2012年模拟考试 数学
2012届中考模拟考试数学试题
![2012届中考模拟考试数学试题](https://img.taocdn.com/s3/m/996e24a4b7360b4c2f3f6452.png)
数学试卷
(满分 120 分,120 分钟完卷)
注意:不允许使用科学计算器进行运算,凡无精确度要求的题目,结果均保留 准确值,解答题应写出演算过程、推理步骤或文字说明。
A 卷(共 100 分)
第Ⅰ卷(选择题,共 36 分)
一、选择题:本大题共 12 个小题,每小题 3 分,共 36 分)
900 得到 ABO ,若 A 的坐标为(-2,4),B 点坐标为(-3,0); ① 在图中画 出 ABO 和 ABO (3 分) ②直接写出 A和A 点的坐标;(2 分) ③ ABO的顶点 A 在变换过程中所经过 的路径长为多少( 3 分)
22、如图,水坝的横断面是梯形,背水坡 AB 的坡角∠BAD=600,坡长 AB=20 3 m,为加强水坝强度,将坝底从 A 处向后水平延伸到 F 处,使新的背水 坡的坡角∠F=450,求 AF 的长度(结果精确到 1 米,参考数据, 2 1.414 , 3 1.732 )
EF⊥AE,则 CF 等于( )
(A)1
(B)2
(C) 2 3
(D) 3 2
12、如图,反比例函数
y1
k1 x
和正比例函数
y2
பைடு நூலகம்
k2x
的
图像交于 A(—1,—3)、B(1,3)两点,若 y1 y2 ,
则 x 的取值范围是( )
(A) 1 x 0
(B) 1 x 1
(C) x 1或0 x 1
②求 sin OEF 的值(3 分) ③若直线 EF 与线段 AD、BC 分别相交 于点 G、H,求 AB CD 的值(3 分)
GH
二、本大题一个小题共 11 分 26 、 如 图 , 在 平 面 直 角 坐 标 系 中 , 抛 物 线 y x2 mx n 经过 A(3,0),B(0,-3)两点,
2012年浙江省初中模拟考试数学试卷(4)及答案
![2012年浙江省初中模拟考试数学试卷(4)及答案](https://img.taocdn.com/s3/m/32897035e45c3b3566ec8b63.png)
2012年浙江省初中模拟考试4九年级数学试题卷(满分150分,考试用时120分钟)一、选择题:(本大题共10小题,每小题4分,满分40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不不给分)1.3的倒数是()A .13B.—13C.3 D.—32.如图中几何体的主视图是()A.B.C.D.3.下列运算正确..的是()A.B.C.D.4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。
用科学记数法表示342.78万正确的是()A.3.4278×107B.3.4278×106 C.3.4278×105D.3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是()A.相交B.内切C.外切D.内含6.如图,直线l1//l2,则α为()A.150°B.140°C.130°D.120°7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是()A.79,85 B.80,79 C.85,80 D.85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于()l1 l250°70°αC BA O OAB C112题图A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1) 10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B .若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( ) A .1B .2C .3D .4二、填空题:(本大题共6小题,每小题5分,满分30分) 11.因式分解:ma +mb = .12.如图,O 为直线AB 上一点,∠COB =30°,则∠1= .13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度.14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 . 15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .24y x =12y x=A BCD(第15题)BA图1 图2 图3三、解答题:(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17.(1)计算:()0|tan 45|122012π+o ;(2)当2x =-时,求22111x x x x ++++的值.18.如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)19.已知二次函数y =x 2+2x +m 的图象C 1与x 轴有且只有一个公共点. (1)求C 1的顶点坐标;(2)将C 1向下平移若干个单位后,得抛物线C 2,如果C 2与x 轴的一个交点为A (﹣3,0),求C 2的函数关系式,并求C 2与x 轴的另一个交点坐标.20.如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.21.实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销售每千克成品茶叶所获利润如下表:类别生产1千克成品茶叶所需鲜茶叶(千克)销售1千克成品茶叶所获利润(元)炒青 4 40毛尖 5 120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?23.定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,A 图甲称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)24.已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P 作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).(1)求点B,C,D的坐标及射线AD的解析式;(2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由;(3)设正方形PQMN与⊿ABD重叠部分面积为s,求s与t的函数关系式.2012年浙江省初中模拟考试4 九年级 数学参考答案与评分标准一、选择题(本题有10小题,每题4分,共40分) 题次 1 2 3 4 5 6 7 8 9 10 答案ACCBBDCACA二、填空题(本题有6小题,每题5分,共30分)11.m (a +b ) 12.150° 13.65 14.2315.①③④ 16.1+2 三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分) 17.(本题8分,3分+5分) (1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题8分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin 30°=30CM BC CM =,∴CM =15cm .∵sin 60°=BABF,∴23=40BF ,解得BF =203, ∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm . 19.(本题8分,3分+5分)解:(1)y =x 2+2x +m =(x +1)2+m ﹣1,对称轴为x =﹣1,∵与x 轴有且只有一个公共点, ∴顶点的纵坐标为0,∴C1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题8分,4分+4分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.∵OP⊥弦BC于点D且交⊙O于点E,∴»CE=»BE.∵C为半圆ACB¯的三等分点,∴»AC=»CE=»BE.∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题10分,3分+3分+4分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P 22.(本题12分,2分+4分+6分)解:(1)设安排x 人采“炒青”,20x ;5(30-x ). (2)设安排x 人采“炒青”,y 人采“毛尖”则30205(30)10245x y x x +=⎧⎪-⎨+=⎪⎩,解得:1812x y =⎧⎨=⎩即安排18人采“炒青”,12人采“毛尖”. (3)设安排x 人采“炒青”,205(30)11045205(30)10045x x x x -⎧+≤⎪⎪⎨-⎪+≥⎪⎩ 解得:17.5≤x ≤20①18人采“炒青”,12人采“毛尖”. ②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”. 所以有3种方案.计算可得第(1)种方案获得最大利润. 18×204×40+12×55×120=5040元 最大利润是5040元.23.(本题12分,3分+5分+4分) 解:(1) 正确画出分割线CD(如图,过点C 作CD ⊥AB ,垂足为D ,CD 即是满足要求的 分割线,若画成直线不扣分) 理由:∵ ∠B = ∠B ,∠CDB =∠ACB =90° ∴△BCD ∽△ACB(2)① △DEF 经N 阶分割所得的小三角形的个数为n41∴ S =n 41000当 n =3时,S 3 =31000S ≈15.62 当 n = 4时, S 4 =41000S ≈3.91 ∴当 n = 4时,3 <S 4 < 4②S 2 = S 1-n × S 1+n , S 1-n = 4 S , S = 4 S 1+n24.(本题14分,3分+7分+4分)(1)B (5,0),C (0,5),D (4,5)(2)∵直线AD 的解析式为:1+=x y ,且P (t ,0).∴Q (t ,t +1),M (2t +1,t +1)当MC =MO 时:t +1=25 ∴边长为25. 当OC =OM 时:()()2225112=+++t t 解得5312351--=t (舍去)5312352+-=t ∴边长为=+1t 531232+-. 当CO =CM 时:()()2225412=-++t t解得511221+=t 511222-=t (舍去) ∴边长为=+1t 51127+. (3)当11190≤t π时:()21+=t s ; 当21119≤≤t 时:5379521910112-+-=t t s ; 当42≤≤t 时:104951910112++-=t t s ; 当54≤≤t 时:212525252--=t t s .。
2012年中考数学模拟试题六及答案
![2012年中考数学模拟试题六及答案](https://img.taocdn.com/s3/m/28f29496daef5ef7ba0d3c02.png)
2012年中考数学模拟试题六考生须知:本卷共三大题,24小题. 全卷满分为120分,考试时间为100分钟. 一、选择题(本题有10个小题,每小题3分,共30分) (▲ )A.4B.2C. ±4D.±2 2.1的值 ( ▲ )A .在2和3之间B .在3和4之间C .在4和5之间D .在5和6之间3.若反比例函数ky x=的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在( ▲ ) A .第一、二象限 B .第一、三象限 C .第二、四象限 D .第三、四象限 4.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲ )5.把二次根式▲ ) A .B .C .D 6.如图,AB 是⊙O 的直径,点D 在AB 的延长线上,DC 切⊙O 于C ,若25A =∠.则D ∠等于( ▲ )A .20 B .30 C .40 D .50 7.函数128y x =-中自变量x 的取值范围是( ▲ ) A .x ≤3 B .x =4 C . x <3且x ≠4 D .x ≤3且x ≠4 8.函数2y ax by ax bx c =+=++和在同一直角坐标系内的图象大致是( ▲ )9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒A10. 正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为( ▲ )A、10 B、12 C、14 D、16二、填空题(共6小题,每题4分.共24分)11. 一条弦把圆分成2:3两部分,那么这条弦所对的圆周角的度数为____▲______.12.一串有趣的图案按一定的规律排列(如图):按此规律在右边的圆中画出的第2012个图案: 。
2012年高考数学模拟试卷及参考答案2
![2012年高考数学模拟试卷及参考答案2](https://img.taocdn.com/s3/m/3a1f278471fe910ef12df87b.png)
2012年高考模拟试题本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟.第I 卷(选择题)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设复数121,2z i z bi =+=+,若12z z 为纯虚数,则实数b = A .2- B .2 C .1- D . 1 2. 设,a b 都是非零向量,若函数()()()f x x x =+- a b a b (x ∈R )是偶函数,则必有 A .⊥a bB .a ∥bC .||||=a bD .||||≠a b3. 3a =是直线230ax y a ++=和直线3(1)7x a y a +-=-平行的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 4.设函数()f x ={}{}(),()A x y f x B y y f x ====则右图中阴影部分表示的集合为A .[0,3]B .(0,3)C .(5,0][3,4)-D .[5,0)(3,4]- 5. 把函数)6sin(π+=x y 图象上各点的横坐标缩短到原来的21倍(纵坐标不变),再将图象向右平移3π个 单位,那么所得图象的一条对称轴方程为 A .2π-=x B .4π-=x C .8π=x D .4π=x6. 已知,a b 为两条不同的直线,,αβ为两个不同的平面,且a α⊥,b β⊥,则下列命题中的假命题是A .若a ∥b ,则α∥βB .若αβ⊥,则a b ⊥C .若,a b 相交,则,αβ相交D .若,αβ相交,则,a b 相交7.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”. 现任意找两人玩这个游戏,则他们“心有灵犀”的概率为A .19B .29 C .718 D .49 8.已知函数2()cos()f n n n π=,且()(1)n a f n f n =++,则123100a a a a ++++=A .0B .100-C .100D .10200第Ⅱ卷 非选择题 (共110分)二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9—12题)9.某校有高级教师26人,中级教师104人,其他教师若干人.为了了解该校教师的工资收入情况,若按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师 人.10.圆柱形容器的内壁底半径是10cm ,有一个实心铁球浸没于容器的水中,若取出这个铁球,测得容器的水面下降了53cm ,则这个铁球的表面积为 2cm .11.右图所示的算法流程图中,若3a =,则输出的T 值为 ;若输出的120T =,则a 的值为 *()a ∈N .12.已知()f x 是R 上的奇函数,2)1(=f ,且对任意x ∈R 都有(6)()(3)f x f x f +=+成立,则(3)f = ; =)2009(f .(二)选做题(13—15题,考生只能从中选做两题)13.(坐标系与参数方程选做题)(坐标系与参数方程选做题)若直线340x y m ++=与曲线 ⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是____________.14.(不等式选讲选做题)设关于x 的不等式1x x a +-<(a ∈R ). 若2a =,则不等式的解集为 ;若不等式的解集为∅,则a 的取值范围是 . 15.(几何证明选讲选做题)如图,圆M 与圆N 交于A B 、两点,以A 为切点作两圆的切线分别交圆M 和圆N 于C D 、两点, 延长DB 交圆M 于点E ,延长CB 交圆N 于点F ,已知5BC =,10BD =,则AB = ;CFDE=.三、解答题:本大题共6小题,共80分. 解答应写出详细文字说明,证明过程或演算步骤. 16.(本小题满分12分)设向量(sin ,cos )x x =a ,(sin )x x =b ,x ∈R ,函数()(2)f x =+a ab . (1) 求函数()f x 的最大值与单调递增区间;(2)求使不等式()2f x '≥成立的x 的取值集合.17.(本小题满分12分)某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版 本教材的教师人数如下表所示:(2) 若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机 变量ξ的分布列和数学期望.18.(本小题满分14分)四棱锥P ABCD -中,PA ⊥底面ABCD ,且12PA AB AD CD ===,//AB CD , 90ADC ∠=︒.(1) 在侧棱PC 上是否存在一点Q ,使//BQ 平面PAD ?证明你的结论;(2) 求证:平面PBC ⊥平面PCD ;(3) 求平面PAD 与平面PBC 所成锐二面角的余弦值.19.(本小题满分14分)已知函数()logk f x x =(k 为常数,0k >且1k ≠),且数列{}()n f a 是首项为4,公差为2的等差 数列.(1) 求证:数列{}n a 是等比数列; (2) 若()n n n b a f a =⋅,当k ={}n b 的前n 项和n S ;(3) 若lg n n n c a a =,问是否存在实数k ,使得{}n c 中的每一项恒小于它后面的项?若存在,求出k 的范围;若不存在,说明理由.20.(本小题满分14分)如图,设F 是椭圆22221,(0)x y a b a b+=>>的左焦点,直线l 为对应的准线,直线l 与x轴交于P 点,MN 为椭圆的长轴,已知8MN =,且||2||PM MF =.(1) 求椭圆的标准方程;(2) 求证:对于任意的割线PAB ,恒有AFM BFN ∠=∠; (3) 求三角形△ABF 面积的最大值.21.(本小题满分14分)设函数()lnf x x x =(0)x >.(1) 求函数()f x 的最小值;(2) 设2()()F x ax f x '=+()a ∈R ,讨论函数()F x 的单调性;A PB CDQ(3) 斜率为k 的直线与曲线()y f x '=交于11(,)A x y 、22(,)B x y 12()x x <两点,求证:121x x k<<.【答案及详细解析】一、选择题:本大题理科共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
苏北四市2012届高三年级第二次模拟考试数学(附答案)
![苏北四市2012届高三年级第二次模拟考试数学(附答案)](https://img.taocdn.com/s3/m/42fdc7ea4afe04a1b071debd.png)
苏北四市2012届高三年级模拟考试数学I一、填空题1. 设集合2{0,1,3},{1,2}A B a a ==++,若{1}A B = ,则实数a 的值是________.2. 已知复数z满足(1)1i z +=(i 是虚数单位),则||z =________.3. 某校高一、高二、高三学生共有3200名,其中高三800名,如果通过分层抽样的方法从全体学生中抽取一个160人的样本,那么应从高三的学生中抽取的人数是________.4. 箱中有号码分别为1,2,3,4,5的五张卡片,从中一次随机抽取两张,则两张号码之和为3的倍数的概率是_________.5. 右图是求函数值的程序框图,当输出y 值为1时,则输入的x 值为______.6. 已知棱长为3的正方体1111ABCD A B C D -中,P ,M 分别为线段1BD ,11B C 上的点,若112BP PD =,则三棱锥M PBC -的体积为________. 7. 已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点,右焦点分别为A,F ,它的左准线与x轴的交点为B ,若A 是线段BF 的中点,则双曲线C 的离心率为______. 8. 如图,已知A,B 是函数3sin(2)y x θ=+的图像与x 轴两相邻的交点,C 是图像上A,B之间最低点,则AB AC ⋅=_________.9. 设直线y=a 分别与曲线2y x =和x y e =交于点M,N ,则当线段MN长取得最小值时a的值为________.10. 定义区间[,]a b 的长度为b a -,用[]x 表示不超过x 的最大整数.设()[]([])f x x x x =-,()1g x x =-,则02012x ≤≤时,不等式()()f x g x ≤的阶级区间的长度为_________.11. 已知集合2{|(1),}A x x a a x a =+≤+∈R ,a ∃∈R ,使得集合A 中所有整数的元素和为28,则a 的范围是__________.12. 已知等差数列{},{}n n a b 的前n 项和分别为n S 和n T ,若7453n n S n T n +=+,且2n n a b 是整数,则n 的值为__________.13. 在平面直角坐标系中,已知点(1,2),(4,0),(,1),(1,1)A B P a N a -+,则当四边形P ABN 的周长最小时,过三点A,P ,N 的圆的圆心坐标是__________.14. 已知ABC ∆的三边长a,b,c 成等差数列,且22284a b c ++=,则实数b 的取值范围是__________.OA Bxy第8题图二、解答题15.(本题满分14分)已知函数()sin()sin()cos ()44f x x x x x x ππ=+-∈R . (1) 求()6f π的值;(2) 在ABC ∆中,若()12f π=,求sin sin B C +的最大值.16.(本题满分14分)如图,已知正方形ABCD 和直角梯形BDEF 所在平面互相垂直,1,2BF BD EF BF BD ⊥==. (1) 求证:DE ∥平面ACF ; (2) 求证:BE ⊥平面ACF .A BCDEF如图,在C 城周边已有两条公路12,l l 在点O 处交汇,且它们的夹角为75.已知OC km =,OC 与公路1l 的夹角为45.现规划在公路12,l l 上分别选择A,B 两处为交汇点(异于点O )直接修建一条公路通过C 城.设OA xkm =,OB ykm =.(1) 求y 关于x 的函数关系式并指出它的定义域; (2) 试确定点A,B 的位置,使OAB ∆的面积最小.18.(本题满分16分)如图,已知椭圆C 的方程为2214x y +=,A,B 是四条直线2,1x y =±=±所围成的矩形的两个顶点. (1) 设P 是椭圆C 上任意一点,若OP mOA nOB =+,求证:动点(,)Q m n 在定圆上运动,并求出定圆的方程;(2) 若M,N 是椭圆上两个动点,且直线OM,ON 的斜率之积等于直线OA,OB 的斜率之积,试探求OMN ∆的面积是否为定值,并说明理由.1l 2若函数()f x 在(0,)+∞上恒有'()()xf x f x >成立(其中'()f x 为函数()f x 的导函数),则称这类函数为A 型函数. (1) 若函数2()1g x x =-,判断()g x 是否为A 型函数,并说明理由; (2) 若函数1()3ln ah x ax x x-=---是A 型函数,求函数()h x 的单调区间; (3) 若函数()f x 是A 型函数,当120,0x x >>时,证明1212()()()f x f x f x x +<+.20.(本题满分16分)已知各项均为正整数的数列{}n a 满足1n n a a +<,且存在正整数(1)k k >,使得1212k k a a a a a a ++⋅⋅⋅+=⋅⋅⋅⋅⋅⋅,*()n k n a k a n +=+∈N(1) 当1233,6k a a a =⋅⋅=时,求数列{}n a 的前36项的和36S ; (2) 求数列{}n a 的通项n a ;(3) 若数列{}n b 满足81121()2n a n n b b -+=-⋅,且1192b =,其前n 项积为n T ,试问n 为何值时, n T 取得最大值?EODCBA苏北四市2011-2012学年度高三第一次质量检测数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在答题卡指定区域内作答...................., 若多做,则按作答的前两题评分。
2012年辽宁省普通高中学生学业水平考试模拟卷数学(附答案)
![2012年辽宁省普通高中学生学业水平考试模拟卷数学(附答案)](https://img.taocdn.com/s3/m/387af083cc22bcd126ff0c99.png)
2 2 2
AB BC CD DA AC a .····························································· 2 分 PA AC , PA AB a , PB 2a ,
1
2
8. 某样本数据的频率分布直方图的部分图形如下图所示, 则数据在[50,70)的频率约为( )
(A)0.25 (C) 0 ( D) 2 Q (C)0.5 9. 把函数 y cos( x
(B)0.05 (D)0.025
(A)
N*
0.7
(B) 2 Z
4 ) 的图象向右平移 ( >0)个单位,所得的图象关于 y 轴对称,则 的最小 3
故所求圆 M 的方程为: ( x 1) ( y 1) 4 .··········································4 分
2 2
(2)由题知,四边形 PCMD 的面积为
1 1 CM PC DM PD .········································ 6 分 2 2 又 CM DM 2 , PC PD , S S PMC S PMD
6. 某公司有员工 150 人,其中 50 岁以上的有 15 人,35~49 岁的有 45 人,不到 35 岁的有 90 人.为了 调查员工的身体健康状况, 采用分层抽样方法从中抽取 30 名员工, 则各年龄段人数分别为 ( (A) 5 , 10 , 15 (B) 5 , 9 , 16 (C) 3 , 9 , 18 (D) 3, 10 , 17 )
2012年数学模拟考试试题
![2012年数学模拟考试试题](https://img.taocdn.com/s3/m/f0e551a451e79b89680226d4.png)
A D CB(图1)中等学校招生考试一、选择题:本题12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8题每小题选对得3分,第9~12题每小题选对得4分;选错、不选、或选出的答案超过一个,均记零分. 1. 2-的相反数( ) A.2-B.2C.12-D.122. 下列运算中,正确的是( )A . 422x x x =+ B . 222()a b a b -=-C . 4224)2(x x -=- D . 32x x x =⋅3. 如图1,AD ∥BC ,BD 平分∠ABC ,且︒=∠110A ,则D ∠的度数为 ( )A .︒70B .︒35C .︒55D .︒1104. 丽丽买了一张30元的租碟卡,每租一张碟后剩下的余额如表表示,若丽丽租碟25张,则卡中还剩下( ) A.5元 B.10元 C.20元 D.14元211x a x a >-⎧⎨<+⎩无解,则a 5.若不等式组的取值范围是( ) A.2a < B.2a = C.2a > D.2a ≥6. 如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于120,则r 与R 之间的关系是( ) A.2R r =B.R =C.3R r =D.4R r =7. 若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面一E共有( ) “摘自网上”A. 5桶B. 6桶C. 9桶D. 12桶 8. 已知函数4y kx =-+与k y x =的图象有两个不同的交点,且112A y ⎛⎫- ⎪⎝⎭,()21B y -,,212C y ⎛⎫⎪⎝⎭,在函数229k y x -=的图象上,则1y ,2y ,3y 的大小关系是( ) A.123y y y <<B.321y y y <<C.312y y y << D.231y y y <<9. 如图,88⨯方格纸上的两条对称轴EF ,MN 相交于中心点O ,对ABC △分别作下列变换:①先以点A 为中心顺时针方向旋转90②先以点O 为中心作中心对称图形,再以点A 90;③先以直线MN 为轴作轴对称图形,再向上平移4方向旋转90.其中,能将ABC △变换成PQR △A.①② B.①③C.②③D.①②③10. 位,再向下平移4个单位,所得图象的函数表达式是()2324y x =+-.类比二次函数的图象的平移,我们对函数12x y x -=-的图象作类似的变换,则( ) A .12x y x -=-的图象可由反比例函数1y x =的图象先向上平移2个单位,再向右平移1个单位得到 B .12x y x -=-的图象可由反比例函数1y x =的图象先向下平移2个单位,再向左平移1个单位得到C .12x y x -=-的图象可由反比例函数1y x =的图象先向左平移2个单位,再向下平移1个单位得到 D .12x y x -=-的图象可由反比例函数1y x =的图象先向右平移2个单位,再向上平移1个单位得到11.如图(a ),在直角梯形ABCD ,90B ∠=,DC AB ∥,动点P 从B 点出发,由B C D A →→→沿边运动,设点P 运动的路程为x ,ABP △的面积为y ,如果关于x 的函数y 的图象如图(b ),则ABC △的面积为( ) A.10B.16C.18D.3212.在平面直角坐标系中,已知点A (-4,0),点B (2,0),若点C 在一次函数122y x =-+的图象上,且△ABC 为等腰三角形,则满足条件的点C 有( ) A. 2个 B. 3个 C. 4个 D. 5第Ⅱ卷(非选择题 共80分)二、填空题:本题共5小题,每小题填对得3分,共15分.只要求填写最后结果.填空题13、上海世博会定于2010年5月1日至10月31日举行,这是继北京奥运会之后我国举办的又一世界盛事,主办机构预计这届世博会将吸引世界各地约69 500 000人次参观.将69 500 000用科学记数法表示(保留两位有效数字)为 14. 已知矩形ABCD 的边AB=5,AD=12,以点A 为圆心半径为5作⊙A ,以点C 为圆心的⊙C 与⊙A 相切,则⊙C 的半径可能是15. 如图,电路图上有四个开关A ,B ,C ,D 和一个小灯泡,闭合开关D 或同时闭合开关A ,B ,C ,都可使小灯泡发光.任意闭合其中两个开关,则小灯泡发光的概率等于____________;16. 如图,正方形ABCD 的边长为2,将长为2的线段QR图(a )的两端放在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个过程中,线段QR 的中点M 所经过的路线围成的图形的面积为 .17..如图,已知1(10)A ,,2(11)A ,,3(11)A -,,4(11)A --,,5(21)A -,,,则点A 2010的坐标为______________.三、解答题:本题共7小题,共65分.解答时应写出文字说明、证明过程或演算步骤.18、(本题满分8分)某学校九年级有10个班共500名学生,学生小青想了解该年级学生的年龄情况,他随机抽取了一个班级进行统计,得到了下表.(1)请你把表中未填的项目补充完整;(2)从表中可以看出,众数是 ,中位数是 ,平均数是 ; (3)请你根据统计表,在下图中画出该班学生年龄统计直方图(要求标出数字).(4)请你估计该年级年龄15岁的同学大约有多少人?19. (本题满分8分)商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,商14岁 15岁 16岁 年龄 人数品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元? 20、(本题满分9分) 如图,ABC △中,90ACB =∠,AC BC =,CO 为中线.现将一直角三角板的直角顶点放在点O 上并绕点O 旋转,若三角板的两直角边分别交AC CB ,的延长线于点G H ,.(1)试写出图中除AC BC OA OB OC ===,外其他所有相等的线段; (2)请任选一组你写出的相等线段给予证明. 我选择证明 = .证明:21. (本题满分10分)如图,路边照明灯的灯臂BC 长1.5 m .路灯发出的光线与灯臂垂直,并通过主干道上一点D ,且DA =10 m ,CDA ∠=60°,求灯柱AB 的高.22. (本题满分10分)已知:如图,以ABC △的边AB 为直径的O 交边AC 于点D ,且过点D 的切线DE 平分边BC . (1)BC 与O 是否相切?请说明理由;(2)当ABC △满足什么条件时,以点O ,B ,E ,D 为顶点的四边形是平行四边形?并说明理由. 23、(本题满分10分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.来源:港中数学网CE BABC OHG(1)求足球开始飞出到第一次落地时,该抛物线的表达式. (2)足球第一次落地点C距守门员多少米?(取7=)(3)运动员乙要抢到第二个落点D,他应再向前跑多少米?(取5=) 24、(本题满分10分)如图,在Rt ABC △中,90C =∠,AC =向点C 以每秒3个单位长的速度运动,动点Q 从点C 出发沿CB 边向点B 以每秒4个单位长的速度运动.P Q ,分别从点A C ,同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,PCQ △关于直线PQ 对称的图形是PDQ △.设运动时间为t (秒).(1)设四边形PCQD 的面积为y ,求y 与t 的函数关系式; (2)t 为何值时,四边形PQBA 是梯形?(3)是否存在时刻t ,使得PD AB ∥?若存在,求出t 的值;若不存在,请说明理由; (4)通过观察、画图或折纸等方法,猜想是否存在时刻t ,使得PD AB ⊥?若存在,请估计t 的值在括号中的哪个时间段内(01t ≤≤;12t <≤;23t <≤;34t <≤);若不存在,请简要说明理由.P。
2012年全国高中数学联赛模拟卷(5)(一试+二试,附详细解答)
![2012年全国高中数学联赛模拟卷(5)(一试+二试,附详细解答)](https://img.taocdn.com/s3/m/6e14a529b4daa58da0114a3b.png)
2012年全国高中数学联赛模拟卷(5)第一试(考试时间:80分钟 满分:120分)姓名:_____________考试号:______________得分:____________一、填空题(本大题共8小题,每小题8分,共64分)__________1. 正八边形87654321A A A A A A A A 边长为1,任取两点j i A A ,则21A A A A j i ⋅最大值为__________2. 若ii ikk k kxa x x f C-==∑∑=--=20072007020072007)3()1()(,则∑=20071k ka=_________3. 若关于x 的方程0142)6(22222=+-+++-+-b a b a x b b a x 的两个实数根21,x x 满足,1021≤≤≤x x 则4422+++a b a 的最小值为______________, 最大值分别为____________4. 设P 双曲线x 2a 2-y 2b2=1右支上一动点,过P 向两条渐近线作垂线,垂足分别为点B A ,,若点B A ,始终在第一、第四象限内,则双曲线离心率e 的取值范围是___________. 5. 对于实数x ,[]x 表示不超过x 的最大整数。
对于某个整数k ,恰存在2008个正整数200821,,,n n n ,满足[][][]320083231n n n k ====,并且k 整除)2008,2,1( =i n i,则k =___________.6. A 、B 两队进行乒乓球团体对抗赛,每队各三名队员,每名队员出场一次。
A 队的三名队员是321,,A A A ,B 队三名队员是B 1, B 2, B 3,,且i A 对j B 的胜率为ii +j(1≤i , j ≤3),A 队得分期望的最大可能值是________.7. △ABC 的三边长分别为13, 14, 15, 有4个半径同为r 的圆O , O 1, O 2, O 3放在△ABC 内,并且⊙O 1与 边AB 、AC 相切,⊙O 2与边BA 、BC 相切,⊙O 3与边CB 、CA 相切,⊙O 与⊙O 1, O 2, O 3相切, 则r =_________. 8. 设,a b都是正整数,且(1001a +=,则ab 的个位数字是__________二、解答题(本大题共3小题,第9题16分,第10、11题20分,共56分)9.已知:实数),,2,1(n i a i =满足1(1,2,,)ia i n i≥= ,证明:1212112(1)()()(12)2(1)!nn na a a a a na n n +++≥+++++10. 已知数列}{n a 由222*11112,,()3n nn a a a a a n N +-==++∈ 确定, 若对于任意*N n ∈,12111111nM a a a ++<+++ 恒成立。
2012年中考模拟数学试题及答案
![2012年中考模拟数学试题及答案](https://img.taocdn.com/s3/m/5ab0f5bf0029bd64783e2c7a.png)
初三检测卷(数学)试卷Ⅰ(选择题,共40分)一、选择题(本大题有10小题,每小题4分,共40分。
请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.-4的绝对值是( ▲ )A .-4B .4C .±4D .41-2.2012年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔 下窄,又被称为“伦敦碗”,预计可容纳8万人,分为两层,上层是55000个临时座位.将55000用科学记数法表示为 ( ▲ )A . 55×103B . 0.55×105C . 5.5×104D . 5.5×103 3.下列运算正确的是( ▲ )A .743)(x x =B .532)(x x x =⋅-C .34)(x x x -=÷- D. 23x x x +=4.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是 ( ▲ )5.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表: 则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )A .7,7 B .5,5 C .7,5D .5,76.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ABC 绕 着点A 逆时针旋转得到△AC B '',则sin ∠B '的值为( ▲ ) A .31 B .1010 C . 10103 D . 3 7.如图,某种牙膏上部圆的直径为3cm ,下部底边的长度为4.8cm,现要 制作长方体牙膏盒,牙膏盒的上面是正方形,以下列数据作为正方形边 长制作牙膏盒,既节省材料又方便取放的是( ▲ ) (取1.4 )每天使用零花钱(单位:元)3 5 7 10 20 人数25431(第4题)A .B .C .D .A . 2.4cmB . 3cmC . 3.6cm D. 4.8cm 8.如图,在直角坐标系中,⊙O 的半径为1,则直线y=﹣x+与⊙O的位置关系是( ▲ )A .相切B .相交C .相离D .以上三种情形都有可能9.如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B (4,2),一次函数1y kx =-的图象平分它的面积,则k 的值为( ▲ )A .1B .21 C .-1 D .210.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且30CDE ∠=︒.设AD=x , BE=y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ▲ )试卷Ⅱ(非选择题,共110分)二、填空题(本大题有6小题,每小题5分, 共30分。
2012年高考模拟试题(数学1)
![2012年高考模拟试题(数学1)](https://img.taocdn.com/s3/m/9874de28770bf78a64295426.png)
2012年高考模拟试题(数学1)2012年高考模拟试题 数 学(理科第Ⅰ卷) 第Ⅰ卷(选择题 共60分)一.选择题(每题5分,共12小题,满分60分,每小题只有一个选项正确。
) 1. 若集合}22{+=+=x x xA ,},02{2>+=x xB 则=⋂B AA .)0,2(-B .)0,2[-C . ),0(+∞D .),0[+∞2. 复数ii-12的共轭复数是 A .i -1 B .i +1 C .i +-1 D .i --13.已知43)4sin(-=+πx ,则x 2sin 的值是A .81-B .81C .42D .42-4. 抛物线x y 122-=的准线与双曲线13922=-y x 的两条渐近线所围成的三角形面积是 A .3 B .32 C .2 D .335. A 、B 两名同学在4次数学考试中的成绩统计如下面的茎叶图所示,若A 、B 的平均成绩分别是A X 、B X ,则下列结论正确的是A .A X >B X ,B 比A 的成绩稳定B .A X <B X ,B 比A 的成绩稳定C .A X >B X ,A 比B 的成绩稳定D .A X <B X , A 比B 的成绩稳定6. 双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为1F 、2F ,离心率为e ,过的直线与双曲线的右支交与A 、B 两点,若△AB F 1是以A 为直角顶点的等腰直角三角形,则=2e A .323- B .323+ C .225+ D .225-A B 6 4 9 85 10 3 7 11 2 7 12校对修改版10.现将一个边不等的凸五边形的各边进行染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则共有( )种染色方法A .30B .36C .48D .50 11.下列命题中正确的一项是 A .“21=m ”是“直线013)2(=+++my x m 与直线03)2()2(=-++-y m x m 相互平行”的充分不必要条件B .“直线l 垂直平面α内无数条直线”是“直线l 垂直于平面α”的充分条件C .已知a ,b ,c 为非零向量,则“a •b=a •c ”是“b=c ”的充要条件D .R x p ∈∃:,0222≤++x x 。
2012年毕业生学业考试数学模拟试题参考答案
![2012年毕业生学业考试数学模拟试题参考答案](https://img.taocdn.com/s3/m/df36635d4431b90d6c85c77c.png)
当AD与BC平行时,点B、C、E在同一条直线上,此时 ,
∴ ≥ .……………………………………………………10分
25.(1)20x;5(30-x).…………………………………………2分
(2)设安排x人采“炒青”,y人采“毛尖”……………………3分
2012年毕业生学业考试数学模拟试题参考答案
一、选择题(3×12=36)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
A
D
A
C
A
A
C
C
C
B
C
二、填空题:(3×6=18)
13、4;14、 ;15、 16、 ;17、 1或3;18、(3- ,0)或(3+ ,0)
三、解答题:
19、解:原式= ……………4分
= ……………6分
所以有3种方案.…………………………………………9分
计算可得第(3)种方案获得最大利润.40× +120 =5200元,最大利润是5200元.…10分
26.(1)连结MA,由题意得:AM=5,OM=3,则OA=4,同理得OB=4,
∴点B、点C的坐标分别是(-4,0)、(4,0)………………2分
(2)设经过B、C两点的抛物线解析式为y=ax2+bx+c(a≠0),
∴c=8,0=16a+4b+8,∴b=-4a-2;
此时,y=ax2+(-4a-2)x+8(a≠0),
它的对称轴是直线:x= = ;
又∵抛物线的顶点E在第二象限且该抛物线的对称轴与⊙M相切,
2012年中考数学模拟试题(含答案)
![2012年中考数学模拟试题(含答案)](https://img.taocdn.com/s3/m/ada04cce76eeaeaad1f3307f.png)
2012年中考数学模拟试题考试时间:120分钟,满分150分一、选择题(每题2分,共30分)1、如果a<0,b>0,a+b<0,那么下列关系式中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a2、如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于()A.2cm2B.1cm2C.1/2cm2D.1/4cm2第2题第3题3、如图,矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于().4、一元二次方程,中,c<0.该方程的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5、如图,△ABC中,AB、AC边上的高CE、BD相交于P点,图中所有的相似三角形共有()A.4对B.5对C.6对D.7对6、等边△A1B1C1内接于等边△ABC的内切圆,则的值为()A. B. C. D.7、当45°<<90°时,下列各式中正确的是()A.tan>cos>sinB.sin>cos>tanC.tan>sin>cosD.cos>sin>tan8、如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B,E在函数y=(x>0)的图象上,则点E的坐标是()A.(,)B.()C.(,)D.()第8题第9题9、已知一次函数的图象如图所示,当时,的取值范围是()A. B. C. D.10、在同一坐标系中一次函数和二次函数的图象可能为()11、若,,三点都在函数的图象上,则的大小关系是()A. B. C. D.12、如图,小亮在操场上玩,一段时间内沿的路径匀速散步,能近似刻画小亮到出发点的距离与时间之间关系的函数图象是()13、如图,正三角形内接于圆,动点在圆周的劣弧上,且不与重合,则等于()A. B. C. D.第13题第14题第15题14、如图,一次函数图象经过点,且与正比例函数的图象交于点,则该一次函数的表达式为()A. B. C. D.15、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()A.cmB.4cmC.cmD.3cm二、填空题(每题3分,共36分)16、已知,则的值为___________.17、如图所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为___________.第17题第18题18、如图,在中,.将其绕点顺时针旋转一周,则分别以为半径的圆形成一圆环.则该圆环的面积为__________.19、已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是__________.20、方程有实数根,则锐角的取值范围是______.21、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是__________.第21题第22题22、如图,一张长方形纸片ABCD,其长AD=a,宽AB=b(a>b),在BC边上选取一点M,将ABM沿AM翻折后B至B′的位置,若B′为长方形纸片ABCD的对称中心,则a/b的值是_____________.23、已知二次函数的部分图象如图所示,则关于的一元二次方程的解为___________.第23题第24题24、如图所示的抛物线是二次函数的图象,那么的值是___________.25、在平面直角坐标系中,直线向上平移1个单位长度得到直线.直线与反比例函数的图象的一个交点为,则的值等于__________.26、如图,要使输出值大于100,则输入的最小正整数是____________.27、有5张写有数字的卡片(如左图所示),它们的背面都相同,现将它们背面朝上(如右图所示),从中翻开任意一张是数字2的概率为_________.三、解答题(每题5分,共20分)28、已知y=的定义域为R ,求实数a 的取值范围.29、计算:0.25×⎝⎛⎭⎫12-2+(3.14-π)0-2sin60°.30、先化简,再求值:⎝⎛⎭⎫a a -1-1÷a a2-2a +1,其中a = 2.31、解不等式组:()②①⎪⎩⎪⎨⎧-+≤+321234xxxx四、综合题(共64分)32、(本题满分9分)“便民”水泥代销点销售某种水泥,每吨进价为250元.如果每吨销售价定为290元时,平均每天可售出16吨.(1)若代销点采取降价促销的方式,试建立每吨的销售利润(元)与每吨降价(元)之间的函数关系式.(2)若每吨售价每降低5元,则平均每天能多售出4吨.问:每吨水泥的实际售价定为多少元时,每天的销售利润平均可达720元.DEA M NCB如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.(1)求证:△ACE≌△DCB;(2)请你判断△ACM与△DPM的形状有何关系并说明理由;(3)求证:∠APC=∠BPC.如图,在梯形ABCD中,AB∥CD,AB=7,CD=1,AD=BC=5.点M,N分别在边AD,BC 上运动,并保持MN∥AB,ME⊥AB,NF⊥AB,垂足分别为E,F.(1)求梯形ABCD的面积;(2)求四边形MEFN面积的最大值.(3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由.35、(本题满分10分)如图,⊙O经过点B、D、E,BD是⊙O的直径,∠C=90°,BE平分∠ABC.(1)试证明直线AC是⊙O的切线;(2)当AE=4,AD=2时,求⊙O的半径及BC的长.(第35题)已知:如图,直线y=x+6交x、y轴于A、C两点,经过A、O两点的抛物线y=ax2+bx(a<0)的顶点在直线AC上.(1)求A、C两点的坐标;(2)求出抛物线的函数关系式;(3)以B点为圆心,以AB为半径作⊙B,将⊙B沿x轴翻折得到⊙D,试判断直线AC与⊙D的位置关系,并求出BD的长;(4)若E为⊙B优弧上一动点,连结AE、OE,问在抛物线上是否存在一点M,使∠MOA:∠AEO=2:3,若存在,试求出点M的坐标;若不存在,试说明理由.如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点,过点D作DF⊥AE于点F.(1)求OA、OC的长;(2)求证:DF为⊙O′的切线;(3)小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.答案选择题答案:D答案:B答案:D答案:B答案:C答案:A答案:C答案:A答案:C答案:A答案:A答案:C答案:B答案:A答案:A二、填空题16、答案:-3.17、答案:-1,0,1,218、答案:19、答案:a>120、答案:0°<≤30°.21、答案:22、答案:23、答案:,24、答案:-125、答案:226、答案:2127. 答案:三、解答题28、确定a的取值范围,使之对任意实数x都有ax2+4ax+3≠0.解:当a=0时,ax2+4ax+3=3≠0对任意x∈R都成立;当a≠0时,要使二次三项式ax2+4ax+3对任意实数x恒不为零,必须满足:其判别式,于是,0<a <.综上,.29. 原式=14×4+1-2×32(4分)=2- 3.(8分)30. 原式=a -a +1a -1·-a (3分)=a -1a .(6分)当a =2时,原式=2-12=2-22.(8分)31.解:由 ① 得 23≤-x x , 1-≥x由 ② 得 ()x x 213 - ,323 x x -, 3 x∴ 31 x ≤-四、综合题32.(1)依题意,得……………………………………3分 (2)依题意,得………………………………………… 4分 解得…………………………………………1分…………………………………………1分答:每吨水泥的实际售价应定为元时,每天的销售利润平均可达720元. 1分34. (1)连接OE.[来源:学科网ZXXK]∵BE是∠ABC的平分线,∴∠1=∠2.∵OE=OB,∴∠1=∠3.∴∠2=∠3.∴O E∥AC.又∠C=90°,∴ ∠AEO =90°.[来源:学科网]∴ AC 是⊙O 的切线.(6分)(2)设⊙O 的半径为r ,在Rt △AEO 中,由勾股定理可得OA2=OE2+AE2.∵ AE =4,AD =2,∴ (2+r)2=r2+42.∴ r =3.∵ OE ∥AC ,∴ AO AB =OE BC .∴ 2+32+6=3BC. ∴ BC =245.(10分)35 .① A(-6,0),C(0,6) ………………………………………………………2分② …………………………………………………………………3分 ③相切,BD=6 ………………………………………………………………………3分 ④存在这样的点M ,M()或() ……………3分36 .解:(1)在矩形OABC 中,设OC=x 则OA=x+2,依题意得解得:(不合题意,舍去) ∴OC=3, OA=5 ……………………………… 3分(2)连结O ′D在矩形OABC 中,OC=AB ,∠OCB=∠ABC=90°,CE=BE=∴ △OCE ≌△ABE ∴EA=EO ∴∠1=∠2在⊙O ′中, ∵ O ′O= O ′D ∴∠1=∠3∴∠3=∠2 ∴O ′D ∥AE ,∵DF ⊥AE ∴ DF ⊥O ′D又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径 ,∴DF 为⊙O ′切线. ……………………………………………………………………4分(3)不同意.理由如下:①当AO=AP 时,以点A 为圆心,以AO 为半径画弧交BC 于P1和P4两点过P1点作P1H ⊥OA 于点H ,P1H=OC=3,∵AP1=OA=5∴AH=4, ∴OH=1 求得点P1(1,3) 同理可得:P4(9,3) ……………3分 ②当OA=OP 时,同上可求得:P2(4,3),P3(4,3) …………………………2分因此,在直线BC上,除了E点外,既存在⊙O′内的点P1,又存在⊙O′外的点P2、P3、P4,它们分别使△AOP为等腰三角形. ……………………1分。
2012年中考模拟试卷__数学卷(含参考答案)
![2012年中考模拟试卷__数学卷(含参考答案)](https://img.taocdn.com/s3/m/c6f04d0cbb68a98271fefa16.png)
A.∠A+∠E+∠C=180°B.∠A+∠E+∠C=360°
C.∠A+∠C=2∠E D.∠A+∠C=∠E
5.下列调查适合作抽样调查的是
A.了解浙江卫视“我爱记歌词”节目的收视率
B.了解某甲型H1N1确诊病人同机乘客的健康状况
C.了解某班每个学生家庭电脑的数量
22.(本小题满分10分)
台风是形成于热带海洋上的强大而深厚的热带气旋,主要发生在7至10月,我市也是遭受台风自然灾害较为频繁的地区。山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示)。已知山坡的坡角∠AEF=23°,量得树干倾斜角∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=4m。
若m、n是任意正实数,r是任意正整数,且m>n;或m、n、r是任意正实数,且m>n,
则 .------------------------------------------------------------4’
18. (本题6分)
解:(1)由图象可知,函数 ( )的图象经过点 ,
可得 .------------------------------1’
连结第三个顶点,即可得
结论:(略)-------------------------------------------------6’
20. (本题8分)
解:(1) ∥BD
∴∠E=∠BDC
∵BD平分∠ADC
∴∠ADC=2∠BDC=2∠E
∵∠C=2∠E
∴∠ADC=∠C
∴梯形ABCD是等腰梯形--------------------------4’
2012年贵州省中考数学模拟试卷
![2012年贵州省中考数学模拟试卷](https://img.taocdn.com/s3/m/e379d683b9d528ea81c7793c.png)
2012 年贵州省中考数学模拟试卷(六)一、选择题:(本大题 10 个小题,每小题 4 分,共 40 分)在每个小题的下面,都给出了 代号为 A、B、C、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后 的括号中.1.3 的倒数是( ) C. A.-3 B.3D1 31 3显示解析 2.计算 2x2•(-3x3)的结果是( A.-6x5 ★☆☆☆☆显示解析 3.⊙O 的半径为 4,圆心 O 到直线 l 的距离为 3,则直线 l 与⊙O 的位置关系是( A.相交 ★★★★★显示解析 4.使分式 B.相切 ) C.相离 ) B.6x5 C.-2x6DDx 2x-4有意义的 x 的取值范围是( A.x=2 显示解析 5.不等式组 ) B.x≠2 C.x=-2Dx-2> 0 x-3< 0的解集是( A.x>2 显示解析 ) B.x<3 C.2<x<3D6.如图,⊙O 的直径 CD 过弦 EF 的中点 G,∠EOD=40° ,则∠DCF 等于()A.80° ★★★★★显示解析B.50°C.40°D7.如图是由几个相同的小正方形搭成的几何体的两种视图,则搭成这个 几何体的小正方形的个数是( A.3 ☆☆☆☆☆显示解析 ) B.4 C.5D8.观察市统计局公布的“十五”时期重庆市农村居民 人均收入每年比上一年增长率的统计图,下列说法正确的是( A.2003 年农村居民人均收入低于 2002 年 B.农村居民人均收入比上年增长率低于 9%的有 2 年 C.农村居民人均收入最多时 2004 年 D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加 ★★★☆☆显示解析 9. 免交农业税, 大大提高了农民的生产积极性, 镇政府引导农民对生产的耨中土特产进行加工后, 分为甲、 乙、丙三种不同包装推向市场进行销售,其相关信息如下表:春节期间,这三种不同的包装的土特产都销 售了 1200 千克,那么本次销售中,这三种包装的土特产获得利润最大是( 质量(克/ 销售价 (元/ 袋) 甲 乙 丙 400 300 200 袋) 4.8 3.6 2.5 包装成本费用 (元/袋) 0.5 0.4 0.3 ) )A.甲 ☆☆☆☆☆显示解析B.乙C.丙D.不能确定10.(课改)现有 A、B 两枚均匀的小立方体(立方体的每个面上分别标有数字 1,2,3,4,5,6).用 小莉掷 A 立方体朝上的数字为 x 小明掷 B 立方体朝上的数字为 y 来确定点 P(x,y),那么它们各掷一次 所确定的点 P 落在已知抛物线 y=-x2+4x 上的概率为( A. B. ) C.D1 18VIP 显示解析1 121 91 6二、填空题:(本大题 10 个小题,每小题 3 分,共 30 分)在每小题中,请将答案直接填 在题后的横线上.11.某市某天的最高气温是 17℃,最低气温是 5℃,那么当天的最大温差是 ℃. ★★☆☆☆显示解析 12.分解因式:x2-4= . ★★★★★显示解析 13.如图,已知直线 l1∥l2,∠1=40° ,那么∠2=度. 显示解析 14.圆柱的底面周长为 2π,高为 1,则圆柱的侧面展开图的面积为 . ☆☆☆☆☆显示解析 15.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染 600 立方米的水(相当于一个人一生的饮水 量).某班有 50 名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢 弃的纽扣电池能污染的水用科学记数法表示为 立方米. ★★☆☆☆显示解析16.如图,已知函数 y=ax+b 和 y=kx 的图象交于点 P,则根据图象可得, 关于y=ax+b y=kx的二元一次方程组的解是 . ★★★★★显示解析17.如图所示,A、B 是 4×5 网络中的格点,网格中的每个小正方形的边长为 1, 请在图中清晰标出使以 A、B、C 为顶点的三角形是等腰三角形的所有格点 C 的位置. ★☆☆☆☆显示解析 18.按一定的规律排列的一列数依次为:1 2,1 3,1 10,1 15,1 26,1 35┅┅,按此规律排列下去,这列数中的第 7 个数是. ★☆☆☆☆显示解析19.如图,矩形 AOCB 的两边 OC、OA 分别位 x 轴、y 轴上,点 B 的坐标 为 B(-20 3,5),D 是 AB 边上的一点.将△ADO 沿直线 OD 翻折,使 A 点恰好落在对角线 OB 上的点 E 处,若点 E 在一反比例函数的图象上,那么该函数的解析式是 . ★★★☆☆显示解析20.如图,△ABC 内接于⊙O,∠A 所对弧的度数为 120 度.∠ABC、∠ACB 的角平 分线分别交于 AC、AB 于点 D、E,CE、BD 相交于点 F.以下四个结论:①cos∠BFE=1 2;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是 . ☆☆☆☆☆显示解析三、解答题:(本大题 6 个小题,共 60 分)下列各题解答时必须给出必要的演算过程或推 理步骤.21.计算:2 -tan60° +(-15-1)0+|3|.☆☆☆☆☆显示解析22.由山脚下的一点 A 测得山顶 D 的仰角是 45° ,从 A 沿倾 斜角为 30° 的山坡前进 1500 米到 B,再次测得山顶 D 的仰角为 60° ,求山高 CD. VIP 显示解析 23.在暑期社会实践活动中,小明所在小组的同学与-家玩具生产厂家联系,给该厂组装玩具,该厂同意他 们组装 240 套玩具.这些玩具分为 A、B、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩 具的数量如图所示:若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空: (1)从上述统计图可知,A 型玩具有 套,B 型玩具有 套,C 型玩具有 套. (2)若每人组装 A 型玩具 16 套与组装 C 型玩具 12 套所画的时间相同,那么 a 的值为 ,每人每小时能组装 C 型玩具 套.★★☆☆☆显示解析 24.农科所向农民推荐渝江Ⅰ号和渝江Ⅱ号两种新型良种稻谷.在田间管理和土质相同的条件下,Ⅱ号稻 谷单位面积的产量比Ⅰ号稻谷低 20%,但Ⅱ号稻谷的米质好,价格比Ⅰ号高.已知Ⅰ号稻谷国家的收购价 是 1.6 元/千克. (1)当Ⅱ号稻谷的国家收购价是多少时,在田间管理、图纸和面积相同的两块田丽分别种植Ⅰ号、Ⅱ号稻 谷的收益相同; (2)去年小王在土质、面积相同的两块田里分别种植Ⅰ号、Ⅱ号稻谷,且进行了相同的田间管理.收获后, 小王把稻谷全部卖给国家.卖给国家时,Ⅱ号稻谷的国家收购价定为 2.2 元/千克,Ⅰ号稻谷国家的收购价 未变,这样小王卖Ⅱ号稻谷比卖Ⅰ号稻谷多收入 1040 元,那么小王去年卖给国家的稻谷共有多少千克? VIP 显示解析25. 如图, 在梯形 ABCD 中, AB∥CD, ∠BCD=90° 且 AB=1, , BC=2,tan∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF 的形状,并证明你的 结论; (3)在(2)的条件下,当 BE:CE=1:2,∠BEC=135° 时,求 sin∠BFE 的值. VIP 显示解析 26.机械加工需要拥有进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油 90 千克,用油的重 复利用率为 60%,按此计算,加工一台大型机械设备的实际耗油量为 36 千克.为了建设节约型社会,减 少油耗,该企业的甲、乙两个车间都组织了人员为减少实际耗油量进行攻关. (1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到 70 千克,用油的重复利用率仍然 为 60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克? (2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了用油的重复利用率,并且发现在技术 革新的基础上,润滑用油量每减少 1 千克,用油量的重复利用率将增加 1.6%.这样乙车间加工一台大型机 械设备的实际耗油量下降到 12 千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千 克?用油的重复利用率是多少? ★★★★★显示解析四、解答题:(本大题 2 个小题,共 20 分)下列各题解答时必须给出必要的演算过程或推 理步骤.27.如图 1 所示,一张三角形纸片 ABC,∠ACB=90° ,AC=8,BC=6.沿斜边 AB 的中线 CD 把这张纸片 剪成△AC1D1 和△BC2D2 两个三角形(如图所示).将纸片△AC1D1 沿直线 D2B(AB)方向平移(点 A, D1,D2,B 始终在同一直线上),当点 D1 于点 B 重合时,停止平移.在平移过程中,C1D1 与 BC2 交于点 E,AC1 与 C2D2、BC2 分别交于点 F、P. (1)当△AC1D1 平移到如图 3 所示的位置时,猜想图中的 D1E 与 D2F 的数量关系,并证明你的猜想; (2)设平移距离 D2D1 为 x,△AC1D1 与△BC2D2 重叠部分面积为 y,请写出 y 与 x 的函数关系式,以及自 变量的取值范围; (3)对于(2)中的结论是否存在这样的 x 的值使得 y=1 4S△ABC;若不存在,请说明理由.VIP 显示解析28.已知:m、n 是方程 x2-6x+5=0 的两个实数根,且 m<n,抛物线 y=-x2+bx+c 的图象经过点 A(m,0)、B(0,n). (1)求这个抛物线的解析式; (2)设(1)中抛物线与 x 轴的另一交点为 C,抛物线的顶点为 D,试求出点 C、D 的坐标和△BCD 的面 积;(注:抛物线 y=ax2+bx+c(a≠0)的顶点坐标为(-b 2a,4ac-b24a)(3)P 是线段 OC 上的一点,过点 P 作 PH⊥x 轴,与抛物线交于 H 点,若直线 BC 把△PCH 分成面积之 比为 2:3 的两部分,请求出 P 点的坐标.。
2012年数学中考模拟试题及答案
![2012年数学中考模拟试题及答案](https://img.taocdn.com/s3/m/ef0243f6700abb68a982fb0e.png)
2012年数学中考模拟试题及答案亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光。
(本试卷总分130)一.填空题:(本大题共13题,每小题3分,共39分)1.-6的绝对值是 ;8的平方根是 ;-1的相反数是 。
2.“世界银行全球扶贫大会”于2004年5月26日在上海开幕.从会上获知,我国国民生产总值达到11.69万亿元,人民生活总体上达到小康水平,其中11.69万亿用科学记数法表示应为 亿元。
3.分解因式:=-x x 823。
4.函数xy +=51中,自变量x 的取值范围是 。
5.一个口袋中装有4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出1个球是白球的概率是__________ 。
6.二次函数562-+-=x x y ,对称轴是__________________。
7.如图,正方形的面积是144,则阴影部分面积的小正方形边长是 。
8. 已知点P (-3,2),点A 与点P 关于y 轴对称,则点A 的坐标是_________。
9.某班初二年级甲、乙两班举行电脑汉字输入速度比赛,两个班参加比赛的学生每分钟有一位同学根据上表得出如下结论:①甲、乙两班学生的平均水平相同;②乙班优秀的人数比甲班优秀的人数多(每分钟输入汉字达150个以上为优秀);③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大。
上述结果正确的是__________________(填序号)。
10.如右图:AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E , 如果AB =12cm ,CD =8cm ,那么AE 的长为 11. 函数111x k y =的图象通过P (2,3)点,且与函数2y 的图象关于y 轴对称,那么它们的解析式y 1= ,y 212. 右图描述的是李平同学放学回家过程中,离校的路程与所用时间之间的函数关系。
请你设计一个问题,让其他同学通过观察图象能回答你所提的问题。
(注意:提出的问题要尽量贴近生活:不需要在图中添加数字或其余字母)你设计的问题是 。
2012年初中毕业考试数学模拟试卷
![2012年初中毕业考试数学模拟试卷](https://img.taocdn.com/s3/m/a21ec7e30912a21615792952.png)
2012年初中毕业考试数学模拟试卷九年级数学半期考试试卷(本试卷满分150分,考试时间120分钟)学校__________班级__________姓名__________总分__________一、选择题(本题有lO小题。
每小题4分。
共40分.每小题只有一个选项是正确的。
不选、多选、错选,均不给分)1.计算:2+(-3)的结果是( )A.-l B.1 C.-5 D.52.在下列几何体中,主视图是圆的是( )A B C D3.2011年11月份,区环境检测中心的关于“关心菜篮子”某一周空气质量报告中某项污染指数的数据如表所示,这组数据的众数是()A. 20B. 21C. 22D. 244.反比例函数y=kx的图象经过点(-1,2),k的值是( )A.-12B.12C.-2D.25. 如图.将正方形纸片ABCD折叠,使边AB、CB均落在对角线BD上,得折痕BE、BF,则∠EBF的大小为( )A.15° B. 30° C. 45° D. 60°6.九年级(1)班共50名同学,右图是该班体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整检测时间周一周二周三周四周五周六周日污染指数21 22 21 24 20 22 21O yx 11AOyx11Oyx11Oyx11B数).若将不低于29分的成绩评为优秀,则该班此次成绩优秀的同学人数占全班人数的百分比是( ) A 、20% B 、44% C 、58% D 、72%7.如图,已知在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所得圆锥的侧面积等于( ) A .6π B .9π C .12πD .15π8.下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )9.如图是一张简易活动餐桌,现测得OA=OB=30cm ,OC=OD=50cm ,现要求桌面离地面的高度为40cm ,那么两条桌腿的张角∠COD 的大小应为( )A .100°B .120°C .135°D .150°10.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为4,大正方形面积为74,直角三角形中较小的锐角为θ,那么tan θ的值是( )A .27B .57C .7437D .57474二、填空题(本题有6小题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年模拟考试 数学
试题卷
一. 仔细选一选 (本题有10个小题, 每小题4分, 共40分)
下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.
1.我国以2011年11月1日零时为标准时点进行了第六次人口普查.根据普查数据,杭州市
常住人口为870.04万人,其中870.04万人用科学记数法表示为( ) A .0.87004×107
人 B .8.7004×102
人 C .8.7004×106
人 D .8.7004×107
人 2.
()2
101.3-的值等于( )
A .()101.3-±
B .101.3±
C .101.3-
D .1.310-
3.暑假里,小红参加了为期5周的勤工俭学活动,各周的收入情况如右图所示,以下结论中与右图反映的信息不.
相符的是( ) ① 1~2周收入的增长率与4~5周收入的增长率相同; ② 1~4周收入的极差与1~5周收入的极差相同; ③ 1~5周收入众数是350元; ④ 1~5周收入的中位数是250元.
A .①②
B .②③
C .①④
D . ③④ 4.因式分解x x 23
-的结果是( )
A. )2(2
-x x B. 2
)1(-x x C. )2)(2(+-x x x D. 2)2(-x x
5.将矩形ABCD 沿EF 折叠,使点B 与AD 上的点B '重合,如BE =4,A B '=3,则BF 的长为( )
A .
625 B .3
7
416+ C .12 D .15 6.将一根铁丝围成一个等腰三角形,围成的三角形的底边长y 与腰长x 之间的函数关系可能为( )
(第
3题)
A.
B.
C.
D.
7.菱形ABCD 中,如果AB ²=BD ×AC ,则∠ABC 的度数是( ) A. 60° B. 30° C. 60°或120° D. 30°或150°
8.四边形ABCD 的四条边长AB=32,BC =5,CD =3, AD =2,∠D 为直角.则∠A 的外角的正切值为( )
A .
13132 B .32 C .13
13
3 D .23
9.已知a b <<0,则下列不等式组中一定无解..的是( ) A .⎩⎨
⎧>-<b x a x B .⎩⎨⎧-><b x a x C .⎩⎨⎧->-<b x a x D .⎩
⎨
⎧-<->b x a
x 10.DB 是⊙O 的切线,D 为切点,过圆上一点C 作DB 的垂线,垂足为B ,BC=3,sin ∠A =
4
3
,则⊙O 的半径为( ) A .
38 B .3
26 C .625 D .316 二. 认真填一填 (本题有6个小题, 每小题5分, 共30分)
要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11.计算:2
1
86)1218(+÷-= .(结果保留根号) 12. 已知5352)61(3=-
+x ,则6
1
10--x = . 13.一枚均匀的正方体骰子,连续抛掷两次,朝上一面分别为m ,n ,A 的坐标为(m ,n ),则A 点在直线y =
x 2
1
上的概率为 . 14. 如图,⊙O 既是正△ABC 的外接圆,又是正△DEF 的内切圆,则内外两个正三角形的相似比是 .
15.定义[,,a b c ]为函数2
y ax bx c =++的特征数,下面给出特征数为 [2k ,1 – k , –1– k ] , 对于任意负实数.....k ,当x < m 时,y 随x 的增大而增大,则m 的最大整数值是 . 16.直线y =a 分别与直线x y 2
1=
和双曲线x y 1
=交于A 、D
两点,过点A 、D 分别作x 轴的垂线段,垂足为点B ,C . 若四边形ABCD 是正方形,则a 的值为 .
(第8题)
(第10题)
(第16题)
三. 全面答一答 (本题有7个小题, 共80分) 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以. 17.(本小题满分10分)
如图是一张平行四边形纸片沿对角线AC 剪去一部分后留下的一个三角形,试用两种..不同的方法画出原来的平行四边形(尺规作图,要求保留作图痕迹,不必写出作法),并写出所画图形是平行四边形的依据.
18.(本小题满分10分)
我市某校积极开展体育活动,师生每天锻炼1小时,老师对本校八年级学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图. 已知在图1中,组中值为150次一组的频率为0.2(说明:组中值为190次的组别为180≤次数<200).
请结合统计图完成下列问题: (1)八(1)班有多少名学生? (2)请把频数分布直方图补充完整;
(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于...90%,那么八年级同学至少有多少人?
19.(本小题满分12分)
二次函数的图象过点)5,2(-A 、)5,4(B 、)3,0(-C . (1)求二次函数的解析式和图象的顶点坐标; (2)求此函数的图象与x 轴的交点坐标; (3)当y <0时,直接写出自变量x 的取值范围.
(第17题)
20.(本小题满分10分)
如图,一只纺锤可近似看作由两个圆锥拼合而成,AB=18,AD =9,r =3.
(1)求纺锤的表面积;
(2)一只蚂蚁要从C 点出发绕这只纺锤爬一圈回到原地,求蚂蚁爬过的最短路线长.
21.(本小题满分12分)
如图,点O 是等边△ABC 内一点,∠AOB =105°,∠BOC =α.将△BOC 绕点C 按顺时针方向旋转60°得△ADC ,连接OD .
(1)试判断△COD 的形状,并说明理由.
(2)△AOD 能否成为等边三角形?如能,请求出α的值;如不能,请说明理由.
22.(本小题满分12分)
如图,半圆的直径AB =2,点C 从点A 向点B 运动沿着半圆运动,速度为每秒
6
π
,运动时间为t (秒),D 是弧BC 的中点,连结AD ,
BC 相交于点E ,连结BD .
(1)如果OC ∥BD ,求t 的值及AE
BD
的值; (2)当t =3时,求
AE
BD
的值. 23.(本小题满分14分)
如图,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒一个单位长的速度运动t 秒(t >0),抛物线
c bx x y ++-=2经过点O 和点P .
(1)求c ,b (用t 的代数式表示);
(2) 抛物线c bx x y ++-=2
与直线x =1和x =5分别交于M 、N 两点,当t >1时,
①在点P 的运动过程中,你认为sin ∠MPO 的大小是否会变化?若变化,说明理由;若不变,求出sin ∠MPO 的值;
②求△MPN 的面积S 与t 的函数关系式;
③是否存在这样的t 值,使得以O 、M 、N 、P 为顶点的四边形为梯形?如果存在,求出t 值;如果不存在,请说明理由.
(第20题)
(第21题)
(第22题)
(第23题)。