二次函数图象对称性的题型归类

合集下载

二次函数知识点总结和题型总结(1)

二次函数知识点总结和题型总结(1)

二次函数知识点总结和题型总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函 数,叫做二次函数。

这里需要强调:①a ≠ 0 ②最高次数为2 ③代数式一定是整式2. 二次函数2y ax bx c =++的结构特征: ⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 例题:例1、已知函数y=(m -1)x m2 +1+5x -3是二次函数,求m 的值。

练习、若函数y=(m 2+2m -7)x 2+4x+5是关于x 的二次函数,则m 的取值范围 为 . 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:a 的绝对值越大,抛物线的开口越小.2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4。

()2y a x h k =-+的性质:(技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b24a )1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。

2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( )A.第一象限B.第二象限C.第三象限 D 。

第四象限4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = 。

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)解析版

专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。

4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。

二次函数各种题型汇总

二次函数各种题型汇总

二次函数各种题型汇总一、利用函数的对称性解题(一)用对称比较大小例1、已知二次函数y=x2-3x-4,若x2-3/2>3/2-x1>0,比较y1与y2的大小解:抛物线的对称轴为x=3/2,且3/2-x1>0,x2-3/2>0,所以x1在对称轴的左侧,x2在对称轴的右侧,由已知条件x2-3/2>3/2-x1>0,得:x2到对称轴的距离大于x1到对称轴的距离,所以y2>y1(二)用对称求解析式例1、已知抛物线y=ax2+bx+c的顶点坐标为(-1,4),与x轴两交点间的距离为6,求此抛物线的解析式。

解:因为顶点坐标为(-1,4),所以对称轴为x=-1,又因为抛物线与x轴两交点的距离为6,所以两交点的横坐标分别为:x 1=-1-3=-4,x2=-1+3=2 则两交点的坐标为(-4,0)、(2,0);设抛物线的解析式为顶点式:ya(x+1)+4,把(2,0)代入得a=-4/9。

所以抛物线的解析式为y=-4/9(x+1)2+4(三)用对称性解题例1:关于x的方程x2+px+1=0(p>0)的两根之差为1,则p等于()A. 2B. 4C. 3D. 5解:设方程x2+px+1=0(p>0)的两根为x1、x2,则抛物线y=x2+px+1与x轴两交点的坐标为(x1,0),(x2,0)。

因为抛物线的对称轴为x=-p/2,所以x1=-p/2-1/2,x2=-p/2+1/2,因为x1x2=1。

所以(-p/2-1/2)(-p/2+1/2=1,p2=5 因为p>0,所以p=5例2、如图,已知抛物线y=x2 +bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A.(2,3) B.(3,2) C.(3,3) D.(4,3)解:由点A,B均在抛物线上,且AB与x轴平行可知,点A,B关于x=2对称。

设点B的横坐标为xB,∵点A的坐标为(0,3),所以,(0+xB)/2=2,xB=4∴B点坐标为(4,3)例2 (2010,山东日照)如图2是二次函数y=ax2+bx+c图象的一部分,其对称轴为直线x=1,若其与x轴一交点为A(3,0),则由图象可知,不等式ax2+bx+c<0的解集是多少解析:由抛物线的对称性可知,抛物线与x轴的另一交点为(-1,0),ax2+bx+c<0的解集就是抛物线落在x轴下方的部分所对应的x的取值,不等式ax2+bx+c<0的解集是-1<x<3.例3、(2010,浙江金华)若二次函数y=-x2+2x+k的部分图象如图3所示,则关于x的一元二次方程-x2+2x+k=0的一个解x1=3,另一个解x2是多少;解:依题意得二次函数y=-x2+2x+k的对称轴为x=1,与x轴的一个交点为(3,0),∴抛物线与x轴的另一个交点横坐标为1-(3-1)=-1,∴交点坐标为(-1,0)∴关于x的一元二次方程-x2+2x+k=0的解为x1=3或x2=-1.故填空答案:x1=-1例4:如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为() A. 0 B. -1 C. 1 D. 2解法1:将P代入得:9a+3b+c=0由对称轴得:-b/2a=1, 得b=-2a 9a+3b+c=3a+c=0即a+2a+c=0 则 a-b+c=0解法2:由抛物线的对称轴:x=1,及点P(3,0),可求出抛物线上点P关于对称轴x=1的对称点的坐标为Q(-1,0),由于Q在抛物线上,有(-1,0)满足关系式,因为点p,Q在x轴上所以a-b+c=0,故选A.例5、抛物线y=ax2+bx+c经过点A(-2,7),B(6,7),C(3,-8),则该抛物线上纵坐标为-8的另一点的坐标是_______________解析:由点A(-2,7),B(6,7)的纵坐标相同,可知A、B关于抛物线的对称轴对称,且对称轴方程为x=(-2+6)/2=2,于是设该抛物线上纵坐标为–8的另一点的坐标为(x2,-8),则有2=(3+x2)/2,从而得x2=1,故答案为(1,-8).例6、已知抛物线上有不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).求抛物线的解析式.分析:关键是确定一次项系数b.观察抛物线上不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).纵坐标相同,因此判断得点E和点F关于抛物线对称轴对称.解:的对称轴为x=-b÷(-1/2×2)=b因为抛物线上不同的两点E(k+3,-k2+1)和F(-k-1,-k2+1).纵坐标相同,∴点E和点F关于抛物线对称轴对称,则b=[(k+3)+(-k-1)]÷2=1,∴抛物线的解析式为y=1/2x2+x+4例7(2010,山东聊城)如图5,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;.分析:(1)由点C (0,-3)知c =-3,只需求得a 、b 两个未知的系数,根据点A (-1,0)和对称轴x=1,利用待定系数法可求解;(2)由抛物线的对称性知,直线x=1是AB 的垂直平分线,因此MA =MB ,要使得MA+MC 最小,只要MC+MB 最小,所以点M 就是直线BC 与抛物线对称轴的交点.解:(1)∵抛物线经过点C (0,-3)∴c =-3,∴y =ax2+bx-3。

专题1.3 二次函数的图象与性质(二)【八大题型】(举一反三)(浙教版)(解析版)

专题1.3 二次函数的图象与性质(二)【八大题型】(举一反三)(浙教版)(解析版)

专题1.3 二次函数的图象与性质(二)【八大题型】【浙教版】【题型1 利用二次函数的图象与性质比较函数值的大小】 (1)【题型2 利用二次函数的图象特征求参数的值或取值范围】 (4)【题型3 根据规定范围内二次函数函数的最值求参数的值】 (6)【题型4 根据规定范围内二次函数函数的最值求参数取值范围】 (9)【题型5 根据二次函数的性质求最值】 (11)【题型6 二次函数的对称性的运用】 (13)【题型7 二次函数的图象与一次函数图象共存问题】 (16)【题型8 利用二次函数的图象与系数的关系判断结论】 (19)【题型1利用二次函数的图象与性质比较函数值的大小】【例1】(2023春·天津滨海新·九年级校考期中)已知点A(−2,y1),B(1,y2),C(5,y3)在二次函数y=−3x2+k 的图象上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y1<y3<y2【答案】C【分析】根据题意可得二次函数y=−3x2+k的图象的对称轴为y轴,从而得到点A(−2,y1)关于对称轴的对称点为(2,y1),再由当x>0时,y随x的增大而减小,即可求解.【详解】解:∵二次函数y=−3x2+k的图象的对称轴为y轴,∴点A(−2,y1)关于对称轴的对称点为(2,y1),∵−3<0,∴当x>0时,y随x的增大而减小,∵1<2<5,∴y3<y1<y2.故选:C【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质是解题的关键.【变式1-1】(2023春·九年级单元测试)若点C(x1,m)、D(x2,n)在抛物线y=−2(x−3)2的图象上,且x1>x2 >3,则m与n的大小关系为______.【答案】m<n【分析】根据二次函数解析式,求得二次函数的对称轴,开口方向,再根据二次函数的性质求解即可.【详解】解:由抛物线y=−2(x−3)2可得,a<0,开口向下,对称轴为x=3,∴当x>3时,y随x的增大而减小,又∵x1>x2>3,∴m<n故答案为:m<n【点睛】此题考查了二次函数的图象与性质,解题的关键是熟练掌握二次函数的有关性质.【变式1-2】(2023春·福建漳州·九年级统考期末)已知点(x1,y1),(x2,y2),(x3,y3)都在二次函数y=ax2−2ax−3a(a≠0)的图像上,若−1<x1<0,1<x2<2,x3>3,则下列关于y1,y2,y3三者的大小关系判断一定正确的是()A.y1可能最大,不可能最小B.y3可能最大,也可能最小C.y3可能最大,不可能最小D.y2不可能最大,可能最小【答案】B【分析】求出函数图像的对称轴,与x轴的交点,分a>0和a<0两种情况,根据已知三点与对称轴的距离,结合开口方向分析即可.【详解】解:在y=ax2−2ax−3a(a≠0)中,=1,对称轴为直线x=−−2a2a令ax2−2ax−3a=0,解得:x1=−1,x2=3,∴函数图像与x轴交于(−1,0),(3,0),∵−1<x1<0,1<x2<2,x3>3,∴(x3,y3)离对称轴最远,(x2,y2)离对称轴最近,当a>0时,开口向上,∴y3>y1>y2;当a<0时,开口向下,∴y3<y1<y2;∴y2和y3可能最大,也可能最小,故选B.【点睛】本题考查了二次函数的图像与性质,解题的关键是根据表达式求出对称轴和与x轴交点,利用性质进行分析.【变式1-3】(2023·浙江温州·校考三模)已知二次函数y =x 2−2x 的图象过A (a,y 1),B (2a,y 2)两点,下列选项正确的是( )A .若a <0,则y 1>y 2B .若0<a <23,则y 1<y 2C .若23<a <1,则y 1<y 2D .若a >1,则y 1>y 2【答案】C【分析】根据根据二次函数的解析式得到对称轴为直线x =1,再利用二次函数的性质对各项判断即可解答.【详解】解:∵二次函数y =x 2−2x 的图象过A (a,y 1),B (2a,y 2)两点,∴二次函数的顶点式为:y =x 2−2x =(x−1)2−1,∴当x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;∵a <0,∴2a <0,∴a >2a ,∴y 1<y 2,故A 错误;∵二次函数的顶点式为:y =x 2−2x =(x−1)2−1,∴抛物线的对称轴为直线x =1,若a 2a 2=1,∴解得:a =23,∴当a =23时,a 和2a 关于x =1对称,∴当0<a <23时,y 1>y 2;当23<a <1时,y 1<y 2,故B 错误,C 正确;当a >1时,y 随x 的增大而增大,∵a <2a ,∴y 1<y 2,故D 错误;故选C.【点睛】本题考查了二次函数的性质,二次函数的对称轴,掌握二次函数的性质是解题的关键.【题型2利用二次函数的图象特征求参数的值或取值范围】【例2】(2023·江苏苏州·模拟预测)若二次函数y=x2−2x−3的图象上有且只有三个点到x轴的距离等于m,则m的值为___________.【答案】4【分析】由抛物线解析式可得抛物线对称轴为直线x=1,顶点为(1,−4),由图象上恰好只有三个点到x轴的距离为m可得m=4.【详解】解:∵y=x2−2x−3=(x−1)2−4,∴抛物线开口向上,抛物线对称轴为直线x=1,顶点为(1,−4),∴顶点到x轴的距离为4,∵函数图象有三个点到x轴的距离为m,∴m=4,故答案为:4.【点睛】本题考查了二次函数图象上点的坐标特征,能够理解题意,掌握求二次函数对称轴和顶点坐标的方法是解题的关键.【变式2-1】(2023·江苏南通·统考二模)若抛物线y=−x2+4x−n的顶点在x轴的下方,则实数n的取值范围是______.【答案】n>4【分析】先将抛物线解析式化为顶点式,再利用顶点在x轴下方,即可求出n的范围.【详解】解:y=−x2+4x−n,化为顶点式为:y=−(x−2)2+4−n,∵4−n<0,∴n>4,故答案为:n>4.【点睛】本题考查了抛物线的顶点式解析式,解题关键是理解当顶点纵坐标小于0时,顶点位于x轴下方.【变式2-2】(2023·黑龙江大庆·大庆一中校考模拟预测)二次函数y=kx2−x−4k(k为常数且k≠0)的图象始终经过第二象限内的定点A.设点A的纵坐标为m,若该函数图象与y=m在1<x<3内没有交点,则k 的取值范围是______.【答案】0<k<1或−1<k<0【分析】先计算二次函数过两个定点,确定m=2,根据函数图象与y=m在1<x<3内没有交点,分k>0和k<0两种情况列不等式即可解答.【详解】解:∵y=kx2−x−4k=k(x2−4)−x,∴x2−4=0,∴x=±2,当x=2时,y=−2,当x=−2时,y=2,∴二次函数y=kx2−x−4k(k为常数且k≠0)的图象始终经过定点−2,2,2,−2,∴m=2,∵函数y=kx2−x−4k的图象与y=2在1<x<3内没有交点,∴分两种情况:①当k>0时,x=3时,y<2,即9k−3−4k<2,∴k<1,∴0<k<1,②当k<0时,当x=1时,y<2,即k−1−4k<2,∴k>−1,∴−1<k<0,综上所述,k的取值范围是0<k<1或−1<k<0,故答案为:0<k<1或−1<k<0.【点睛】本题主要考查了二次函数图象上点的坐标特征,解题的关键是理解题意,计算定点A的坐标.【变式2-3】(2023·陕西西安·陕西师大附中校考模拟预测)如图,抛物线y=ax2+bx+c的图象过点(−1,0)和(0,−1),则a+b+c的取值范围是()A .−2<a +b +c <0B .−2<a +b +c <−1C .−32<a +b +c <0D .−32<a +b +c <−1【答案】A【分析】由函数图象的开口方向可知a >0,由抛物线与y 轴的交点判断c 的值,当x =1时,二次函数的值小于零,由此可求出a 的取值范围,将a +b +c 用a 表示即可得出答案.【详解】由图象开口向上,可得a >0,∵图象过点(0,−1),∴c =−1,∵图象过点(−1,0),∴a−b−1=0,∴b =a−1,∵对称轴在y 轴的右侧,∴当x =1时,y =a +b +c =a +a−1−1=2a−2<0,∴a <1,∴0<a <1,∴−2<2a−2<0,即−2<a +b +c <0,故选:A .【点睛】本题考查了二次函数图象和性质,二次函表达式系数符号的确定,熟练掌握知识点是解题的关键.【题型3 根据规定范围内二次函数函数的最值求参数的值】【例3】(2023春·九年级单元测试)二次函数y =ax 2−4x +1有最小值−3,则 a 的值为( )A .1B .−1C .±1D .2【答案】A【分析】把二次函数y =ax 2−4x +1变成顶点式,根据二次函数的图象性质,得出结论.【详解】∵y=ax2−4x+1∴y=ax2−4x+1=ax−−4a+1∵二次函数y=ax2−4x+1有最小值−3,∴a>0−4a+1=−3∴a=1故选:A【点睛】本题主要考查了二次函数图象的性质,把二次函数的一般式变成顶点式,求二次函数的最值,熟练掌握二次函数图象的相关性质是解本题的关键.【变式3-1】(2023春·浙江·九年级校联考期中)已知函数y=−x2+bx−3(b为常数)的图象经过点(−6,−3).当m≤x≤0时,若y的最大值与最小值之和为2,则m的值为()A.−2或−3+B.−2或−4C.−2或D.【答案】C【分析】将点(−6,−3)代入y=−x2+bx−3即可求得b的值,进而求得抛物线的最大值,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【详解】把(−6,−3)代入y=−x2+bx−3,得b=−6,∴y=−x2−6x−3,∵y=−x2−6x−3=−(x+3)2+6∴当x=−3时,y有最大值为6;①当−3<x≤0时,当x=0时,y有最小值为−3,当x=m时,y有最大值为y=−m2−6m−3∵y的最大值与最小值之和为2,∴−m2−6m−3+(−3)=2,∴m=−2或m=−4(舍去)。

二次函数的对称问题

二次函数的对称问题
y ax2 bx c b2 2a
(b 不变) (ab 变,c 减)
y=-a(x+h)2-k y=-a(x-h)2+k y=-a(x+h-2m)2+2n-k
(全变) (a 变) (全变,减 2m 加 2n)
6 直线 x=m 对称
y=a(x+h-2m)2+k
(h 变,减 2m)
7 直线 y=n 对称
y=-a(x-h)2 +2n-k
(h 不变,加 2n)
一般式
原二次函数表达式
y=ax2+bx+c
1 x 轴对称Байду номын сангаас
y= -ax2-bx-c
规律 (全变)
顶点式
y=a(x-h)2+k y=-a(x-h)2-k
规律 (h 不变)
2 y 轴对称
y=ax2-bx+c
(b 变 )
y=a(x+h)2+k
(h 变)
3 原点对称 4 顶点对称
5 点 m,n 对称
y=-ax2+bx-c
二次函数的对称问题
二次函数的对称问题主要分两大类 7 种情况进行讨论,分别是轴(线)对称和点对称。其中轴(线)对称包括关于 X 轴对称、关 于 Y 轴对称、关于直线 x=m 对称和关于直线 y=n 对称;点对称包括关于原点对称、关于顶点对称和关于点 P(m,n)对称。每一种情况再 按二次函数表达式的不同,分一般式和顶点式进行讨论。具体见下表。

中考数学复习考点知识归类讲解21 二次函数中对称轴与对称问题

中考数学复习考点知识归类讲解21 二次函数中对称轴与对称问题

中考数学复习考点知识归类讲解 专题21 二次函数中对称轴与对称问题知识对接考点一、求二次函数图象的顶点坐标、对称轴的3种方法1. 公式法:二次函数c bx ax y ++=2(a≠0)的图象的顶点坐标是)44,2(2ab ac a b -- 2.配方法:将抛物线的解析式配方,化为y=a(x-h)2+k 的形式,得到顶点坐标为(h,k),对称轴为直线x=h.3.运用抛物线的对称性:抛物线是轴对称图形,对称轴与抛物线的交点是顶点.若已知抛物线上两点(x 1,m),(x 2,m),则对称轴为直线x=221x x +,再将其代入抛物线的解析式,即可得顶点坐标.专项训练 一、单选题1.抛物线y =2(x +1)2﹣3的对称轴是( ) A .直线x =1B .直线x =﹣1C .直线x =3D .直线x =﹣32.已知抛物线2y ax bx =+经过点(3,3)A --,且该抛物线的对称轴经过点A ,则该抛物线的解析式为( )A .2123y x x =--B .2123y x x =-+C .2123yx x D .2123y x x =+3.抛物线()20y axbx c a =++≠的对称轴是直线1x =-,其图象如图所示.下列结论:①0abc <;②()()2242a c b +<;③若()11,x y 和()22,x y 是抛物线上的两点,则当1211x x +>+时,12y y <;④抛物线的顶点坐标为()1,m -,则关于x 的方程21ax bx c m ++=-无实数根.其中正确结论的个数是( )A .4B .3C .2D .14.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是().A .23x <<B .34x <<C .45x <<D .56x <<5.已知关于x 的二次函数2y x bx c =++的图象关于直线2x =对称,则下列关系正确的是() A .4b = B .240b c -≤C .0x =的函数值一定大于3x =的函数值D .若0c <,则当2x =时,0y >6.点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A.154B.4 C.﹣154D.﹣1747.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.23B.43C.2 D.348.已知二次函数y=(2﹣a)23ax ,在其图象对称轴的左侧,y随x的增大而减小,则a 的值为()A B C D.09.抛物线y=x2﹣2x﹣15,y=4x﹣23,交于A、B点(A在B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E再到达x轴上的某点F,最后运动到点B.若使点P动的总路径最短,则点P运动的总路径的长为()A.B.C.D.10.已知抛物线c:y=x2+2x﹣3,将抛物线c平移得到抛物线c′,如果两条抛物线,关于直线x=1对称,那么下列说法正确的是()A.将抛物线c沿x轴向右平移52个单位得到抛物线c′B.将抛物线c沿x轴向右平移4个单位得到抛物线c′C.将抛物线c沿x轴向右平移72个单位得到抛物线c′D.将抛物线c沿x轴向右平移6个单位得到抛物线c′二、填空题11.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+6x+c的对称轴与x轴交于点A,在直线AB :y =kx +3上取一点B ,使点B 在第四象限,且到两坐标轴的距离和为7,设P 是抛物线的对称轴上的一点,点Q 在抛物线上,若以点A ,B ,P ,Q 为顶点的四边形为正方形,则c 的值为________.12.已知在平面直角坐标系xOy 中,点A 的坐标为()3,4,M 是抛物线22(0)y ax bx a =++≠对称轴上的一个动点.小明经探究发现:当b a的值确定时,抛物线的对称轴上能使AOM 为直角三角形的点M 的个数也随之确定.若抛物线22(0)y ax bx a =++≠的对称轴上存在3个不同的点M ,使AOM 为直角三角形,则ba 的值是____.13.如果一抛物线的对称轴为1x =,且经过点A (3,3),那么点A 关于对称轴的对称点B 的坐标为____________14.已知点A 、B 在二次函数y =ax 2+bx +c 的图像上(A 在B 右侧),且关于图像的对称轴直线x =2对称,若点A 的坐标为(m ,1),则点B 的坐标为_______.(用含有m 的代数式表示)15.已知抛物线2441y ax ax a =-+-. (1)该抛物线的对称轴是x =________.(2)该抛物线与x 轴交于点A ,点B 与y 轴交于点C ,点A 的坐标为(1,0),若此抛物线的对称轴上的点P 满足APB ACB ∠<∠,则点P 的纵坐标n 的取值范围是________. 三、解答题16.已知抛物线()20y ax bx c a =++≠与x 轴只有一个公共点()30A -,且经过点12,4⎛⎫- ⎪⎝⎭. (1)求抛物线的函数解析式;(2)直线l :34y x m =+与抛物线2y ax bx c =++相交于B 、C 两点(B 点在C 点的左侧),与对称轴相交于点P ,且B ,C 分布在对称轴的两侧.若B 点到抛物线对称轴的距离为n ,且()23CP t BP t =⋅≤≤. ①试探求n 与t 的数量关系;②求线段BC 的最大值,以及当BC 取得最大值时对应m 的值.17.如图,在平面直角坐标系中,已知抛物线213222y x x =+-交x 轴于点A 、B ,交y 轴于点C .(1)求线段BC 的长;(2)点P 为第三象限内抛物线上一点,连接BP ,过点C 作//CE BP 交x 轴于点E ,连接PE ,求BPE 面积的最大值及此时点P 的坐标;(3)在(2)的条件下,以y 轴为对称轴,将抛物线213222y x x =+-对称,对称后点P 的对应点为点P ',点M 为对称后的抛物线对称轴上一点,N 为平面内一点,是否存在以点A 、P '、M 、N 为顶点的四边形是菱形,若存在,直接写出点N 的坐标,若不存在,则请说明理由.18.已知一条抛物线顶点为(),2P m m -,且与x 轴交于点()2,0A m (0m >) (1)当2m =时; ①求二次函数解析式;②直线l :y kx b =+(0k >)过定点()3,4-与抛物线交于B 、C 两点(B 在C 右侧),连接BP 、CP ,若PBC S =△,求直线l 的解析式;(2)若H 为对称轴右侧的二次函数图象上的一点,且OH 交对称轴于点M ,点N ,M 关于点P 对称,求证:N ,A ,H 三点共线.19.如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴分别交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求抛物线的解析式及对称轴;(2)如图1,点D 与点C 关于对称轴对称,点P 在对称轴上,若∠BPD =90°,求点P 的坐标;(3)点M 是抛物线上位于对称轴右侧的点,点N 在抛物线的对称轴上,当BMN 为等边三角形时,请直接写出点M 的坐标.20.如图,已知抛物线y =ax 2+bx +c 经过A (4,0),B (﹣2,0),C (0,﹣4)三点. (1)求抛物线解析式,并求出该抛物线对称轴及顶点坐标;(2)如图1,点M 是抛物线对称轴上的一点,求△MBC 周长的最小值;(3)如图2,P 是线段AB 上一动点(端点除外),过P 作PD //AC ,交BC 于点D ,连接CP ,求△PCD 面积的最大值,并判断当△PCD 的面积取最大值的时,以PA 、PD 为邻边的平行四边形是否为菱形.21.如图,抛物线2y x bx c =++与x 轴交于()1,0,A B -两点,与y 轴交于点(0,3)C -.()1求抛物线的函数解析式;()2抛物线的对称轴与x 轴交于点M .点D 与点C 关于点M 对称,试问在该抛物线上是否存在点P .使ABP △与全ABD △全等﹖若存在,请求出所有满足条件的P 点的坐标;若不存在,请说明理由.22.如图,二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B 、两点,与y 轴相交于点C .连接,AC BC A C 、、两点的坐标分别为()1,0A C -、,且它的图象关于直线1x =对称 (1)求抛物线的函数关系式;(2)若点M N 、同时从A 点出发,均以每秒2个单位长度的速度分别沿AB AC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连接MN ,将AMN ∆沿MN 翻折,A 点恰好落在BC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以,,A N Q 为顶点的三角形与ABC ∆相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.23.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且2OA =,4OB =,8OC =,抛物线的对称轴与直线BC 交于点M ,与x 轴交于点N . (1)求抛物线的解析式;(2)若点P 是对称轴上的一个动点,是否存在以P 、C 、M 为顶点的三角形与MNB 相似?若存在,求出点P 的坐标,若不存在,请说明理由.(3)D 为CO 的中点,一个动点G 从D 点出发,先到达x 轴上的点E ,再走到抛物线对称轴上的点F ,最后返回到点C .要使动点G 走过的路程最短,请找出点E 、F 的位置,写出坐标,并求出最短路程.(4)点Q 是抛物线上位于x 轴上方的一点,点R 在x 轴上,是否存在以点Q 为直角顶点的等腰Rt CQR △?若存在,求出点Q 的坐标,若不存在,请说明理由.。

二次函数图象的对称

二次函数图象的对称

关于二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x轴对称2y a x b x c=++关于x轴对称后,得到的解析式是2y ax bx c=---;()2y a x h k=-+关于x轴对称后,得到的解析式是()2y a x h k=---;2. 关于y轴对称2y a x b x c=++关于y轴对称后,得到的解析式是2y ax bx c=-+;()2y a x h k=-+关于y轴对称后,得到的解析式是()2y a x h k=++;3. 关于原点对称2y a x b x c=++关于原点对称后,得到的解析式是2y ax bx c=-+-;()2y a x h k=-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c=++关于顶点对称后,得到的解析式是222by ax bx ca =--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k=--+.5. 关于点()m n,对称()2y a x h k=-+关于点()m n,对称后,得到的解析式是()222y a x h m n k=-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.。

二次函数对称专题

二次函数对称专题

二次函数对称专题小练习:1.抛物线322--=x x y 的图像经过 平移得到2x y =的图像.2.将坐标系沿y 轴方向向下平移2个单位,再沿x 轴方向向右平移3个单位后,抛物线322--=x x y 对应图像的关系式为 .3.将抛物线322--=x x y 沿y 轴翻折后的图像表达式为 . 4.将抛物线322--=x x y 沿x 轴翻折后的图像表达式为 . 5.将抛物线322--=x x y 沿直线2=x 翻折后的图像表达式为 . 6.将抛物线322--=x x y 沿直线4=y 翻折后的图像表达式为 .例题:已知二次函数322--=x x y ,对称轴为直线1=x .1.在对称轴上找一点P ,使得PC PB +的和最小,求P 点坐标.2. 在对称轴上找一点P ,使得PC PB -的和最小,求P 点坐标.3. 在对称轴上找一点P ,使得ACP ∆为等腰三角形,求P 点坐标.4. 在对称轴上找一点P ,使得ACP ∆为直角三角形,求P 点坐标.5.点E 在对称轴上,点F 在抛物线上,且以E F A B 、、、四点为顶点的四边形为平行四边形,求点F 的坐标.6.动点G 从点)10(-,D 出发,先经过x 轴上的点P ,再经过对称轴上的点Q ,最后返回到点C ,要使点G 走过的路程最短,请找出点P 、Q 的位置,并求出最短路程.7.将抛物线322--=x x y 向左或向右平移t 个单位,点D 为抛物线顶点,C 、D 移动后对应的点分别记为'C 、'D ,是否存在t ,使得首尾依次连接A 、B 、'C 、'D 所构成的多边形的周长最短?若存在,求出t 的值并说明抛物线平移的方向;若不存在,请说明理由.8. 抛物线322--=x x y 对称轴上有点)11()21(,、,E D -,在抛物线上是否存在点P ,使得POE PCD S S ∆∆=4,若存在,求出P 点坐标,若不存在,说明理由.9. 抛物线322--=x x y 对称轴上有点)21(-,P ,若抛物线上有且仅有三个点321M M M 、、使得CP M CP M CP M 321∆∆∆、、的面积均为定值S ,求出定值S 及321M M M 、、这三个点的坐标.10.若抛物线322--=x x y 与直线7+=kx y 交于点)12(,-D 和点E ,点)(n m P ,为抛物线上的动点(不与点D 、E 重合),PDE ∆的面积记为S .(1)求S 关于m 的解析式,并画出其函数图像;(2)若抛物线上有且只有两个不同的点1P 、2P ,使得PDE ∆的面积取得同一个值S ,求S 的取值范围.。

二次函数知识点总结和题型总结

二次函数知识点总结和题型总结

二次函数知识点总结和题型总结y=ax^2+bx+c,则最值为-(b^2-4ac)/(4a))二次函数是高中数学中的重要内容之一,它的基本形式为y=ax^2+bx+c。

其中,a、b、c均为常数,且a不等于0.二次函数的图像是一个抛物线,其开口方向和顶点坐标与a的符号有关。

当a大于0时,抛物线开口向上,顶点坐标为(-b/2a。

c-b^2/4a),对称轴为x=-b/2a;当a小于0时,抛物线开口向下,顶点坐标为(-b/2a。

c-b^2/4a),对称轴为x=-b/2a。

而最值则可以根据解析式直接求出。

除了基本形式外,二次函数还有其他形式,如y=a(x-h)^2+k和y=ax^2+c。

它们的图像形态、顶点坐标、对称轴和最值也有相应的规律。

对于二次函数的题目,需要根据题目中给出的条件确定函数的具体形式,然后再利用对称轴、顶点、最值等性质解决问题。

练时要多做一些不同形式的二次函数题目,熟练掌握各种形式的性质和解题方法。

同时,也要注意二次函数的概念、基本形式和常见变形的记忆,以便在解题时能够迅速确定函数的形式。

1.若二次函数y=ax^2+bx+c的最值为k,则a>0且最值点为(-b/2a,k)。

2.已知抛物线经过坐标原点,即y=0时,x=0,则代入抛物线方程可得m=0.3.抛物线y=x^2+3x的顶点坐标为(-3/2,-9/4),位于第二象限。

4.代入点(2,0)可得a=3/2,顶点坐标为(2/3,-1/4),距离原点的距离为14/3.5.若直线y=ax+b不经过二、四象限,则抛物线y=ax^2+bx+c开口向上,对称轴是y轴。

6.二次函数y=mx^2+(m-1)x+m-1的最小值为1/4,代入可得m=3/2.7.平移步骤:确定抛物线的顶点坐标,然后根据平移规律进行平移。

8.抛物线y=x^2+4x+9的对称轴为x=-2,开口向上,顶点坐标为(-2,1)。

9.抛物线y=2x^2-12x+25的开口向上,顶点坐标为(3,1)。

二次函数图象对称性的题型归类

二次函数图象对称性的题型归类

2、已知抛物线 y= a(x-1)2+h(a≠0)与x 轴 交于A(x1,0)、B(3,0) 两点,则线段AB的长度 为( D) A. 1 B. 2 C. 3 D. 4
x1 31, 2
x1
1
(三)求代数式的值(函数值)
1、抛物线 y=ax2+bx+c(a>0)的对称轴是
直线 x=1 ,且经过点 P(3,0),则a-b+c
x x1 x2 2
4、若已知抛物线与轴相交的其中一个交点是 A(x1,0),且其对称轴是x=m,则另一个交点B的坐 标可以用x1、m表示出来(注:应由A、B两点处 在对称轴的左右情况而定,在应用时要画出图象)
x1 x2 m 2
x2=2m-x1
x2=2m-x1
5、抛物线上两个不同点P1(x1,y1),P2(x2,y2), 若有y1=y2,则P1,P2两点是关于抛物线对称轴
的值为 ( A )
A. 0
B. -1
C. 1
D. 2
若将对称轴改为直线x=2,其余条件不变, 则 a+b+c= 0 .
2、若y=ax2+5 与x轴两交点分别为(x1 ,0), (x2 ,0) ,则当x=x1 +x2时,y值为__5__
(四)求函数解析式
1、已知抛物线y=ax²+bx+c的对称轴为直线
那么该抛物线在y轴右侧与x轴交点的坐标是( B )
A.(0.5,0)
B.(1,0)
C.(2,0)
D.(3,0)
xb 2a1 2a 2a
4、已知A(x1,2013),B(x2,2013)是二次函数
y=ax2+bx+5(a≠0)的图象上两点,则当x=x1+x2时,

中考复习:中考压轴 类型一 二次函数对称性、增减性问题

中考复习:中考压轴 类型一 二次函数对称性、增减性问题

中考压轴类型一二次函数对称性、增减性问题考向一对称轴确定求最值或取值范围阶段一:方法突破1.已知抛物线y=-x2+bx+4经过(-2,m)和(4,m)两点,求y 的最大值。

2.已知二次函数y=x2-4x+c, 当-1<x≤3时,求该二次函数的函数值y 的取值范围(用含c的代数式表示)。

3、若点P(m,n)和Q(5,b)为二次函数y=ax2- 4ax+c(a<0)图象上的两点,且n>b,求m的取值范围。

4、已知二次函数y=-x2-4x+5.,当m≤x≤m+3时,求y的最小值(用含m的代数式表示)5≤y≤1,求m的值5、已知二次函数y=x2+x-1,当m≤x≤m+2,-46.已知二次函数y=ax2-2ax+a-2(a>0),当1≤x≤t+2时,二次函数的最大值与最小值的差为2,求a的取值范围。

阶段二:设问提升1.(1)在平面直角坐标系x0y中,已知抛物线y1=ax2-4ax+c(a≠0),点P(3,-1)求抛物线的对称轴及C的值(用含有a的式子表示);(2)若点Q的坐标为(0,-4),抛物线的顶点在直线PQ上,设直线PQ的解析式为y2=kx+b(k≠0),当y1>y2时.求x的取值范围;(3)若a<0,当m≤x≤m+2时,求y1的最大值(用含a,m的代数式表示);(4)若点G(-3,-4)为抛物线上一点,求抛物线y1顶点H的坐标并求出在线段PC上方抛物线上的点到对称轴的距离d随x的增大而减小的x的取值范围。

阶段三:综合强化1.已知抛物线y=x2-(k+1)x+k2-2与直线y'=x+3k-2的一个交点A在y轴正半轴上(1)求抛物线的解析式;(2)当m≤x≤m+1时,求y的最小值(用含m的式子表示);(3)若B(3n-4,y1) ,C(5n+6,y2)为抛物线上在对称轴两侧的点,且y1>y2,求n的取值范围2.在平面直角坐标系xOy中,抛物线的解析式为y=ax2+2ax+a -2(a≠0).(1)求该抛物线的顶点坐标;(2)当- 2≤x≤2时,y 的最小值是-4a ,求a的值;(3)在(2)的条件下,当p≤x≤q时,p≤y≤q,且p+q≥-2,求p,q的值考向二对称轴不确定求最值或取值范围阶段一:方法突破1.已知二次函数y=-x 2-mx+m-3,求该二次函数的最大值(用含m的式子表示)。

二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

二次函数的图像与性质【十大题型】(原卷版)—2024年中考数学一轮复习【举一反三】系列(全国通用)

二次函数的图像与性质【十大题型】【题型1 根据二次函数解析式判断其性质】 (3)【题型2 二次函数y=ax 2+bx+c 的图象和性质】 (4)【题型3 二次函数平移变换问题】 (5)【题型4 根据二次函数的对称性求字母的取值范围】 (6)【题型5 根据二次函数的性质求最值】 (6)【题型6 根据二次函数的最值求字母的取值范围】 (7)【题型7 根据二次函数自变量的情况求函数值的取值范围】 (7)【题型8 根据二次函数的增减性求字母的取值范围】 (8)【题型9 二次函数图象与各项系数符号】 (8)【题型10 二次函数与三角形相结合的应用方法】 (11)【知识点 二次函数的图像与性质】1.定义:一般的,形如y =ax 2+bx +c (a .b .c 是常数,a ≠0)的函数叫做二次函数。

其中x 是自变量,a .b .c 分别是函数解析式的二次项系数.一次项系数.常数项。

二次函数解析式的表示方法(1)一般式:y =ax 2+bx +c (其中a ,b ,c 是常数,a ≠0);(2)顶点式:y =a (x -h )2+k (a ≠0),它直接显示二次函数的顶点坐标是(h ,k );(3)交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是图象与x 轴交点的横坐标 .注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -³时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.2.二次函数的图象是一条抛物线。

当a >0时,抛物线开口向上;当a <0时,抛物线开口向下。

|a |越大,抛物线的开口越小;|a |越小,抛物线的开口越大。

y =ax 2y =ax 2+k y =a (x -h )2y =a (x -h )2+k y =ax 2+bx +c 对称轴y 轴y 轴x =h x =h abx 2-=(0,0)(0,k )(h ,0)(h ,k )⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22顶点a >0时,顶点是最低点,此时y 有最小值;a <0时,顶点是最高点,此时y 有最大值。

热点2-2 函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

热点2-2 函数的单调性、奇偶性、对称性、周期性10大题型(解析版)

热点2-2 函数的单调性、奇偶性、对称性、周期性10大题型函数的性质是函数学习中非常重要的内容,对于选择题和填空题部分,重点考查基本初等函数的单调性,利用性质判断函数单调性及求最值、解不等式、求参数范围等,难度较小,属于基础题;对于解答题部分,一般与导数结合,考查难度较大。

一、单调性定义的等价形式: 1、函数()x f 在区间[]b a ,上是增函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021<-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121>--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121>--x f x f x x .2、函数()x f 在区间[]b a ,上是减函数:⇔任取[]b a x x ,,21∈,且21x x <,都有()()021>-x f x f ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x x x f x f ;⇔任取[]b a x x ,,21∈,且21x x ≠,()()()[]02121<--x f x f x x ; ⇔任取[]b a x x ,,21∈,且21x x ≠,()()02121<--x f x f x x .二、判断函数奇偶性的常用方法1、定义法:若函数的定义域不是关于原点对称,则立即可判断该函数既不是奇函数也不是偶函数;若函数的定义域是关于原点对称的,再判断()f x -与()f x ±之一是否相等.2、验证法:在判断()f x -与()f x 的关系时,只需验证()f x -()f x ±=0及()1()f x f x -=±是否成立. 3、图象法:奇(偶)函数等价于它的图象关于原点(y 轴)对称.4、性质法:两个奇函数的和仍为奇函数;两个偶函数的和仍为偶函数;两个奇函数的积是偶函数;两个偶函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数.5、分段函数奇偶性的判断判断分段函数的奇偶性时,通常利用定义法判断.分段函数不是几个函数,而是一个函数.因此其判断方法也是先考查函数的定义域是否关于原点对称,然后判断()f x -与()f x 的关系.首先要特别注意x 与x -的范围,然后将它代入相应段的函数表达式中,()f x 与()f x -对应不同的表达式,而它们的结果按奇偶函数的定义进行比较.三、常见奇、偶函数的类型1、()x x f x a a -=+(00a a >≠且)为偶函数;2、()x x f x a a -=-(00a a >≠且)为奇函数;3、()2211x x x x x x a a a f x a a a ----==++(00a a >≠且)为奇函数;4、()log a b xf x b x-=+(00,0a a b >≠≠且)为奇函数;5、())log af x x =(00a a >≠且)为奇函数;6、()f x ax b ax b =++-为偶函数;7、()f x ax b ax b =+--为奇函数; 四、函数的周期性与对称性常用结论1、函数的周期性的常用结论(a 是不为0的常数)(1)若()()+=f x a f x ,则=T a ; (2)若()()+=-f x a f x a ,则2=T a ;(3)若()()+=-f x a f x ,则2=T a ; (4)若()()1+=f x a f x ,则2=T a ; (5)若()()1+=-f x a f x ,则2=T a ; (6)若()()+=+f x a f x b ,则=-T a b (≠a b ); 2、函数对称性的常用结论(1)若()()+=-f a x f a x ,则函数图象关于=x a 对称; (2)若()()2=-f x f a x ,则函数图象关于=x a 对称; (3)若()()+=-f a x f b x ,则函数图象关于2+=a bx 对称; (4)若()()22-=-f a x b f x ,则函数图象关于(),a b 对称; 3、函数的奇偶性与函数的对称性的关系(1)若函数()f x 满足()()+=-f a x f a x ,则其函数图象关于直线=x a 对称,当0=a 时可以得出()()=-f x f x ,函数为偶函数,即偶函数为特殊的线对称函数;(2)若函数()f x 满足()()22-=-f a x b f x ,则其函数图象关于点(),a b 对称,当0=a ,0=b 时可以得出()()-=-f x f x ,函数为奇函数,即奇函数为特殊的点对称函数;4、函数对称性与周期性的关系(1)若函数()f x 关于直线=x a 与直线=x b 对称,那么函数的周期是2-b a ; (2)若函数()f x 关于点(),0a 对称,又关于点(),0b 对称,那么函数的周期是2-b a ;(3)若函数()f x 关于直线=x a ,又关于点(),0b 对称,那么函数的周期是4-b a . 5、函数的奇偶性、周期性、对称性的关系(1)①函数()f x 是偶函数;②函数图象关于直线=x a 对称;③函数的周期为2a .(2)①函数()f x 是奇函数;②函数图象关于点(),0a 对称;③函数的周期为2a . (3)①函数()f x 是奇函数;②函数图象关于直线=x a 对称;③函数的周期为4a .(4)①函数()f x 是偶函数;②函数图象关于点(),0a 对称;③函数的周期为4a .其中0≠a ,上面每组三个结论中的任意两个能够推出第三个。

二次函数对称性的专题复习

二次函数对称性的专题复习

yOx-1 -2 12 -3 3 -112 -2二次函数图象对称性的应用一、几个重要结论:1、抛物线的对称轴是直线__________。

2、对于抛物线上两个不同点P1(),P2(),若有,则P1,P2两点是关于_________对称的点,且这时抛物线的对称轴是直线_____________;反之亦然。

3、若抛物线与轴的两个交点是A (,0),B (,0),则抛物线的对称轴是__________(此结论是第2条性质的特例,但在实际解题中经常用到)。

4、若已知抛物线与轴相交的其中一个交点是A (,0),且其对称轴是,则另一个交点B 的坐标可以用____表示出来(注:应由A 、B 两点处在对称轴的左右情况而定,在应用时要把图画出)。

5、若抛物线与轴的两个交点是B (,0),C (,0),其顶点是点A ,则ABC 是____三角形,且ABC 的外接圆与内切圆的圆心都在抛物线的_______上。

二、在解题中的应用:例1已知二次函数的图象经过A (-1,0)、B (3,0),且函数有最小值-8,试求二次函数的解析式。

例2已知抛物线,设,是抛物线与轴两个交点的横坐标,且满足.(1)求抛物线的解析式;(2)设点P (,),Q (,)是抛物线上两个不同的点,且关于此抛物线的对称轴对称,求的值。

例3已知抛物线经过点A (-2,7)、B (6,7)、C (3,-8),则该抛物线上纵坐标为-8的另一点的坐标是。

例4已知抛物线的顶点A 在直线上。

(1)求抛物线顶点的坐标;(2)抛物线与轴交于B 、C 两点,求B 、C 两点的坐标; (3)求ABC 的外接圆的面积。

二次函数专题训练——对称性与增减性一、选择1、若二次函数,当x 取,(≠)时,函数值相等,则当x 取+时,函数值为( ) (A )a+c (B )a-c (C )-c (D )c2、抛物线2)1(2++=x a y 的一部分如图所示,该抛物线在y 轴右 侧部分与x 轴交点的坐标是 (A )(21,0) (B )(1,0) (C )(2,0) (D )(3,0) 3、已知抛物线2(1)(0)y a x h a =-+≠与x 轴交于1(0)(30)A x B ,,,两点,则线段的长度为( ) A.1B.2C.3 D.44、抛物线c bx x y ++-=2的部分图象如图所示,若0>y ,则的取值范围是( ) A.14<<-x B. 13<<-xC. 4-<x 或1>xD.3-<x 或1>x5、函数y =x 2-x +m (m 为常数)的图象如图,如果x =a 时,y <0;那么x =a -1时,函数值( ) A .y <0 B .0<y <m C .y >m D .y =m6、抛物线y=ax 2+2ax+a 2+2的一部分如图所示,那么该抛物线在y 轴右侧与x 轴交点的坐标是( ) A .,0) B .(1,0) C .(2,0) D .(3,0)7、老师出示了小黑板上的题后(如图),小华说:过点(3,0); 小彬 说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截 得的线段长为2.你认为四人的说法中,正确的有( )A .1个B .2个C .3个D .4个8、若二次函数2y ax c =+,当x 取、(12x x ≠)时,函数值相等,则当x取12x x +时,函数值为( )A. B. C. D.c9、二次函数c bx x y ++=2的图象上有两点(3,-8)和(-5,-8),则此抛物线的对称轴是( ) A .x =4 B. x =3 C. x =-5 D. x =-1。

二次函数九大题型

二次函数九大题型

二次函数九大题型
二次函数是高中数学中的重要内容,它在各种应用问题中都有广泛的应用。

下面是九大常见的二次函数题型及解题思路:1. 求二次函数的图像:首先确定二次函数的开口方向,然后找到顶点坐标,再根据对称性画出图像。

2. 求二次函数的零点:将二次函数转化为一元二次方程,然后利用求根公式或配方法求解。

3. 求二次函数的最值:通过求导或利用顶点公式求得最值。

4. 求二次函数与坐标轴交点:将二次函数转化为一元二次方程,然后解方程得到交点坐标。

5. 求解满足条件的参数:根据给定条件列方程,然后解方程得到参数值。

6. 求解满足条件的范围:根据给定条件列不等式,然后解不等式得到范围。

7. 判断两个二次函数图像位置关系:比较两个二次函数的开口方向、顶点位置和系数大小来判断位置关系。

8. 判断一个点是否在给定的二次函数图像上:将该点代入二次函数方程中,判断是否成立。

9. 利用已知信息确定未知参数:根据已知条件列方程,然后解方程得到未知参数的值。

以上是常见的二次函数题型,通过掌握这些题型的解题思路和方法,可以更好地应对二次函数相关的问题。

专题1.3 二次函数的图像与性质(三)(六大题型)(原卷版)

专题1.3 二次函数的图像与性质(三)(六大题型)(原卷版)

专题1.3 二次函数的图像与性质(三)(六大题型)【题型1 利用二次函数的性质判断结论】【题型2 利用二次函数的性质比较函数值】【题型3 二次函数的对称性的应用】【题型4利用二次函数的性质求字母的范围】【题型5 利用二次函数的性质求最值】【题型6 二次函数给定范围内的最值问题】【题型1 利用二次函数的性质判断结论】【典例1】关于二次函数y=(x﹣2)2+3,下列说法正确的是( )A.函数图象的开口向下B.函数图象的顶点坐标是(﹣2,3)C.当x>2时,y随x的增大而减小D.该函数图象与y轴的交点坐标是(0,7)【变式1-1】已知抛物线y=2(x﹣3)2+1,下列结论错误的是( )A.抛物线开口向上B.抛物线的对称轴为直线x=3C.抛物线的顶点坐标为(3,1)D.当x<3时,y随x的增大而增大【变式1-2】下列关于抛物线y=x2+4x﹣5的说法正确的是( )①开口方向向上;②对称轴是直线x=﹣4;③当x<﹣2时,y随x的增大而减小;④当x<﹣5或x>1时,y>0.A.①③B.①④C.①③④D.①②③④【变式1-3】已知点A(a﹣3,﹣3)与点B(2,b+1)关于y轴对称,则下列关于抛物线y=ax2+bx+1的说法错误的是( )A.抛物线开口向上B.a=1,b=﹣4C.顶点坐标是(﹣2,﹣3)D.当x<2时,y随x减小而增大【题型2 利用二次函数的性质比较函数值】【典例2】抛物线y=a(x﹣2)2+k的开口向上,点A(﹣1,y1),B(3,y2)是抛物线上两点,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.无法比较【变式2-1】已知二次函数y=(x﹣2)2+2,当点(3,y1)、(2.5,y2)、(4,y3)在函数图象上时,则y1、y2、y3的大小关系正确的是( )A.y3<y1<y2B.y2<y1<y3C.y3<y2<y1D.y1<y2<y3【变式2-2】已知抛物线y=ax2﹣4ax+c,点A(﹣2,y1),B(4,y2)是抛物线上两点,若a<0,则y1,y2的大小关系是( )A.y1>y2B.y1<y2C.y1=y2D.无法比较【变式2-3】已知抛物线:y=mx2﹣2mx+8(m≠0),若点A(x1,y1),B(x2,y2),C(4,0)均在该抛物线上,且x1<﹣2<x2<4,则下列结论正确的是( )A.y1>y2>0B.0>y2>y1C.0>y1>y2D.y2>0>y1【变式2-4】已知抛物线y=x2+bx+c的对称轴为直线x=4,点A(1,y1)、B (3,y2)都在该抛物线上,那么y1 y2.(填“>”或“<”或“=”).【变式2-5】若抛物线y=﹣x2+2x﹣2,点(﹣2,y1),(3,y2)为抛物线上两点,则y1 y2.(用“<”或“>”号连接)【题型3 二次函数的对称性的应用】【典例3】已知抛物线y=x2+bx+c经过点(1,0)和点(﹣3,0),则该抛物线的对称轴为( )A.y轴B.直线x=﹣1C.直线x=﹣2D.直线x=2【变式3-1】已知抛物线y=ax2+bx+2经过A(4,9),B(12,9)两点,则它的对称轴是( )A.直线x=7B.直线x=8C.直线x=9D.无法确定【变式3-2】二次函数图象上部分点的坐标对应值列表如:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…则该函数图象的对称轴是( )A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=0【变式3-3】点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是( )A.(2,5)B.(2,4)C.(5,2)D.(4,2)【变式3-4】已知二次函数y=ax2+bx+c,函数值y与自变量x的部分对应值如表:x…﹣10123…y…188202…则当y>8时,x的取值范围是( )A.0<x<4B.0<x<5C.x<0或x>4D.x<0或x>5【变式3-5】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为 .【变式3-6】用描点法画二次函数的图象需要经过列表、描点、连线三个步骤.以下是小明画二次函数y=ax2+bx+c图象时所列的表格:x…﹣4﹣3﹣202…y…30﹣1315…根据表格可以知道该二次函数图象的顶点坐标是 .【题型4利用二次函数的性质求字母的范围】【典例4】已知点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,若当x≤2时,y随x的增大而减小,则m的取值范围是( )A.B.C.D.【变式4-1】二次函数y=ax2+bx的图象如图所示,当﹣1<x<m时,y随x的增大而增大,m的取值取值范围是( )A.m>1B.﹣1<m<1C.m>0D.﹣1<m<2【变式4-2】已知点A(n,y1)、B(n+2,y2)、C(x,y0)在二次函数y=ax2+4ax+c (a≠0)的图象上,且C为抛物线的顶点,若y0≥y1>y2,则n的取值范围是( )A.n>﹣3B.n<﹣3C.n<﹣2D.n>﹣2【变式4-3】已知点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,若当x≤2时,y随x的增大而减小,则m的取值范围是( )A.B.C.m≥1D.m≤1【变式4-4】二次函数y=ax2﹣2ax+c(a>0),当自变量x<m时,y随x的增大而减小,则m的取值范围是( )A.m<﹣1B.m≥﹣1C.m≤1D.m>1【变式4-5】抛物线y=ax2+bx+c经过点(﹣3,y1)和(5,y2),顶点坐标为(m,n),若y1>y2>n,则m的取值范围是( )A.m<﹣3B.m<1C.m>1D.m>5【题型5 利用二次函数的性质求最值】【典例5】已知直线y=2x+t与抛物线y=ax2+bx+c(a≠0)有两个不同的交点A (3,5)、B(m,n),且点B是抛物线的顶点,当﹣2≤a≤2时,m的取值范围是 .【变式5-1】二次函数y=﹣(x+5)2﹣4的最大值是 .【变式5-2】若实数a,b满足a+b2=2b+1,则代数式a2﹣4a+2b2﹣4b﹣4的最小值为 .【变式5-3】当m≤x≤m+1,函数y=x2﹣2x+1的最小值为1,则m的值为 ﹣ .【变式5-4】已知点P(m,n)在二次函数y=x2+4的图象上,则m﹣n的最大值等于 .【变式5-5】已知抛物线y=x2﹣3x+2上任意一点P(m,n),则m﹣n的最大值为 .【变式5-6】已知实数x,y满足y=﹣x2+3,则x+y的最大值为 .【变式5-7】已知实数a,b满足a2﹣3a﹣b+6=0,则a+b的最小值为 .【题型6 二次函数给定范围内的最值问题】【典例6】若x2﹣2x+4y=5,且﹣≤y≤,则x+2y在最小值为 ﹣ ,最大值为 .【变式6-1】二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最大值为﹣5,则c的值是 .【变式6-2】函数y=x2﹣2ax﹣1在1≤x≤4有最小值﹣5,则实数a的值是 .【变式6-3】已知二次函数y=mx2+2mx+1(m≠0)在﹣2≤x≤2时有最小值﹣2,则m= .【变式6-4】若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是 .【变式6-5】若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m= .【变式6-6】当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,则a的值为 .【变式6-7】已知二次函数y=x2﹣2x+2在t≤x≤t+1时的最小值是t,则t的值为 .【变式6-8】已知抛物线y=﹣4x2+4mx﹣4m﹣m2(m是常数),若0≤x≤1时,函数y有最大值﹣5,则m的值为 .。

专题01 二次函数的图象与性质重难点题型专训(原卷版)

专题01 二次函数的图象与性质重难点题型专训(原卷版)

【题型目录】题型一a< a>0向上向下增减性在对称轴的左侧,即当时,y 随x 的增大而减小;在对称轴的右侧,即当时,y 随x 的增大而增大.简记:左减右增在对称轴的左侧,即当时,y 随x 的增大而增大;在对称轴的右侧,即当时,y 随x 的增大而减小.简记:左增右减最大(小)值抛物线有最低点,当时,y 有最小值,抛物线有最高点,当时,y 有最大值, 知识点三:二次函数的图象与a ,b ,c 的关系学生对二次函数中字母系数a 、b 、c 及其关系式的符号判断常有些不知所措,这里介绍几个口诀来帮助同学们解惑.1.基础四看“基础四看”是指看开口,看对称轴,看与y 轴的交点位置,看与x 轴的交点个数.“四看”是对二次函数y =ax 2+bx +c (a ≠0)的图象最初步的认识,而且这些判断都可以通过图象直接得到,同时还可以在此基础上进行一些简单的组合应用.2.组合二看 (1)三全看点在a 、b 、c 间的加减组合式中,最常见的如“a +b +c",“a -b +c”,“4a +2b +c”,“4a -2b +c”等类型的式子,这类式子a 、b 、c 三个字母都在,并且c 的系数通常为1,这时只要取x 为b 前的系数代入二次函数y =ax 2+bx +c 就可以得到所需的形式,从而由其对应的y 的值时进行判断即可. (2)有缺看轴当a 、b 、c 三个字母只出现两个间的组合时,这时对同学们来讲难度是较大的,如何解决呢?其实我们只要想一想为什么会少一个字母,这个问题就可以较好的解决.少一个字母的原因就是因为有对称轴为我们提供了a 、b 之间的转换关系,如果少的是字母c ,则直接用对称轴提供的信息即可解决;如果少的是字母a 或b ,则可利用对称轴提供的a 、b 间转换信息,把a (或b )用b (或a )代换即可.3.取值计算当解题感到无从下手时,可以尝试取值法,只要根据函数图象的特点及所给出的数据(或范围),取相应点坐标代入函数的解析式中,求出其字母系数,即可进行相关判断.2b x a <-2b x a>-2b x a<-2b x a>-2b x a =-244ac b y a -=最小值2bx a=-244ac b y a-=最大值二次函数的图象与系数之间的关系,解题的关键是弄清楚图象的开口方向、对称轴的位置、与坐标轴的交点及其图象中特殊点的位置,确定出,,a b c 与0的大小关系及含有,,a b c 的代数式的值的大小关系. (1)a 决定开口方向:当0a >时抛物线开口向上;当0a <时抛物线开口向下.(2),a b 共同决定抛物线的对称轴位置:当,a b 同号时,对称轴在y 轴左侧;当,a b 异号时,对称轴在y 轴右侧(可以简称为“左同右异”);当0b =时,对称轴为y 轴.(3)c 决定与y 轴交点的纵坐标:当0c >时,图象与y 轴交于正半轴;当0c =时,图象过原点;当0c <时,图象与y 轴交于负半轴.(4) 24b ac -的值决定了抛物线与x 轴交点的个数:当240b ac ->时,抛物线与x 轴有两个交点;当240b ac -=时,抛物线与x 轴有一个交点;当240b ac -<时,抛物线与x 轴没有交点.(5) a b c ++的符号由1x =时,y 的值确定:若0y >,则0a b c ++>;若0y <,则0a b c ++<. (6) a b c -+的符号由1x =-时,y 的值确定:若0y >,则0a b c -+>;若0y <,则0a b c -+<.知识点四:二次函数图象的平移由二次函数的性质可知,抛物线2()y a x h k =-+(0a ¹)的图象是由抛物线2y ax =(0a ¹)的图象平移得到的.在平移时,a 不变(图象的形状、大小不变),只是顶点坐标中的h 或k 发生变化(图象的位置发生变化)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 求抛物线y=2x2-4x-5关于x轴对称的抛物线。
方法一: 将一般形式化为顶点式y=a(x-h)2+k
y=2(x-1)2-7 开口向上变为开口向下 顶点(1,-7)变为(1,7) ∴抛物线y=2x2-4x-5关于x轴对称的抛物线
的解析式为:y=-2(x-1)2+7
1、 求抛物线y=2x2-4x-5关于x轴对称的抛物线。 方法二:
若将对称轴改为直线x=2,其余条件不变, 则 a+b+c= 0 . 2、若y=ax2+5 与x轴两交点分别为(x1 ,0), (x2 ,0) ,则当x=x1 +x2时,y值为____ 5
(四)求函数解析式 1、已知抛物线y=ax² +bx+c的对称轴为直线 x=2,且经过点(1,4)和点(5,0),则该 抛物线与x轴相交的另一个交点坐标为(-1,0) _____;
C. 2013
D. 5
点O与点B关于点A对称 b 即:0与x1+x2关于 对称。 2a
A B
5、若二次函数y=ax2+c ,当 x 取x1 ,x2 (x1 ≠x2 )时,函数值相等,则当x取 x1 +x2 时,函数值为( D ) A、a+c B、a-c C、-c D、 c
b 0与x1+x2关于 对称。 2a
作点A关于河流的对称点A′ A′B交河流于点P 则AP+BP=A′B最短
巧用“对称性” 求距离和差最值
如图,抛物线y=0.5x2+bx-2与x轴交于A,B两 点,与y轴交于C点,顶点为D,且A(-1,0).若点 M(m,0)是x轴上的一个动点,当MC+MD的值 最小时,求m的值.
若点N(n,0)是对称轴上的一个动点,当NA+NC 的值最小时,求n的值.
1 2
m
∴y>m
a
1
2、老师出示了小黑板上的题后(如图),小华说: 过点(3,0);小彬 说:过点(4,3);小明说:a=1; 小颖说:抛物线被x轴截 得的线段长为2.你认为 四人的说法中,正确的有( C ) A.1个 B.2个 C.3个 D.4个 已知抛物线 y=ax2+bx+3 与x轴交于(1,0).试添加 一个条件,使它的对称 轴为直线x=2.
6、抛物线y=ax² +bx+c经过点A(-2,7), B(6,7),C(3,-8),则该抛物线上纵坐标为-8 的另一点坐标是(1 ____ ,-8)
(二)求方程的根
1、已知二次函数y=ax² +bx+c(a≠0)的顶点 坐标为(-1,-3.2)及部分图象如图,由图象 可知关于x的一元二次方程ax² +bx+c=0的两根 分别为x1=1.3,x2=_____ -3.3
2、已知关于x的方程ax2+bx+c=3的一个根为
ห้องสมุดไป่ตู้x1=2,且二次函数y=ax2+bx+c的对称轴直线是x=2,
则抛物线的顶点坐标是(C )
A.(2,-3 )
B.(2,1)
C.(2,3)
D.(3,2)
3、抛物线y=ax2+2ax+a2+2的一部分如图所示, 那么该抛物线在y轴右侧与x轴交点的坐标是( B ) A.(0.5,0) B.(1,0) C.(2,0) D.(3,0)
2、已知抛物线 y= a(x-1)2+h(a≠0)与x 轴 交于A(x1,0)、B(3,0) 两点,则线段AB的长度 为( D ) A. 1 B. 2 C. 3 D. 4
x1 3 1, x1 1 2
(三)求代数式的值(函数值) 1、抛物线 y=ax2+bx+c(a>0)的对称轴是 直线 x=1 ,且经过点 P(3,0),则a-b+c 的值为 ( A ) A. 0 B. -1 C. 1 D. 2
4、若已知抛物线与轴相交的其中一个交点是
A(x1,0),且其对称轴是x=m,则另一个交点B的坐
标可以用x1、m表示出来(注:应由A、B两点处
在对称轴的左右情况而定,在应用时要画出图象)
x1 x 2 m 2
x2=2m-x1 x2=2m-x1
5、抛物线上两个不同点P1(x1,y1),P2(x2,y2), 若有y1=y2,则P1,P2两点是关于抛物线对称轴 对称的点,0与x1+x2关于 对称轴 对称 如图:
2、求抛物线y=2x2-4x-5关于y轴对称的抛物线。
在抛物线上任取一点(x,y),
(x,y)关于y轴对称的点为(-x,y)
y=2x2-4x-5关于y轴对称的抛物线位 y=2× (-x)2-4×(-x)-5 即:y=2 x2+4x-5
3、求抛物线y=2x2-4x-5关于原点成 中心对称的抛物线。 在抛物线上任取一点(x,y), (x,y)关于原点对称的点为(-x,-y) y=2x2-4x-5关于原点对称的抛物线为 -y=2× (-x)2-4×(-x)-5 即:y=-2 x2-4x+5
在抛物线的对称轴上是否存在点Q, 使得△ACQ周长最小?
在抛物线对称轴上是否存在一点P,使点P到 B、C两点距离之差最大?
在抛物线 y=ax2+bx+c上任取一点(x,y) 点(x,y)关于x轴的对称点为(x,-y)
∴抛物线 y=ax2+bx+c关于x轴对称的抛物线 的解析式为:-y=ax2+bx+c
∴ y=-ax2-bx-c ∴抛物线y=2x2-4x-5关于x轴对称的 抛物线解析式为:y=-2x2+4x+5
若原抛物线是顶点形式:选用方法一简便 若原抛物线是一般形式:选用方法二简便
b ( x1 x 2 ) 0 x 2a 2
巧用“对称性”
化繁为简
抛物线y=a(x+1)2+2的一部分如图所示,该抛物线 在y轴右侧部分与x轴交点的坐标是 ______ (1,0)
(一)求点的坐标(函数值)
1、如图,抛物线的对称轴是x=1,与x轴交于A、B两点,
B的坐标为(
( 2 3 ,0) 3 ,0),则点A的坐标是______
抛物线过(1,0),(3,0) ∴(1+3) ÷2=2.小华正确 a=1时, 0=1+b+3,b=-4 b 2 小明正确 2a 被x轴截 得的线段长为2 ∴抛物线过(1,0)、(-1,0) 或过(1,0)、(3,0) 小颖错误
抛物线过(0,3),(4,3) ∴(0+4) ÷2=2.小彬正确
巧用“对称性” 化线为点
2、设A(-2, y1)、B(1, y2)、C(2, y3)是抛物线 y= -(x+1)2+m上的三点,则 y1、y2、y3的大小 关系为( A ) A.y1>y2>y3 B. y1>y3 >y2 C. y3>y2>y1 D. y3>y1>y2
离对称轴越近 函数值越大
离对称轴越近 函数值越小
(六)判断命题的真伪 1、如图函数 y=x2-x+m(m为常数)的图象 如图,如果x= a 时,y<0;那么x= a-1时, 函数值( C ) A. y < 0 B. 0 < y < m C. y > m D.y=m ∴a-1<0
1 2 5 函数解析式为 y 2 x 2 x 。 2
2、已知二次函数的图像经过A(-1,0)、 B(3,0),且函数有最小值-8,试求 二次函数解析式. y=2x2-4x-6 对称轴x=1 设解析式为y=a(x+1)(x-3) 或y=a(x-1)2-8
(五)比较函数值的大小 1、小颖在二次函数y=2x2+4x+5的图象上, 依横坐标找到三点(-1,y1),(0.5,y2 ),(-3.5,y3) 则你认为y1,y2,y3的大小关系应为( D ) A、y1>y2>y3 B、y2>y3>y1 C、y3>y1>y2 D、y3>y2>y1 离对称轴越近 函数值越小
b 2a x 1 2a 2a
4、已知A(x1,2013),B(x2,2013)是二次函数 y=ax2+bx+5(a≠0)的图象上两点,则当x=x1+x2时, 二次函数的值是( D )
2 b2 2 b A. 5- B、5+ 4a a x2 x2 A( ,0 ) 2 B(x1+x2,0)
4、求抛物线 y=2x2-4x-5绕着 顶点旋转180° 得到的抛物线
化为顶点式: y=2(x-1)2-7
顶点坐标(1,-7) 开口相反,顶点不变
y=2x2-4x-5绕着 顶点旋转180°得到的抛物线为
y=-2(x-1)2-7
“将军饮马”
问题
唐朝诗人李欣的诗《古从军行》开头两句说:
“ 白日登山望峰火,黄昏饮马傍交河.”
二次函数图象对称性的题型归类
几个重要结论:
1、抛物线y=ax2+bx+c的对称轴是直线: b y 2a 2、若抛物线与轴的两个交点是A(x1,0),B(x2,0),
则抛物线的对称轴是:
x1 x2 x 2
3、抛物线上两个不同点P1(x1,y1),P2(x2,y2), 若有y1=y2,则P1,P2两点是关于抛物线对称轴 对称的点,且这时抛物线的对称轴是直线: x1 x2 x 2
相关文档
最新文档