随机变量的数学期望及其性质(doc 8页)

合集下载

随机变量的数学期望解读

随机变量的数学期望解读
第一节 数学期望
离散、连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.
然而,在实际问题中,概率分布一般是较难 确定的. 而在一些实际应用中,人们并不需要知 道随机变量的一切概率性质,只要知道它的某些 数字特征就够了.
N
证明: E
n
k nk
C C M M N M
k C C n
C C k0
N
n
n N k 1
k 1 (n1)(k 1) M 1 ( N 1)(M 1)
M CNn
C n1 N量X的概率密度为f(x),如
果积分 xf (x)dx 绝对收敛,则称该积分的值
为随机变量X的数学期望或者均值,记为EX,即

E( X ) xk pk
k 1
若级数发散 xk pk ,则称X的数学期望不存在。
k 1
例1 谁的技术比较好? 甲、乙两个射手 , 他们射击的分布律分别为
甲射手
击中环数 8 9 10
概率
0.3 0.1 0.6
乙射手
击中环数 8 9 10
概率
0.2 0.5 0.3
试问哪个射手技术较好?
解 设甲、乙射手击中的环数分别为 X1, X2 . E( X1) 8 0.3 9 0.1 10 0.6 9.3(环), E( X2 ) 8 0.2 9 0.5 10 0.3 9.1(环),
E(X ) x f (x)dx
如果积分 x f (x)dx 发散,则称X的数学期
望不存在。
注: E(X)是一个实数而非变量, 并非所有的随机变 量都存在数学期望。

高中高三数学《随机变量和数学期望》教案、教学设计

高中高三数学《随机变量和数学期望》教案、教学设计
(2)在讲解数学期望在实际问题中的应用时,采用案例分析、小组讨论等方式,让学生在具体情境中感受数学期望的作用,提高他们的应用能力。
(3)针对不同难度的练习题,进行分层教学,使学生在逐步克服难点的过程中,提高自己的数学素养。
3.教学策略和手段:
(1)运用信息技术,如多媒体、网络资源等,为学生提供丰富的学习材料,提高课堂教学效果。
2.教学过程:
(1)教师发放练习题,要求学生在规定时间内完成。
(2)学生独立完成练习题,教师巡回指导,解答学生疑问。
(3)教师选取部分学生作品进行展示,分析解题思路和技巧,并进行点评。
(五)总结归纳
1.教学内容:对本节课所学内容进行总结,巩固学生对随机变量和数学期望的理解。
2.教学过程:
(1)教师引导学生回顾本节课所学的主要内容,如随机变量的概念、分类、表示方法,数学期望的定义、性质和计算方法等。
4.小组合作完成一道综合应用题,要求学生在解决实际问题的过程中,运用随机变量和数学期望的知识。此题目旨在培养学生的合作意识和运用数学工具解决实际问题的能力。
5.针对课堂所学内容,教师编制一份测试卷,包括选择题、填空题、解答题等,全面检测学生对本章知识的掌握程度。
作业布置要求:
1.学生应在规定时间内独立完成作业,遇到问题可请教同学或老师,培养自主解决问题的能力。
(2)以小组合作的形式,让学生探讨随机变量的表示方法,如分布列、概率密度函数等,培养他们的合作意识和解决问题的能力。
(3)通过典型例题,引导学生掌握数学期望的定义和性质,学会运用数学期望进行计算。
2.对于难点内容的教学设想:
(1)针对分布列和概率密度函数的理解,设计直观的图表和动画,帮助学生形象地理解抽象概念。
4.引导学生关注社会热点问题,运用所学知识为社会发展贡献力量,培养他们的社会责任感和使命感。

《数学期望》课件

《数学期望》课件
注意事项
在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策

3.3期望的性质与随机变量函数的期望

3.3期望的性质与随机变量函数的期望
寿命超过1年的概率 =不需调换的概率
P X 1
因此出售一台设备净赢利Y 的分布律为
Y
100
1 e 4
4
100 300
1 1 e 4
- 1 4
p
E (Y ) = 100e
- 1
- 200 (1 - e
)
33.64 (元).
发行彩票的创收利润 某一彩票中心发行彩票10万张, 每张2元. 设头等奖1个, 奖金 1万元, 二等奖2个, 奖金各 5千元; 三等奖10个, 奖金各1千元; 四等奖100 个, 奖金各1百元; 五等奖1000个, 奖金各10元. 每张彩票的成本费为0.3元, 请计算彩票发行单 位的创收利润. 解: 设每张彩票中奖的金额为随机变量X, 则
二、 随机变量函数的数学期望
1. 问题的提出
数学期望 X g(X) 数学期望 E(X)
E( X ) =
E ( X ) xk pk
k
ò
+
-
xf (x )dx
E轾 g (X ) = 臌
g(x)是连续函数, g(X) 是 随机变量, 如: aX+b, X2等 等.
2. 随机变量函数数学期望的计算 如何计算随机变量函数的数学期望?
例 设随机变量 X 的概率分布为 1 2 3 X
1 求 E ( ) , E ( X 2 2). X 1 1 1 解: E ( ) 1 0.1 0.7 0.2 0.52 X 2 3
P
0.1
0.7
0.2
E ( X 2)
2
(1 2) 0.1 (2 2) 0.7 (3 2) 0.2 6.7
X 10000 p 1 105

数学期望及其性质

数学期望及其性质

第i 0, 第i站没人下车 解:设 X i = , i = 1,2, L ,10 , 1, 第i站有人下车 10 易见 X = X 1 + L + X 10 , EX = ∑ EX i ,
P{Xi = 0} = (9 /10)
,P{Xi = 1} = 1− (9/10)20,i = 1L,10, , EX i = 1 − ( 9 / 10 ) 20 , i = 1此时,Xi i = 1,2,L,10 , L ,10 , 不是相互独立的 EX = 10[1 − (9 / 10) 20 ] = 8.784(次) 。 返回主目录
第十三章 随机变量的数字特征
§1 数学期望 例8 对产品进行抽样,只要发现废品就认为这批产品 不合格,并结束抽样。若抽样到第n件仍未发现废 品则认为这批产品合格。 假设产品数量很大,抽查到废品的概率是p,试 求平均需抽查的件数。 解: 设X为停止检查时,抽样的件数,则X的可能 取值为1,2,…,n,且
E(
∑ a X ) = ∑ a EX
i i i i =1 i =1
n
n
i
IV)
若x , y独立,则 EXY=EXEY
返回主目录
第十三章 随机变量的数字特征
§1 数学期望 例6 一民航送客载有 20 位旅客自机场开出,旅客有 10 个车站可以下车,如到达一个车站没有旅客下车就不 停车。以 X 表示停车的次数。 求 EX(设每个旅客在各个车站下车是等可能的,并 设各旅客是否下车相互独立) 。
i =1

记为 EX,即 EX= ∑ x k pk 。
k =1

数学期望也称为均值。
返回主目录
第十三章 随机变量的数字特征
§1 数学期望

数学期望(均值)、方差和协方差的定义与性质

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。

即()1k k k E X x p ∞==∑。

设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。

即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。

性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。

2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。

数学期望性质除法

数学期望性质除法

数学期望性质除法离散型如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。

离散型随机变量的一切可能的取值与对应的概率乘积之和称为该离散型随机变量的数学期望(若该求和绝对收敛),记为它是简单算术平均的一种推广,类似加权平均。

公式离散型随机变量X的取值为,为X对应取值的概率,可理解为数据出现的频率,则:定理设Y是随机变量X的函数:(是连续函数)它的分布律为若绝对收敛,则有:连续型设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积分的值为随机变量的数学期望,记为E(X)。

若随机变量X的分布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。

数学期望完全由随机变量X的概率分布所确定。

若X服从某一分布,也称是这一分布的数学期望。

定理若随机变量Y符合函数,且绝对收敛,则有:该定理的意义在于:我们求时不需要算出Y的分布律或者概率密度,只要利用X的分布律或概率密度即可。

上述定理还可以推广到两个或以上随机变量的函数情况。

设Z是随机变量X、Y的函数(g是连续函数),Z是一个一维随机变量,二维随机变量(X,Y)的概率密度为,则有:设C为一个常数,X和Y是两个随机变量。

以下是数学期望的重要性质:1、2、3、4、当X和Y相互独立时,性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。

证明:这里只对连续性随机变量的情况加以证明,对离散型的证明只要将证明中的积分改为和式即可。

1、永远都只能取C,常数C的平均数还是它本身。

2、设二维随机变量的概率密度函数为3、若X和Y相互独立,其边缘概率密度函数为。

随机变量的数学期望

随机变量的数学期望

P{ X = xiY = y j } = pij ,i , j = 1,2,
则 E( Z ) = E[ g ( X , Y )] = ∑ ∑ g ( x i , y j ) pij .
j i
型随机变量, (2) 若(X,Y)是连续型随机变量,联合概率密度为 , ) 连续型随机变量 f(x,y),则 ( , )
1 k 1 1 k k E 因此, 因此, ( X ) = q + (1 + ) (1 q ) = 1 q + , k k k
N个人需化验的次数的数学期望为 个人需化验的次数的数学期望为 例如, 例如,
0.9910 0.1 = 0.804 , 1 k 就能减少验血次数. 当 q > 时, 就能减少验血次数.
E( X) = ∫ xf ( x)dx

+∞
13
例5
设随机变量X的概率密度函数为 设随机变量 的概率密度函数为
3 x 2 , 0 < x < 1 f ( x) = 其它 0 , 的数学期望. 求X的数学期望. 的数学期望

E( X ) = ∫
+∞ ∞
1 0
xf ( x ) dx
2
=∫
3 x 3 x dx = . 4
+∞
+∞
=∫
+∞ 0
x e dx = 2 .
2
18
x
设随机变量( , ) 例8 设随机变量(X,Y)的联合概率密度为
1 3 3 2 , < y < x, x > 1 y f ( x, y) = 2 x y x 0, else 1 ). 求 E(Y ), E( XY
解 E(Y ) =

第十二讲:随机变量的数学期望

第十二讲:随机变量的数学期望
利川“腾龙洞(水洞口)”
前面已经讲授了有关随机变量及其分布的相关概念和相关 概率计算问题。
我们知道:随机变量的取值不止一个,且取某个值
(或某范围的值)都有相应的概率,但实际中经常要 考察随机变量取值趋势问题,如取值的平均值问题、 取值的集中性问题等等。
某年级学生《 概率统计》 考试成绩X的分布如下, 例1: 设某班40名学生的《概率统计》成绩及 求该年级《 概率统计》 的平均成绩 . X表示从该班任取一人的 成绩 得分人数如下表所示
1
0.8
i 1
Xi
2
0.2 0.8 0.16
9
3
0.22 0.04
P
E X i 1.24 EX EX i 9 1.24 11.16
i 1
再多准备10%至15%,大约需为他们准备13发子弹。
例14:甲、乙两名射手在一次射击中得分(分别用X、Y表示) 的分布律如下表所示:
E ( X ) xk pk . E ( X ) xf ( x)dx.




g ( x) f ( x)dx.
设随机变量 Z是随机变量 X , Y的函数,Z g ( X , Y ), 这里z g ( x, y)是连续函数
且 g ( xi , y j ) pij绝对收敛, 则Z g ( X , Y )的数学期望为:
r k
P77
前面讲的数学期望 EX就是“一阶原点矩”
例12:设随机变量X的分布律为 求X的一阶原点矩和二阶中心矩 解: X的一阶原点矩为: 1 1 1 E ( X ) (1) 0 1 0 3 3 3 X的二阶中心矩为:
2 EX E ( X EX )
X Pk

随机变量的数学期望

随机变量的数学期望

思考 谁的技术比较好?
甲、 乙两个射手, 他们射击的分布律分别 为
甲射手
击中环数 概率 击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
8 9 10
乙射手
0 .2 0 .5 0 .3
试问哪个射手技术较好?
解 设甲、乙射手击中的环 数分别为 X 1 , X 2 .
E ( X 1 ) 8 0.3 9 0.1 10 0.6 9.3(环), E ( X 2 ) 8 0.2 9 0.5 10 0.3 9.1(环),
因此,在对随机变量的研究中,确定某些数 字特征是重要的 .
在这些数字特征中,最常用的是
数学期望、方差、协方差和相关系数
一、数学期望的概念 定义1 设X是离散型随机变量,它的分布率是: P{X=xk}=pk , k=1,2,… 若级数
xk pk k 1


绝对收敛,则称级数
xk pk k 1
例8 设风速V在(0, a )上服从均匀分布,即具有概率
密度
1 0va f (v ) a 0 其它
2
又设飞机机翼受到的正压力W是V的函数 : W kV ( k 0, 常数), 求W的数学期望.
解:由上面的公式
1 1 2 E (W ) kv f (v )dv kv dv ka a 3 0

为随机变量X的数学期望或者均值,记为EX,即
如果积分 望不存在。



x f ( x)dx 发散,则称X的数学期
关于定义的几点说明 (1) E(X)是一个实数,而非变量,它是一种加
权平均,与一般的平均值不同 , 它从本质上体现 了随机变量 X 取可能值的真正的平均值, 也称 均值. (2) 级数的绝对收敛性保证了级数的和不 随级数各项次序的改变而改变 , 之所以这样要 求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变. (3) 随机变量的数学期望与一般变量的算 术平均值不同.

随机变量及其分布-离散型随机变量的数学期望和方差

随机变量及其分布-离散型随机变量的数学期望和方差

离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。

2.意义:反映离散型随机变量取值的平均水平。

3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。

2.意义:反映离散型随机变量偏离均值的程度。

3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。

题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。

概率论第4章

概率论第4章
(4)数学期望的性质
ò ò
+¥ +¥
- ¥ - ¥
(设该积分绝对收敛) g ( x , y ) f ( x , y ) dxdy .
性质 1 设 c 是常数,则有 E ( c ) = c . 性质 2 设 X 是随机变量,设 c 是常数,则有 E (cX ) = cE ( X ) . 性质 3 设 X ,Y 是随机变量,则有 E ( X + Y ) = E ( X ) + E ( Y ) . (该性质可推广到有限个随机变量 之和的情况) 性质 4 设 X , Y 是相互独立的随机变量,则有 E ( XY ) = E ( X ) E ( Y ) . (该性质可推广到有限 个随机变量之积的情况) 2. 方差 (1)定义 设 X 是随机变量 , E{[ X - E ( X )] } 存在,就称其为 X 的方 差 ,记为 D ( X ) ( 或 Var ( X ) ) ,即
å x p
k =1
k
发散,则称随机变量 X 的数学期望不存在.
(2)连续型随机变量的数学期望 定义 设连续型随机变量 X 的分布密度函数为 f ( x ) ,若积分 学期望或均值.记为 E ( X ) , E ( X ) = 不存在。 (3)随机变量的函数的数学期望 定理 设 Y 为随机变量 X 的函数: Y = g ( X ) (g 是连续函数) ① X 是离散型随机变量,分布律为 p ( X = x k = 1 , 2 , L ;若级数 k = P k ),
r XY = í
, a > 0 ì1 , a < 0 î-1
性质 4 r XY = 1 的充要条件是,存在常数 a, b 使 P {Y = aX + b } = 1 . 事实上相关系数只是随机变量间线性关系其强弱的一个度量, 当 r XY = 1 表明随机变量 X 与 Y 具有线 性关系, r = 1 时为正线性相关, r = -1 时为负线性相关,当 r XY < 1 时,这种线性相关程度就随着 r XY 的减小而减弱,当 r XY = 0 时,就意味着随机变量 X 与 Y 是不相关的. (4)X 与 Y 不相关的充要条件 只要满足以下四个条件之一就可以 ①

第二讲 随机变量函数的数学期望、期望的性质

第二讲 随机变量函数的数学期望、期望的性质
3.5
例2 设风速V在(0,a)上服从均匀分布,即密度函数
1 v (0, a ) f (v ) a 0 其它
又设飞机机翼受到的正压力W是V的函数W=kV2, 求W 的数学期望。 解: E (W ) kv 2 f (v )dv


a
0
1 1 2 kv dv ka 3 a
E ( X ) E ( X1 X 2
X10 )
E ( X1 ) E ( X 2 )
E( X10 )
9 20 10 1 8.784 10
即该空港巴士在到达目的地的途中平均停车 8.784次。
例5 求二项分布随机变量 X ~ b( n , p ) 的数学期望 解:二项分布的分布律为
2随机变量函数的数学期望1若离散型随机变量x的分布律为eyegxpgx2若连续型随机变量x的概率密度为fxeyegxgxfxdx设随机变量x的分布律为0202020103102002102201303ex11102002102201303ex35其它又设飞机机翼受到的正压力w是v的函数wkvewkvfvdvkvdv某公司计划开发一种新产品市场并试图确定该产品的产量
(1)若离散ቤተ መጻሕፍቲ ባይዱ随机变量X 的分布律为
P{ X xk } pk
k 1, 2,
k 1
则 E (Y ) E[ g( X )] pk g( xk ) (2)若连续型随机变量X 的概率密度为 f(x) 则 E (Y ) E[ g( X )]

g( x ) f ( x )dx
第三章 随机变量的数字特征
第二讲
随机变量的数学期望(2)
2、随机变量函数的数学期望

随机变量及其分布函数的基本性质

随机变量及其分布函数的基本性质

随机变量及其分布函数的基本性质随机变量是概率论中最基本的概念之一,是对随机事件的量化描述。

简单来说,随机变量就是在一个随机试验中可能出现的某个数值。

在数学上,随机变量可以看作是一个实数值函数,它将样本空间中的每个元素映射到实数轴上的某个点上。

分布函数是描述随机变量分布情况的工具,它定义为随机变量取某个值或小于等于某个值的概率。

换言之,分布函数描述了随机变量的累积分布情况。

本文将就随机变量及其分布函数的基本性质进行详细探讨。

一、随机变量的分类在概率论中,随机变量可以分为连续型和离散型两类。

离散型随机变量只取有限个或可数个值,比如掷骰子得到的点数;连续型随机变量可以取任意实数值,比如身高、体重等。

二、随机变量的基本性质1. 取值范围和概率随机变量的取值范围可以是有限或无限的,但概率和必须等于1。

如果随机变量取值范围是有限的,则每个可能的取值的概率都是非负的,且所有概率之和等于1。

如果随机变量取值范围是无限的(比如连续型随机变量),则需要借助于概率密度函数,将其转化为相应的概率。

2. 分布函数每个随机变量都对应一个分布函数,分布函数可以分为累积分布函数和概率质量函数。

累积分布函数是指随机变量小于等于某一值的概率,记为F(t),可以表示为F(t) = P(X <= t)。

概率质量函数是指随机变量取某个值的概率,记为f(x),可以表示为f(x) =P(X = x)。

两者的关系可以用以下公式表示:F(t) = sum[f(x), x <= t]。

3. 期望和方差期望是衡量随机变量平均水平的值,表示随机变量在多次试验中平均取值的大小。

方差则是用来度量一个随机变量取值的离散程度的量,表示随机变量的取值与其期望的离差平方之和的平均。

对于离散型随机变量,期望和方差可以表示为以下公式:E(X) = sum[x * f(x), x in X]Var(X) = E[(X - E(X))^2] = sum[(x - E(X))^2 * f(x), x in X]对于连续型随机变量,则需要对其概率密度函数进行积分求解。

随机变量的数学期望

随机变量的数学期望

k qk1 p
qk
k 1
k 1
k1
p
1
1
q2
p
1 p2
1. p
这是因为 kxk1 ( x k )
k 1
k 1
x
1
1
1
x
1
.
常见离散型分布的数学期望小结
分布
分布律
01 分布
X~B(1, p)
二项分布
X~B(n, p)
泊松分布
X ~ Pλ
P{ X k} pk (1 p)1k k0,1
对于二维随机变量而言, 其函数的数学期望 计算方法可以由类似于定理3.1得到.
1. 二维离散型情形 设X,Y为二维离散型随机变量, Z f X, Y为 二元函数, 如果EZ存在,
EZ E f X ,Y f ( xi , y j )pij
i1 j1
其中X, Y的联合概率分布为pij .
2. 二维连续型情形 设X,Y为二维连续型随机变量, Z f X, Y为 二元连续函数, 如果EZ存在, 则
(300x 200a)dx
20 10
20 a
EH X
1
(600
x2
a 100ax)
20
2
10
1
(300
x2
30 200ax)
20
2
a
7.5a2 350a 5250.
因此 7.5a2 350a 5250 9280,
解得 20 2 a 26, 即最少进货量为21单. 3
(二) 二维随机变量函数的数学期望
单调连续, x f 1y为其反函数, 并且可导,
同时 y , 则
f
xpX

(完整版)随机变量的数学期望与方差

(完整版)随机变量的数学期望与方差

第9讲 随机变量的数学期望与方差教学目的:1.掌握随机变量的数学期望及方差的定义。

2.熟练能计算随机变量的数学期望与方差。

教学重点:1.随机变量的数学期望2.随机变量函数的数学期望3.数学期望的性质4.方差的定义5.方差的性质教学难点:数学期望与方差的统计意义。

教学学时:2学时。

教学过程:第三章 随机变量的数字特征§3.1 数学期望在前面的课程中,我们讨论了随机变量及其分布,如果知道了随机变量X 的概率分布,那么X 的全部概率特征也就知道了。

然而,在实际问题中,概率分布一般是较难确定的,而在一些实际应用中,人们并不需要知道随机变量的一切概率性质,只要知道它的某些数字特征就够了。

因此,在对随机变量的研究中,确定其某些数字特征是重要的,而在这些数字特征中,最常用的是随机变量的数学期望和方差。

1.离散随机变量的数学期望我们来看一个问题:某车间对工人的生产情况进行考察。

车工小张每天生产的废品数X 是一个随机变量,如何定义X 取值的平均值呢?若统计100天,32天没有出废品,30天每天出一件废品,17天每天出两件废品,21天每天出三件废品。

这样可以得到这100天中每天的平均废品数为27.1100213100172100301100320=⨯+⨯+⨯+⨯ 这个数能作为X 取值的平均值吗?可以想象,若另外统计100天,车工小张不出废品,出一件、二件、三件废品的天数与前面的100天一般不会完全相同,这另外100天每天的平均废品数也不一定是1.27。

对于一个随机变量X ,若它全部可能取的值是Λ,,21x x , 相应的概率为 Λ,,21P P ,则对X 作一系列观察(试验)所得X 的试验值的平均值是随机的。

但是,如果试验次数很大,出现k x 的频率会接近于K P ,于是试验值的平均值应接近∑∞=1k k k p x由此引入离散随机变量数学期望的定义。

定义1 设X 是离散随机变量,它的概率函数是Λ ,2 ,1,)()(====k P x X P x p K K k如果 ∑∞=1||k k k p x 收敛,定义X 的数学期望为∑∞==1)(k k k p x X E也就是说,离散随机变量的数学期望是一个绝对收敛的级数的和。

概率论与数理统计01第一节随机变量的数学期望

概率论与数理统计01第一节随机变量的数学期望

第三章 随机变量的数字特征前面讨论了随机变量的分布函数, 从中知道随机变量的分布函数能完整地描述随机变量的统计规律性。

但在许多实际问题中, 人们并不需要去全面考察随机变量的变化情况, 而只要知道它的某些数字特征即可.例如, 在评价某地区粮食产量的水平时, 通常只要知道该地区粮食的平均产量;又如, 在评价一批棉花的质量时, 既要注意纤维的平均长度, 又要注意纤维长度与平均长度之间的偏离程度, 平均长度较大, 偏离程度小, 则质量就较好. 等等实际上, 描述随机变量的平均值和偏离程度的某些数字特征在理论和实践上都具有重要的意义, 它们能更直接、更简洁更清晰和更实用地反映出随机变量的本质.本章将要讨论的随机变量的常用数字特征包括: 数学期望、方差、相关系数、矩。

第一节 随机变量的数学期望内容要点:一、离散型随机变量的数学期望平均值是日常生活中最常用的一个数字特征, 它对评判事物、作出决策等具有重要作用。

定义 设X 是离散型随机变量的概率分布为,2,1,}{===i p x X P i i如果∑∞=1i i i p x 绝对收敛, 则定义X 的数学期望(又称均值)为 .)(1∑∞==i i i p x X E二、连续型随机变量的数学期望定义 设X 是连续型随机变量, 其密度函数为)(x f ,如果⎰∞∞-dx x xf )(绝对收敛, 定义X 的数学期望为 .)()(⎰∞∞-=dx x xf X E三、 随机变量函数的数学期望设X 是一随机变量, )(x g 为一实函数,则)(X g Y =也是一随机变量, 理论上, 虽然可通过X 的分布求出)(X g 的分布, 再按定义求出)(X g 的数学期望)]([X g E . 但这种求法一般比较复杂。

下面不加证明地引入有关计算随机变量函数的数学期望的定理.定理1 设X 是一个随机变量, )(X g Y =,且)(Y E 存在, 则 (1) 若X 为离散型随机变量, 其概率分布为,2,1,}{===i p x X P i i则Y 的数学期望为.)()]([)(1∑∞===i i i p x g X g E Y E(2) 若X 为连续型随机变量, 其概率密度为)(x f , 则Y 的数学期望为.)()()]([)(⎰∞∞-==dx x f x g X g E Y E注: (i)定理的重要性在于:求)]([X g E 时, 不必知道)(X g 的分布, 只需知道X 的分布即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机变量的数学期望及其性质(doc
8页)
部门: xxx
时间: xxx
整理范文,仅供参考,可下载自行编辑
第三章随机变量的数字特征
前一章介绍了随机变量的分布,它是对随机变量的一种完整的描述。

然而实际上,求出分布率并不是一件容易的事。

在很多情况下,人们并不需要去全面地考察随机变量的变化情况,而只要知道随机变量的一些综合指标就够了.随机变量的数字特征就是用数字表示随机变量的分布特点。

将介绍最常用的两种数字特征:数学期望与方差.
§1. 随机变量的数学期望及其性质
一.数学期望:
1.离散型随机变量的数学期望定义:
【例3】
2。

连续型随机变量的数学期望:定义:
【例4】
3.随机变量函数的数学期望:
X ,
二.:::。

相关文档
最新文档