数学期望及其性质共15页

合集下载

数学期望ExDxPPT学习教案

数学期望ExDxPPT学习教案

b
x
1
dx a b
a ba
2
e x x 0 f (x)
0 x0
证:E( X )
xf ( x)dx
e xdx
1

0
第9页/共39页
3.随机变量的函数的数学期望
定理 设Y是随机变量X的函数:Y=g(X)(g是连续函数),
(1) X是离散型随机变量,它的分布律为P{X=xk}=pk , k=1,2,…,
(2)E(X)作为刻划X的某种特性的数值 ,不应 与各项 的排列 次序有 关。所 以,定 义中要 求级数 绝对收 敛。
E( X ) xk pk k 1
第3页/共39页
例1: 设有某种产品投放市场,每件产品投放可能发生三 种情况:按定价销售出去,打折销售出去,销售不出 去而回收。根据市场分析,这三种情况发生的概率分 别为0.6,0.3,0.1。在这三种情况下每件产品的利 润分别为10元,0元,-15元(即亏损15元)。问厂 家对每件产品可期望获利多少?
度为f(θ( x>)0)1 e x/ x 0
0 x 0
若将这5个 电子装 置串联 工作组 成整机 ,求整 机 寿命N的 数学期 望;
解: Xk(k= 1,2, 3,4, 5)的分 布函数 为
1 e x / x 0 F(x)
0 x0
第16页/共39页
(1) 由第三章知N=min(X1,X2,X3,X4,X5)的 分布函 数为
二维随机变量(X,Y)的概率密度为f(x,y)则有
E(Z) E[g(X ,Y )]
g( x, y) f (x, y)dxdy
这里设上式右边 的积分 绝对收 敛,又 若(X,Y )
为离散型 随机变 量。其 分布律 为 P{X=xi,Y=yj}=pij , i,j=1,2,….

《概率论与数理统计》数学期望

《概率论与数理统计》数学期望

§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
概率论与数理统计
§4.4 协方差和相关系数
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 协方差
1. 定义
§4.4 协方差和相关系数 协方差
2. 协方差的计算公式
概率论与数理统计
§4.1 数学期望
离散型随机变量的数学期望
连续型随机变量的数学期望
授课内容
数学期望的性质
§4.1 数学期望 离散型随机变量的数学期望
1. 定义
§4.1 数学期望 离散型随机变量的数学期望
关于定义的几点说明
(2) 级数的绝对收敛性保证了级数的和不随级数各项次序的改变 而改变 , 之所以这样要求是因为数学期望是反映随机变量X 取可能值 的平均值,它不应随可能值的排列次序而改变.
§4.4 协方差和相关系数 相关系数
3. 不相关的定义
§4.4 协方差和相关系数 相关系数
4. 不相关性的判定
以下四个条件等价 (1) ρ 0; (2)Cov( X ,Y ) 0; (3) D( X Y ) DX DY;
(4)3 随机变量函数的数学期望 二维随机变量函数的数学期望
§4.3 随机变量函数的数学期望 二维随机变量函数的数学期望
一维随机变量函数的数学期望 二维随机变量函数的数学期望 授课内容 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
§4.3 随机变量函数的数学期望 例题
5 .不相关与相互独立的关系
协方差 相关系数 授课内容 例题
§4.4 协方差和相关系数 例题

《数学期望》课件

《数学期望》课件
注意事项
在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策

随机变量的数学期望 ppt课件

随机变量的数学期望  ppt课件
概率论与数理统计
第一节 数学期望
离散型随机变量的数学期望 连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习
ppt课件
2
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.
然而,在实际问题中,概率分布一般是较难 确定的. 而在一些实际应用中,人们并不需要知 道随机变量的一切概率性质,只要知道它的某些 数字特征就够了.
分布为pij , i,j=1,2, …,则
E(Z) E[g(X ,Y )]
g(xi , y j ) pij
j1 i1
(2) 如果X、Y是连续型随机变量,联合概
率密度为f(x,y),则
E(Z ) E[g( X ,Y )] g( x, y) f ( x, y)dxdy
ppt课件
24
例4.6 设 ( X , Y ) 的分布律为
概率
1/6 3/6 2/6
一旅客8:20到车站,求他候车时间的数学期望.
ppt课件
12
解:设旅客的候车时间为X (以分计),其分布率为
X 10 30 50 70 90
pk 3 6
上表中例如
2 11 13 12 6 66 66 66
P{X 70} P(AB) P( A)P(B) 1 3 66
ppt课件
32
例10 设二维连续型随机变量(X ,Y)的概率密度为
f
( x,
y)
Asin( x
y)
0 x
2
0
其它
(1)求系数A, (2)求E( X ), E( XY ).
解:(1)由于
f
( x,
y)dxdy

数学期望(均值)、方差和协方差的定义与性质

数学期望(均值)、方差和协方差的定义与性质

均值、方差和协方差的定义和基本性质1 数学期望(均值)的定义和性质定义:设离散型随机变量X 的分布律为{}, 1,2,k k P X x p k === 若级数1k k k xp ∞=∑绝对收敛,则称级数1k k k xp ∞=∑的和为随机变量X 的数学期望,记为()E X 。

即()1k k k E X x p ∞==∑。

设连续型随机变量X 的概率密度为()f x ,若积分()xf x dx ∞−∞⎰ 绝对收敛,则称积分()xf x dx ∞−∞⎰的值为随机变量X 的数学期望,记为()E X 。

即 ()()E X xf x dx ∞−∞=⎰ 数学期望简称期望,又称为均值。

性质:下面给出数学期望的几个重要的性质(1)设C 是常数,则有()E C C =;(2)设X 是一个随机变量,C 是常数,则有()()E CX CE X =;(3)设X 和Y 是两个随机变量,则有()()()E X Y E X E Y +=+,这一性质可以推广至任意有限个随机变量之和的情况;(4)设X 和Y 是相互独立的随机变量,则有()()()E XY E X E Y =。

2 方差的定义和性质定义:设X 是一个随机变量,若(){}2E X E X −⎡⎤⎣⎦存在,则称(){}2E X E X −⎡⎤⎣⎦为X的方差,记为()D X 或()Var X ,即性质:下面给出方差的几个重要性质(1)设C 是常数,则有()0D C =;(2)设X 是一个随机变量,C 是常数,则有()()2D CX C D X =,()()D X C D X +=;(3)设X 和Y 是两个随机变量,则有()()()()()()(){}2D X Y D X D Y E X E X Y E Y +=++−−特别地,若X 和Y 相互独立,则有()()()D X Y D X D Y +=+ (4)()0D X =的充分必要条件是以概率1取常数()E X ,即(){}1P X E X ==。

第一节 数学期望

第一节  数学期望
pk
1 2
1 22
1 23
1 23
1 1 1 1 (1) E ( ) 0 1 1 ( 2) E ( ) pk 1 k 1 1 x k
1 1 1 1 1 1 1 1 2 3 3 1 0 2 11 2 1 2 2 1 3 2 67 96


k 1


e e - (k - 1)! k -1 0 (k - 1)! e - e
k
k! k -1
3、离散型随机变量函数的数学期望 定理 1: P95 设 =g(), g() 是连续函数, (1)若 的分布律为 Pk P{ xk }
设随机变量在a, b上服从均匀分布.
1 其密度函数为 f x b a 0 a xb 其它
b
则的数学期望为E()=(a+b)/2
解: E ( )


-
xf(x)dx
a
1 x dx b-a
ab 2
2)指数分布
设随机变量服从参数为 的指数分布. e x x 0 密度函数为
10 0.6
10 0.3
试问哪一个人的射击水 平较高?
解: 甲、乙的环数可写为 E 8 0.1 9 0.3 10 0.6 9.5
E 8 0.2 9 0.5 10 0.3 9.1
因此,从平均环数上看,甲的射击水平要比 乙的好。
2、常见的离散型随机变量的数学期望P94 1)0—1分布 服从参数为p的(0-1)分布, 分布律为 0 1
k 1
k 1
记 E( ) xk pk
k 1


则称 E()为 R.V 的数学期望,简称为期望或均值。 若级数

数学期望及其性质

数学期望及其性质
第十三章
随机变量的数字特征
§1 数学期望
§1 数学期望
例 1:某班有 N 个人,其中有 ni 个人为 ai 分, i = 1,2,L k ,
∑n
i =1
k
i
= N , 求平均成绩。
解:
k ni 1 k 平均成绩为: ∑ ai ni = ∑ ai N i =1 N i =1 ni 若用 X 表示成绩,则 P{X = ai } ≈ N k k ni ai ⋅ ≈ a i ⋅ P{ X = a i } N i =1 i =1
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例4
设离散型随机变量 X 的分布律为: X 0 1 2 P 0.1 0.2 0.7
则 EXห้องสมุดไป่ตู้= 0*0.1+1*0.2+2*0.7 =1.6
若离散型随机变量 X 的分布律为: X 0 1 2 P 0.7 0.2 0.1 EX = 0*0.7+1*0.2+2*0.1 =0.4
n =1 ∞
时,才能保证级数 ∑ x n pn 的和与其级数 ∑ x n pn
n =1 n =1


的求和顺序无关.
返回主目录
第十三章 随机变量的数字特征
§1 数学期望
例2
甲、乙两人射击,他们的射击水平由下表给出: X:甲击中的环数;
Y:乙击中的环数;
X P
Y P
8 0.1
8 0 .2
9 0.3
9 0 .5
到站时间 8:10,9:10 概率 1/6 8:30,9:30 8:50,9:50 3/6 2/6
返回主目录
第十三章 随机变量的数字特征

数学期望的性质与条件期望

数学期望的性质与条件期望
P{ j 1}
1 3

P{ 1, j } P{ 1}

P{ 1, j }
2 3
j 0,1,2

0 1 2
2 0 5
Hale Waihona Puke 0 1 2P{ 0}
3 5
1 6 3 P{ 1} 10 10 10
2 3 8 E( 0) 0 0 1 2 5 5 5 6 3 6 1 1 2 E ( 1) 0 10 10 5 10
E x y ( y x )dy

表示在 x 的条件下关于 的条件期望
E y x ( x y )dx

表示在 y 的条件下关于 的条件期望
0 1 2 例6 设 与 的联合分布为 3 2 0 求在 0 和 1 时, 0 15 15 关于 条件期望. 6 1 3 P{ 0, j } 1 15 15 15 解 P{ j 0} P{ 0} P{ 0, j } j 0,1,2
E ( b) E ( ) x ( x )dx x ( x b)dx
令 z x b, 有


E ( b) ( z b) ( z )dz z ( z )dz b ( z )dz



E ( k b) E ( k ) b kE b
n
n
i 1
6 若与独立,则 E ( ) E E
证 假设 , 是离散型随机变量, 由于 与 独立
(1) i ( 2) j
所以pij p p , E ( ) xi y j pij xi y j p(i 1) p(j2)

概率论数学期望

概率论数学期望
▲ E ( X ) 的计算:当 X 的可能取值为有限时, 则计算有穷和;当 X 的可能取值为无限时, 则计算级数的和。 ▲若
x
k 1

k
pk 不绝对收敛,则称 E ( X ) 不存在
概率统计
例4.1 某商店在年末大甩卖中进行有奖销售,摇奖时 从摇箱摇出的球的可能颜色为:红、黄、蓝、白、黑 五种,其对应的奖金额分别为:10000元、1000元、 100元、10元、1元.假定摇箱内装有很多球,其中红、 黄、蓝、白、黑的比例分别为: 0.01%,0.15%,1.34%,10%,88.5%,求每次摇奖摇出的 奖金额X的数学期望.
n 1
(n 1) t t p q
n1 t t (n 1) t np ( p q ) np C k p q 1
n 1
np[ p (1 p)] np
概率统计
k 0
n1
即: E ( X ) np
(3) 泊松分布
若随机变量X 的所有可能取值为: 0,1, 2, 而它的分布律(它所取值的各个概率)为:

e

( x )2 2 2
dx
y2 2
令:y
x


ye
y 2
2
2
概率统计



dy 2
2
1
( y )e
dy



e
y2 2
dy
2 0 2 即: E ( X )
结论:正态分布中密度函数的参数 恰好就是 随机变量X的数学期望.
P( X k )

k e
k!
k 0,1, 2, 即: X~P ( )

第一节 数学期望

第一节 数学期望

若设随机变量 X 为:在 A 胜2局B 胜1局的前提 在 局 局的前提 最终所得的赌金. 下, 继续赌下去 A 最终所得的赌金 200 0 所取可能值为: 则X 所取可能值为 3 1 其概率分别为: 其概率分别为 4 4 因而A期望所得的赌金即为 期望所得的赌金即为X的 期望” 因而 期望所得的赌金即为 的 “期望”值, 3 1 200 × + 0 × = 150(元 ). 等于 4 4 即为 X 的可能值与其概率之积的累加 的可能值与其概率之积的累加.
E ( X 2 ) = 8 × 0.2 + 9 × 0.5 + 10 × 0.3 = 9.1(环),
故甲射手的技术比较好. 故甲射手的技术比较好
实例2 实例
如何确定投资决策方向? 如何确定投资决策方向?
某人有10万元现金,想投资于某项目, 某人有 万元现金,想投资于某项目, 万元现金 预估成功的机会为 30%,可得利润 万元 , ,可得利润8万元 失败的机会为70%,将损失 2 万元. 万元. 失败的机会为 , 若存入银行,同期间的利率为5% , 若存入银行,同期间的利率为 问是否作此项投资? 问是否作此项投资 解 为投资利润, 设 X 为投资利润,则
第一节
数学期望
一、离散型随机变量的数学期望 二、连续型随机变量的数学期望 三、随机变量函数的数学期望 四、数学期望的性质 五、小结
引例1 分赌本问题(产生背景 产生背景) 引例 分赌本问题 产生背景
A, B 两人赌技相同 各出赌金 两人赌技相同, 各出赌金100元, 元 并约定先胜三局者为胜, 并约定先胜三局者为胜 取得 全部 200 元.由于出现意外情况 , 由于出现意外情况 局时,不得不终止赌博 不得不终止赌博, 在 A 胜 2 局 B 胜1 局时 不得不终止赌博 如果要分赌金,该如何分配才算公平 该如何分配才算公平? 如果要分赌金 该如何分配才算公平 A胜 2 局 B 胜 1 局 前三局: 前三局 AA AB BA BB 后二局: 后二局 A胜 B胜 故有, 在赌技相同的情况下, 故有 在赌技相同的情况下 A, B 最终获胜的 可能性大小之比为 3 : 1, 1 3 即A 应获得赌金的 , 而 B 只能获得赌金的 4 . 4

数学期望的定义与性质优秀课件

数学期望的定义与性质优秀课件
N
4
kNk
k2
N
4
=k
k2
Nk N
4
kfk
k2
4
定 义 :设离散型随机变量 的可能的取为ai(i=1,2...),
其分布列为 P { a i} p i, i 1 ,2 , . 若
aipi
绝对收
i1
敛,则称随机变量 存在数学期望
E = ai pi i 1
思考 :1、为什么要绝对收敛?
变量,设其可能取值为bj,(j 1,2,...)
则 P(bj)
P(ai)
g(ai )bj
由数学期望的定义有:Eg()EbjP(bj) j1
b j P ( ai ) j1 g (ai )b j
g (ai )Байду номын сангаасP ( ai ) j 1 g ( ai )b j
g(ai)P( ai) i1 16
其 分 布 列 为 : 1 k 1 1 k
q
k
1 qk
由此可求的每人所需的平均检验次数:
E=a1p1a2p2 1kqk (11k)(1qk)
1qk 1k
每 人 检 验 一 次 , 所 以 当 1-qk+1k1时 , 即 q>1kk,
需 要 分 组 , 若 q已 知 , 还 可 以 从 E=1-qk+1k
6
例1 谁的技术比较好? 甲,乙两个射,他 手们的射击技术分别为
甲射手
击中环数 概率
8 9 10 0.3 0.1 0.6
乙射手
击中环数 8 9 10
概率
0.2 0.5 0.3
试问哪个射手技术较好?
7
解 设 甲 ,乙 射 手 击 中 的 环 数 分 别 为 ,.

4_1第一节数学期望

4_1第一节数学期望

λ e − λ x , x ≥ 0 f (x)) = p( x = 0 , x<0 +∞ +∞ +∞ − λx E ( X ) = ∫ xf ( x ) dx = ∫ λ xe dx = − ∫ xde − λ x
−∞ 0 0
= −[ xe
《概率统计》 概率统计》
− λx
|
+∞ 0
−∫ e

−∞
xf ( x ) dx
+∞
绝对收敛,则称积分值为 的数学期望 或均值) 的数学期望( 绝对收敛,则称积分值为X的数学期望(或均值). 记作E( ), E ),即 记作 (X),即 ( X ) =

−∞
xf (x)dx
《概率统计》 概率统计》
返回
下页
结束
例3.设随机变量 的概率密度为 .设随机变量X的概率密度为
∑ g(x ) p
k =1 k

k
绝对收敛,
E(Y)= E [ g(X) ] =
∑g(x ) p
k =1 k

k
已知X的概率分布为 例4. 已知 的概率分布为 X -1 0 1 2 5 P 0.3 0.1 0.2 0.15 0.25 令Y=X2 ,求E(Y)。 。 解:E(Y)=g(-1)*0.3+ g(0)*0.1+ g(1)*0.2+ g(2)*0.15+ g(5)*0.25
《概率统计》 概率统计》 返回 下页 结束
例 2. 按规定,火车站每天 8:00~9:00, 9:00~10:00 都恰 有一辆客车到站,但到站的时刻是随机的,且两 者到站的时间相互独立,其规律为: 到站时间 8:10,9:10 8:30,9:30 8:50,9:50 概率 1/6 3/6 2/6

《数学数学期望》课件

《数学数学期望》课件
《数学数学期望》ppt课 件
CATALOGUE
目 录
• 数学期望的基本概念 • 数学期望的性质与定理 • 数学期望的应用 • 特殊随机变量的数学期望 • 数学期望的扩展与展望
01
CATALOGUE
数学期望的基本概念
定义与性质
定义
数学期望是随机试验在大量重复 下出现的频率的稳定值。
性质
数学期望具有可加性、可数性、 线性性质等。
分位数与分位数函数
分位数
分位数是概率论中的一个概念,用于描述数据分布的位置特征。常见的分位数包括中位 数、四分位数等。分位数的计算和应用对于统计分析、数据挖掘等领域具有重要意义。
分位数函数
分位数函数是描述分位数与概率之间关系的函数。通过分位数函数,可以更方便地理解 和应用分位数的概念,从而更好地分析数据的分布特征。
通过计算投资组合的数学期望, 投资者可以了解投资组合的预期
收益,并据此做出投资决策。
数学期望在金融学中还用于资产 定价、风险管理、资本预算和股
票期权定价等领域。
在决策理论中的应用
在决策理论中,数学期望被用来评估 不同决策方案的预期结果。
数学期望在决策理论中还用于风险决 策、不确定性决策和多目标决策等领 域,以帮助我们做出更加科学和合理 的决策。
大数定律与中心极限定理
大数定律
当试验次数趋于无穷时,随机事件的频率趋于该事件 发生的概率。即 limn→∞P(|En−E)/n→0P(|En−E)/n→0limn→∞P(|En −E)/n→0=1。
中心极限定理
无论随机变量X1,X2,…,XnnX_1, X_2, ldots, X_{nn}Xi1,Xi2,…,Xinn的分布如何,当它们的数量趋于 无穷时,它们的平均值的分布趋于正态分布。即 limn→∞P(|En−μ)/σ≤z)=1−12z2lim_{n to infty} P(|En−μ)/σ≤z|)=1−12z2limn→∞P(|En−μ)/σ≤z|)=1 −12z2,其中En=1n∑i=1nXiEn = frac{1}{n} sum_{i=1}^{n} X_iEn=n1∑i=1nXi,μ是随机变量的均 值,σ是标准差,z是正态分布的分位数。

4.1 数学期望

4.1  数学期望

X的数学期望为
E( X ) x f ( x)d x

b a
ab x . dx 2 ba
即数学期望位于区间 (a, b)的中点.
例6 设随机变量X服从Cauchy 分布, 概率密度为
f ( x) 1 π( x 1)
2
, x
求E ( X )
1 x 解:E ( X ) 2 dx π ( x 1)
第一节
数学期望
一、数学期望的概念 二、数学期望的性质 三、随机变量函数的数学期望 四、小结
引例1
选拔运动员
设某教练员有甲、乙两名射击运动员, 现 需要选拔其中的一名参加运动会, 根据过去的 记录显示, 二人的技术水平如下:
甲射手
击中环数 概率 击中环数 概率 8 9 10
0 . 3 0 .1 0 . 6
1 . 15
p
( X ,Y )
0 .1 0 .1 0 .1 0 .1 0 . 3 0 .1 (1,1) (1,0 ) (1,1) ( 2,1) ( 2,1) ( 3,0) ( 3,1)
4 1
0 .2
( X Y )2
0
9
1
9
4
得 E[( X Y )2 ] 4 0.3 1 0.2 0 0.1 9 0.4


g ( x, y) f ( x, y)dxdy
实例9 设 ( X , Y ) 的分布律为
Y X 1 1 2
3
0 1
0.2 0.1
0.1 0 0.1
0 0.3 0.1
2
0.1
求 : E ( X ), E (Y ), E (Y X ) , E[( X Y ) ].

4.1数学期望

4.1数学期望

E ( X 1 ) = 8 × 0.3 + 9 × 0.1 + 10 × 0.6 = 9.3(环), E ( X 2 ) = 8 × 0.2 + 9 × 0.5 + 10 × 0.3 = 9.1(环),
故甲射手的技术比较好. 故甲射手的技术比较好
实例2 商店的销售策略 实例 某商店对某种家用电器 的销售采用先使用后 付款的方式 , 记使用寿命为 X (以年计 ), 规定 : X ≤ 1, 一台付款 1500 元;1 < X ≤ 2, 一台付款 2000 元; 2 < X ≤ 3, 一台付款 2500 元; X > 3, 一台付款 3000 元 .
设寿命 X 服从指数分布 ,概率密度为 , 概率密度为 设寿命 1 − x 10 , x > 0, e f ( x ) = 10 0, x ≤ 0. 试求该商店一台家用电 器收费 Y 的数学期望 .

1 − x 10 = 1 − e − 0.1 = 0.0952, P { X ≤ 1} = ∫ e dx 0 10 2 1 P {1 < X ≤ 2} = ∫ e − x 10 d x 1 10

xi+1
xi
f (x)dx
阴影面积近似为
f (xi )∆xi
≈ f (xi )( xi+1 − xi )
= f (xi )∆xi
小区间[x 小区间 i, xi+1)
因此X与以概率 因此 与以概率 f (xi )∆xi 取值xi的离离连r.v 近似, 该离离连r.v 近似 该离离连 的数学 阴影面积近似为 期望是 期望是 f (xi )∆xi
若设随机变量 X பைடு நூலகம்:在 A 胜2局B 胜1局的前提 在 局 局的前提 最终所得的赌金. 下, 继连赌下去 A 最终所得的赌金 所取可能值为: 则X 所取可能值为 其概率分别为: 其概率分别为

《数学期望与方差》课件

《数学期望与方差》课件
二项分布期望
对于二项分布,可以直接使用公式计算期望 值。
方差的计算技巧
定义法
根据方差的定义,利用概率和数学公 式进行计算。
性质法
利用方差的非负性、方差的加法性质 和方差的常数性质简化计算。
随机变量函数的方差
通过随机变量函数的概率分布计算方 差。
二项分布方差
对于二项分布,可以直接使用公式计 算方差值。
Excel计算
在Excel中,可以使用"DEVSQ"函数来计算方差,该函数会自动处理数据点的数 量和每个数据点与均值之差的平方。
方差的应用
数据分析
方差可以用来分析数据的分散程度,从而了解数据的稳定 性、可靠性等方面的情况。
质量控制
在生产过程中,方差可以用来衡量产品质量的一致性和稳 定性,通过控制生产过程中各种因素的影响,降低产品质 量的波动。
风险评估
在金融和投资领域,方差被用来评估投资组合的风险,通 过计算投资组合收益率的方差和标准差等指标,投资者可 以了解投资组合的风险情况。
社会科学研究
在社会学、心理学、经济学等社会科学研究中,方差可以 用来分析调查数据的分散程度,从而了解群体内部的差异 和分布情况。
数学期望与方差的
03
关系
数学期望与方差的联系
方差的期望值性质
Var(E(X|Y))=E(Var(X|Y))。
方差的非负性质
Var(X)≥0,当且仅当X是常数 时等号成立。
期望与方差的性质和定理在实际问题中的应用
在金融领域,期望和方差用于评估投资 组合的风险和预期收益。通过计算期望 收益和方差,投资者可以了解投资组合
的预期表现和风险水平。
在统计学中,期望和方差用于描述数据 的集中趋势和离散程度。例如,在计算 平均数和标准差时,期望和方差是重要
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档