……8分∴(-2+3)与(5-3)不是关于1的平衡数. 23.(本题满分9分)(1) 解:若b =2,则方程为x 2-2x +c =0. ……1分 ∵△=22-4c ……2分 =4-4c ≥0. ∴ c ≤1. ……4分 (2)解1:由题意得,m 2-(m +2) m +1=0. ……5分 -2m +1=0, ……6分 m =12……7分∴ b -12=2, ……8分∴ b =52. ……9分解2:由题意得,(b -2)2-b (b -2) +1=0. ……6分 ∴ -2b +5=0. ……8分 ∴ b =52.. ……9分24.(本题满分9分)(1)证明:∵∠EAB =∠ECD ,又∵∠BEA =∠DEC , ……1分∴ △BEA ∽△DEC , ……2分 ∴AB DC =BEDE……3分 ∴ AB ²DE =CD ²BE . ……4分(2)解1:不正确. ……5分 当AB DC =BEDE=1时, ……7分 AB =CD , ……8分 ∵ AB ∥CD ,∴ 此时四边形ABDC 是平行四边形,不是梯形. ……9分 解2: 不正确. ……5分如图当四边形ABDC 是矩形时, ……6分连结AD 、BC 交于点E .∵ AB ∥CD ,∴ ∠EAB =∠EDC . ……7分 又 ∵AD =BC ,AE =DE ,BE =CE ,∴ DE =CE .∴ ∠EDC =∠ECD .∴ ∠EAB =∠ECD . ……8分 而四边形ABCD 是矩形不是梯形. ……9分25.(本题满分11分)(1)解:连结AC ,∵ AB =AD ,BC =CD , ……1分又∵AC =AC ,∴ △ABC ≌△ADC . ∴ ∠BAC =∠DAC . ……2分在RT △ABC 中, ……3分 tan ∠BAC =BC AB =33, ……4分 ∴ ∠BAC =30°.∴∠BAD =60°. ……5分 (2)解1:由(1)得, △ABC ≌△ADC .∴ ∠ABC =∠ADC . ……6分 ∵ ∠BAD +∠BCD =180°,∴ ∠ABC +∠ADC =180°.∴ ∠ABC =∠ADC =90°. ……7分 延长AD 交BE 与F .∴ ∠DCF =∠BAF ,∴ RT △ABF ∽RT △CDF . ……8分EDCB AED CBA F D ECB A∵ cos ∠DCE =35,∴ 设DC =3k , ……9分 则CF =5k ,DF =4k ,BC =3k . ∴AB CD =BF DF =8k4k=2. ……10分 ∴ABBC=2. ……11分 解2:作DF ⊥BE ,垂足为F , 作DG ⊥AB ,垂足为G ,∵ ∠BAD +∠BCD =180°,∴ ∠ABC +∠ADC =180°. ……6分 连结AC ,又∵ △ABC ≌△ADC , ∴ ∠ABC =∠ADC .∴ ∠ABC =∠ADC =90°. ……7分 ∴ 四边形BFDG 是矩形. ∵ ∠DCF =∠BAD ,∴ RT △AGD ∽RT △CFD . ……8分 ∴ AG CF ADDC .∵ cos ∠DCE =35,∴ 设DC =5k , ……9分 则CF =3k ,DF =4k ,AG =AB -4k =AD -4k . ∴ 5AG =3AD . ∴ 5(AD -4k ) =3AD .∴ AD =10k . ……10分 ∴ ABBC 2. ……11分26.(本题满分11分)(1)解1:过点A 作AD ⊥x 轴,垂足为D . 在RT △AOD 中,AD =n ,OD =m . ……1分 ∵点A (m ,n )在直线y =33x 上AD OD =33, ……2分 GDF ECBA即tan ∠AOD =33, ∴∠AOD =30°. ……3分∵ OA =1, ∴ n =12,m =32. ∴ A (32,12). ……4分 解2: 过点A 作AD ⊥x 轴,垂足为D .在RT △AOD 中,AD =n ,OD =m . ……1分 ∵ OA =1,∴ m 2+n 2=1. ……2分 又∵ 点A (m ,n )在直线y =33x 上∴ n =33m .……3分 ∴ n =12,m =32.∴ A (32,12).……4分(2)解:若∠BAP =90°.则AO =1.94. ……5分∵ ∠AOD =30°,∴ 点A (973100,0.97). ……6分若∠APB =90°.由题意知点O 是线段AB 的中点.∴ OP =OA . ……7分过点O 作OE 垂直AP ,垂足为E . 则有OE =1.94. ……8分∵ ∠AOD =30°,∴ ∠AOE =15°. ……9分 在RT △AOE 中,AO =OEcos ∠AOE=1.940.97=2. ……10分 ∴ 点A (3,1). ……11分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


13、当 x=
时。二次函数
的最大值就是

14、如图 4,四边形 ABCD 内接于圆,AD=DC,点 E 在 CD 的延长线上,若 ADE 180 ,则 ABD的度数
就是

15、已知平行四边形 ABCD 的顶点 B(1,1),C(5,1),直线 BD,CD 的解析式分别就是
,
则 BC=
,点 A 的坐标就是
……………………………1 分
∴-b2=2
……………………………3 分
∴b=-4
……………………………4 分
∴c=5,
∴抛物线的解析式为 y=x2-4x+5 ……………………………5 分 (2)(本小题满分 7 分) 解:由已知得
点 A(-b2,0),
………………………6 分

b2=2c
时,点
b2 B(0, 2 ).
C、-2<a<0
D、-2
8、抛物线
向左平移 3 个单位长度,再向下平移 2 个单位长度,此时抛物线的对称轴就
是( )
A、x=2
B、x=-1
C、x=5
D、x=0
9、如图 3,点 C 在弧 AB 上,点 D 在半径 OA 上,则下列结论正确的就是(
)
A、 DCB 1 O 180 2
B、 ACB 1 O 180 2
检验:当 n=1 时,2 n+1≠0
∴n=1 就是原方程的解
∵n>1
∴n=1 不合题意,舍去
…………………………6 分
答:甲工程队的工效不可以就是乙队的 3 倍
…………………………7 分
25、(本题满分 7 分)
解:当-1≤x<0 时,[x] =-1
∴x+[x] =x-1 ………………2 分
记 y= x-1
公司分别赋予面试成绩与笔试成绩 7 与 3 的权,则下列算式表示甲的平均成绩的就是(
)
A. 85 90 2
B、 85 7 903 2
C、 85 7 903 10
D、 85 0.7 90 0.3 10
6、如图 2,点 D,E 在△ABC 的边 BC 上,∠ADE=∠AED,∠BAD=∠CAE 则下列结论正确的就是(
∴四边形 AGBF 就是平行四边形. ………………………9 分
∴GB=AF.
………………………10 分
∵AH=BG,
∴AH=AF.
即△AFH 就是等腰三角形. ……………………11 分
27、(本题满分 12 分) (1)(本小题满分 5 分)
解:∵抛物线经过点(1,2), ∴1+b+c=2 即 b+c=1 ∵点 A 的坐标为(2,0)
25、高斯记号 表示不超过 x 的最大整数,即若有整数 n 满足
,则 =n。当
时,
请画出点,
的纵坐标随横坐标变化的图象,并说明理由。
26、已知锐角三角形 ABC 内接于圆 O,
,垂足为 D。
(1)如图 8,若弧 AB=弧 BC,BD=DC,求 B 的度数;
(2)如图 9,
,垂足为 E,BE 交 AD 于点 F,过点 B 作 BG//AD 交圆 O 于点 G,在 AB 边上取一点 H,使
2015-2016 学年(上)厦门市九年级质量检测
准考证号
数学
(试卷满分:150 分 考试时间:120 分钟)
姓名
座位号
注意事项: 1.全卷三大题,27 小题,试卷共 4 页,另有答题卡. 2.答案一律写在答题卡上,否则不能得分. 3.可直接用 2B 铅笔画图.
一、选择题。(本大题有 10 小题,每小题 4 分,共 40 分、每小题都有四个选项,其中有且只有一个选项正确)
C、 ACB O 180
D、 CAO CBO 180
10、某药厂 2013 年生产 1t 甲种药品的成本就是 6000 元,随着生产技术的进步,2015 年生产 1t 甲种
药品的成本就是 3600 元,设生产 1t 甲种药品成本的年平均下降率为 x,则 x 的值就是(
)
A、 5 15 5
B、 5 15 5
就是多少?
19、解方程

20、在平面直角坐标系中,已知点 A(1,0),B(2,2),请在图 5 中画出线段 AB,并画出线段 AB 绕点 O 顺时
针旋转 90°后的图形。
21、画出二次函数
的图象。
22、如图 6,在正方形 ABCD 中,BC=2,E 就是对角线 BD 上的一点,且 BE=AB,求△EBC 的面积。
∵BE=AB,
∴BE=2.
……………………………4 分
F
在 Rt△EFB 中,
∵∠EFB=90°,∠EBF=45°,
∴∠BEF=45°.
∴EF=FB.
……………………………5 分
∴EF2+FB2=BE2
即 2EF2=BE2.
∴EF= 2.
……………………………6 分
∴△EBC 的面积就是 12×2× 2= 2.

,设线段 OB,OC 的长分别为 m,n,试比较 m 与 的大小,并说明理由。
2015—2016 学年(上) 厦门市九年级质量检测
数学参考答案
说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分、 一、选择题(本大题共 10 小题,每小题 4 分,共 40 分)
∴ △=b2-4ac
……………………………2 分
=12、
……………………………3 分

x=-b±
b2-4ac 2a
=-4±2 12、
……………………………5 分
∴x1=-2+ 3,x2=-2- 3.
……………………………7 分
20、(本题满分 7 分) ……………………………5 分
B A
……………………………7 分

16、已知 a-b=2,
,当
三、解答题。(本大题有 11 小题,共 86 分)
时,整数 a 的值就是

17、计算:

18、甲口袋中装有 3 个小球,分别标有 1,2,3;乙口袋装有 2 个小球,分别标有号码 1,2;这些球除颜色 外完全相同,从甲乙两口袋中分别随机地摸出一个小球,则取出的两个小球上的号码恰好相同的概率
∵∠ABC=70°,
∴∠BAD=110°.
…………………………3 分
∴∠BAO=110°-45°=65°.
∵PB=AB,
∴∠PAB=∠P=12∠ABC=35°.
…………………………4 分
∴∠PAO=100°.
…………………………5 分
过点 O 作 OE⊥PA 于 E,则 OE 为点 O 到直线 PA 的距离.
得 AH=BG,求证:△AFH 就是等腰三角形。
A
G
O D
B
C
B
A H
E F O
D
C
27、已知抛物线
的对称轴 l 交 x 轴于点 A。
(1)若此时抛物线经过点(1,2),当点 A 的坐标为(2,0)时,求此时抛物线的解析式;
(2)若抛物线
交 y 轴于点 B,将该抛物线平移,使其经过点 A,B。且与 x 轴交于另一点 C,
2a
2a
C、 b b2 4ac 2a
D、 b b2 4ac 2a
4、如图 1,已知 AB 就是圆 O 的直径,C,D,E 就是圆 O 上的三个点,在下列各组角中,相等的就是(
)
A、∠C 与∠D
B、∠DAB 与∠CAB
C、∠C 与∠EBA D、∠DAB 与∠DBE
5、某公司欲招聘一名工作人员,对甲应聘者进行面试与笔试,面试成绩为 85 分,笔试成绩为 90 分。若
当 0≤x<1 时,[x] =0
∴x+[x] =x
………………4 分
记 y= x
º
º
·…………7 分
26、(本题满分 11 分)
(1)(本小题满分 4 分)
证明:∵AD⊥BC, BD=DC,
∴AB=AC、 …………………………1 分
A
︵︵
∵AB=BC,
O
∴AB=BC、
………………………2 分
∴AB=BC=AC、
题号 1
23
4
5
选项 D C D A
C
6 78 AC B
二、填空题(本大题共 6 小题,每题 4 分,共 24 分)
11、 15、
12、 90°、
13、1,-5、
15、 4,(3,7)、
16、 2,3、
三、解答题(本大题有 11 小题,共 86 分)
17、(本题满分 7 分)
6× 3- 12+ 2
C、 15 5
D、 2 5
E
D
A
C
D
BE
C
A
O
B
B
C 图1
A
C
D
O
D
E
E 图2
图3
A
B
图4
二、填空题。(本大题有 6 小题,每小题 4 分,共 24 分)
11、一个圆盘被平均分成红、黄、蓝、白、黑 5 个扇形区域,向其投掷一枚飞镖,且落在圆盘内,则飞
镖落在白色区域的概率ห้องสมุดไป่ตู้是

12、时钟的时针在不停地旋转,从上午 3 时到下午 6 时(同一天),时针旋转的角度就是
)
A、△ABD 与△ACE 成轴对称
B、 △ABD 与△ACE 成中心对称
C.△ABD 经过旋转可以与△ACE 重合
D.△ABD 经过平移可以与△ACE 重合
7、若关于 x 的一元二次方程 ax2 2x 1 0(a 0) 有两个不相等的实数根,则 a 的取值范围就是( ) 2
相关文档
最新文档