(完整版)液压缸选型参考

合集下载

液压缸选型和液压泵选型计算

液压缸选型和液压泵选型计算

液压缸选型和液压泵选型计算液压系统中的液压缸和液压泵是核心组件。

液压缸用于产生机械运动,而液压泵则负责提供液压力。

正确的选型对于确保系统的性能和效率至关重要。

液压缸选型计算液压缸的选型需要考虑以下因素:1. 载荷:确定承受液压缸的最大载荷。

载荷可以是静态的或动态的,在计算中需要考虑不同工况下的最大载荷。

2. 行程:确定液压缸的行程,即活塞的位移范围。

行程长度会影响液压缸的尺寸和容量。

3. 速度:考虑液压缸的工作速度。

速度过高可能导致冲击和过度磨损,速度过低则可能导致效率低下。

4. 工作环境:评估液压缸所处的工作环境,包括温度、湿度、腐蚀性和振动等因素。

这些因素会影响选择材料和密封件的类型。

5. 安全系数:在选型计算中,通常要考虑安全系数,以确保液压缸在最不利的工况下仍能正常工作。

根据以上因素,可以使用液压缸选型表格或计算软件来计算并选择合适的液压缸。

液压泵选型计算液压泵的选型与液压缸选型类似,需要考虑以下因素:1. 流量:确定系统所需的最大流量。

流量决定了液压泵的容量和泵的尺寸。

2. 压力:确定系统所需的最大压力。

液压泵必须能够提供足够的压力以满足系统需求。

3. 转速:考虑液压泵的转速。

转速过高可能导致泄漏和磨损,转速过低则可能导致系统响应时间延长。

4. 工作环境:评估液压泵所处的工作环境,包括温度、湿度、腐蚀性和振动等因素。

这些因素会影响选择材料和密封件的类型。

5. 安全系数:在选型计算中考虑安全系数,以确保液压泵在最不利的工况下仍能正常工作。

根据以上因素,可以使用液压泵选型表格或计算软件来计算并选择合适的液压泵。

在液压系统设计过程中,确保选用合适的液压缸和液压泵是非常重要的。

通过充分考虑系统需求和工作环境,可以选择到满足性能和效率要求的恰当型号。

液压油缸选型及计算

液压油缸选型及计算

液压油缸选型及计算液压油缸是机械和工程中常见的一种装置,它由活塞、筒体、密封件、进油口和排油口等组成。

液压油缸本质上是将液体压力转换为线性机械运动的装置。

液压油缸广泛应用于输油管线、汽车、机床、起重机械、冶金、矿山、石油、化工、航空航天等领域。

如何选择液压油缸?1. 负载:负载是选择液压油缸的一个重要参数。

将液压油缸安装在所需执行力的方向上,即可取得所需的筒体尺寸和活塞尺寸,材料特性等参数,从而能够满足应用需求。

2. 速度:液压油缸的速度是由流量控制,作用力分配,超出的去向,密封摩擦以及摆动的自身等参数决定的。

在选择液压油缸时需要考虑速度限制,确保它与应用相匹配。

例如,在起重机械的情况下,需要实现平稳、快速的回收机械臂,因此需要设计具有较高响应速度的液压油缸。

3. 工作气体的类型:液压油缸的工作介质通常使用液态,常见的包括:水、液压油和空气。

不同的工作介质对液压油缸的性能和寿命有不同的影响。

例如,使用水作为工作介质可以使液压油缸在高压下具有更好的性能,使其在常温或低温下更有优势。

4. 工作温度:可以通过以下几个方面考虑工作温度:a. 确保液压油缸可在高和低温度下工作,因为在各种天气条件下需执行的任务可能会发生变化。

b. 不同类型的液压油缸在不同的温度下都会发生物理和化学变化,因此,根据应用的要求选择液压油缸非常关键。

c. 外界因素影响的温度也是一个非常重要的考虑因素,包括环境温度,媒介流速和加热或冷却作为行动缸使回油口位置。

液压油缸的计算液压油缸的计算有两个主要方面:1. 计算液压缸的负载能力:该计算基于机械、重力、速度和力的平衡方程式。

它们考虑了作用在活塞上的所有力的大小、方向和位置。

通过量化负载能力,可以确保液压油缸与应用需求相匹配。

2. 计算液压油缸的工作压力能力:液压油缸的工作压力能力是指液压油缸在其承受能力的范围内所能承受的最高工作压力。

液压油缸的工作压力能力通常是通过以下条件之一来确定的:a. 活塞对出现的负载产生的压力。

液压缸产品样本 (2)

液压缸产品样本 (2)

一 HSG系列工程液压缸工程液压缸均为双作用单活塞杆液压缸,安装方式多采用耳环型。

按缸盖与缸体的联接方式,可分为外螺纹联接式、内卡键联接式及法兰联接式三种;按缸盖与缸体联接方式,可分为外螺纹、内螺纹二种。

工程液压缸主要用于工程机械、重型机械、起重运输机械及矿山机械的液压系统。

型号说明HSG □ * D /d □□-□*□缓冲装置代号:Z1—间隙缓冲;Z2—阀缓冲。

脚标*为耳环说明号:C—带衬套;G—带关节轴承。

安装方式代号:E—耳环型;ZE—中间销轴耳环型。

压力分级代号:E—16MPa;H—32MPa。

活塞杆型式代号:A—螺纹联接式;B—整体式。

结构尺寸代号:液压缸直径/活塞杆直径。

系列号。

缸盖联接方式代号:L—外螺纹联接;K—内卡键联接;F—法兰联接。

双作用单活塞杆液压缸。

工程液压缸的结构图缸盖外螺纹联接式 L型缸盖内卡键联接式 K型缸盖法兰联接式 F型(一)HSGL型外螺纹联接式液压缸(二)HSGK型内卡键联接式液压缸的尺寸。

(三) HSGF型法兰联接式液压缸尺寸。

活塞杆为外螺纹联接式液压缸HSG L 0.1-D/d -E—E CS为活塞行程;4,带( )者为非优先选用者.活塞杆端为内螺纹联接式液压缸HSG L 0.1-D/d -E—E C图中S为活塞行程;4,带( )者为非优先选用者.SD基本形拉杆液压缸注:杆系列中B、C型者为7-14MPa低中压缸;带*者为21MPa高压缸技术参数LA切向脚架型32 88 109 35±0.15 64注:1,杆系列中B、C型者为7-14MPa低中压缸;带*者为21MPa高压缸。

2, 图中A、B、C、E、L、M、P、Q参照基本形液压缸技术参数LB轴向脚架型注:1,杆系列中B、C型者为7-14MPa低中压缸;2,图中A、B、C、E、L、M、Q参照基本形液压缸技术参数FA缸头长方法兰型液压缸注:1,杆系列B 、C 为7Mpa 低压缸;B*、C*为7-14Mpa 中压缸;**为21Mpa 高压缸。

液压缸选型

液压缸选型

液压缸选型(你做设计的时候,遇见液压缸的问题不用愁了)液压缸的结构基本上可以分为缸筒和缸盖、活塞和活塞杆、密封装置、缓冲装置和排气装置五个部分.1.液压缸的设计内容和步骤(1)选择液压缸的类型和各部分结构形式。

(2)确定液压缸的工作参数和结构尺寸。

(3)结构强度、刚度的计算和校核。

(4)导向、密封、防尘、排气和缓冲等装置的设计。

(5)绘制装配图、零件图、编写设计说明书。

下面只着重介绍几项设计工作。

2.计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。

(1)缸筒内径D。

液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。

根据负载和工作压力的大小确定D:(4-32)(4-33)式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax为最大作用负载。

(2)活塞杆外径d。

活塞杆外径d通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性。

若速度比为λv,则该处应有一个带根号的式子:(4-34)也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。

受压力作用时:pI<5MPa时,d=0.5~0.55D5MPa<pI<7MPa时,d=0.6~0.7D pI>7MPa时,d=0.7D(3)缸筒长度L。

缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:L=l+B+A+M+C式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导向长度,取(0.6-1.5)D;M为活塞杆密封长度,由密封方式定;C为其他长度。

一般缸筒的长度最好不超过内径的20倍。

(4)最小导向长度的确定。

当活塞杆全部外伸时,从活塞支承面中点到导向套滑动面中点的距离称为最小导向长度H(如图4-19所示)。

如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一最小导向长度。

液压泵液压缸液压马达的型及参数以及精选文档

液压泵液压缸液压马达的型及参数以及精选文档

液压泵液压缸液压马达的型及参数以及精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-液压、气动一、液压传动1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。

2、组成原件1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵2 、调节、控制压力能的液压控制阀3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达)4 、传递压力能和液体本身调整所必需的液压辅件液压系统的形式3、部分元件规格及参数(1)液压泵液压泵是液压系统的动力元件,是靠发动机或电动机驱动,从液压油箱中吸入油液,形成压力油排出,送到执行元件的一种元件。

分类:齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。

叶片泵:分为双作用叶片泵和单作用叶片泵。

这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。

柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。

一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。

还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。

适用工况和应用举例【KCB/2CY型齿轮油泵】工作原理:2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。

A为入吸腔,B为排出腔。

泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。

被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。

KCB/2Y型齿轮油泵型号参数和安装尺寸如下:【KCB/2CY型齿轮油泵】性能参数:【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图KCB200~960与2CY8~150安装尺寸图双联叶片泵型号参数:双联叶片泵(两个单级泵并联组成,有多种规格)型号识别说明液压泵的主要技术参数和计算公式(2)液压马达:是把液体的压力能转换为机械能的装置分类:1、按照额定转速选择:分为高度和低速两大类,高速液压马达的基本形式有齿轮式、螺杆式、叶片式和轴向柱塞式等,高速液压马达主要具有转速较高,转动惯性小,便于启动和制动,调速和换向的灵敏度高。

液压油缸型号大全及选型流程参考

液压油缸型号大全及选型流程参考

液压缸选型流程:程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例)※条件一已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。

针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)输出力的作用方式为推力F1的工况:初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D;初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。

(2)输出力的作用方式为拉力F2的工况:假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。

(3)输出力的作用方式为推力F1和拉力F2的工况:参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。

※条件二已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。

但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。

(2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。

液压油缸选型完整版

液压油缸选型完整版

液压油缸选型HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录液压缸由什么组成通常情况下,液压缸由后端盖、缸筒、活塞、活塞杆和前端盖等主要部分组成。

为防止工作介质向缸外或由高压腔向低压腔泄漏,在缸筒与端盖、活塞与活塞杆、活塞与缸筒、活塞杆与前端盖之间均设有密封装置(密封圈)。

在前端盖外侧还装有防尘装置。

为防止活塞快速地运动到行程终端时撞击端盖,缸的端部还可设置缓冲装置。

必要的时候,为了排气,还要设置排气装置。

No零件名数量No零件名数量1活塞杆18轴心螺母12防尘环19前盖13轴用油封110缸筒14O型环211拉杆15孔用油封212O型环16弹环垫片113活塞17螺母114后盖1液压缸各组成部分各是什么材质1,缸筒常用材质为20、35、45号无缝钢管,钢管经过珩磨或者滚压,达到μm以内的粗糙度要求。

低压油缸可采用20号钢管,高压油缸采用45号钢管。

2,活塞杆活塞杆有实心杆和空心杆两种,空心活塞杆的一端需要留出焊接和热处理时用的通气孔实心活塞杆材料为35、45钢,空心活塞杆材料为35、45无缝钢管。

活塞杆粗加工后调质到印度为229~285HB,必要时,再经高频淬火,硬度达45~55HRC3,缸盖低压用铸件,中低压用HT300灰铁,中高压用35、45号钢。

当缸盖本身又是活塞杆的导向套时,缸盖最好选用铸铁。

同时,应在导向表面上熔堆黄铜、青铜或其他耐磨材料。

如果采用在缸盖中压入导向套的结构时,导向套则应为耐磨铸铁、青铜或黄铜。

4,活塞常用材料为耐磨铸铁、灰铸铁(HT300、HT350)、钢及铝合金。

活塞和活塞杆的同轴度公差值应为【实战】油缸厂家手把手教您液压油缸选型准备工具:计算器纸笔基本概念:1.油缸基本参数缸径D(缸筒内径)、杆径d(活塞杆直径)、行程S、使用压力P,安装方式、安装尺寸其中最重要的是缸径、行程、使用压力.缸径有标准系列可选,使用压力也是分几个档相关阅读:(附录A)(附录B)2)F=PS由力的计算公式可知:F=PS(P:压强;S:受压面积—由油缸的缸径、杆径决定)举例:油缸的推力需要达到10吨,即F=10,则P、S有多种组合。

液压缸选型参考

液压缸选型参考

【液压缸选定程序】程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例)※ 条件一已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。

针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)输出力的作用方式为推力F1的工况:初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D;初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。

(2)输出力的作用方式为拉力F2的工况:假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。

(3)输出力的作用方式为推力F1和拉力F2的工况:参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。

※ 条件二已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。

但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。

(2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。

油缸选用标准

油缸选用标准

油缸选用标准摘要:一、油缸概述1.油缸的定义和作用2.油缸的分类二、油缸选用的标准1.油缸的工作压力2.油缸的行程3.油缸的安装方式4.油缸的材质和密封性能5.油缸的驱动方式三、油缸选型的注意事项1.考虑油缸的工作环境2.选择合适的油缸尺寸3.确保油缸的可靠性和安全性四、总结1.油缸选用标准的重要性2.综合考虑选型的多种因素正文:油缸是一种将液压能转换为机械能的装置,广泛应用于各种工程机械和工业设备中。

在选用油缸时,需要根据实际需求和工作条件来选择合适的油缸。

以下是油缸选用的标准及注意事项。

一、油缸概述油缸是一种液压传动部件,通过将液压油的压力转换为活塞杆的直线运动,从而驱动负载进行直线运动。

油缸的种类繁多,主要包括单作用油缸、双作用油缸、无杆腔油缸等。

二、油缸选用的标准1.油缸的工作压力:根据负载的大小和运动速度来选择合适的工作压力,一般选用压力范围在10-100MPa 之间的油缸。

2.油缸的行程:根据负载的移动距离和运动范围来选择合适的行程,一般选用行程在10-200mm 之间的油缸。

3.油缸的安装方式:根据设备的结构和使用环境来选择合适的安装方式,如卧式安装、立式安装、法兰安装等。

4.油缸的材质和密封性能:根据工作环境和负载要求选择合适的材质,如碳钢、不锈钢、铝合金等。

同时,要保证油缸的密封性能,防止液压油泄漏。

5.油缸的驱动方式:根据设备的驱动需求来选择合适的驱动方式,如手动驱动、气动驱动、电动驱动、液压驱动等。

三、油缸选型的注意事项1.考虑油缸的工作环境:根据实际工作环境,如温度、湿度、尘埃等,选择适应恶劣环境的油缸,确保油缸的可靠性和安全性。

2.选择合适的油缸尺寸:在满足工作压力、行程等要求的前提下,尽量选择结构紧凑、尺寸较小的油缸,以减轻设备重量和节省空间。

3.确保油缸的可靠性和安全性:在选用油缸时,要确保油缸的制造质量、密封性能和抗磨损性能,避免在使用过程中出现故障和事故。

总之,油缸选型是一个复杂的过程,需要综合考虑工作压力、行程、安装方式、材质和密封性能、驱动方式等多种因素。

液压系统的选型

液压系统的选型
对一般的液压缸,最小导向长度应满足一下要求:
式中L——液压缸的最大行程;
D——液压缸的内径。
取H=30mm。
活塞的宽度B一般取 ;取
缸盖滑动支承面的长度 ,根据液压缸的内径D而定;
当 ;

则 。
为保证最小导向长度H,若过大增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小的导向长度H决定,即
一、(1)
取活塞堵头的直径d=56mm,检测的空气压力为6bar,取液压缸的工作压力为p1=5bar,液压缸的背压为p2=3bar,。
作用在活塞杆上的力F=nPS=0.75 5×105 (56/2)2 10(-6)=923.63N
根据上面的图形来计算液压缸的直径D。
代入数据得;
D=0.0787m=78.7mm
液压泵的最大流量应为:
式中 ——液压泵的最大流量
——同时动作的各执行所需要的流量之和的最大值
——系统泄漏洗漱,一般取 =1.1~1.3,现取 =1.1。
可以选取的液压缸为CX系列薄型液压缸,MCX-SD 。
根据液压缸的直径可以求出面积:
(2)液压缸所需的实际流量计算
①工作液压缸快速空程时所需流量:
——液压缸的工作容积效率,取 =0.96;
——快速空程时的速度,取 =0.06m/s
②工作刚压制时所需要的流量:
取 =0.01m/s
③工作刚回程时所需要的流量:
设计计算过程
(1)缸体与缸盖的连接形式
缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。
本次设计中采用法兰连接,如下图所示:
优点:
1结构简单、成本低;
2容易加工、便于装拆;

液压缸选型设计与强度校核

液压缸选型设计与强度校核

液压缸选型设计与强度校核液压缸的基本参数选择1. 设计土压力选择在以输出力为主的设计中,首先要选择设计(额定)工作压力。

不同的液压设备或不同负载下设计参考压力如表4-4和表4-5所列。

选择的设计压力应符合国家标准(见表4-6)。

表4-4 各类液压缸设备常用的设计压力(资料来源:液压传动) 表4-5 不同负载下的设计参数压力(资料来源:液压传动)表4-6 液压缸的公称压力Pn (GB7938--1987)2. 液压缸内径D 与活塞杆直径d 的选择在选定适当的工作压力后,对于有杆腔(输出力为拉力),液压缸的内径D 为D =√4FL πpηM +d 2 (4.7.1)D=98.375根据式(4.7.1)计算出D后,可根据速度的要求确定活塞杆直径d。

速度比φ的含义是φ=u2u1=Q A2⁄Q A1⁄=A1A2=D2D2−d2(4.7.2)根据式(7.72)有d=D√1−φ−1 (4.7.3)d=73.782在式(4.71)中,应根据速度比要求,将式(4.7.3)代入D,进而求出d,液压缸速比φ取值应符合国家标准规定GB/2348—1993的规定(φ=1.06,1.12,1.25,1.33,1.46,2,2.25),同时还要参考工作压力进行选择,如表4-7所列。

表4-7 液压缸速度比与工作压力的关系根据计算而选择的液压缸内径D与活塞杆直径d应圆整到国家技术标准之规定,如表4-8和表4-9所列。

表4-8 液压缸内径的系列尺寸(GB/T2348—1993)表4-9 液压缸活塞杆系列尺寸(GB/T2348--1993)根据表4-8,4-9选液压缸内径D=100mm与活塞杆直径d=80mm进行液压缸的结构设计。

在设计过程中,确定其他参数,同时记性强度校核和缸体校核。

缸筒的设计与校核1.缸筒材料壁厚的选择与校核缸筒应尽量选择冷拔与热轧无缝钢管;缸筒材料选用45号钢。

参考类似液压缸选择缸筒的壁厚δ按下式校核:δ≥P y D2[σ](4.7.6)式中P y----液压缸实验压力,MPa。

液压缸选型设计与强度校核

液压缸选型设计与强度校核

液压缸选型设计与强度校核液压缸的基本参数选择1.设计土压力选择在以输出力为主的设计中,首先要选择设计(额定)工作压力。

不同的液压设备或不同负载下设计参考压力如表 4-4和表4-5所列。

选择的设计压力应符合国家标准(见表4-6)。

表4-4各类液压缸设备常用的设计压力表4-5不同负载下的设计参数压力表4-6液压缸的公称压力 Pn (GB7938--1987)2. 液压缸内径D与活塞杆直径d的选择在选定适当的工作压力后,对于有杆腔(输出力为拉力),液压缸的内径D 为4F | _D = “ -- + d2(4.7.1)n Pn MD=98.375根据式(4.7.1)计算出D 后,可根据速度的要求确定活塞杆直径 d 。

速 度比©的含义是U2 _ Q?A2 _ Al _ D 2u7 = Q?A!= ~A2 = D 2-d 2根据式(7.72)有d = D V1 - ©-1d=73.782在式(4.71 )中,应根据速度比要求,将式(4.7.3 )代入D,进而求 出d,液压缸速比©取值应符合国家标准规定 GB/2348-1993的规定(©=1.06,1.12,1.25,1.33,1.46,2,2.25 ),同时还要参考工作压力进行选 择,如表4-7所列。

表4-7液压缸速度比与工作压力的关系根据计算而选择的液压缸内径 D与活塞杆直径d 应圆整到国家技术标准 之规定,如表4-8和表4-9所列。

表4-8液压缸内径的系列尺寸(GB/T2348 —1993 )表4-9液压缸活塞杆系列尺寸(GB/T2348--1993 )根据表4-8,4-9选液压缸内径D=100mm 与活塞杆直径d=80mm 进行液压缸 的结构设计。

在设计过程中,确定其他参数,同时记性强度校核和缸体校核。

(4.7.2)(4.7.3)缸筒的设计与校核1.缸筒材料壁厚的选择与校核缸筒应尽量选择冷拔与热轧无缝钢管;缸筒材料选用45号钢。

标准液压缸参数

标准液压缸参数

液压缸一. Y HG型冶金设备标准液压缸:1.压力:本标准缸分为E、G两种压力级。

E级适用于>6.3-16MPa压力范围的液压缸(简称E级缸)。

G级适用于>16-25MPa压力范围的液压缸(简称G 级缸)。

2.密封:E级封缸采用结构简单,耐磨性好的Yx型密封圈。

G级缸采用耐高压,密封可靠的V型组合密封圈。

3.防尘:本液压缸均采用聚胺脂或丁腈橡胶无骨架式防尘圈。

4.适用介质:液压油、机械油、乳化液。

不适用于磷酸脂。

5.适用温度:-40℃~+80℃,不适用于低于-40℃低温或超过+80℃高温。

6.结构:本标准缸备有17种缸径(40、50、63、80、90、100、110、125、140、、150、160、180、200、220、250、280、320)按两种速比(1.46、2)组成34种规格。

分成带间隙缓冲和不带缓冲两种结构,与上述34种规格组成68个品种,便于用户任意选用。

缸头、缸尾均设有单向放气阀,既可作带间隙缓冲液压缸的快速启动用,又可作放气用。

杆部防尘密封采用可换式结构,便于现场维修。

活塞杆镀保护性硬铬,具有防尘、防锈、防腐、耐磨等特性。

缸径≤220mm的液压缸油口采用公制细牙螺纹。

缸径≥250mm的液压缸油口采用对开式法兰。

7.安装连接:符合国际标准中系列液压缸安装接尺寸。

不同缸径均有基本型,前、后长方法兰,前、后圆法兰,前、中、后销轴,头部单耳环,轴向、径向脚架共13种安装型式。

(详见型号说明及表5-17)除轴向脚架型外,安装连接尺寸符合标准。

杆端螺纹亦符合BG2350-80。

二. 选用订货须知1.型号说明中凡标有▲号的目前暂按非标处理。

2.压力分级E16MPa可适用6.3-16MPa的工作压力。

选型时压力在6.3-16MPa 之间使用者只需填写E即可。

3.安装连接形式除中间销轴需在型号上注明1的具体尺寸外,其余按表上符号填写即可,外连按尺寸请参考表5-17。

4.如需要间隙缓冲请填写H符号,如不填H符号则按无缓冲交货。

液压缸的选型计算

液压缸的选型计算

液压缸的选型计算
1. 选型准备工作
在进行液压缸选型计算之前,需要准备以下信息:
- 执行机构的工作负载:包括最大工作力、工作速度等。

- 工作环境条件:包括温度、湿度等。

- 液压源的参数:包括工作压力、流量等。

2. 液压缸选型计算步骤
步骤1:计算工作力
根据执行机构的工作负载,计算所需的工作力。

工作力可以通过以下公式计算:
工作力 = 最大工作力 ×安全系数
其中,安全系数是根据具体应用需求确定的。

步骤2:计算活塞面积
根据工作力和工作压力,计算液压缸所需的活塞面积。

活塞面积可以通过以下公式计算:
活塞面积 = 工作力 / 工作压力
步骤3:选择活塞直径
根据活塞面积,选择合适的活塞直径。

一般情况下,可以根据经验公式或查阅相关数据手册来选择活塞直径。

步骤4:计算液压缸的速度和流量
根据工作速度和活塞面积,计算液压缸的速度。

速度可以通过以下公式计算:
速度 = 流量 / 活塞面积
其中,流量可以根据实际应用需求或液压源参数来确定。

3. 选型注意事项
在进行液压缸选型计算时,需要注意以下事项:
- 考虑应用的安全性和可靠性,合理选择安全系数。

- 根据实际需求选择合适的活塞直径,避免选型过大或过小。

- 考虑液压缸的速度和流量要求,确保液压源能够满足工作需求。

以上是液压缸选型计算的基本步骤和注意事项。

根据具体应用需求和实际情况,可能还需要考虑其他因素,如密封方式、材料选择等。

如何确定液压油缸规格型号液压油缸选型

如何确定液压油缸规格型号液压油缸选型

如何确定液压油缸规格型号液压油缸选型液压油缸是一种常用的液压执行元件,用于产生线性运动或力的传递。

选择适合的液压油缸规格和型号非常重要,可以确保液压系统的工作效率和性能。

以下是确定液压油缸规格和型号的一些关键因素。

1.负载要求:液压油缸的主要功能是产生力,并传递给负载。

因此,在选择液压油缸时,首先需要确定所需的最大工作负载和最小工作负载。

2.运动速度:液压油缸的运动速度对于系统的性能至关重要。

过快的运动速度可能导致冲击力、噪音和泄漏问题,而过慢的运动速度可能影响工作效率。

因此,在选择液压油缸时,需要考虑所需的最大和最小运动速度。

3.工作压力:液压油缸需要能够承受系统的工作压力。

在选择液压油缸时,需要知道所需的最大工作压力。

4.运动行程:液压油缸的运动行程是指活塞的有效行程,即活塞从一个极限位置到另一个极限位置的距离。

在选择液压油缸时,需要确定所需的最大和最小运动行程。

5.环境条件:液压油缸在工作过程中会暴露在各种环境条件下,如高温、低温、潮湿等。

因此,在选择液压油缸时,需要考虑环境条件对材料和密封件的影响。

6.安装要求:液压油缸的安装方式和位置也会影响选择。

需要考虑液压油缸的外形尺寸、连接方式和安装空间。

7.预算限制:最后,还需要考虑预算限制。

不同规格和型号的液压油缸价格会有所差异。

因此,在选择液压油缸时,需要根据预算范围来确定适合的规格和型号。

总之,确定液压油缸规格和型号需要综合考虑负载要求、运动速度、工作压力、运动行程、环境条件、安装要求和预算限制等因素。

只有通过综合分析这些因素,才能选择适合的液压油缸规格和型号,以确保液压系统的高效运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【液压缸选定程序】
程序1:初选缸径/杆径(以单活塞杆双作用液压缸为例)
※ 条件一
已知设备或装置液压系统控制回路供给液压缸的油压P、流量Q及其工况需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)的大小(应考虑负载可能存在的额外阻力)。

针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:
(1)输出力的作用方式为推力F1的工况:
初定缸径D:由条件给定的系统油压P(注意系统的流道压力损失),满足推力F1的要求对缸径D进行理论计算,参选标准缸径系列圆整后初定缸径D;
初定杆径d:由条件给定的输出力的作用方式为推力F1的工况,选择原则要求杆径在速比1.46~2(速比:液压缸活塞腔有效作用面积与活塞杆腔有效作用面积之比)之间,具体需结合液压缸回油背压、活塞杆的受压稳定性等因素,参照相应的液压缸系列速比标准进行杆径d的选择。

(2)输出力的作用方式为拉力F2的工况:
假定缸径D,由条件给定的系统油压P(注意系统的沿程压力损失),满足拉力F2的要求对杆径d进行理论计算,参选标准杆径系列后初定杆径d,再对初定杆径d进行相关强度校验后确定。

(3)输出力的作用方式为推力F1和拉力F2的工况:
参照以上(1)、(2)两种方式对缸径D和杆径d进行比较计算,并参照液压缸缸径、杆径标准系列进行选择。

※ 条件二
已知设备或装置需要液压缸对负载输出力的作用方式(推、拉、既推又拉)和相应力(推力F1、拉力F2、推力F1和拉力F2)大小(应考虑负载可能存在的额外阻力)。

但其设备或装置液压系统控制回路供给液压缸的油压P、流量Q等参数未知,针对负载输出力的三种不同作用方式,其缸径/杆径的初选方法如下:(1)根据本设备或装置的行业规范或特点,确定液压系统的额定压力P;专用设备或装置液压系统的额定压力由具体工况定,一般建议在中低压或中高压中进行选择。

(2)根据本设备或装置的作业特点,明确液压缸的工作速度要求。

(3)参照“条件一”缸径/杆径的初选方法进行选择。

注:缸径D、杆径d可根据已知的推(拉)力、压力等级等条件由下表进行初步查取。

不同压力等级下各种缸径/杆径对应理论推(拉)力表
程序2、选定行程/安装方式
根据设备或装置系统总体设计的要求,确定安装方式和行程S,具体确定原则如下:
※ 安装方式的确定原则:
(1)法兰安装
适合于液压缸工作过程中固定式安装,其作用力与支承中心处于同一轴线的工况;其安装方式选择位置有端部、中部或尾部三种,如何选择取决作用于负载的主要作用力对活塞杆造成压缩(推)应力、还是拉伸(拉)应力,一般压缩(推)应力采用尾部、中部法兰安装,拉伸(拉)应力采用端部、中部法兰安装,确定采用端部、中部或尾部法兰安装需同时结合系统总体结构设计要求和长行程压缩(推)力工况的液压缸弯曲稳定性确定。

(2)铰支安装
分为尾部单(双)耳环安装和端部、中部或尾部耳轴安装,适合于液压缸工作过程中其作用力使在其中被移动的机器构件沿同一运动平面呈曲线运动路径的工况;当带动机器构件进行角度作业时,其实现转动力矩的作用力和机器连杆机构的杠杆臂与铰支安装所产生的力的角度成比例。

a)尾部单(双)耳环安装
尾部单耳环安装是铰支安装工况中最常用的一种安装方式,适合于活塞杆端工作过程中沿同一运动平面呈曲线运动时,活塞杆将沿一个实际运动平面两侧不超过3°的路径工况或结构设计需要的单耳环安装工况;此时可以采用尾部和杆端球面轴承安装,但应注意球面轴承安装允许承受的压力载荷。

尾部双耳环安装适合于活塞杆端工作过程中沿同一运动平面呈曲线运动路径的工况;它可以在同一运动平面任意角度使用,在长行程推力工况必须充分考虑活塞杆由于缸的“折力”作用而引起的侧向载荷导致纵弯。

b)端部、中部或尾部耳轴安装
中部固定耳轴安装是耳轴安装最常用的安装方式,耳轴的位置可以布置成使缸体的重量平衡或在端部与尾部之间的任意位置以适应多种用途的需要。

耳轴销仅针对剪切载荷设计而不应承受弯曲应力,应采用同耳轴一样长、带有支承轴承的刚性安装支承座进行安装,安装时支承轴承应尽可能靠近耳轴轴肩端面,以便将弯曲应力降至最小。

c)尾部耳轴安装与尾部双耳环安装工况相近,选择方法同上。

d)端部耳轴安装适合于比尾端或中部位置采用铰支点的缸更小杆径的液压缸,对长行程端部耳轴安装的缸必须考虑液压缸悬垂重量的影响。

为保证支承轴承的有效承载,建议该种安装的液压缸行程控制在缸径的5倍以内。

(3)脚架安装
适合于液压缸工作过程中固定式安装,其安装平面与缸的中心轴线不处于同一平面的工况,因此当液压缸对负载施加作用力时,脚架安装的缸将产生一个翻转力矩,如液压缸没有很好与它所安装的构件固定或负载没有进行合适的导向,则翻转力矩将对活塞杆产生较大的侧向载荷,选择该类安装时必须对所安装的构件进行很好的定位、紧固和对负载进行合适的导向,其安装方式选择位置有端部和侧面脚架安装两种。

※ 行程的确定原则
(1)行程S=实际最大工作行程Smax+行程富裕量△S;
行程富裕△S=行程余量△S1+行程余量△S2+行程余量△S3。

(2)行程富裕量△S的确定原则
一般条件下应综合考虑:系统结构安装尺寸的制造误差需要的行程余量△S1、液压缸实际工作时在行程始点可能需要的行程余量△S2和终点可能需要的行程余量△S3(注意液压缸有缓冲功能要求时:行程富裕量△S的大小对缓冲功能将会产生直接的影响,建议尽可能减小行程富裕量△S);
(3)对长行程(超出本产品样本各系列允许的最长行程)或特定工况的液压缸需针对其具体工况(负载特性、安装方式等)进行液压缸稳定性的校核。

(必要时请与本公司技术部垂询);
(4)对超短行程(超出本产品样本各系列某些安装方式许可的最短行程)的液压缸必要时请与本公司技术部垂询。

程序3、端位缓冲的选择
下列工况应考虑选择两端位缓冲或一端缓冲:
(1)液压缸活塞全行程运行,其往返动行速度大于100mm/s的工况,应选择两端缓冲。

(2)液压缸活塞单向往(返)速度大于100mm/s且运行至行程端位的工况,应选择一端或两端缓冲。

(3)其他特定工况。

程序4、油口类型与通径选择
(1)油口类型:
内螺纹式、法兰式及其他特殊型式,其选择由系统中连接管路的接管方式确定。

(2)油口通径选择原则:
在系统与液压缸的连接管路中介质流量已知条件下,通过油口的介质流速一般不大于5mm/s,同时注意速比的因素,确定油口通径。

程序5、特定工况对条件选择
(1)工作介质:
正常介质为矿物油,其他介质必须注意其对密封系统、各部件材料特性等条件的影响。

(2)环境或介质温度:
正常工作介质温度为-20℃至+80℃,超出该工作温度必须注意其对密封系统、各部件材料特性及冷却系统设置等条件的影响。

(3)高运行精度:
对伺服或其他如中高压以上具有低启动压力要求的液压缸,必须注意其对密封系统、各部件材料特性及细节设计等条件的影响。

(4)零泄漏:
对具有特定保压要求的液压缸,必须注意其对密封系统、各部件材料特性等条件的影响。

(5)工作的压力、速度,工况如:
a) 中低压系统、活塞往返速度≥70~80mm/s
b) 中高压、高压系统、活塞往返速度≥100~120mm/s
必须注意对密封系统、各部件材料特性、联结结构及配合精度等条件的影响。

(6)高频振动的工作环境:必须注意其对各部件材料特性、联结结构及细节设计等因素的影响。

(7)低温结冰或污染的工作环境,工况如:
1)高粉尘等环境;
2)水淋、酸雾或盐雾等环境。

必须注意其对密封系统、各部件材料特性、活塞杆的表面处理及产品的防护等条件的影响。

程序6、密封件品质的选择
情况一、无特定工况、特定品质要求,依本公司标准密封系统采用,必要详情可与本公司技术部垂询
情况二、有如前所述的特定工况、无指定品质要求,依本公司特定密封系统采用,必要详情可与本公司技术部垂询
情况三、有如前所述的特定工况、有指定品质要求,建议密封系统由本公司专业工程师推荐采用
情况四、液压缸的密封系统失效后果严重(如影响安全、不易更换、经济损失大等),建议密封系统由本公司专业工程师推荐。

情况五、对配套出口的液压缸密封系统,建议由本公司专业工程师依据工况推荐采用互换性好、易采购的知名密封品质。

※ 程序7、其它特性的选择
(1)排气阀
根据液压缸的工作位置状态,其正常设置在两腔端部腔内空气最终淤积的最高点位置,空气排尽后可防止爬行、保护密封,同时可减缓油液的变质。

(2)泄漏油口
在严禁油液外泄的工作环境中,由于液压缸行程长或某些工况,致使其往返工作过程中油液在防尘圈背后淤积,防止长时间工作后外泄,而必须在油液淤积的位置设置泄漏口。

相关文档
最新文档