ansys教程完整
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FEA 模型
加载 (续)
加载面力载荷
Main Menu: Solution > -Loads- Apply > Pressure > On Lines
拾取 Line
输入一个 压力值即为 均布载荷, 两个数值 定义 坡度压力
说明:压力数值为正表示其方向指向表面
加载 (续)
加载面力载荷(续)
500 L3 VALI = 500 500
坡度压力载荷沿起始关键点(I) 线性变化到第二个关键点 (J)。
1000 500 L3 VALI = 500 VALJ = 1000
如果加载后坡度的方向相反, 将 两个压力数值颠倒即可。
1000 500 L3 VALI = 1000 VALJ = 500
加载 (续)
加载轴对称载荷 轴对称载荷可加载到具有对称轴的3-D 结构上。 3-D 轴对称结构可用一2-D 轴对称模型描述。
图形 显示由ANSYS创建或传 递到ANSYS的图形.
三、前处理
实体建模 参数化建模 体素库及布尔运算 拖拉、旋转、拷贝、蒙皮、倒角等 多种自动网格划分工具,自动进行单元形态、求解精度检查及修正 自由/映射网格划分、智能网格划分、自适应网格划分 · · 复杂几何体Sweep映射网格生成 · · 六面体向四面体自动过渡网格:金字塔形 边界层网格划分 在几何模型或FE模型上加载:点载荷、分布载荷、体载荷、函数载 荷 可扩展的标准梁截面形状库
2. 高度非线性瞬态动力分析(ANSYS/LS-DYNA) ●全自动接触分析,四十多种接触类型 ●任意拉格郎日-欧拉(ALE)分析 ●多物质欧拉、单物质欧拉 ● 适应网格、网格重划分、重启动 ● 100多种非线性材料模式 ●多物理场耦合分析:结构、热、流体、声学 ●爆炸模拟,起爆效果及应力波的传播分析 ●侵彻穿甲仿真,鸟撞及叶片包容性分析,跌落分析 ●失效分析,裂纹扩展分析 ●刚体运动、刚体-柔体运动分析 ●实时声场分析 ● BEM边界元方法,边界元、有限元耦合分析 ●光顺质点流体动力(SPH)算法
5. 流体动力学分析 ● 定常/非定常分析 ●层流/湍流分析 ●自由对流/强迫对流/混合对流分析 ●可压缩流/不可压缩流分析 ●亚音速/跨音速/超音速流动分析 ●任意拉格郎日-欧拉分析(ALE) ●多组份流动分析(多达6组份) ●牛顿流与非牛顿流体分析 ●内流和外流分析 ●共轭传热及热辐射边界 ●分布阻尼和风扇模型 ●移动壁面及自由界面分析
选择图形类型. 将弹出 选取菜 单 (见下页) 提示选择图形进行 布尔操作.
四、加载、求解
4-1. 列表和分类载荷
Objective
ANSYS中的载荷可分为: • 自由度DOF - 定义节点的自由度( DOF ) 值 (结构分析_位移、热 分析_ 温度、电磁分析_磁势等) • 集中载荷 - 点载荷 (结构分析_力、热分析_ 热导率、电磁分析_ magnetic current segments) • 面载荷 - 作用在表面的分布载荷 (结构分析_压力、热分析_热对流 、电磁分析_magnetic Maxwell surfaces等) • 体积载荷 - 作用在体积或场域内 (热分析_ 体积膨胀、内生成热、电 磁分析_ magnetic current density等) • 惯性载荷 - 结构质量或惯性引起的载荷 (重力、角速度等)
启动ANSYS
Objective
1-1. 启动ANSYS软件.
要启动ANSYS: 开始> 程序 > ANSYS 12.1 >Mechnical APDL Product Launcher
启动ANSYS(续)
当显示出这六个窗 口后,就可以使用 ANSYS了.
ANSYS窗口
1-2. ANSYS GUI中六个窗口的总体功能
一、主要功能简介
1. 结构分析 1) 静力分析 - 用于静态载荷. 可以考虑结构的线性及 非线性行为。 ● 线性结构静力分析 ● 非线性结构静力分析 ♦ 几何非线性:大变形、大应变、应力强化、旋 转软化 ♦ 材料非线性:塑性、粘弹性、粘塑性、超弹性、 多线性弹性、蠕变、肿胀等 ♦ 接触非线性:面面 / 点面 / 点点接触、柔体 / 柔体 刚体接触、热接触 ♦ 单元非线性:死/活单元、钢筋混凝土单元、非 线性阻尼/弹簧元、预紧力单元等
ANSYS的分析方法(续)
2-2. ANSYS分析步骤在GUI中的体现.
Objective
分析的三个主要步骤可在主菜单中得到明确体现.
主菜单 1. 建立有限元模型 2. 施加载荷求解 3. 查看结果
ANSYS的分析方法(续)
ANSYS GUI中的功能排列 按照一种动宾结构,以动 词开始(如Create), 随后 是一个名词 (如Circle).
Volumes Areas
OOPs!
Areas
Lines Keypoints
Lines Keypoints
2.布尔操作
要使用布尔操作: Main Menu: Preprocessor > -Modeling- Operate >
选择一种布尔操作 (例如: Add)
1. ..... 2. ..... 3. ..... Procedure
6. 声学分析 ●定常分析 ●模态分析 ●动力响应分析 7. 压电分析 ●稳态、瞬态分析 ●模态分析 ●谐响应分析 8. 多场耦合分析 ●热-结构 ● 磁-热 ●磁-结构 ●流体-热 ●流体-结构 ●热-电 ●电-磁-热-流体-结构
9. 优化设计及设计灵敏度分析 ●单一物理场优化 ●耦合场优化 10.二次开发功能 ●参数设计语言 ●用户可编程特性 ●用户自定义界面语言 ●外部命令
11. ANSYS土木工程专用包 ANSYS 的土木工程专用包 ANSYS/CivilFEM 用来研究 钢结构、钢筋混凝土及岩土结构的特性,如房屋建筑、 桥梁、大坝、硐室与隧道、地下建筑物等的受力、变 形、稳定性及地震响应等情况,从力学计算、组合分 析及规范验算与设计提出了全面的解决方案,为建筑 及岩土工程师提供了功能强大且方便易用的分析手段。
Areas
Keypoints
Lines
Area
Volume
ANSYS中图元(续)
层次关系
从最低阶到最高阶,模型图元的层次关系为: • 关键点(Keypoints) • 线(Lines) • 面(Areas) • 体(Volumes) 提示: 如果低阶的图元连在高阶图元上,则低阶图元不能删除.
I’ll just change this line
Total Force = 2pr = 47,124 lb.
Meshing 几何实体模型 有限元模型
ANSYS中的图元
3-3. 四类实体模型图元, 以及它们之间的层次关系.
Objective
(即使想从CAD模型中传输实体模型,也应该知道如何使用 ANSYS建模工具修改传入的 模型.) 下图示意四类图元.
• 体 (3D模型) 由面围成,代表三维实体. • 面 (表面) 由线围成. 代表实体表面、平面 形状或壳(可以是三维曲面). • 线 (可以是空间曲线) 以关键点为端点, 代表物体的边. • 关键点 (位于3D空间) 代表物体的角点.
ANSYS教程
第一章 ANSYS主要功能与模块
ANSYS是世界上著名的大型通用有限元计算软件, 它包括热、电、磁、流体和结构等诸多模块,具有强大 的求解器和前、后处理功能,为我们解决复杂、庞大的 工程项目和致力于高水平的科研攻关提供了一个优良的 工作环境,更使我们从繁琐、单调的常规有限元编程中 解脱出来。ANSYS本身不仅具有较为完善的分析功能, 同时也为用户自己进行二次开发提供了友好的开发环境。 ANSYS程序自身有着较为强大三维建模能力,仅靠 ANSYS 的 GUI( 图形界面 ) 就可建立各种复杂的几何模型; 此外, ANSYS还提供较为灵活的图形接口及数据接口。 因而,利用这些功能,可以实现不同分析软件之间的模 型转换。
对称轴
3-D 结构 轴对称模型
10” 直径 5” 半径
加载 (续)
准则
加载 轴对称载荷, 注意以下 方面:
Axis of symmetry
– 载荷数值 (包括输出的反力) 基于360度转角的3-D结构。 – 在右图中,轴对称模型中的 载荷是3-D结构均布面力载 荷的总量。
3-D 结构
ຫໍສະໝຸດ Baidu
2-D 有限元模型
Guidelines
+ 加载的操作更加容易 ,尤其是在图形中直接拾取时.
加载 (续)
无论采取何种加载方式,ANSYS求解前都将载荷转化到有限元模型.因此 , 加载到实体的载荷将自动转化到 其所属的节点或单元上。
沿线均布的压力
均布压力转化到以线为边界 的各单元上
实体模型
加载到实 体的载荷 自动转化 到其所属 的节点或 单元上
第二章 ANSYS基本使用方法
一、典型分析过程
1. 前处理——创建有限元模型 1)单元属性定义(单元类型、实常数、材料属性) 2)创建或读入几何实体模型 3)有限元网格划分 4)施加约束条件、载荷条件 2. 施加载荷进行求解 1)定义分析选项和求解控制 2)定义载荷及载荷步选项 2)求解 solve 3. 后处理 1)查看分析结果 2)检验结果
2)模态分析 - 计算线性结构的自振频率及振形. 谱分 析,是模态分析的扩展,用于计算由于随机振动 引起的结构应力和应变 (也叫作 响应谱或 PSD). 3)谐响应分析 - 确定线性结构对随时间按正弦曲线 变化的载荷的响应. 4)瞬态动力学分析 - 确定结构对随时间任意变化的 载荷的响应. 可以考虑与静力分析相同的结构非线 性行为. 5)谱分析 6)随机振动分析等 7)特征屈曲分析 - 用于计算线性屈曲载荷并确定屈 曲模态形状. (结合瞬态动力学分析可以实现非线性 屈曲分析.) 8)专项分析: 断裂分析, 复合材料分析,疲劳分析
加载
4-2a. 加载.
Objective
可在实体模型或 FEA 模型 (节点和单元) 上加载.
沿线均布的压力
沿单元边界均布的压力
在关键点处 约束
在节点处约束
实体模型
FEA 模型
在关键点加集中力
在节点加集中力
加载 (续)
直接在实体模型加载的优点:
+ 几何模型加载独立于有限元网格. 重新划分网格或局部网格修改不影 响载荷.
Objective
输入 显示提示信息,输入 ANSYS命令,所有输入 的命令将在此窗口显示 。
应用菜单 包含例如文件管理、选 择、显示控制、参数设 置等功能.
主菜单 包含ANSYS的主要功能 ,分为前处理、求解、 后处理等。
工具条 将常用的命令制成工具 条,方便调用.
输出 显示软件的文本输出。 通常在其他窗口后面, 需要查看时可提到前面 。
菜单的排列,按照由前到后 、由简单到复杂的顺序,与 典型分析的顺序相同.
二、 ANSYS文件及工作文件名
数据库文件 Log 文件 结果文件 图形文件 一些特殊的文件 jobname.db jobname.log jobname.rxx jobname.grph 二进制 文本 二进制 二进制
ANSYS的数据库,是指在前处理、求解及后处理过 程中,ANSYS保存在内存中的数据。数据库既存储输入 的数据,也存储结果数据: 输入数据 - 必须输入的信息 (模型尺寸、材料属性、载荷 等). 结果数据 - ANSYS计算的数值 (位移、应力、应变、温度 等).
1. 实体模型及有限元模型 现今几乎所有的有限元分析模型都用实体模型建模 . 类似于CAD,ANSYS以数学的方式表达结构的几何形状, 用于在里面填充节点和单元,还可以在几何模型边界上 方便地施加载荷. 但是, 几何实体模型并不参与有限元分 析. 所有施加在几何实体边界上的载荷或约束必须最终传 递到有限元模型上(节点或单元上)进行求解. 由几何模型创建有限元模型的过程叫作网格划分
3. 热分析 ●稳态、瞬态温度场分析 ●热传导、热对流、热辐射分析 ●相变分析 ●材料性质、边界条件随温度变化 4. 电磁分析 ●静磁场分析-计算直流电(DC)或永磁体产生的磁场 ●交变磁场分析- 计算由于交流电(AC)产生的磁场 ●瞬态磁场分析-计算随时间随机变化的电流或外界 引起的磁场 ●电场分析-用于计算电阻或电容系统的电场. 典型的 物理量有电流密度、电荷密度、电场及电阻热等。 ●高频电磁场分析-用于微波及RF无源组件,波导、 雷达系统、同轴连接器等分析。