定义与命题教案二
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义与命题
教学目标
(一)教学知识点
1.命题的组成:条件和结论.
2.命题的真假.
3.了解数学史.
(二)能力训练要求
1.能够分清命题的题设和结论.会把命题改写成“如果……,那么……”的形式;能判断命题的真假.
2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.3.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值.
(三)情感与价值观要求
1.通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.
2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.
教学重点
找出命题的条件(题设)和结论.
教学难点
找出命题的条件和结论.
教学方法
讲练相结合法.
教学过程课件展示
Ⅰ.巧设现实情境,引入课题
[师]上节课我们研究了命题,那么什么叫命题呢?
[生]判断一件事情的句子,叫做命题.
[师]好.下面大家来想一想:
[生甲]这五个命题都是用“如果……,那么……”的形式叙述的.
[生乙]每个命题都是由已知得到结论.
[生丙]这五个命题的每个命题都有条件和结论.
[师]很好.这节课我们继续来研究命题.
Ⅱ.讲授新课
[师]大家刚才观察到上面的五个命题中,每个命题都有条件(condition)和结论(conclusion)两部分组成.
条件是已知的事项,结论是由已知事项推断出的事项.
一般地,命题都可以写成“如果……,那么……”的形式.其中“如果”引出的部分是条件,“那么”引出的部分是结论.
如:上面的命题(1)中,如果引出的部分“两个三角形的三条边对应相等”是条件,那么引出的部分“这两个三角形全等”是结论.
有些命题没有写成“如果……,那么……”的形式,题设和结论不明显.如:“同角的余角相等”,对于这样的命题,要经过分析才能找出题设和结论,也可以将它们改写成“如果……,那么……”的形式.
如:“同角的余角相等”可以写成“如果两个角是同一个角的余角,那么这两个角相等”.
注意:命题的题设(条件)部分,有时也可用“已知……”或者“若……”等形式表述,命题的结论部分,有时也可用“求证……”或“则……”等形式表述.
下面我们来做一做
[生乙]第二个命题的条件是:a>b,b>c,结论是:a=c.
[生丙]第三个命题的条件是:在两个三角形中,有两角和其中一角的对边对应相等.结论是:这两个三角形全等.
[生丁]第四个命题的条件是:菱形的四条边.结论是:都相等.
[生戊]丁同学说得不对.这个命题可改写为:如果一个四边形是菱形,那么这个四边形的四条边都相等.显然,这个命题的条件是:一个四边形是菱形.结论是:这个四边形的四条边都相等.
[生己]第五个命题可改写为:如果两个三角形全等,那么这两个三角形的面积相等.则这个命题的题设是:两个三角形全等.结论是:这两个三角形的面积相等.
[师]同学们分析得很好.能够经过分析,准确地找出命题的条件和结论.接下来我们来思考
[生甲]第三个、第四个、第五个命题是正确的.第一个、第二个命题是不正确的.
图6-10
[生乙]我们讨论的结果是与甲同学的一样.如图6-10,∠1=∠2,从图形中可知∠1与∠2不是对顶角.所以第一个命题:如果两个角相等,那么它们是
对顶角是错误的.
[生丙]第二个命题中的a取6,b取3,c取2,这样可知:a与c是不相等的.所以第二个命题是不正确的.
[师]很好.同学们不仅能辨别命题的正确与否,还能举例说明命题的错误.真棒!我们把正确的命题称为真命题(true statement),不正确的命题称为假命题(false statement).
由大家刚才分析可以知道:要说明一个命题是一个假命题,通常可以举出一个例子,使它具备命题的条件,而不具有命题的结论.这种例子称为反例(counter example).
注意:对于假命题并不要求,在题设成立时,结论一定
..错误.事实上,只
要你不能保证
..结论一定成立,这个命题就是假命题了.因此,要说明一个命题是假命题,只要举出一个“反例”就可以了.
那一个正确的命题如何证实呢?大家来想一想:(出示投影片§6.2.2 C)
[生乙]这些方法往往并不可靠.
[生丙]能不能根据已经知道的真命题证实呢?
[生丁]那已经知道的真命题又是如何证实的?
[生戊]哦……那可怎么办呢?
……
[师]其实,在数学发展史上,数学家们也遇到过类似的问题,公元前3世纪,人们已经积累了大量的数学知识,在此基础上,古希腊数学家欧几里得(Euclid,公元前300前后)编写了一本书,书名叫《原本》(Elements),为了说明每一结论的正确性,他在编写这本书时进行了大胆创造:挑选了一部分数学名词和一部分公认的真命题作为证实其他命题的起始依据.其中的数学名词称为原名,公认的真命题称为公理(axiom).除了公理外,其他真命题的正确性都通过推理的方法证实.推理的过程称为证明(proof).经过证明的真命题称为定理(theorem),而证明所需的定义、公理和其他定理都编写在要证明的这个定理的前面.
《原本》问世之前,世界上还没有一本数学书籍像《原本》这样编排.因此,《原本》是一部具有划时代意义的著作.
[生]老师,我知道了,除公理、定义外,其他的真命题必须通过证明才能证实.
[师]对,我们这套教材有如下命题作为公理:
[师]好.除这些以外,等式的有关性质和不等式的有关性质都可以看作公理.
在等式或不等式中,一个量可以用它的等量来代替.如:如果a=b,b=c,那么,a=c,这一性质也看做公理,称为“等量代换”.
注意:(1)公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题.
(2)公理可以作为判定其他命题真假的根据.
好,下面我们通过“读一读”来进一步了解《原本》这套书,进而了解数学史.
Ⅳ.课时小结
本节课我们主要研究了命题的组成及真假.知道任何一个命题都是由条件和结论两部分组成.命题分为真命题和假命题.
在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.