磁电式传感器PPT课件

合集下载

磁电磁敏式传感器课件

磁电磁敏式传感器课件

多功能化与智能化发展
总结词
磁电磁敏式传感器正朝着多功能化和智能化方向发展。
详细描述
多功能化是指传感器能够同时检测多种物理量,如磁场、温度、压力等。这可以通过在传感器结构中集成多个敏 感元件和信号处理电路来实现。智能化则是指传感器具备自校准、自诊断和自适应能力,能够根据环境变化进行 自动调整,提高测量精度和可靠性。
温度特性
温度稳定性
磁电磁敏式传感器在温度变化时,其 输出值的变化程度较小,具有较好的 温度稳定性。
温度补偿
为了减小温度对传感器输出的影响, 通常需要进行温度补偿,如采用热敏 电阻等元件实现温度补偿。
03
磁电磁敏式传感器的设计与 制造
设计原则
精度与灵敏度
稳定性与可靠性
设计时应考虑传感器精度和灵敏度,以确 保其能够准确、快速地响应磁场变化。
05
磁电磁敏式传感器的性能指 标与评价
灵敏度与分辨率
灵敏度
衡量传感器输出变化量与输入变化量之比, 是传感器的一项重要性能指标。磁电磁敏式 传感器的灵敏度高,能够检测微弱的磁场变 化。
分辨率
传感器能够分辨的最小输入变化量,反映传 感器的测量精度。磁电磁敏式传感器的分辨
率较高,能够准确测量磁场微小变化。
详细描述
磁电磁敏式传感器能够测量磁场的大小和方向,通过测量地球磁场或人工磁场,可以用于地质勘查、 矿产资源勘探等领域。在航空航天领域,磁力计可以用于检测和导航,而在电机控制中,它可以检测 电机的磁场强度和位置,实现精准控制。
电流测量
总结词
磁电磁敏式传感器能够非接触地测量电流,具有高精度、高灵敏度和宽测量范围的特点 。
工作原理
通过测量磁场的变化,将磁场的 变化转换为电信号,从而实现对 物理量的检测。

磁电式速度传感器课件

磁电式速度传感器课件

VS
集成化
集成化是未来传感器的一个重要发展趋势 ,通过将多个传感器元件集成在一个芯片 上,实现传感器的小型化、轻量化、低功 耗等特点,提高传感器的应用范围和性能 。
在新兴领域的应用前景
新能源汽车
随着新能源汽车的快速发展,磁电式速度传 感器在新能源汽车中的应用前景广阔,如用 于电机转速的检测、车辆速度的检测等。
机械结构设计
总结词
机械结构设计是磁电式速度传感器制造中的重要环节,它决定了传感器的精度、稳定性和使用寿命。
详细描述
在机械结构设计中,需要考虑到传感器的尺寸、重量、安装方式等因素,以确保传感器在实际应用中 的可靠性和稳定性。同时,还需要对传感器的材料、热处理等进行优化,以提高其机械性能和耐久性 。
磁路设计
智能交通
智能交通系统是未来交通发展的重要方向, 磁电式速度传感器可以用于智能交通系统中 的车辆速度检测、交通流量统计等方面,提 高交通管理的智能化水平。
THANKS
感谢观看
新型绝缘材料
绝缘材料在磁电式速度传感器的制造 中起着重要作用,新型绝缘材料如氮 化硅、碳化硅等具有高绝缘性、低介 电损耗等特点,能够提高传感器的绝 缘性能和稳定性。
智能化与集成化的发展趋势
智能化
随着人工智能和物联网技术的发展,磁 电式速度传感器将逐渐实现智能化,具 备自适应、自学习、自诊断等功能,提 高传感器的工作效率和可靠性。
应用领域
汽车领域
用于发动机转速、车速、ABS 系统等速度检测。
航空领域
用于飞机轮速、滑行速度等速 度检测。
工业自动化领域
用于电机转速、机械传动速度 等速度检测。
其他领域
如医疗器械、环保设备等需要 进行速度检测的领域。

磁敏式传感器.课件

磁敏式传感器.课件

06
磁敏式传感器的发展趋势与展望
新材料的应用
高磁导率材料
01
利用具有高磁导率的材料,提高磁敏式传感器的灵敏度和响应
速度。
稀有金属材料
02
采用稀有金属材料,如稀土元素,以改良传感器的性能和稳定
性。
复合材料
03
通过将不同材料的优点结合,开发出具有优异性能的复合磁敏
材料。
新工艺的研发
薄膜工艺
利用薄膜工艺制备超薄、高灵敏度的磁敏元件, 提高传感器的精度和稳定性。
磁通元件
利用磁通效应,将磁场变化转化为 电压变化,从而检测磁场强度。
信号处理电路
01
02
03
放大器
将磁敏元件输出的微弱信 号进行放大,提高信号的 信噪比。
滤波器
对信号进行滤波处理,去 除噪声干扰,提高信号的 稳定性。
调制解调器
将磁敏元件输出的模拟信 号转换为数字信号,便于 后续处理。
输出装置
显示器
位置检测
位置检测概述
位置检测是控制系统中不可或缺的一环,磁 敏式传感器可用于位置检测。
位置检测原理
磁敏式传感器通过检测磁场的变化,判断物 体的位置和运动轨迹。
位置检测应用
在机器人、自动化生产线、医疗器械等领域 ,位置检测的应用越来越广泛。
位置检测优缺点
磁敏式传感器具有非接触、精度高等优点, 但也存在对环境磁场干扰敏锐等缺点。
具有较高的灵敏度。
线性输出
磁敏式传感器的输出信号与磁 场强度成线性关系,使得测量 结果更为准确可靠。
稳定性好
经过特殊工艺处理,磁敏式传 感器具有较好的温度特性和长 期稳定性。
抗干扰能力强
由于磁场不易受到电场、温度 等因素的干扰,因此磁敏式传 感器在复杂环境下仍能保持较

磁敏传感器PPT课件

磁敏传感器PPT课件
通常采用预极化方法或辅助磁场方法来建立质子宏观 磁矩,以增强信号幅度。
具体作法是:用圆柱形玻璃容器装满水样品或含氢质子液 体,作为灵敏元件,在容器周围绕上极化线圈和测量线 圈或共用一个线圈,使线圈轴向垂直于外磁场T方向。
在垂直于外磁场方向加一极化场H(该场强约为外磁场 的200倍)。在极化场作用下,容器内水中质子磁矩沿 极化场方向排列,形成宏观磁矩,如下图所示。
磁敏传感器的种类
▪质子旋进式磁敏传感器 ▪光泵式磁敏传感器 ▪SQUID(超导量子干涉器)磁敏传感器 ▪磁通门式磁敏传感器 ▪感应式磁敏传感器 ▪半导体磁敏传感器
霍尔器件、磁敏二极管、磁敏三极管、磁敏电阻
▪机械式磁敏传感器 ▪光纤式磁敏传感器
第一节 质子旋进式磁敏传感器
质子旋进式磁敏传感器是利用质子在外磁场 中的旋进现象,根据磁共振原理研制成功的。
二、磁场的测量与旋进信号
在核磁共振中,共振信号的幅度与被测磁场T3/2成正比。
当被测磁场很弱时,信号幅度大大衰减。对微弱的被测 磁场,用一般的核磁共振检测方法是接收不到旋进信号 的。为了测得质子磁矩M绕外磁场的旋进频率 f 信号, 必须采取特殊方法: 使沿外磁场方向排列的质子磁矩,在极化场的激励下,建立 质子宏观磁矩,并使其方向于外磁场方向垂直或接近垂直
在自由旋进的过程中,磁矩M的横向分量以t2(横向弛 豫时间)为时间常数并随时间逐渐趋近于零;在测量 线圈中所接收的感应信号,也是以t2为时间常数按指数 规律衰减的。
y
υ
感应信号衰减示意图
M衰减示意图
t2
M
x
t ω=γ T
质子旋进式磁敏传感器的组成
核心:500cc左右有机玻璃容器,在容器外面绕以数百匝
dM y dt

磁电式传感器课件

磁电式传感器课件

34
2. 工作原理
空穴
电子
磁场H = 0:
(a)
P
→ →→
i
←←←
N 电流
少量电子和空穴

复合区 H=0
I 区、r区复合
(b) P
i
H+
N 电流
正向磁场 H+ : 电子和空穴偏向 r 区, 电流因复合增大而减小
(c)
P
i
H-
N 电流
反向磁场 H- : 电子和空穴偏向 I 区, 电流因复合减少而增大
这种传感器工作磁场恒定,线圈和磁铁两者间 产生相对运动,切割磁场线而产生感应电势。
动圈式
动铁式
4
恒磁通式磁电传感器的结构原理图
e WBLvsin
e WBLvsin
e WBAsint
5
(二)变磁通式磁电式传感器(磁阻式)
线圈和磁铁部分都是静止的,与被测物连 接而运动的部分是用导磁材料制成的,在运动 中,它们改变磁路的磁阻,因而改变贯穿线圈 的磁通量,在线圈中产生感应电动势。
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
结构: 稳压器、霍尔片、 差分放大器,施 密特触发器和输
地 2 出级等部分组成。
24
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
工作原理:
有磁场:UH >开启阈值,
高电平,VT导通 开状态
磁场减弱:UH <断开阈值,
地 2 低电平,VT截止 关状态
45
谢谢!
46
2. 已知某霍尔元件尺寸为长L=10mm,宽 b=3.5mm,厚d=1mm。沿L方向通以电流 I=1.0mA,在垂直于L×b方向上加均匀磁场 B=0.3T,输出霍尔电势UH=6.55mV。求该霍尔 元件的灵敏度系数KH和载流子浓度n是多少?

磁电感应式传感器PPT课件

磁电感应式传感器PPT课件

1.被测旋转体 2.测量轮 3.线圈
4.软铁
5.永久磁铁 开磁路变磁通式传感器结构示意图
它与软铁4之间构成的磁路磁阻变化一次,磁通也就 变化一次,线圈3中产生的感应电动势的变化频率等 于测量齿轮2上齿轮的齿数和转速的乘积。
这种传感器结构简单,但需在被测对象上加装齿轮,
使用不方便,且因高速轴上加装齿轮会带来不平衡而
上述工作原理可知,磁电感应式传感器只适用于
动态测量。
.
5
5.2 磁电感应式传感器的类型
按磁场方式分类,磁电感应式传感器分为变磁通式 和恒定磁通式两大类,每类还有不同型式。
1.变磁通式
变磁通式传感器又称为变磁阻磁电感应式传感器或
变气隙磁电感应式传感器。这类传感器的线圈和磁
铁固定,利用铁磁性物质制成齿轮(或凸轮)与被
不宜测高转速。
.
7
(2)闭磁路变磁通式传感器
如测图量,轮被2在测磁旋场转气体隙1带中动等速椭圆转形动,1.被测物体 使气隙平均长度周期性地变化,
2.测量轮 3.线圈
因而磁路磁阻也周期性地变化,
4.软铁
磁通同样周期性地变化,则在线
圈3中产生感应电动势,其频率f
与测量轮2的转速n(rad/m)成
N
S
正比,即f=n/30。在这种结构中,
e N d dt
.
3
当线圈垂直于磁场方向运动以速度 v切割磁力线时,
感应电动势为: eNBlv
式中,l:每匝线圈的平均长度;
B:线圈所在磁场的磁感应强度(T)。
若线圈以角速度 转动,则感生电动势可写为:
eNBS
式中,S:每匝线圈的平均截面积。
.
4
只要磁通量发生变化,就有感应电动势产生,可 实现的方法很多,主要有:

《磁敏传感器介绍》课件

《磁敏传感器介绍》课件

磁敏传感器在工厂自动化、机器人技术和生 产线控制中起到关键作用。
2 汽车行业
用于车辆导航、制动系统、空调系统和倒车 雷达等汽车应用中。
3 医疗设备
4 消费电子
应用于MRI机器、心脏起搏器和血液测量等医 疗设备中。
用于智能手机、平板电脑和游戏手柄等消费 电子产品中。
磁敏传感器的性能评价指标
1 灵敏度
磁敏传感器的分类和类型
磁电传感器
利用磁电效应将磁场转换为电信号,如霍尔传感器和磁电电流传感器。
磁阻传感器
根据磁场的磁阻变化来测量磁场强度,如磁阻式位置传感器和磁阻角度传感器。
磁感应传感器
利用磁感应效应测量磁场强度和方向,如磁感应式位置传感器和磁感应式角度传感器。
磁敏传感器的应用领域
1 工业自动化
磁敏传感器介绍
欢迎来到《磁敏传感器介绍》PPT课件。本课程将为您详细介绍磁敏传感器的 定义、原理和应用领域,以及评价指标和创新技术。让我们一起探索这个引 人入胜的领域!
磁敏传感器的定义和原理
磁敏传感器是一种能够检测和测量磁场强度和磁场变化的设备。它们基于磁敏效应工作,如霍尔效应、磁电效 应和磁致伸缩效应。这些传感器在广泛的应用中发挥着关键的作用。
3
低功耗
优化电路设计和材料选择以降低功耗。
磁敏传感器的创新技术
量子磁敏传感器
利用量子效应实现更高灵敏度和 更低功耗的磁敏传感器。
人工智能应用
结合人工智能算法分析传感器数 据,提高复杂环境下的性能。
物联网集成
将磁敏传感器与物联网技术相结 合,实现智能化和远程监测。
总结和展望
通过本课程,我们了解了磁敏传感器的定义、原理、分类、应用领域、性能 评价指标以及创新技术。未来,随着技术的不断发展,磁敏传感器将在更多 领域发挥关键作用,带来更多惊喜和突破。

传感器的类型ppt课件

传感器的类型ppt课件
▪ 传感器是将感知到的各种信号转换成易测量 的信号,把相应的信号输入计算机,计算机 发出指令,控制各执行机构。
.
§3-1传感器的定义
一、传感器的定义( Transducer/Sensor ) ▪ 定义:将被测参量转换为与之对应的,易
于测量,传输和处理的信号的装置。
GB7665一87:能够感受规定的被测量并按 照一定规律转换成可用输出信号的器件或 装置。
.
§3-2-2 电位计式传感器
回转型变阻器式传感器,其电阻值随转角而变化。
其灵敏度
S
dR
d
k
式中α—转角[rad]
kα—单位弧度对应的电阻值。
.
§3-2-2 电位计式传感器
非线性变阻器式传感器,或称为函数电位器。 当被测量与电刷位移x之间具有某种函数关系时, 通过它可以获得输出电阻与输入被测量的线性关 系。设r(x)为电位器任意瞬时位置(微小区间Δx) 内的电阻,则电阻位移为x时总电阻值为:
KS由两部分组成:
前一部分是(1+2μ),由材料的几何尺寸变化引起,一般
金属μ≈0.3,因此(1+2μ)≈1.6;
后一部分为
l
/,电阻率随应变而引起的(称“压阻效应”)。
/l
对金属材料,以前者为主,则KS≈ 1+2μ;
对半导体, KS值主要由电阻率相对变化所决定。
实验表明,在金属丝拉伸比例极限内,电阻相对变化与轴
第三章 传感器
§3-1 §3-2 §3-3 §3-4 §3-6
传感器的概念 电阻式传感器 电容式传感器 电感式传感器 压电式传感器
.
第三章 传感器
▪ 传感器是人类五官的延长,又称之为电五 官;
信息 传感器技术 通信技术 计算机技术

磁敏式传感器 ppt课件

磁敏式传感器 ppt课件
第7章
磁敏式传感器
1
主要内容
7.1 磁电感应式传感器 7.2 霍尔式传感器
2
3
7.1 磁电感应式传感器
磁电感应式传感器又称感应式或电动式传感器, 是利用电磁 感应原理将被测量(如振动、位移、转速等)转换成电信号的一种 传感器
它不需要辅助电源, 就能把被测对象的机械量转换成易于测量 的电信号,是一种有源传感器
7
变磁通式磁电传感器(用于角速度测量)
43 2 1 NS
31 7
A 6
A
5
5
6
(a)
(b)
主要靠改变磁路的磁通大小进行测量,即改变磁路的磁阻
8
图(a)为开磁路变磁通式:线圈、磁铁静止不动, 测量 齿轮安装在被测旋转体上,随被测体一起转动。每转动一个齿, 齿的凹凸引起磁路磁阻变化一次,磁通也就变化一次, 线圈中 产生感应电势,其变化频率等于被测转速与测量齿轮上齿数的 乘积。
传感器线圈产生感应电动势,接上负载后,线圈中有电流流过 而发热。
12
测量误差
当传感器的工作温度发生变化或受到外 界磁场干扰、受到机械振动或冲击时, 其灵敏度将发生变化,从而产生测量误 差,其相对误差为:
dSI dBdLdR
SI B L R
SI
I0 v
NBL RRf
即其测量误差来源于B、L、R三个方面
10
7.1.2
当测量电路接入磁电传感器电路时,磁电传感器的输出电
流Io为:
I0
E RRf
NBLv RRf
式中: Rf——测量电路输入电阻; R——线圈等效电阻。
I0
传E

器R
指示器
Rf
传感器的电流灵敏度为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
磁电式传感器 Magnetoelectric sensor
主要内容
1. 基本原理与结构型式 2. 磁电式传感器的动态特性 3. 磁电式传感器的误差与补偿 4. 磁电式传感器的应用 5. 霍尔传感器 6. 其他磁敏传感器
2020/3/13
4
5.1 基本原理与结构型式
1. 基本原理:
电磁感应定律:
①W 匝 数 。 通 常 不 变 化

②dΦ dt
磁 场 强 度B


线路磁阻
线 圈 运 动 速 度
测频数
度、磁阻、线圈运动 速度有关,改变其 一个因素,都会改变 感应电动势。
测转速
因此磁电式传感器的分类: 线速度型
动圈式
恒磁通式
角速度型
磁电式
动铁式
2020/3/13
当W匝线圈在恒磁场内运动时,设穿过 线圈的磁通为φ,则线圈内的感应电势e与磁 通变化率dφ/dt有如下关系:
感 应 电 动 势 :e W d
dt
W 线 圈 匝 数 ; 磁 通 量
2020/3/13
5
5.1 基本原理与结构型式
影 响 感 应 电 动 势e W 磁ddt阻的式因 素: 磁通变化率与磁场强
③ 零位及性能稳定。
④ 工作频带10~1000Hz。
⑤ 具有双向转换功能,可构成力(矩)发生 器和电磁激振器。 应用实例
2020/3/13
11
5.3 磁电式传感器的误差及补偿 Error and compensation
1. 非线性误差
2. 温度误差
3. 永久磁铁的稳定性
2020/3/13
12
1. 非线性误差 Nonlinearity error
n
2020/3/13
17
答案示例: (1)磁电传感器测转速系统安装图:
磁片
传感器
n
(2)传感器输出电压u的波形:
u
0
2020/3/13
一个转动周期
t
18
(3)测量系统电路框图:
被测对象 磁电传感器 信号调理电路 计数器
(4)转速测量方法: 在设定时间T(秒)内,对传感器输出正脉
冲或负脉冲个数进行计数N,设转动平台上安 装a个磁片,则待测平均转速n(转/分):
产生误差的主要原因及其补偿措施:
① 由于传感器线圈电流变化产生的附加磁通 叠加于永久磁铁产上的气隙磁通上,使恒 定的气隙磁通变化。(见图5-6) 措施:加补偿线圈(见图5-2(a))
② 气隙磁场不均匀。 措施:加反向磁片(见图5-7)
2020/3/13
13
2. 温度误差 Temperature error
温度的变化将导致线圈匝长以及导线电 阻率的变化,磁阻的变化以及磁导率的 变化等。
▪ 措施:热磁温度补偿(见图5-8)
2020/3/13
14
3. 永久磁铁的稳定性 Stablity of permanent magnet
当测量电路的输入电阻Rf>>R时,永久磁铁的稳定 性将成为误差的决定因素。因为永久磁铁的磁通量密 度的稳定性直接影响工作气隙中磁通量密度的稳定性。
变磁通式 (测变偏磁心阻式)
测振动
6
5.1 基本原理与结构型式
2. 结构型式:变磁通式和恒磁通式
(1)变磁通式(变磁阻式):旋转型和平移型
e=-ωAWBcos(2ω)t
2020/3/13
7
5.1 基本原理与结构型式
(2)恒磁通式:动圈式和动铁式
e=Bl v
2020/3/13
8
5.2 磁电式传感器的动态特性
③ 当频率更高时,灵敏度随频率的增加 而下降。
一般惯性式传感器固有频率ω0=10Hz,较好的可做
到ω0=4.5Hz。上限频率为200Hz~1000Hz。
2020/3/13
10
磁电式传感器的特点:
① 被测对象: 动态被测量,如速度,加速度、振动
② 输出信号: 电压信号输出,且输出功率大,故配用电路 较简单。
几种稳磁处理措施:
① 时间稳定性
交流强制退磁,“小电流老化”或叫做去“虚 磁”。
② 温度稳定性
高低温时效稳磁处理。
③ 外磁场作用下的稳定性
“人工老化”或采取屏蔽措施。
④ 机械振动作用下的稳定性
2020/3/1冲3 击、振动试验
15
5.4 磁电式传感器的应用
1. 测振传感器
(1)动铁式振动传感器(见图5-10) (2)动圈式振动速度传感器(见图5-11)
磁电式传感器
2020/3/13
1
应用实例:
2020/3/13
2
磁电式传感器 Magnetoelectric sensor
磁电式传感器利用电 磁感应原理,将输入 运动速度变换成感应 电势输出的传感器。 有时也称作电动式或 感应式传感器。
不需辅助电源,是一种能量转换型传感 器、有源传感器。
2020/3/13
可以把图5-2所示的测振传感器等效
为一个集中参数“m-k-c”的二阶系统,
如图5-3。
惯性式传感器:
➢ 测量物体振动时,传感器壳体与振动体刚性固 连,随被测体一起振动。
➢ 质量块质量m较大,弹簧弹性系数k较小,被测
体振动频率足够高。
➢ 振动能量几乎全被弹簧吸收,弹簧的变形量接 近等于被测体的振幅。
n=60(N/a)/T=60N/(aT) (转/分)
2020/3/13
19
2020/3/13
9
5.2 磁电式传感器的动态特性
惯性式磁电传感器测振动特性:
① 当被测体的振动频率ω低于传感器的
固有频率ω0,即ω/ ω0<1时,传感 器的灵敏度随频率而明显地变化。
② 当被测体的振动频率ω远高于传感器 的固有频率ω0时,一般取ω/ ω0>3, 灵敏度接近为一常数,传感器输出电 压与振动速度成正比,这一频段即传 感器的工作频段,或称作频响范围, 这时传感器可看作一个理想的速度传 感器。
2. 磁电式力发生器与激振器
磁电式传感器具有双向转换特性。如果给速 度传感器的线圈输入电量,那么其输出为机 械量。(见图5-12)
磁电式激振器特点:(与压电激振器比较) ① 振动幅度大 ② 振动频率较低
2020/3/13
16
应用实例:
现有非导磁圆盘如图所示,想用磁电式传感器测量 该圆盘的平均转速,问: (1)如何安装、设计磁电式传感器测量转速系统? (2)画出传感器输出电压波形。 (3)画出测量系统电路功能框图。 (4)写出平均转速的计算公式。 ?思考题: (1)如何在系统安装上,提高转速测量的分辨力? (2)如何从设计原理上提高测量精度?
相关文档
最新文档