第十章 数据的收集

合集下载

人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。

2. 掌握数据的收集方法,包括观察法、实验法和调查法。

3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。

4. 能够运用所学知识对数据进行分析和总结。

教学准备
1. 教材:人教版七年级数学(下册)第十章教材。

2. 教具:白板、黑板、多媒体课件、绘图工具。

教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。

2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。

3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。

4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。

5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。

6. 作业:布置相应的练题和作业,巩固所学知识。

教学评价
1. 观察学生在课堂上的表现和参与程度。

2. 检查学生的作业完成情况和答案正确率。

3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。

教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。

第十章-数据的收集、整理与描述

第十章-数据的收集、整理与描述

§10.1 统计调查(1)【教学目标】1.了解通过全面调查收集数据的方法和划记法,经历简单的数据的收集、整理、描述和分析数据得出结论,即数据处理的一般过程;2.会设计简单的调查问卷收集数据,能根据问题查找有关资料,获得数据信息,会用表格整理数据,用条形图、扇形图直观地描述数据;3.通过实际参与收集、整理、描述、分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,初步培养重视调查研究的良好习惯和科学态度.【教学过程】一、预习导航回忆小学所学的统计的有关知识,并在旁边空白处记录下来.二、新知探究自学课本回答下列问题:我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.尝试练习1:问题一:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?1.收集数据如何收集数据,让各小组的同学在下面的问卷调查中获取数据.填完后交小组长,由小组长表唱票,小组成员在表格中进行统计.1. 确定调查目的;2. 选择调查对象;3. 设计调查问题.2.整理数据语数外物政历地生51 1 2 人学科类3.描述数据描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息. 条形统计图:就是用坐标的形式来描述.如:扇形统计图:用一个圆代表总体,然后将各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称.如图所示:制作扇形统计图关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360o ,如语文所占的百分比是20%,则相对应的圆心角为360o ×20%=72o.注意:各部分的圆心角之和可能与360 o有一定的误差.条形统计图与扇形统计图的优缺点各是什么? 4.全面调查的意义 在上面的调查中,我们利用调查问卷得到了全班同学喜爱的学科数据,利用表格整理数据,并用统计图直观形象的描述了数据.利用表和图分析了解到了全班同学喜爱学科的情况.在这个调查中,全班同学是要考查的全体对象.像这样考查全体对象的调查就叫做全面调查(也叫做普查).三、巩固提高例 经调查,某班同学上学所用的交通工具中,自行车占60%,公交车占30%,其他占10%,请画出扇形图描述以上统计数据.例 春节文艺晚会是大家都喜欢的节目,下面是路刚班级喜爱某种节目的人数分布 表,但因不小心,他打翻墨水,有些地方被墨水遮掉了.请你帮他解决以下问题.(1)被墨水遮掉的3处应是① _______ ②_______ ③________;(2)从上表中可知该班同学喜欢_______的人数最多;(3)画出条形图表示全班同学喜欢某种节目的分布情况. 四、课堂小结五、当堂检测1. 某中学初一(3)班50名学生参加数学测验,测验题目共20题,每题5分满分100分.统计结果如下:节目编号节目类别 划计 人数 百分比 1 相声 ① ② ③_ 2 小品 正 8 19% 3 歌曲 正5 12% 4 舞蹈 正 8 19% 5 杂技 正 7 17%6 戏曲 3 7% 合计42421语文% 数学25 %全对的2人对19题的8人对18题的10人对17题的9人对16题的6人对15题的6人对14题的5人对12题的2人对10题的1人对6题的1人.(1)请你设计一张表格对以上数据进行统计并填上相应数据?(2)你能用条形图把上述数据表示出来吗?2. 根据下面的数据制作扇形统计图并回答问题.对滨州市家庭人口数据的一次统计结果表明:2口之家占24%,3口之家占41%,4口之家占20%,5口之家占10%,6口之家占3%,其他占2%.(1)哪一类家庭人口多?占百分之几?(2)哪两类家庭的百分比之和超过了半数,且最多?(3)哪两类家庭的百分比之和刚达到30%?§10.1 统计调查(2)【教学目标】1.了解总体、个体、样本及样本容量的概念,通过抽样调查,初步感受抽样的必要性及样本的代表性,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析;2.理解抽样调查的方法,通过案例理解简单随机抽样,体会用样本估计总体的统计思想,合理运用抽样调查方法来解决实际问题;3.通过实际参与收集、整理、描述、分析数据的活动,体会数学在生活和生产中的作用,激发学生爱数学的热情.【教学过程】一、预习导航我们可以采用的方法收集数据;统计中经常用整理数据;可以用和来直观地描述数据.叫做全面调查.二、新知探究自学课本,回答下列问题:如果要对某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?(1) 抽样调查的意义在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查.,叫做抽样调查.(2)总体、个体、样本、样本容量的定义总体: .个体: .样本: .样本容量: .(3)抽样的注意事项:①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查2000名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映2000名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在2000名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此,随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.尝试练习:某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?⑴可以用全面调查的方法对全校学生逐个进行调查吗?这样做你认为有什么不足之处?⑵能否有既省时省力又能解决问题的新方法?请阅读教材P153-155后,小组讨论交流你的理解.⑶什么是总体、个体、样本、样本容量?在上面的问题中总体、个体、样本、样本容量分别是什么?⑷你明白了统计的思想了吗?抽样调查是实际中经常采用的调查方式.抽样调查有什么优点?需要注意什么?⑸见教材P154表10-2,你知道哪个节目最受学生喜爱?百分比为多少?据此你知道全校2000名学生中有多少学生最喜爱这个节目?⑹试用条形图和扇形图来描述表10-2中的数据.三、巩固提高1. 为了解全校学生的平均身高,小明调查了座位在自己旁边的3名同学,把他们的身高的平均值作为全校学生的平均身高的估计.⑴小明的调查是抽样调查吗?⑵如果是抽样调查,指出调查的总体、个体、样本和样本容量.⑶这个调查结果能较好地反映总体的情况吗?如果不能,请说明理由.2. 举出不宜用全面调查的例子,并说明理由.3. 某班要选3名学生代表本班参加班级间的交流活动.现在按下面的办法抽取:把全班同学的姓名分别写在没有明显差别的小纸片上,把纸片混放在一个盒子里,充分搅拌后,随意抽取3张,按照纸片上所写的名字选取3名同学.你觉得上面的抽取过程是简单随机抽样吗?为什么?四、课堂小结五、当堂检测1.要调查下面几个问题,你认为应该作全面调查还是抽样调查?⑴了解全班同学每周体育锻炼的时间.⑵调查市场上某种食品的色素含量是否符合国家标准.⑶鞋厂检测生产的鞋底能承受的弯折次数.2.指出下列调查中的总体、个体、样本和样本容量.⑴从一批电视机中抽取20台,调查电视机的使用寿命.⑵从学校七年级中抽取30名学生,调查学校七年级学生每周用于数学作业的时间.3.小明家搞池塘养鱼已三年,头一年放养鱼苗20000尾,其成活率约为70%,在秋季捕捞时,随意捞出10尾,称得每尾的质量如下(单位:千克):0.8 0.9 1.2 1.3 0.8 0.9 1.1 1.0 1.2 0.8.⑴估计这塘鱼的总产量是多少千克?⑵如果把这塘鱼全部卖掉,其市场售价为每千克4元,那么能收入多少元?除去当年的投资成本16000元,第一年纯收入是多少元?⑶已知该养鱼户的第二年纯收入为48000元,那么第二年比第一年增长的百分率是多少?§10.1 统计调查(3)【教学目标】1.感受分层抽样的必要性,初步掌握分层抽样的基本步骤和方法;2.经历收集、处理数据的过程,会用分层抽样的方法来收集数据、整理数据、分析数据、做出决策,能利用分层抽样的知识解决简单实际生活中的问题;3.增强用统计方法解决实际问题的意识,通过研究解决问题的过程,初步培养学生合作交流的意识和探究精神.【教学过程】一、预习导航1.什么是抽样调查?2.什么是总体、个体、样本和样本容量?3.统计的思想是什么?4.抽样调查有什么优点?简单随机抽样时需要注意什么?二、新知探究:自学课本,回答下列问题:(1)分层抽样:.分层抽样的优点:.(2)在什么情况下分层?分层的根据是什么?尝试练习问题某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况.⑴不能用对学生调查数据去估计整个地区电视观众的情况呢?⑵如果抽取一个容量为1000的样本进行调查,你会怎样调查?⑶采用分层抽样与在整个地区直接进行简单随机抽样相比,这样抽取样本一般能更好地反映总体.如果青少年、成年人、老年人的人数比为2∶5∶3,则可按下表抽取:教材P157表10-3是按上述做法进行调查并整理得到的数据,从中可以大致估计出整个地区观众对五种节目的喜爱情况.请你画条形图和扇形图描述表10-3中的数据.⑷由表10-3中数据还可以估计各个年龄段中观众对某类节目喜爱的情况.如,各个娱乐37% 35.2% 19.7%三、巩固提高1. 如果整个地区的观众中,青少年、成年人、老年人的人数比为3∶4∶3,要抽取容量为500的样本,则各年龄段分别抽取多少人合适?2. 根据表10-3,请你计算各个年龄段中最喜爱新闻、体育、戏曲类节目的百分比,画出折线图,分析随年龄变化,观众喜爱节目的变化情况.3. 活动1的问题中,除了根据年龄段分不同的人群,还可以按其他特征分吗?四、课堂小结五、当堂检测1.调查收集数据的方式通常有______________和_____________两种.当总体中个体数目较少时用________________的方式获得数据较好,当总体中个体数目较多时用____________的方式获得数据较好.但关于电视机寿命、火柴质量等具有破坏性的调查不宜采用_____________,国家人口普查采用________________.2.对某中学学生户外活动时间进行抽样调查,学校共有学生1500名,其中男生有800名,女生有700名.如果样本大小为150,小明现有三种方案:A:在七年级学生中用简单随机抽样,抽取150名学生进行调查;B:对全校学生进行简单随机抽样,抽取150名学生进行调查;C:分别在男生中用简单随机抽样抽取80名,在女生中用简单随机抽样抽取70名进行调查.你觉得哪种方案调查的结果会更精确一点?说说你的理由.3.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小张和小李两人中新手是 .4.小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成 下列各题:(1) 该月小王手机话费共有多少元?(2) 扇形统计图中,表示短信费的扇形的圆心角为多少度? (3) 请将表格补充完整; (4)50403020100项目金额/§10.2 直方图(1)【教学目标】1.了解频数及频数分布的概念,根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布,会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息;2.通过学习用表格整理数据表示频数分布,体会表格在整理数据中的作用,通过学习用简单频数分布直方图描述数据的方法,进一步体会统计图表在描述数据中的作用;3. 初步建立统计的观念,初步培养调查研究的良好习惯和实事求是的科学态度.【教学过程】一、预习导航1.什么是分层抽样?2.分层抽样的优点是什么?二、新知探究自学课本回答下列问题:称为组距.叫做频数.尝试练习:活动1提出问题探索解决问题的方法问题1:为了参加学校年级之间的广播操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.你知道应该怎样选择吗?为什么?问题2:已知63名学生的身高数据,为了使选取的参赛选手身高比较整齐,你知道怎样做才能知道数据(身高)的分布情况吗?(即在哪些身高范围学生比较多?而哪些身高范围学生比较少?)活动2 用频数分布描述数据的方法阅读教材,并结合以上探究,你知道用频数分布描述数据的一般步骤是什么?注意对以下概念的理解:1.组距2.频数3.频数分布直方图4.频数折线图活动3 应用频数分布解决简单的实际问题为了考察某种大麦穗长的分布情况,在一块试验田里抽取了100个麦穗,量得它们的长度(数据见教材).列出样本的频数分布表,画出频数分布直方图.问题在活动1的问题2中,对数据进行分组时,组距取3,把数据分成8组.如果组距取2或4,那么数据分成几个组?这样做能否选出身高比较整齐的40名队员?三、巩固提高1. 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量, 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):cm)根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________; (2)补全频数分布直方图.四、课堂小结五、当堂检测1.一个容量为80的样本最大值是143,最小值是50,取组距为10,则可以分成( ) A .10组 B .9组 C .8组 D .7组2.已知在一个样本中,50个数据分别落在5个组内,第一、二、三、五组数据的个数分别是2, 8, 15, 5,则第四组频数是______.3.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如下的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其它类同).这个时间段内顾客等待时间不少于6分钟的人数为( ) A .5 B .7 C .16 D .33(第3题)/min§10.2 直方图(2)【教学目标】1.根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据,表示频数分布;2.会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息. 进一步体会统计图表在描述数据中的作用;3. 增强学习统计的兴趣,初步培养调查研究的良好习惯和科学态度.【教学过程】一、预习导航1.什么是组距、频数?2.用频数分布描述数据的一般步骤是什么?二、新知探究:活动熟练掌握用频数分布直方图解决问题的一般步骤从蔬菜大棚中收集到50株西红柿秧上小西红柿的个数:28 62 54 29 32 47 68 27 55 4336 79 46 54 25 82 16 39 32 6461 59 67 56 45 74 49 36 39 5285 65 48 58 59 64 91 67 54 5768 54 71 26 59 47 58 52 52 70请按组距为10将数据分组,列出频数分布表,画出频数分布直方图和频数折线图,分析数据分布的情况.(先独立思考后分组交流评讲)三、巩固提高:⑴全班有多少同学?⑵组距是多少?组数是多少?⑶跳绳的次数x在100≤x<140范围内的同学有多少?占全班同学的百分之几?⑷画出适当的统计图表示上面的信息.⑸你怎样评价这个班的跳绳成绩?四、课堂小结五、当堂检测1.某县教育部门对该县参加奥运知识竞赛的7500名初中学生的初试成绩(成绩均为整数..)(1)抽取样本的容量为;(2)根据表中数据,补全图中频数分布直方图;(3)若规定初试成绩在90分以上(不包括90分)的学生进入决赛,则全县进入决赛的学生约为人.2.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小护士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位: dB ),将调查的数据进行处理(设所测数据均为正整数)组别噪声声级分组频数频率1 44.5~59.5 4 0.12 59.5~74.5 a 0.23 74.5~89.5 10 0.254 89.5~104.5 b c5 104.5~119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=___________,b=____________,c=____________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75 dB的测量点约有多少个?第十章 数据的收集、整理与描述复习【教学目标】1. 通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实;2. 通过复习,进一步明确数据处理的一般过程;3. 在与他人交流合作的过程中学会收集、整理、描述数据. 【教学过程】一、本章知识网络: 数据处理的一般过程得出结论直方图折线图扇形图条形图据收集数据抽样调查全面调查二、知识链接:1. 统计图 扇形统计图 容易表示出一个对象在总体中所占的百分比. 条形统计图 可以表示出各种情况下各个项目的具体数目. 折线统计图 可以表现出同一对象的发展变化情况2. 全面调查 为一特定目的而对所有考察对象作的全面调查 抽样调查 为一特定目的而对部分考察对象作的调查 抽样调查中的总体 所要考察的对象的全体 个体 其中每一个考察对象样本 从总体中取出的一部分个体 样本容量 样本中个体的数目 3. 直方图画频数分布直方图的一般步骤(1)计算最大值与最小值 (2)决定组距与组数(3)列频数分布表 (4)画频数分布直方图三、巩固练习:1. 右图是根据某中学为地震灾区捐款情况而制作的统计图,已知该校在校学生2000人,请你根据统计图计算该校七年级有学生 人, 七年级共捐款 元,该校三个年级共捐款 元.人均捐款数(元)0246810121416七年级八年级九年级年级/日4821温度/℃2. 某校七年级学生进行体育测试,七年级(2)班男生的立定跳远成绩制成频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答下列问题.(1)该班有多少名男生?(2)若立定跳远的成绩在 2.0米以上(包括2.0米)为合格率是多少四、当堂检测 一、精心选一选,你一定能行1.下列调查适合作全面调查的是( ) A.了解在校大学生的主要娱乐方式 B.了解我市居民对废电池的处理情况 C.日光灯管长要检测一批灯管的使用寿命D.对甲型HINI 流感患者的同一车厢乘客进行医学检查2.要了解全校学生的课外作业负担情况,你认为作抽样方法比较合适的是( ) A.调查全校女生 B.调查全校男生C.调查九年级全体学生D.调查七、八、九年级各100人 3.要反映某市一周内每天的最高气温的变化情况,宜采用( ) A.条形统计图 B.扇形统计图 C.折线统计图 D.频数分布直方图4.小明在选举班委时得了28票,下列说法错误的是( ) A.不管小明所在的班级有多少学生,所有选票中选小明的选票频率不变 B. 不管小明所在的班级有多少学生,所有选票中选小明的选票频数不变 C.小明所在班级的学生人数不少于28人 D.小明的选票的频率不能大于15.一个班有40名学生,在期末体育考试中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角度数是( ) A.144 B.162 C.216 D.250二、耐心填一填,你一定很棒的! 6.为了考察某校七年级男生的身高情况,调查了60名男生的身高,那么它的总体是____________,个体是__________________,样本是______________.7.小明家本月的开支情况如右图所示,如果用于其它方面的支出是150元,那么他家用于教育支出是____________元.8.某市为了了解七年级学生的身体素质情况,随机抽取了500名七年级学生进行检测,身体素质达标率为92%,请你估计该市6万名七年级学生中,身体素质达标的大约有_____________万人.9.测得某市2月份1~10日最低气温随日期变化折线图如图所示 ()1 最低气温为2c 的天数为_______天.()2 该市这10天的天气变化趋势是___________________.三、挑战你的技能10.老师布置每位学生估计本班的数学平均成绩,小玲是数学兴趣小组的成员,就向数学兴趣小组的全体成员做了调查,用他们的数学平均成绩估计本班的数学平均成绩,这样的抽样调查合理吗?为什么?11.某校为了了解七年级学生的学习情况,在这个年级抽取了50名学生对某课进行了测试.将所得的成绩(成绩均为整数)进行整理(如下边所示),请你画出频数分布直方图和频数折线图,并回答问题:(1)全班有多少同学?(2)组距是多少?组数是多少?(3)测试成绩在70≤x<80范围的同学有多少?占全班同学的百分比?(4)画出适当的统计图表示上面的信息.(5)你怎样评价这个班的测试成绩?12. 某校学生会准备调查全校七年级学生 每天(除课间操外)的课外锻炼时间. (1)确定调查方式时,甲说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到全校七年级每个班去随机调查一定数量的同学”.你认为调查方式最合理的是(填“甲”、或“乙”或“丙”)____________________(2)他们采用了最为合适的调查方法收集数据,并绘制了条形和扇形统计图,请将两幅统计图补充完整;图1(3)若该七年级共有1200名同学,请你估计其中每天(除课间操外)课外锻炼时间不大于20分钟的人数.20分钟约40分钟及以上图2。

第十章《数据的收集、整理与描述》教材分析

第十章《数据的收集、整理与描述》教材分析

七年级数学(人教版)第十章《数据的收集、整理与描述》教材分析西葛中学董介文一、教材的地位:在当今的信息社会里,我们需要用数据解决问题。

统计概率所提供的“运用数据进行推断”的思考方法已成为现代社会一种普遍使用并且强有力的思维方式。

数据的收集、整理与描述与我们的生活息息相关。

例如:日本的福田地震、海啸和核泄漏问题已成为全世界人民关注的焦点,每天都需要收集大量的统计数据,并对这些数据进行精细的分析,并得出结论,从而采取有效措施;全国的人口普查;一个家庭的收入与支出;分析中考学生的数学成绩;统计学生的视力情况、身高、体重等等,都需要收集数据、整理数据、描述数据、得出结论。

这一章的知识充分体现了数学来源于生活,并服务于生活,更注重了数学的时效性。

在人教版的数学课程中,已加强统计概率的份量,已将“统计与概率”列为知识领域之一,成为与“数与代数”“图形与几何”并重的内容,这使得义务教育阶段的数学课程结构更加合理,使学生解决问题的能力得到更全面的培养。

在近几年的中考120分中,与数据的收集、整理与描述相关的这些统计知识和概率知识所占的比重有所加大,占9分左右。

“统计与概率”领域主要学习收集、整理、描述和分析数据等处理数据的基本方法和概率的初步知识,这些内容在三个年级均有安排,教学要求随着年级的升高和学生水平的增长逐渐提高。

本套教材安排了三章。

这三章内容采用统计部分和概率部分分开编排的方式,前两章是统计,最后一章是概率。

统计部分的两章内容按照数据处理基本过程的不同侧重点来安排,分别是7年级下册的第10章“数据的收集、整理与描述”,8年级下册的第20章“数据的分析”;概率部分为9年级上册的第25章“概率初步”。

二、教材安排:第十章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程。

第十章__数据的收集、整理与描述

第十章__数据的收集、整理与描述

第十章数据的收集、整理与描述测试1 统计调查(1)学习要求了解全面调查是一种收集数据的方法,会设计简单的调查问卷收集数据,会用统计表和扇形图描述数据;能根据问题查找有关资料,获得数据信息。

(一)课堂学习检测一、填空题1.做统计调查时,通常先采用问卷调查的方法______,为此要设计______;为了更清楚地了解数据所蕴含的规律,经常用表格______;为了更直观地看出表中的信息,还可以用统计图来______.2.在调查中,考察全体对象的调查叫做______.3.某校组织学生开展“八荣八耻”宣传教育活动,其中有38%的同学走出校门进行宣讲,这部分学生在扇形统计图中应为______部分(选择A、B、C、D填空).4.2008年4月16日至20日,在北京奥林匹克公园公共区举办了“好运北京”综合测试赛,测试期间,公共餐饮售卖点5日的营业额如图所示:则营业额最高的是______日,它和营业额最低的那天相比,相差______元.二、选择题5.一般常用居民家庭恩格尔系数来衡量居民的生活质量(系数值越小代表生活质量越好),下表为我国某几年生活质量统计表:则下列说法正确的是( ).(A)生活质量稳步提高(B)生活质量稳步下降(C)生活质量有升有降(D)生活质量稳定不变6.如图是某班学生最喜欢的球类活动人数统计图,则下列说法不正确...的是( ).(A)该班喜欢乒乓球的学生最多(B)该班喜欢排球与篮球的学生一样多(C)该班喜欢足球的人数是喜欢排球人数的1.25倍(D)该班喜欢其它球类活动的人数为5人三、解答题7.学校食堂的主食主要有:米饭、馒头、花卷、面条,你班上同学最喜欢哪种主食,请设计一个调查问卷.(二)综合运用诊断8.查阅动物百科全书,得到信息:丹顶鹤体长约140厘米,营巢于周围环水的浅滩或深草丛中,每次产卵2枚,为国家一级保护动物;绿孔雀体长100~230厘米,营巢于灌木丛、竹丛间的地面,每次产卵4~8枚,为国家一级保护动物;鸳鸯体长38~44厘米,营巢于树洞中,每次产卵7~12枚,为国家二级保护动物.请用一张统计表表示上述信息.9.以区域发展水平为分类标志,我国将全国划分为三个带状经济区,即东部地区、中部地区、西部地区,观察各区域面积扇形图,并回答问题:⑴哪个地区面积最大?哪个地区面积最小?(2)哪个地区的面积超过全国的一半?(3)看此图,你能知道中部地区的面积是多少吗?如果能,请计算;如果不能,请说明理由.10.有一位同学调查了一个月内全校学生的借书情况,数据如下:(1)先完成上面表格,然后根据数据画出扇形统计图;(2)根据扇形图分析学校图书馆的借书率高吗?(3)根据以上信息,请你向学校提出一条好的建议.11.小李通过对某地区1998年至2000年快餐公司发展情况的调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销量的平均数情况条形图,解答下列问题:(1)1999年该地区销售盒饭共______万盒;(2)该地区盒饭销量最大的年份是______年,这一年的年销量是______万盒;(3)计算出这三年中该地区平均每家快餐公司的年销售盒饭数量(精确到0.01万).答:测试2 统计调查(2)学习要求1.了解通过抽样调查收集处理数据的方法,明确用样本估计总体是统计的基本思想.2.通过实例理解总体、样本和样本容量的概念.会用折线图表示经过整理的数据,直观地反映数据规律.(一)课堂学习检测一、填空题1.抽样调查是只从总体中抽取______进行调查,然后根据______推断全体对象的情况;要考察的全体对象称为______,组成其的每一个考察对象称为______,被抽取的那些______组成一个______.2.为了了解一批手表的防水性能,从中抽取10只手表进行防水性能测试,在这个问题中,总体是__________________,个体是__________________,抽取的样本是__________________,样本容量是______.3.抽样调查具有____________的优点,它的缺点是不如全面调查得到的结果______,它得到的只是____________.比如为了解某牛奶公司生产的酸奶的质量情况作调查,这个调查适合作____________.4.下列调查的样本中不缺乏代表性的有哪几个______.(填序号)①为了了解你校七年级学生期中考试数学成绩,抽取七(一)班50名学生的成绩进行分析;②为了了解我国18岁青年的身高,从不同的地区随机抽取1000名18岁青年的身高;③为了了解一批洗衣粉的质量情况,从中抽取50袋进行调查;④为了了解某公园的每天游园人数,从中抽查一年中每个星期天的游园人数.5.如图的折线图反映的是某个家庭每天购菜情况(统计时间为一周),则这个星期中购菜钱数最大值与最小值的差为______元.二、选择题6.为了了解某校九年级学生的双眼视力,从中抽取60名学生进行视力检查,在这个问题中,总体是( ).(A)每名学生的视力(B)60名学生的视力(C)60名学生(D)该校九年级学生的双眼视力7.为了反映某地区的天气变化趋势,最好选择( ).(A)扇形统计图(B)条形统计图(C)折线统计图(D)以上三种都不行8.要调查某校七年级学生周日的睡眠时间,选取调查对象最合适的是( ).(A)选取一个班级的学生(B)选取50名男生(C)选取50名女生(D)随机选取50名七年级学生三、解答题9.某学校为丰富大课间自由活动的项目,随机选取本校100名学生进行调查,调查内容是“你最喜欢的自由活动项目是什么?”,整理收集的数据,绘制成下图.⑴学校采用的调查方式是______;(2)求喜欢“踢毽子”的学生人数,并在图中将“踢毽子”部分的图形补完整;(3)该校共有800名学生,请通过计算估计出喜欢“跳绳”的学生人数.10.为了提高长跑成绩,小彬坚持锻炼并每周日记录下1500米的成绩:小彬1500米成绩变化统计表 (单位:分)(1)请画出能反映小彬1500米成绩变化的统计图;(2)如果要清楚地看出小彬成绩的变化情况,你选择统计图还是统计表?如果要方便、准确地获得他锻炼5个星期的跑步成绩,你会如何选择?测试3 直方图学习要求1.初步认识直方图,能分析简单的频数分布情况.2.会制作频数分布直方图,并根据统计图作出分析和判断.(一)课堂学习检测一、填空题1.分析数据的频数分布,首先计算出这组数据中__________的差,参照这个差值对数据进行__________,然后利用____________给出数据的分布情况,进而用____________来描述数据的分布情况.2.对某中学同年龄的70名女学生的身高进行测量,得到一组数据,其中最大值是170cm,最小值是147cm,对这组数据进行整理时,打算把它分成8组,则组距是______.3.某班数学考试成绩如下:由此可知,该班的成绩的优秀率是______%,及格率是______%.4.如图是某单位职工年龄(取正整数)的频数分布直方图,根据图形直接回答下列问题:第4题图⑴该单位共有职工______人;(2)______年龄段的职工人数最多,该年龄段职工人数占职工总人数的______%;年龄不小于38岁,但小于44岁的职工人数占职工总人数的______%;(3)如果42岁的职工有4人,则年龄在42岁以上的职工有______人.5.如图是某班学生的一次考试成绩的频数分布直方图,由图可知:第5题图(1)该班有______名学生;(2)该班不及格的学生共有______名,占全班人数的______%;(3)该班成绩优秀(分数在85分以上)的学生范围应该在______.二、解答题6.网瘾低龄化问题已引起社会各界的高度关注.有关部门在全国范围内对12~35岁的网瘾人群进行了抽样调查.下图是用来表示在调查的样本中不同年龄段的网瘾人数的,其中30~35岁的网瘾人数占样本总人数的20%.(1)被抽样调查的样本总人数为______人.(2)请把统计图中缺失的数据、图形补充完整.(3)据报道,目前我国12~35岁网瘾人数约为200万人,那么其中12~17岁的网瘾人数约有多少人?。

人教版七年级数学下第十章-数据的收集与整理归类总结

人教版七年级数学下第十章-数据的收集与整理归类总结

第十章数据的收集与整理【知识梳理】一、调查与收集数据想知道“喜欢哪种动物的同学最多”,要通过调查来收据数据.其过程主要有如下步骤:1、明确调查问题——喜欢哪种动物的同学最多;2、明确调查对象——全班每个同学;3、选择调查方法——采用问卷调查;4、展开调查——每位同学将自己最喜欢的动物写在调查问卷上,收集每位同学最喜欢的动物,进行编号;5、整理数据——用“划记法”记录数据;6、得出结论——划记最多的动物,即为同学们喜欢的最多的动物;7、描述数据——统计表是描述数据最常用的方式,为了更直观地获取信息,还可以用条形统计图和扇形统计图来描述数据.二、调查方式的有关概念统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种方式.实际上最常用的调查方式是抽样调查.1、全面调查:在“喜欢哪种动物的同学最多”调查活动中,全班同学都是考察对象。

像这样考察全体对象的调查属于全面调查,又称为“普查”.2、抽样调查:在“调查中小学生的视力情况”调查活动中,采用了调查部分学生的方式来收集数据,根据部分学生的视力来估计整个地区学生的视力情况.这种调查称为抽样调查.这里,整个地区的中小学生的视力情况是要考察的全体对象,称为总体;所有实际被调查的小学生、初中生和高中生的视力组成一个样本.注意:(1)抽样调查只考虑总体中的一个样本,因此其优点是调查范围小,节省时间、人力、物力,但其调查结果往往不如全面调查得到的结果准确.(2)抽样调查时一般应注意:被调查的对象不能太少,被调查的对象应是随意抽取的,调查的对象应是真实的.因此,抽样调查时既要关注样本的广泛性又要关注其代表性.方法点拨:(1)全面调查是对总体中每个对象进行调查,调查范围广,数据详细;而调查样本有局限性,数据不全面;(2)当受客观条件限制,无法对所有对象进行全面调查时,往往采用抽样调查;(3)当调查具有破坏性时,不允许进行全面调查;4. ⑴总体:把所要考察对象的①叫总体.⑵个体:②考察对象叫做个体.⑶样本:从总体中所抽取的一部分③叫做总体的一个样本.⑷样本容量:样本中个体的④叫做样本容量.规律总结:①弄清考察对象是明确总体、个体、样本的关键;②总体或样本中的每一个数据表示个体,不同的个体在数值上是可以相同的,样本中有多少个体,样本容量就是多少,样本容量没有单位.三、统计图的选择——条形统计图、扇形统计图和折线统计图,它们各具特色:条形统计图能清晰地展现出每个项目的具体数目,扇形统计图能清晰地展现出各部分在总体中所占的百分比,折线统计图能清晰地展现出事物变化的情形。

人教版七年级下册第十章数据的收集、整理与描述复习与小结

人教版七年级下册第十章数据的收集、整理与描述复习与小结

(3)若被调查的家庭占全城区家庭数的10%, 请估计该城区不再使用超薄塑料袋的家庭数. (4)针对本次调查结果,请用一句话发表你的感想.
家庭数
a
10%
C
B 72º
800
A
c
情况
A
B
C
2、某果农承包了一片果林,为了了解整个果林的挂果 情况,果农随机抽查了部分果树的挂果数进行分析. 如图是根据数据绘制的统计图,图中从左到右各 长方形之比为5∶6∶8∶4∶2,又知挂果数大于 60的果树共有48棵. (1)果农共抽查了多少棵果树? (2)在抽查的果树中挂果数在40~60之间的树有多少 棵数 棵,占百分之几?
2、用样本估计总体,样本应具有代表性。
例 2、
(1).下列调查中,适合采用全面调查方式的是( ) A.对漓江水质情况的调查. B.对端午节期间市场上粽子质量情况的调查. C. 对某班50名同学体重情况的调查. D.对某类烟花爆竹燃放安全情况的调查. (2).下列调查中,样本最具有代表性的是( ) A.在重点中学调查全市七年级学生的数学水平 B.在篮球场上调查青少年对我国篮球事业的关注度 C.了解班上学生的睡眠时间时,调查班上学号为双 的学生的睡眠时间 D.了解某人心地是否善良,调查他对子女的态度
人教版七年级下册第十章
复习课
第十章 数据的收集、整理与描述
复习
一、回顾总结:
1、数据处理的一般过程:
收 整 描 分 得 出 结 论
全面调查

抽样调查

数 据
条 形 图 扇 形 图

数 据
折 线 图 直 方 图

数 据
趋 势 图
数 据
2、几个概念: 全面调查(普查)与抽样调查、 总体、个体、样本、样本容量的概念。

人教版七年级下册数学知识点归纳:第十章数据的收集、整理与描述

人教版七年级下册数学知识点归纳:第十章数据的收集、整理与描述

人教版七年级下册数学知识点归纳第十章数据的收集、整理与描述全面调查:考察全体对象的调查方式叫做全面调查。

抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

总体:要考察的全体对象称为总体。

个体:组成总体的每一个考察对象称为个体。

样本:被抽取的所有个体组成一个样本。

样本容量:样本中个体的数目称为样本容量。

频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

频率:频数与数据总数的比为频率。

组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

1、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。

(1)通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论(2)收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。

2、数据的表示方法:(1)统计表:直观地反映数据的分布规律(2)折线图:反映数据的变化趋势(3)条形图:反映每个项目的具体数据(4)扇形图:反映各部分在总体中所占的百分比(5)频数分布直方图:直观形象地反映频数分布情况6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点3、调查方式:(1)全面调查,优点是可靠,、真实;(2)抽样调查,优点是省时、省力,减少破坏性;随机抽样调查具有广泛性和代表性。

4、总体和样本:(1)总体:要考察的所有对象(2)个体:组成总体的每一个考察对象(3)样本:从总体中抽出的所有实际被调查的对象组成一个样本。

(4)样本容量:样本中给个体的数目5、组距:每个小组两个端点之间的距离6、画直方图的一般步骤:(1)计算最大值与最小值的差;(2)决定组距与组数,先根据数据个数确定组距,再计算组数,注意无论整除与否,组数总是比商的整数位数多1;(3)确定分点,并分组;(4)列频数分布表;(5)绘制频数分布直方图。

人教版七年级下册数学第10章 数据的收集、整理与描述 数据的收集与描述

人教版七年级下册数学第10章 数据的收集、整理与描述 数据的收集与描述
解:设计不合理.因为踢足球属于体育活动, 因此删去D选项即可.
感悟新知
知2-练
2. 设计调查问卷时要注意( C ) ①问题应尽量简明;②不要提问被调查者不愿意回 答的问题;③提问不能涉及提问者的个人观点; ④提供的选择答案要尽可能全面;⑤问卷应简洁. A.①②④⑤B.①③④⑤ C.①②③④⑤D.①⑤
感悟新知
知识点 3 统计图
知3-讲
1.数据的描述方法有: 统计表和统计图两种.其中统计图常见的有: 条形统计图,折实际需要,常要把日常工作中所得到的相互关联的 知2-讲 数据按照一定的要求进行整理、归类,并按照一定的顺 序把数据排列起来,制成表格,这种表格叫做统计表. (2)统计表的作用: ①使数据更直观、清楚,便于分析; ②用数据把研究对象之间的变化规律清楚地表示出来; ③用数据把研究对象之间的差别清楚地表示出来,以便 于人们分析问题和研究问题.
知2-讲
感悟新知
知2-讲
选项
A
B
C
问题
划 记
人 数
百 分 比
划 记
人 数
百 分 比
划 记
人 数
百 分 比
1
2
感悟新知
归纳
知2-讲
1.设计调查问卷要根据调查的需要和要求进行设计,如果考虑不 周,有的数据了解不到,调查的结果就不具备代表性.因此设计 调查问卷时要进行周密的考虑.一份调查问卷的设计包括问题的 设计和答案的设计:(1)问题的设计要求:①表述要清楚;②表述 要简单明了;③一个问题只能包含一个内容;④易于回答.(2)答 案的设计:①答案要不同;②答案要涉及各种情况.
的变化规律.
感悟新知
知2-讲
例3 某厂准备在“六一”儿童节时送一批气球给幼儿园的 小朋友,特地对50名小朋友最喜欢的气球颜色进行调 查,数据如下: 红蓝红黄红蓝绿绿黄红 红蓝红蓝蓝蓝红蓝红绿 黄红红蓝红绿黄红黄红 黄红绿蓝蓝黄蓝红蓝红 绿红红蓝蓝红红黄蓝绿

人教版七年级数学(下册)第十章_数据的收集、整理与描述教案解析

人教版七年级数学(下册)第十章_数据的收集、整理与描述教案解析

第十章数据的收集、整理与描述本章内容本章主要内容是通过数据的收集——全面调查和抽样调查,数据的整理——频数分布表(没有给出概念),数据的描述——统计图表,和数据的分析得出结论的一般过程。

问题1回顾了全面调查,介绍了问卷调查的方法,用表格整理数据,用条形统计图和扇表统计图描述数据以及扇形统计图的画法。

问题2和问题3介绍了抽样调查。

结合问题2讨论了抽样调查的必要性,同时给出了抽样调查的有关概念和术语,还讨论了抽样调查的代表性,介绍了简单随机抽样的方法。

问题3是利用分层抽样获取样本,通过分析样本数据,利用样本估计总体的例子。

接着从学生熟悉的问题入手,介绍了频数分布直方图和频数分布折线图的画法,从而使对统计图表的认识具体化。

最后是课题学习:从数据谈节水。

三维目标知识目标1、了解全面调查,会设计简单的调查问卷,会用表格整理数据,会画扇形统计图;2、了解抽样调查及相关的概念和术语,理解抽样调查的必要性和代表性;3、了解频数及频数分布,掌握划记法,会画频数分布直方图和频数分布折线图。

过程目标经历全面调查和抽样调查的一般过程,了解这两种调查的优缺点,感受抽样调查的必要性;通过案例了解简单随机抽样,体会用样本估计总体的思想。

情感目标通过实际参与收集、整理、描述和分析数据的活动,感受统计在生产和生活中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

重点、难点收集、整理和描述数据是重点;样本的抽取,频数分布直方图的画法是难点。

课时分配10.1统计调查…………………………………… 3课时10.2直方图……………………………………… 2课时10.3课题学习从数据谈节水………………… 2课时本章小结………………………………………… 2课时10.1统计调查(一)教学目标1、了解全面调查的概念;2、会设计简单的调查问卷,收集数据;3、掌握划记法,会用表格整理数据;4、会画扇形统计图,能用统计图描述数据;5、经历统计调查的一般过程,体验统计与生活的关系.重点难点:全面调查的过程(数据的收集、整理、描述)是重点;绘制扇形统计图是难点。

第十章《数据的收集、整理与描述》单元分析

第十章《数据的收集、整理与描述》单元分析

第十章《数据的收集、整理与描绘》单元分析一、单元教学目标知识技能:1.理解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找相关资料,获得数据信息.2.通过抽样调查,初步感受抽样的必要性,通过案例理解简单随机抽样,体会用样本估计总体的思想.3.理解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用.4.学会用简单频数分布直方图(等距分组)和折线图描绘数据,进一步体会统计图表在描绘数据中的作用,会根据问题需要选择适当的统计图描绘数据.5.通过实际参与收集、整理、描绘和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观点,培养重视调查研究的良好习惯和科学态度.数学思考:学生在原有知识和经验的基础上,让学生经历数据收集、表示与处理的全过程,发展学生的统计观点同时向学生介绍数据处理的一种新方法,使学生对统计数据实行进一步的处理,并作出相对应的评判.问题解决:统计主要研究现实生活中的数据,它通过收集、整理、描绘和分析数据来协助人们对事物的发展作出合理的判断,能够利用数据信息和对数据实行处理已成为信息时代每一位公民必备的素质.对于本章知识要求学生在不同情境中的应用,并应在具体情境中实行适当的选择,而不要注重这些概念的识记性考察.所以,在复习中,应重视学生的举例,注重学生所举例子的合理性、科学性和创造性,并据此评价学生对知识的理解水平.情感态度:充分信任学生,努力发挥他们的主观能动性,让他们通过观察、思考、探究、讨论、归纳,主动地实行学习.勤于思考,擅长思考,是学好数学的先决条件.通过实际参与收集、整理、描绘和分析数据的活动,感受统计在生产和生活中的作用,增强学习统计的兴趣,初步建立统计的观点,培养重视调查研究的良好习惯和科学态度.二、单元重难点指导单元重点:收集、整理和描绘数据.本章的教学重点是收集、整理和描绘数据.从这个章的地位和作用可知,假如不掌握好这局部内容,会给以后的学习带来极大的困难.学生在经历收集、整理、描绘和分析数据得出结论的统计过程,感受统计的思想,建立统计的观点,体验统计的作用,逐步建立用数据说话的习惯.突出重点时,首先,教师教学中应做到让学生自主探究,体验结论产生的过程,体会在实践操作中得到数学知识的思想方法,要充分发挥学生的主观能动性,调动他们学习的积极性,让全体学生参与进来,使学生在思想上理解数据的收集、整理和描绘的重要性.其次,教师在教学中应将所要探究的知识引入到学生的实际生活中,让学生体会数学来源于生活,反之又为实际生活服务的特征,达到突出重点的目的.单元难点:样本的抽取,频数分布直方图的画法.对于直方图,学生在之前的学习中没有接触.教材从学生熟悉的问题情景入手,分析数据的频数分布,首先将数据分组,求出数据的最大值、最小值,以确定数据的极差,参照极差确定组距,进而将数据实行分组,利用频数分布表给出数据的分布情况.教材介绍了根据频数分布表作出频数分布直方图的方法,以及根据频数分布表和频数分布直方图作出频数分布折线图的方法.三、单元知识及与其它相关单元的知识联系从《标准》看,“统计与概率”领域主要学习收集、整理、描绘和分析数据等处理数据的基本方法和概率的初步知识,这些内容在三个学段均有安排,教学要求随着学段的升高逐渐提升.第三学段的“统计与概率”在前两个学段的基础上,继续学习数据处理的方法和概率的初步知识.依据《标准》第三学段的内容标准和统计概率本身的特点,本套教材将“统计与概率”领域独立于“数与代数”和“图形与几何”领域安排,共有三章.这三章内容采用统计局部和概率局部分开编排的方式,前两章是统计,最后一章是概率.统计局部的两章内容按照数据处理基本过程的不同侧重点来安排,分别是7年级下册的第10章“数据的收集、整理与描绘”,8年级下册的第20章“数据的分析”;概率局部为9年级上册的第25章“概率初步”.。

人教版七年级数学下第十章数据的收集、整理10.2直方图

人教版七年级数学下第十章数据的收集、整理10.2直方图

1. 为了解某校九年级男生的身高情况,该校从九年级随机找来 50 名男生进 行了身高测量,根据测量结果(均取整数,单位:cm) 列出了下表.
根据表中提供的信息回答下列问题: (1) 数据在 161~165 范围内的频数是_1_2__; (2) 频数最大的一组数据的范围是_1_6_6~_1_7_0__; (3) 估计该校九年级男生身高在 176 cm (含 176
2
1
横轴
0 149 152 155 158 161 164 167 170 173 身高/cm
小长方形的宽是组距
2. 为了解某地区新生儿体重状况,某医院随机调取了该地区 60 名新生儿 出生体重,结果(单位:克)如下:
3850 2500 4000 3850 3300 3520 3400
3900 2700 3300 3610 3450 3850 3400
3300 2850 2800 3800 3100 2850 3400
3500 3800 2150 3280 3400 3450 3120
3315 3500 3700 3100 4160 3800 3600
3800 2900 3465 3000 3300 3500 2900
2550 2850 3680 2800 2750 3100
39 (1) 请用你所学的数学统计知识,补全频数分布直方图;
(2) 如果此地汽车时速不低于 80 千米/时即为违章,求这组汽 车的违章频数;
解:18 + 22 = 40.
(3) 如果请你根据调查数据绘制扇形统计图,那么时速在 70~
80 范围内的车辆数所对应的扇形圆心角的度数是__1_4_4_°___.
24.4 19.1 22.7 20.4 21.0 21.6 22.8 20.9 21.8 18.6 24.3 20.5 19.7 23.5 21.6 19.8 20.3 22.4 20.2 22.3 21.9 22.3 21.4 19.2 23.5 20.5 22.1 22.7 23.2 21.7 21.1 23.1 23.4 23.3 21.0 24.1 18.5 21.5 24.4 22.6 21.0 20.0 20.7 21.5 19.8 19.1 19.1 22.4

七年级数学下册第十章数据的收集、整理与描述学科素养思想方法(含解析)新人教版

七年级数学下册第十章数据的收集、整理与描述学科素养思想方法(含解析)新人教版

第十章数据的收集、整理与描述学科素养•思想方法一、数形结合思想【思想解读】数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的.【应用链接】统计图直观地描述数据就是用图形显示数据的特征、规律及变化趋势,反过来通过观察图形特征、规律及变化趋势,就能从统计图表中准确提取信息,正确地理解统计图表中的数据的含义,因此,数形结合思想在本章中广泛应用.【典例1】(2017·绍兴中考)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.【思路点拨】(1)根据B选项的人数和所占的百分比即可求出总人数;利用总人数×18.75%可得D选项人数,可补全统计图.(2)利用总人数乘以对应的比例即可求解.【自主解答】(1)40÷25%=160(人).答:本次接受问卷调查的同学有160人.D选项人数为:160×18.75%=30(人).统计图补全如图,(2)800×=600(人).答:估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数为600人.【变式训练】(2017·淮安中考)某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科技社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表.请解答下列问题:(1)a=________,b=________.(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为________.(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数.【分析】(1)根据体育社团的人数是72人,所占的百分比是40%即可求得调查的总人数,然后利用百分比的意义求得a和b的值.(2)利用360°乘以对应的百分比求解.(3)利用总人数乘以对应的百分比求解.【解析】(1)调查的总人数是72÷40%=180(人),则a=180×20%=36,则b=180-18-45-72-36=9.答案:36 9(2)“书画社团”所对应的扇形圆心角度数是360°×=90°.答案:90°(3)估计该校学生中选择“文学社团”的人数是3000×=300(人).二、统计思想【思想解读】统计思想,就是在统计实际工作、在统计学理论的应用研究中,必须遵循的基本理念和指导思想.统计思想主要包括均值思想、估计思想、检验思想等思想.用样本估计总体是统计中最基本的思想方法.【应用链接】从总体中抽取样本,通过对样本数据的整理、分析去估计总体情况.【典例2】(2017·大连中考)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.请你根据以上的信息,回答下列问题:(1)被调查学生中,最喜爱体育节目的有________人,这些学生数占被调查总人数的百分比为________%.(2)被调查学生的总数为________人,统计表中m的值为________,统计图中n的值为________.(3)在统计图中,E类所对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数.【思路点拨】(1)观察图表得出结论.(2)根据百分比=×100%计算.(3)根据圆心角=360°×百分比计算.(4)用样本估计总体的思想解决问题.【自主解答】(1)最喜爱体育节目的有30人,这些学生数占被调查总人数的百分比为20%.答案:30 20(2)总人数=30÷20%=150(人),m=150-12-30-54-9=45,n%=×100%=36%,即n=36.答案:150 45 36(3)E类所对应扇形的圆心角的度数=360°×=21.6°.答案:21.6°(4)估计该校最喜爱新闻节目的学生数为2000×=160(人).答:估计该校最喜爱新闻节目的学生数为160人.。

人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例

人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
2.教师可以提出问题:“如果我们想要知道这次跳远比赛的成绩分布情况,我们应该如何收集和整理数据呢?”引导学生思考和讨论。
3.教师可以引导学生回顾之前学过的数据处理方法,如用表格整理数据,用图表展示数据等,激发学生的学习兴趣和回忆。
4.教师可以总结之前的知识,并提出本节课的学习目标,引导学生明确本节课的学习内容和要求。
3.游戏情境:设计有趣的数学游戏,如数据接龙、图表猜猜看等,让学生在游戏中体验数据的收集、整理与描述的过程,提高学生的实践能力。
4.媒体情境:利用多媒体课件、视频等资源,为学生提供丰富的数据资源,丰富学生的数据感知,帮助学生更好地理解和掌握数据处理的方法。
(二)问题导向
1.教师可以通过设计具有挑战性和启发性的问题,引导学生主动思考,激发学生的求知欲,激发学生解决问题的动力。
人教版七年级数学下册第十章数据的收集,整理与描述优秀教学案例
一、案例背景
本案例背景以人教版七年级数学下册第十章“数据的收集、整理与描述”为主题,旨在通过实际教学案例,探讨如何在数学教学中有效地引导学生掌握数据的收集、整理与描述的方法,提高学生的数据处理能力,培养学生的逻辑思维和分析问题的能力。
在实际教学中,教师可以通过设计丰富多样的教学活动,如小组合作、动手操作、问题探究等,激发学生的学习兴趣,引导学生主动参与,从而更好地理解和掌握数据收集、整理与描述的方法。同时,教师还需关注学生的个体差异,给予不同程度的学生个性化的指导,确保每个学生都能在课堂上得到有效的锻炼和提升。
(二)讲授新知
1.教师可以通过讲解和示例,向学生介绍数据的收集方法,如调查、实验等,并解释每种方法的优缺点。
2.教师可以通过讲解和示例,向学生介绍图表的制作方法,如条形图、折线图、饼图等,并解释每种图表的特点和适用场景。

第十章 数据的收集、整理

第十章  数据的收集、整理
第十章 数据的收集、整理和描述
10.1统计调查
武汉市光谷实验中学 曾海燕
问题1 如果要了解全班同学对新闻、体育、动画、
娱乐、戏曲五类电视节目的喜爱情况,你会怎么做? 新 体 闻 育
动画
娱 乐
戏 曲
为了解决问题1,需要做 统计调查. 首先明确调查对象,收集数据
活动一 请你设计一份调查问卷收集数据
讨论2:怎样整理才能很清楚地看出全班 同学喜爱各类节目的情况?
统计中经常用统计表格整理数据.
活动二 用表格整理数据
全班同学最喜欢节目的人数统计表 节目类型 A新闻 B体育 C动画 D娱乐 E戏曲 划记 人数 百分比
合计
为了更直观的看出上表中的信息,还可以用条形图 和扇形图来描述数据.
活动三 用统计图描述数据
作业强化 能力提高
课本 P153练习1.以“你帮父母做过家务吗”为主题 设计一张调查问卷 2.经过调查,某班同学上学所用的交通工具中,自行 车占60﹪,公交车占30﹪,其他占10﹪,请画出扇形 图描述以上统计数据。 3. 用“是否知道父母生日”调查问卷在全班进行调查, 并整理收集到的数据,选择适当的统计图进行描述, 和同学交流讨论得到的结果,并谈谈自己的感想。 4.举出一些生活中运用全面调查的例子。
人数
20 18 16 14 12 10 8 6 4 2 0
18 15
6%
8% 20%
新闻 体育 动画 娱乐 戏曲
10
36%
4 3
新闻
体育
动画
娱乐
戏曲
节目类别
30%
你能从中说出全班同学喜欢五类电视

如何画扇形统计图
6% 8% 20% 36%
新闻 体育 动画 娱乐 戏曲

第十章数据的收集、整理与描述知识交流

第十章数据的收集、整理与描述知识交流

第十章数据的收集、整理与描述本章教学目标:1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息。

2.通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。

3.了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。

4.学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。

6.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

具体内容和课时分配如下:10.1 统计调查约3课时10.2 直方图约2课时10.3课题学习从数据谈节水约2课时数学活动小结约2课时10.1统计调查(1)教学目标:1、了解通过全面调查收集数据的方法.2、会设计简单的调查问卷,收集数据.3、掌握划记法,会用表格整理数据;体会表格在整理数据中的作用.4、体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.教学重点:参与从收集数据到描述数据的全过程,利用统计图合理的描述数据,体会统计对决策的作用。

教学难点:组织有效的统计活动,使学生在活动中学会合作、学业全交流、学会描述。

解决重难点的方法:1、通过具体案例使学生认识有关统计知识(如样本、总体、个体、频数等)和统计方法(如抽样调查等)。

2、引导学生感受渗透与体现于统计知识和方法之中的统计思想。

教学过程设计:一.问题引入问题:2008年奥运会即将在北京召开。

问国际奥委会是如何决定的?例:你最喜欢的季节是哪一个?在学校课程中你最喜欢的科目是什么?二.授新1.集数据,设计调查问卷。

2.整理数据。

三.描述数据为了更直观地看出表中的信息,还可以画出条形图和扇形图来描述数据。

第十章 数据的收集、整理与描述 小结教案53

第十章 数据的收集、整理与描述 小结教案53

得 出 结 论
条 形 图
随堂练习 P179 复习巩固 1、2、3、4、5、6. P180 综合运用 7、8 题
扇 形 图
折 线 图
直 方 图
△及时巩固复习 内容,使学生熟练 应用以学知识。
25 分钟
重要由学生完成, 教师在学生回答的 基础上加以补充.
知识点小结,主要 采取教师提问,学 生回答的形式进 行.
△让学生带着问 题去思考, 培养学 生的表达能力及 概括能力

分 课 时
学 活
收 集 数 据
流 动整 理 数 据程Fra bibliotek△设计意图
环 节 与时间
知识框架

全面调查

学 生 活 动
◇资源准备 □评价○反思
5 分钟
制表
绘图
抽样调查
描 述 数 据
分 析 数 据

分 课 时
学 活 动


△设计意图
环 节 与时间
结 知识梳理 15 分钟


学 生 活 动
◇资源准备 □评价○反思
第十章 数据的收集、 整理与描述 小
1.调查分为哪几种形式?各有什么优、 缺点? 调查分为全面调查和抽样调查两 种形式.全面调查(也叫普查) ,准确、全 面,但它花费多,耗时长,甚至某些调查 不能进行全面调查. 抽样调查不全面,有一定的误差, 但它花费少, 省时省力, 一般的调查都能 办到, 因此通常是用样本的特征去估计总 体的特征. 2.几个名词概念 总体:所要考察对象的全体. 个体:每一个考察对象. 样本:从总体中抽取的部分个体. 样本容量:样本中的个体数目. 频数:落在各个小组内的数据个 数. 3.抽样调查要注意的问题 ①要有随机性,广泛性和代表性. ②在数据较大, 情况较复杂时, 应采取分 类、 分层抽样进行调查 (常采取比例的抽 样方法). 4.数据的整理和描述主要采取什么方 法? 整理数据,主要是通过表格来反 映,根据不同情况制出不同形式的表格, 来反映各组的状况. 描述数据,主要采取绘图的方式, 如:条形图、折线图、直方图,它们各有 特点. 条形图能够显示每组中的具体数 据; 扇形图能够显示部分在总体中所占的 百分比;折线图能够显示数据的变化趋 势;直方图能够显示数据的分布情况.

人教版七年级第十章——数据的收集、整理与描述知识点整理及联系

人教版七年级第十章——数据的收集、整理与描述知识点整理及联系

第十章数据的收集、整理与描述一.知识框架第一节统计调查一、知识要点:(一)全面调查:考察全体对象的调查方式叫做全面调查。

1、全面调查的步骤:⑴收集数据⇒⑵整理数据(划记法)⇒⑶描述数据(条形图或扇形图等)(二)抽样调查:1、若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.2、抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.3、判断全面调查和抽样调查的方法在于:(1)全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况.(2)注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.(三)总体:要考察的全体对象称为总体。

(四)个体:组成总体的每一个考察对象称为个体。

(五)样本:被抽取的所有个体组成一个样本。

(六)样本容量:样本中个体的数目称为样本容量。

二、题型分析:题型一:基本概念考察例1:2007年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是().A、4591名学生的外语成绩是总体;B、此题是抽样调查;C、样本是80名学生的外语成绩;D、样本是被调查的80名学生.例2:为了了解某校九年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指()A、400名学生B、被抽取的50名学生C、400名学生的体重D、被抽取的50名学生的体重例3:为了考察某市初中3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是()A、3500B、20C、30D、600题型二:调查方法考察例1:下列调查中,适合用普查(全面调查)方法的是().A、电视机厂要了解一批显像管的使用寿命;B、要了解我市居民的环保意识;C、要了解我市“阳山水蜜桃”的甜度和含水量;D、要了解某校数学教师的年龄状况.例2:下列调查中,适宜采用全面调查(普查)方式的是()A、调查一批新型节能灯泡的使用寿命B、调查长江流域的水污染情况C、调查重庆市初中学生的视力情况D、为保证“神舟7号”的成功发射,对其零部件进行检查题型三:样本合格例1:下列抽样调查中抽取的样本合适吗?为什么?(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;(2)在上海市调查我国公民的受教育程度;(3)在中学生中调查青少年对网络的态度;(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重;(5)调查七年级中的两位同学,以了解全校学生的课外辅导用书的拥有量.例2:请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的建康状况.A、①②B、①④C、②④D、②③第二节直方图一、知识要点:(一)条形统计图:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图.1、条形统计图的特点:①能够显示每组中的具体数据; ②易于比较数据之间的差别.2、条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.3、注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.(二)频数、频率和频数分布表1、一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量. 公式:数据总数频数频率=。

七年级数学-第十章

七年级数学-第十章

第十章数据的收集、整理与描述1、统计调查(1)全面调查:考察全体对象的调查,例如2010年我国进行的第六次人口普查,就是一次全面调查.(2)抽样调查:采用调查部分对象的方式来收集数据,根据部分来估计整体的情况,叫做抽样调查。

统计中常用样本特性来估计总体特性.需要注意的是,在抽样调查中,如果抽取样本的方法得当,一般样本能客观地反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。

①总体:所要考察对象的全体叫做总体.②个体:总体中每一个考察对象叫做个体。

③样本:从总体中所抽取的一部分个体叫做总体的一个样本。

④样本容量:样本中个体的数目(不含单位)。

(3)简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。

抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。

【总结】全面调查与抽样调查的比较:例1、要调查下面几个问题,你认为应该作全面调查还是抽样调查?A.检测某城市的空气质量B。

调查一个村子所有家庭的收入C.调查一批重型导弹的杀伤半径D.考查一批光盘的质量例2、为了了解一批电视机的使用寿命,从中抽取了10台进行试验,对于这个问题,下列说法中正确的是( )A.每台电视机的使用寿命是个体B。

一批电视机是总体C。

10台电视机是总体的一个样本D.10台是样本容量例3、某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A。

在公园调查了1000名老年人的健康状况B。

在医院调查了1000名老年人的健康状况C。

调查了10名老年邻居的健康状况D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况例4、在鱼塘里第一次捕捞出10条鱼,把它们全部做上标记后放到池塘里,过一段时间进行第二次捕捞,若一共捕捞到100条鱼,其中2条鱼身上有标记,你能估计出池塘里鱼的数目吗?2。

第十章 数据的收集、整理与描述(小结)

第十章 数据的收集、整理与描述(小结)

第十章数据的收集、整理与描述(小结)1. 引言数据的收集、整理与描述是数据分析的重要步骤,本章主要介绍了数据的收集、整理与描述的方法和技巧。

通过合理的数据收集和整理,可以使数据分析工作更加高效和准确,从而为决策提供有价值的支持。

2. 数据的收集数据的收集是指获取需要分析和研究的数据的过程。

本节主要介绍了常见的数据收集方法,包括问卷调查、实地观察、实验研究等。

在进行数据收集时,需要注意数据的来源、有效性、完整性和可靠性等问题。

同时,还介绍了如何设计问卷、如何进行实地观察和实验研究,以及如何处理数据收集过程中遇到的一些常见问题。

3. 数据的整理数据的整理是指对已收集到的数据进行清洗、处理和转换的过程。

本节主要介绍了数据整理的基本步骤和技巧。

首先要对数据进行清洗,包括去除重复数据、处理缺失数据等。

然后要进行数据处理,包括数据转换、数据归一化等。

最后要进行数据的格式化和保存,以便后续的数据分析和应用。

4. 数据的描述数据的描述是指对已整理的数据进行统计学描述和可视化展示的过程。

本节主要介绍了常见的数据描述方法,包括描述统计、频率分布、直方图、散点图等。

通过数据的描述可以直观地了解数据的分布情况、变化趋势和相关性等。

5. 总结数据的收集、整理与描述是数据分析过程中不可或缺的步骤。

通过合理的数据收集和整理,可以保证分析的准确性和可靠性;通过数据的描述,可以直观地了解数据的特征和规律。

在进行数据分析时,要注意选择合适的数据收集方法和技术,合理地进行数据整理和描述,以提升数据分析工作的效果和价值。

以上是对第十章数据的收集、整理与描述的小结,通过本章的学习,我们了解了数据的收集、整理和描述的基本原理和方法,为后续的数据分析工作打下了基础。

在实际应用中,我们还需进一步深入学习和实践,不断提升数据分析能力,为决策提供更加准确和可靠的支持。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章数据的收集、整理与描述复习
知识梳理:
一、统计调查
1、数据处理的过程
(1)数据处理一般包括()数据、()数据、()数据和分析数据等过程。

(2)数据处理可以帮助我们了解生活中的现象,对未知的事情作出合理的推断和预测。

2、统计调查的方式及其优点
(1)全面调查:考察的调查叫做全面调查。

(2)划计法:整理数据时,用的每一划(笔画)代表一个数据,这种记录数据的方法叫划计法。

(3)百分比:每个对象出现的次数与总次数的。

全面调查的优点是(),抽样调查的优点是()。

3、抽样调查的要求
为了获得较为准确的调查结果,抽样时要注意样本的()和(),即采取随机抽查的方法。

如:请指出下列哪些调查的样本缺乏代表性。

(1)从具有不同层次文化的市民中,调查市民的法治意识;
(2)在大学生中调查我国青年的上网情况;
(3)抽查电信部门的家属,了解市民对曜服务的满意程度。

4、总体和样本
总体:要考查的对象称为总体。

个体:组成总体的每一个考察对象称为个体。

样本:从当中抽出的所有实际被调查的对象组成一个样本。

样本容量:样本中叫样本容量(不带单位)。

如:要了解某校全体学生早晨用餐情况,抽出其中三个班做调查。

总体是;样本是;个体是。

综合练习:1、为了了解某县七年级2000名学生的身高,从中抽取500名学生进行测量,对这个问题,下面说法正确的是()
A、2000名学生是总体
B、每个学生是个体
C、抽取500名学生是所抽的一个样本
D、每个学生的身高是个体
分析:要明白统计调查中研究的对象是什么,不要错看对象。

二、直方图
1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。

要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况如:1、八年
级某班20名男生一次投掷标枪测试成绩如下(单位:m):25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28。

(1)将这20名男生的测试成绩按从小到大排列,统计出每种成绩的数值出现的
频数,并制成统计表;
(2)根据统计表回答:
①成绩小于25米的同学有几人?占总人数的百分之几?
②成绩大于28米的同学有几人?占总人数的百分之几?
③这些同学的成绩大部分集中在哪个范围内,占总人数的百分比是多少?
小结:利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的
频数和频率,从而反映这些数据的整体分布情况。

2、频数分布直方图
为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。

(1)频数分布直方图简称直方图,它是条形统计图的一种。

(2)直方图的结构:直方图由横轴、纵轴、条形图的三部分组成。

(3)作直方图的步骤:
①作两条互相垂直的轴:横轴和纵轴;②在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的
右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条
线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数。

小结:画频数分布直方图可按以下步骤:①计算数差;②确定组距与组数;③确
定组限;④列频数分布表;⑤画频数分布直方图。

其中组距和组数的确定没有固
定标准,要凭借经验和研究的具体问题决定。

一般来说,当数据在100个以内时,
根据数据的特征通常分成5~~12组。

达标检测
1、下列调查用全面调查方式最合适的是()
A、调查中小学生学习负担是否过重
B、调查中小学生课外资料花费情

C、调查某种组奶粉的合格率
D、调查禽流感病例在各省市的分
布情况
2、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题中
的样本是() A、这批电视机的寿命 B、抽取的100台电视机 C、100 D、抽取的100台电视机的寿命
3、某商场随机抽查了某月6天的营业额,结果分别如下(单位:万元):
2.8,
3.2,3.4,3.7,3.0,3.1,则这6天的平均营业额为万元,估算该商场这
个月(30天)的总营业额是万元。

4、某校七年级共有学生600名,为了了解这些学生的视力情况,抽查了40名学生进行测量,在这个事件中:
(1)总体、个体、样本各是什么?
(2)这个抽样调查具有代表性吗?
(3)若具有代表性,且数据在0.9~~1.2范围内的比例为40%,则可估计,该校七年级学生视力在0.9~~1.2范围内的人数约为多少?
5、某校学生在“暑假社会实践”活动中组织
学生进行社会调查,并组织评委对学生写出
的调查报告进行统计,绘制了统计图如图所
示,请根据该图回答下列问题:
(1)学生会共抽取了份调查报告;
(2)若等第A为优秀,则优秀率为;
(3)学生会共收到调查报告1000份,请估
计该校有多少份调查报告的等第为E?
分析:调查报告的总份数等于各小组频数之
和.
6:为了了解某地区八年级学生的身高情况,现随机抽取了60名八年级男生,测得他们的身高(单位:cm)分别为
156 162 163 172 160 141 152 173 180 174 157 174 145 16 153 165 156 167 161 172 178 156 166 155 140 157 167 156 168 150 164 163 155 162 160 168 147 161 157 162 165 160 166 164 154 161 158 164 151 169 169 162 158 163 159 164 162 148 170 161
(1)将数据适当分组,并绘制相应的频数分布直方图;
(2)如果身高在cm
155≤cm
x170
≤的学生身高为正常,试求落在正常身高范围内学生的百分比。

6、某校九年级(2)班课题研究小组对本校九年级全体同学的体育达标(体育成绩60分以上,含60分为达标)情况进行调查,他们对本班50名同学的体育达标情况和其余班级的体育达标情况分别进行调查,数据统计如图所示:
九年级(2)班同学体育达标情况频率分布直方图九年组其余班级同学体育达标情况统计图
(说明:每组成绩的取值范围中,含最低值不含最高值)
(3)若具有代表性,且数据在0.9~~1.2范围内的比例为40%,则可估计,该校七年级学生视力在0.9~~1.2范围内的人数约为多少?
(4)九年级(2)班同学体育达标率和九年级其余班级同学体育达标率各是多少?
(5)如果全九年级同学的体育达标率不低于90%,则九年级同学人数不超过多少人?。

相关文档
最新文档