双容水箱液位自动控制系统的整定-任务书

合集下载

试验三双容水箱液位定值控制系统试验-化工控制工程试验中心

试验三双容水箱液位定值控制系统试验-化工控制工程试验中心

试验三双容水箱液位定值控制系统试验-化工控制工程试验中心过程控制系统与工程实验指导书沈阳工业大学工程学院目录实验一单容自衡水箱液位特性测试实验 (3)实验二单容液位定值控制系统实验 (6)实验三双容水箱液位定值控制系统实验 (8)实验四水箱液位串级控制系统实验 (10)实验五下水箱液位前馈-反馈控制系统实验 (12)实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。

2.根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。

二、实验设备1.THJ-2型高级过程控制系统实验装置2.计算机、MCGS 工控组态软件、RS232/485转换器1只、串口线1根3.万用表一只三、实验原理所谓单容指只有一个贮蓄容器。

自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。

图1-1所示为单容自衡水箱特性测试结构图及方框图。

阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。

液位h 的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。

若将Q1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。

根据动态物料平衡关系有Q 1-Q 2=A dtdh (1-1) 将式(1-1)表示为增量形式ΔQ 1-ΔQ 2=Adt h d ? (1-2) 式中:ΔQ1,ΔQ2,Δh ——分别为偏离某一平衡状态的增量; A ——水箱截面积。

在平衡时,Q 1=Q 2,dtdh =0;当Q1发生变化时,液位h 随之变化,水箱出口处的静压也随之变化,Q2也发生变化。

由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。

但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=R h ? 或 R=2Q ??h (1-3) 式中:R —阀F1-11的阻力,称为液阻。

双容水箱液位定值控制系统实验

双容水箱液位定值控制系统实验

双容水箱液位定值控制系统实验双容水箱液位定值控制系统一、实验目的1( 通过实验,进一步了解双容对象的特性。

2( 掌握调节器参数的整定与投运方法。

3( 研究调节器相关参数的改变对系统动态性能的影响。

二、实验设备1( THJ-2型高级过程控制系统装置。

2( 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3( 万用表一只三、实验原理本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被图6-1 双容液位定值控制系统结构图控制量。

基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。

本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。

如果采用电动调节阀作执行元件,则变频调速磁图6-2 双容液位定值控制系统方框图力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动。

图6-1为实验系统的结构图,图6-2为控制系统的方框图。

四、实验内容与步骤1( 图6-1所示,完成实验系统的接线。

2( 接通总电源和相关仪表的电源。

3( 打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于F1-11的开度。

4( 用实验四(上册)中所述的临界比例度法或4:1衰减振荡法整定调节器的相关参数。

5( 设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。

6( 启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃(给定量增加5%,15%),观察并记录系统的输出响应曲线。

2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位的变化过程。

7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。

双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计一、系统结构1.水箱:系统中最重要的元件之一,用于存储和供应水资源。

2.控制阀:用于调节水箱出口的流量,根据传感器检测到的液位信号来控制阀门的开度。

3.液位传感器:用于检测水箱内部的液位变化,并将其转换为电信号供控制系统使用。

4.流量传感器:用于检测水箱出口的流量,并将其转换为电信号供控制系统使用。

5.控制器:整个系统的核心部分,根据传感器采集到的液位和流量信号,通过控制阀门的开度来调节水箱的液位和流量。

二、系统设计1.控制策略的选择:双容水箱液位流量串级控制系统的控制策略一般选择PID控制算法。

PID控制器可根据传感器采集到的控制量和设定值之间的误差来调节阀门的开度,实现液位和流量的闭环控制。

2.系统参数的确定:首先需要确定水箱的容积和液位范围,以便合理地选择传感器的量程。

然后需要根据水箱的工作条件和流量要求来确定控制阀的参数,如最大流量、最小可调节流量等。

3.传感器的选择与安装:根据系统的要求和工作环境的特点,选择适合的液位传感器和流量传感器,并将其正确安装在水箱中。

液位传感器一般安装在水箱的顶部,流量传感器安装在水箱的出口处。

4.控制器的设计与配置:根据系统需求和控制策略的选择,选择适合的PID控制器,并按照系统参数进行配置。

控制器应具备良好的控制性能和稳定性,能够根据传感器采集到的信号及时调节阀门的开度。

5.控制策略的调整与优化:系统设计完成后,需要通过实际的试验和调整来优化控制策略,提高系统的控制性能。

可以通过调整PID控制器的参数来实现系统的稳定运行和准确控制。

6.故障检测与保护措施:在设计系统时,应考虑到可能发生的故障,如传感器故障、控制阀失效等,并设计相应的故障检测和保护措施,以确保系统的安全可靠运行。

三、系统应用总结:双容水箱液位流量串级控制系统是一种重要的控制系统,在工业生产中起到关键作用。

其设计需要根据实际需求和系统参数进行合理设置,并通过优化控制策略来实现系统的稳定运行和优质控制效果。

双容水箱液位控制系统设计

双容水箱液位控制系统设计

双容水箱液位控制系统设计首先,双容水箱液位控制系统的基本原理是根据水位信号的反馈来控制水泵的启停。

当水箱液位低于设定值时,水泵启动,开始抽水;当液位达到设定值时,水泵停止运行。

这样就可以实现水箱液位的自动控制。

第一,确定水箱的容积和设计液位。

容积和设计液位的确定需要根据实际应用情况来选择,一般要考虑水泵的流量和工作时间等因素。

容积大的水箱可以减少水泵启停的频率,但其建设和维护成本也较高。

第二,确定水位传感器的选择和安装。

水位传感器是检测水箱液位的关键部件,可以选择浮子式传感器、超声波传感器等。

选择合适的传感器需要考虑其精度、可靠性、成本和使用环境等因素。

安装传感器时要确保其与水箱的接触良好,避免信号干扰。

第三,确定控制器的选择和编程。

控制器是实现水位控制的核心部件,可以选择PLC、单片机等。

控制器的选择要考虑其处理能力、输入输出接口和编程灵活性等因素。

编程时需要设置液位设定值和控制逻辑,使得系统能够准确地控制水泵的启停。

第四,确定水泵的选择和安装。

水泵是水箱液位控制系统的关键设备,可以选择离心泵、自吸泵等。

选择合适的水泵需要考虑其流量、扬程、功率和效率等因素。

水泵的安装要确保其与水箱的连接可靠,并考虑水泵的防护和维护问题。

第五,确定报警和保护措施。

对于水箱液位控制系统,需要设置相应的报警和保护机制,以及应急措施。

例如,当水泵故障或水箱液位异常时,系统应该能够及时发出报警,并采取相应的措施避免设备损坏或事故发生。

最后,测试和调试系统。

在系统设计和安装完成后,需要进行全面的测试和调试工作。

首先测试传感器和控制器的工作是否正常,然后测试水泵的启停控制是否准确。

同时,还需要进行系统的稳定性和灵敏度测试,确保系统能够稳定运行和满足实际需求。

总之,双容水箱液位控制系统的设计需要综合考虑容积、液位传感器、控制器、水泵、报警保护和测试调试等方面的因素。

只有设计合理并正确配置这些部件,才能实现高效、稳定的液位控制。

实验五、串接双容下水箱液位PID整定实验

实验五、串接双容下水箱液位PID整定实验
(6)开始记录数据,然后加干扰,这里采用突然改变给定值的方法来模拟干扰(如原来给定值为10cm,现在改为15cm或5cm,回车),也可以通过调节旁路阀门开度的方法实现。记录该时刻,同时不断记录水位,直到新的稳态建立。如果过渡过程的质量不理想,就应该考虑调节相应的PID参数,尽可能得到适当的衰减振荡曲线。
1.4.2二阶水箱对象PID控制
实验五串接双容中水箱液位PID整定
一、实验目的
(1)熟悉单回路双容液位控制系统的组成和工作原理。
(2)熟悉用P、PI和PID控制规律时的过渡过程曲线。
(3)定性分析不同PID控制器参数对双容系统控制性能的影响。
二、实验设备
CS2000型过程控制实验装置、计算机、DCS控制系统与监控软件。
(7)改变控制规律,时间允许的情况下,对于P、PI、PID,分别得到2条合理的过渡过程曲线(对应不同参数)。注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。
五、实验报告要求
(1)画出双容水箱液位控制实验系统的结构图。
(2)画出PID控制时的阶跃响应曲线,并分析微分D对系统性能的影响。
六、思考题
三、实验原理
二阶双容水箱液位PID控制方框图
上图为双容水箱液位控制系统。这也是一个单回路控制系统,它与实验四不同的是有两个水箱相串联,控制的目的是使中水箱的液位高度等于给定值所期望的高度,具有减少或消除来自系统内部或外部扰动的影响功能。显然,这种反馈控制系统的性能完全取决于控制器(DCS)的结构和参数的合理选择。由于双容水箱的数学模型是二阶的,故系统的稳定性不如单容液位控制系统。
对于阶跃输入(包括阶跃干扰),这种系统用比例(P)调节器去控制,系统有余差,且与比例度成正比。若用比例积分(PI)调节器去控制,不仅可实现无余差,而且只要调节器的参数δ和TI调节的合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的控制作用,从而使系统既无余差存在,阀,将CS2000 实验对象的储水箱灌满水(至最高高度)。

实验三 双容水箱液位定值控制

实验三 双容水箱液位定值控制

实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。

要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。

实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。

2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。

其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。

3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。

又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。

由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。

分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。

根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。

实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。

2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。

3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。

4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。

5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。

6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。

7.记录不同设定值下液位的控制效果,并分析数据。

8.关闭水源,停止实验。

实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。

当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。

实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。

实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。

P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。

通过PID控制器的联合作用,可以实现对液位的稳定控制。

从实验结果分析可以看出,PID控制器的参数设置非常重要。

当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。

因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。

结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。

双容水箱液位控制系统设计课程设计任务书

双容水箱液位控制系统设计课程设计任务书
水箱液位控制系统水箱液位器水箱液位控制器课程设计任务书图书管理系统任务书水箱液位控制水箱液位计课程设计任务书模板plc课程设计任务书液位控制系统
重庆科技学院
课程设计任务书
设计题目:双容水箱液位控制系统设计
学生姓名
课程名称化工过程控制系统设计Fra bibliotek专业班级
自动化2009
地点
I502
起止时间
2012.12.3~2012.12.21
教研室主任:指导教师:年月日
进度
要求
1.A3000系统组成、功能、使用简介(第一周:周1)
2.对各设计项目工艺流程、工艺要求的理解;(第一周:周2)
3.控制系统流程图、控制系统框图设计(第一周:周3)
4.双容水箱对象特性测定(第一周:周4)
5.控制系统方案设计:被控量、控制量的选择;检测装置选择;执行器选择;控制器选择。(第一周:周5)
6.绘制电气连接图(用Protel绘制)(第二周:周1)
7.了解监控软件(组态)(第二周:周2)
8.控制系统运行及参数整定;.撰写设计报告(第二周:周3~周4)
9.撰写、提交设计报告(第二周:周5)


资料
A3000实验指导书
过程控制工程,邵裕森,机械工业出版社,2010.1
其他
说明
1.本表应在每次实施前一周由负责教师填写二份,院系审批后交院系办备案,一份由负责教师留用。2.若填写内容较多可另纸附后。3.一题多名学生共用的,在设计内容、参数、要求等方面应有所区别。
6.撰写设计报告
性能要求:无余差,衰减比5,最大超调30%。
设计
参数
设计报告正文至少包含以下内容:工艺及要求说明;控制系统流程图及说明;控制框图及说明;实验数据、曲线、图表等;方案设计所涉各项的选择依据(原则)及所选设备的型号、技术指标;系统电气连接图(用Protel绘制);参数整定方法、步骤及整定响应曲线(至少2条);系统控制质量说明(余差、衰减率、最大振幅、过渡时间)

实验二 双容水箱液位定值控制系统(单回路)

实验二 双容水箱液位定值控制系统(单回路)

实验项目名称:(所属课程:)学院:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:一、实验目的1.通过实验进一步了解双容水箱液位的特性。

2.掌握双容水箱液位控制系统调节器参数的整定与投运方法。

3.研究调节器相关参数的改变对系统动态性能的影响。

4.研究P、PI、PD和PID四种调节器分别对液位系统的控制作用。

5.掌握双容液位定值控制系统采用不同控制方案的实现过程。

二、实验条件THSA-1型过控综合自动化控制系统实验平台。

三、实验原理图2-4 单容液位定值控制系统原理框图四、实验内容与要求本实验选择中水箱液位作为被控参数,上水箱流入量为控制参数。

实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-2、F1-7和F1-11全开,将中水箱出水阀F1-10开至适当开度(50%左右,上水箱出水阀开到70%左右),其余阀门均关闭。

按以下步骤进行实验。

1.根据系统组成方框图接线,如图2-5所示。

2.接通总电源空气开关和钥匙开关,打开24V开关电源,给压力变送器上电,按下启动按钮,合上单相1、单相对性空气开关,给智能仪表及电动调节阀上电。

3.打开上位机“组态王”组态环境,打开“智能仪表控制系统”工程,然后进入组态王运行环境,在主菜单中点击“实验四、双容液位定值控制系统”,进入实验四的监控界面。

4.在上位机监控界面中点击“启动仪表”,将智能仪表设置为“手动”,并将设定值和输出值设置为一个合适的值,此操作可通过调节仪表实现。

值得注意的是手自动切换的时间为:当中水箱液位基本稳定不变(一般约为3~5cm)且下水箱的液位趋于给定值时切换为最佳。

5.合上三相电源空气开关,磁力驱动泵上电打水,适当增加/减少智能仪表的输出量,使中水箱的液位平衡于设定值。

6.按经验法或动态特性参数法整定调节器参数,选择PI控制规律,并按整定后的PI参数进行调节器参数设置。

图2-5 智能仪表控制单容液位定值控制实验接线图7.待液位稳定于给定值后,将调节器切换到“自动控制状态。

双容水箱液位定值控制系统

双容水箱液位定值控制系统

第四节双容水箱液位定值控制系统一、实验目的1.通过实验,进一步了解双容对象的特性.2.掌握调节器参数的整定与投运方法.3.研究调节器相关参数的改变对系统动态性能的影响.二、实验设备1.THJ-2型高级过程控制系统装置.2.计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3.万用表一只三、实验原理图3-1 双容液位定值控制系统结构图图3-2 双容液位定值控制系统方框图本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被控制量.基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID.本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵.如果采用电动调节阀作执行元件,则变频调速磁力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动.图3-1为实验系统的结构图,图3-2为控制系统的方框图.四、实验内容与步骤本实验选择中水箱和下水箱串联作为双容对象〔也可选择上水箱和中水箱〕.实验之前先将储水箱中贮足水量,然后将阀门F1-1、F1-7全开,将中水箱出水阀门F1-10、下水箱出水阀门F1-11开至适当开度〔要求阀F1-10稍大于阀F1-11〕,其余阀门均关闭.然后接通控制系统电源,打开用作上位监控的的PC机,进入实验界面的操作和打开实验主界面的操作过程与本实验指导书第二章第一节中所描述的相同.在实验主界面中选择本实验项即"串接双容水箱液位PID整定实验",系统进入正常的测试状态,呈现的实验界面如图3-3所示.图3-3 实验界面实验步骤与上个实验"第三节上水箱液位定值控制系统"相同,在此只列出实验数据.P=3P=8P=3I=50000无调节时间P=8 I=100000P=3 D=5000无超调、调节、上升,只算峰值时间P=8 D=10000无调节时间P=6 I=100000D=10000分析内容与上个实验"上水箱液位定值控制系统"内容一致.五、思考题1. 为什么本实验较上水箱液位定值控制系统更容易引起振荡?如果达到同样的动态性能指标,为什么本实验中调节器的比例度和积分时间常数均要比前两个实验大?答:由于在本实验中的比例系数相对较大,过程相应时间相对较长,更加容易引起振荡.要达到同样的动态性能指标,调节器的比例度应该调节的相对较大,积分时间常数调高.2. 你能说出下水箱的时间常数比中水箱时间常数大的原因吗?答:采用上中水箱做实验,它的响应曲线要比中下水箱变化快.原因:因为中水箱的截面积比下水箱的要小,上升相同的液位高度,下水箱要更长时间.3. 为什么双容液位控制系统比单容液位控制系统难于稳定?答:因为双容的相当于两个单容的串联,变成了二阶系统,输出可能会震荡,单容的是一阶系统,输出是指数单调收敛的.。

双容水箱液位控制系统方案

双容水箱液位控制系统方案

双容水箱液位控制系统方案一、前言在许多工业生产过程中,水位的控制是非常关键的环节。

双容水箱液位控制系统是一种常用的水位控制方案,它通过两个水容器之间的液位传感器和控制阀门来实现液位的自动控制。

本文将就双容水箱液位控制系统的设计方案进行详细介绍。

二、系统结构[插入系统结构示意图]系统由两个水容器、液位传感器、控制阀门和控制器组成。

其中,一个水容器为水箱,另一个水容器为储水槽。

三、系统原理四、系统设计步骤1.确定控制策略首先要确定液位控制的目标和要求,例如需要将水箱液位控制在一定范围内。

然后根据具体的要求设计控制策略,如使用PID控制算法。

2.选择液位传感器根据实际需要选择合适的液位传感器,可以使用浮球式液位传感器或是压力式液位传感器。

传感器的选择需要考虑其测量范围、精度和稳定性等因素。

3.选择控制阀门选择合适的控制阀门用于控制水的流入和流出。

阀门的选择需要考虑其流量范围、响应速度和可控性等因素。

同时,还需要考虑阀门的安装位置和连接方式等因素。

4.确定控制器和通信协议选择合适的控制器用于接收液位传感器的信号,并控制控制阀门的开关状态。

通常可以选择PLC或是单片机作为控制器,并根据实际需要确定通信协议。

5.编写控制程序根据控制策略和控制器的要求编写控制程序,实现液位的自动控制。

程序需要包括液位传感器的读取、控制阀门的开关和液位的调节等功能。

6.系统调试和优化对安装完毕的系统进行调试和优化,通过实际测试来验证系统的性能和稳定性。

如有需要,可以对控制策略和参数进行调整,以满足实际应用的需求。

五、系统特点和应用1.可靠性高:通过使用液位传感器和控制器,系统能够实时监测和控制液位,避免了人工操作的误差。

2.自动化程度高:系统可以实现液位的自动控制,减少了人工操作的工作量。

3.调节性能好:根据实际需要,可以选择合适的控制策略和参数,以实现液位的快速调节和稳定控制。

4.应用范围广:双容水箱液位控制系统广泛应用于各类工业生产过程中,如供水系统、储罐液位控制等。

双容水箱液位控制系统毕业设计

双容水箱液位控制系统毕业设计

双容水箱液位控制系统毕业设计双容水箱液位控制系统是一种用于控制水箱液位的智能化系统,通过传感器、控制器和执行器等组件,实现对水箱液位的自动监测与控制。

本文将介绍关于双容水箱液位控制系统的毕业设计,包括设计目标、系统结构、工作原理和关键技术等方面的内容。

首先,设计目标是实现对双容水箱液位的智能化控制,以提高水箱的利用率和节约水资源。

具体目标包括:准确监测水箱液位,实时调节进水与排水流量,保持水箱液位在合理范围内。

其次,双容水箱液位控制系统的结构主要包括传感器模块、控制模块和执行器模块。

传感器模块用于监测水箱液位,可以采用压力传感器、浮球传感器或超声波传感器等;控制模块负责收集传感器数据,进行算法分析和决策,控制执行器模块的动作;执行器模块包括水泵和电磁阀等组件,通过控制水泵的运行和电磁阀的开关,调节进水与排水的流量,从而控制水箱液位。

系统的工作原理是首先通过传感器获取水箱液位信息,并传输给控制模块进行处理。

控制模块根据设定的液位范围和液位变化规律,判断当前液位状态,决定执行器的动作。

如果液位过高,则控制模块发送信号给执行器模块,开启电磁阀进行排水;如果液位过低,则控制模块发送信号给执行器模块,启动水泵进行进水。

通过不断的反馈和调整,控制系统可以使液位保持在合理范围内。

关键技术包括传感器选择与布置、控制算法设计和执行器参数调节等。

传感器的选择和布置需要考虑液位变化范围和液位测量的准确性;控制算法的设计需要根据实际情况制定,包括液位判断标准和动作决策规则;执行器参数调节需要根据实际需求和系统响应特性进行调整和优化。

综上所述,双容水箱液位控制系统的毕业设计旨在实现对水箱液位的智能化监测与控制。

通过设计合理的系统结构、优化的工作原理和关键技术的应用,可以实现对水箱液位的准确监测和精确控制,提高水资源的利用效率。

双容水箱液位控制系统

双容水箱液位控制系统

双容水箱液位控制系统简介双容水箱液位控制系统是一种能够自动检测液位并控制液位的系统,通常用于工业生产中的水处理、冷却等环节。

它包括两个水箱和一套自动液位控制系统。

系统组成双容水箱液位控制系统主要由以下几部分组成:1.双个水箱:分别是进水箱和出水箱,供水系统在进水箱中存储新的水,然后将水处理后的水送到出水箱,最后再供应到整个系统中。

2.液位控制器:一种能够检测并控制液位水平的控制器,通过传感器收集水位信号,并将数据传输到中控系统中。

3.中央控制器:用于处理液位信号和控制整个系统,开启或关闭水泵和控制进出水箱之间的流量。

系统工作原理当水处理系统开始工作时,水泵会将新的水送入水箱中。

同时,液位控制器会监测进水箱的液位,发送信号到中央控制器。

当进水箱的液位降到最低时,中央控制器会打开进水阀门,并将水流至进水箱中。

当进水箱液位升高到预设液位时,液位控制器会停止进水。

如果进水箱液位超过了预设值,控制器会关闭进水阀门,以避免水溢出。

同样的,出水箱也安装有液位控制器,监测出水箱液位,当液位达到最高限制时,中央控制器会打开出水阀门,并控制出水量。

当出水箱的液位降至预设值时,中央控制器会关闭出水阀门,以避免水泵过载。

优势双容水箱液位控制系统的优势主要在于以下几点:1.自动化程度高:整个水箱液位控制系统实现了全自动化的工作流程,大大减少了人工干预的频率和工作强度。

2.稳定性好:水箱液位控制系统能够实时监测液位变化,并根据水量来调整水泵流量,保证了流量平稳且不会超载,同时可以避免水流过大或过小带来的问题,提高了整个系统的稳定性和安全性。

应用场景双容水箱液位控制系统适用于以下场合:1.工业生产:工业生产中通常需要大量的水,而这些水又需要简单地进行过滤以保证生产质量。

双容水箱液位控制系统能够有效地满足这些需求。

2.冷却系统:在冷却系统中,温度是一个至关重要的因素。

过高或过低的温度都会导致整个系统的损坏,而恰当的水流量和水温可以保持整个系统的适宜温度和稳定性。

双容水箱液位控制系统设计与实现

双容水箱液位控制系统设计与实现

2.2 控制器设计模型
双容水箱液位系统辨识方法
由于耦合关系的存在,假设双容水箱液位耦合系统控制器设计模型 的表达式为
y1 y2
W
(s)
u1 u2
W11 (s) W21(s)
W12 W22
(s) (s)
u1 u2
利用阶跃响应辨识方法,根据改变 u1与 u2 引起输出液位的变化曲 线,对耦合关系矩阵W 进行辨识.
此过程同样为时间常数较小的一阶惯性环节,可近似为如下线 性关系:
Qin k4u2 c2
‒流量到双容水箱液位的过程
假设 y2 y1 ,根据物料平衡关系 有:
A1
dy1 dt
Qin1
Qout1
Q0
A2
dy2 dt
Qin2
Qout 2
Q0
其中A1和A2分别为双容水箱的横截面积 Qin1与 Qin2 分别为入水流量,Qout1与 Qout2 分别为泄水流量, Q0 为某时刻2号水箱 流入1号水箱的流量
k1P 44, k1I 0.38 k2P 32.269, k2I 0.165 k21 0.24, k12 0.05 双容水箱液位系统解耦控制实验曲线如下:
1号水箱液位
2号水箱液位
6.4 非线性解耦控制(先进方法研究)
w(k 1)
e(k)
非线性
u(k )
解耦控制器
双容水箱
y(k)
y(k)
提纲
1. 双容水箱液位控制系统描述 2. 被控对象与控制器设计模型 3. 控制器设计 4. 系统仿真 5. 闭环实验
1.双容水箱液位控制系统描述
1.1 控制目标
液位解耦
双容水箱液位能够在一定时间内达到并稳定在给定值,在其中某个水 箱液位变化时,另一个水箱的液位基本维持不变

双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告

XXXX大学
电子信息工程学院
专业硕士学位研究生综合实验报告
实验名称:双容水箱液位定值控制系统专业:控制工程
姓名: XXX
学号:XXXXXX
指导教师: XXX
完成时间:XXXXX
方案设计及参数计算:
单回路控制系统方框图的一般形式,它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。

系统的给定量是某一定值,要求系统的被控制量稳定至给定量。

单回路控制系统方框图
调节器参数的整定方法
(一)经验法
系统
参数
δ(%)T I(min)T
D
(min)
温度20~603~10~3
流量40~100~1
压力30~70~3
液位20~80
(二)临界比例度法
根据临界比例度δk和振荡周期T S,按下表所列的经验算式,求取调节器的参考参数值,这种整定方法是以得到4:1衰减为目标。

通过系统响应曲线可以看出,当设定值为10时,系统的响应有明显的时滞过程,并且有较大的超调现象,但系统最终稳定,整体图像比较理想。

双容水箱液位PID控制实验

双容水箱液位PID控制实验

上海电力学院实验报告过程控制实验课程题目双容水箱液位PID控制实验班级姓名学号同组成员指导老师时间 2011-5-16 上海电力学院电力与自动化工程学院一、实验目的1、学习双容水箱液位PID 控制系统的组成和原理2、进一步熟悉PID 的调节规律3、进一步熟悉PID 控制器参数的整定方法二、实验设备1、四水箱实验系统硬件平台2、PC 机(Window XP操作系统)三、实验原理1、控制系统的组成及原理单回路调节系统,一般是指用一个控制器来控制一个被控对象,其中控制器只接收一个测量信号,其输出也只控制一个执行机构。

双容水箱液位PID 控制系统也是一种单回路调节系统,典型的双容水箱液位控制系统如下图所示:双容水箱液位PID 控制系统的方框图在双容水箱液位PID 控制系统中,以液位为被控量。

其中,测量电路主要功能是测量对象的液位并对其进行归一化等处理;PID 控制器是整个控制系统的核心,它根据设定值和测量值的偏差信号来进行调节,从而控制双容水箱的液位达到期望的设定值。

单回路调节系统可以满足大多数工业生产的要求,只有在单回路调节系统不能满足生产更高要求的情况下,才采用复杂的调节系统。

2、PID 调节规律PID控制是比例、积分、微分控制的简称。

在生产过程自动控制的发展历程中,PID控制是历史最久、生命力最强的基本控制方式。

目前,PID控制仍然是得到最广泛应用的基本控制方式。

常用的PID控制规律有:P、PI、PD、PID,可根据被控对象的特点和控制要求选择其中之一作为控制器。

3、PID 控制器参数的实验整定方法双容水箱液位PID控制器参数整定,是为了得到某种意义下的最佳过渡过程。

我们这里选用较通用的“最佳”标准,即要求在阶跃扰动作用下,被调量的波动具有衰减率0.75左右,在这个前提下,尽量满足准确性和快速性的要求。

常用的实验整定方法有:a、动态特性曲线法b、稳定边界法c、衰减曲线法四、实验步骤1、实验前准备工作2、进入实验运行四水箱实验系统DDC 实验软件,进入首页界面;选择实验模式为“实验装置”;单击实验菜单,进入双容水箱液位PID 控制实验界面。

双容水箱液位控制

双容水箱液位控制

目录1 课程设计任务书 (2)2 总体设计方案 (4)3 PLC的设计 (6)3.1 外部接线 (6)3.2 程序编写 (6)4 组态王 (9)4.1 新建工程 (9)4.2 创建组态画面 (10)4.3 定义IO设备 (10)4.4 构造数据库 (11)4.5 动画连接 (12)4.6 实时趋势曲线 (14)4.7 历史趋势曲线 (15)4.8 报警窗口 (17)6 调试运行及其结果 (19)6.1 调试步骤 (19)6.2 调试结果 (19)收获体会 (21)参考文献 (22)1课程设计任务书《控制系统分析与综合》任务书题目:液位控制系统设计一、工程训练任务本实训综合运用自动化原理、PLC技术以及组态软件等相关课程,通过本实训的锻炼,使学生掌握自动化系统的基础理论、技术与方法,巩固和加深对理论知识的理解。

本课题针对液位控制系统作初步设计和基本研究,该系统能对水箱液位信号进行采集,以PLC为下位机,以工控组态软件组态王设计上位机监控画面,运用PID控制算法对水箱液位进行控制。

二、工程训练目的通过本次工程训练使学生掌握运用组态王软件及PLC构建工业控制系统的能力,增强学生对PLC控制系统以及组态王软件的应用能力,培养学生解决实际问题的能力,为今后从事工程技术工作、科学研究打下坚实的基础。

三、工程训练内容1) 确定PLC的I/O分配表;2) 根据PID控制算法理论,运用PLC程序实现PID控制算法;3) 编写整个液位控制系统实训项目的PLC控制程序;4) 在组态王中定义输入输出设备;5) 在组态王中定义变量;6)设计上位机监控画面;7)进行系统调试。

四、工程训练报告要求报告中提供如下内容:1、目录2、任务书3、正文4、收获、体会5、参考文献五、工程训练进度安排周次工作日工作内容第一周1 布置课程设计任务,查找相关资料完成总体设计方案23 完成PLC程序设计完成监控画面设计45第二周1 调试23 准备训练报告4 完成训练报告并于下午两点之前上交5 答辩六、工程训练考核办法本工程训练满分为100分,从工程训练平时表现、工程训练报告及工程训练答辩三个方面进行评分,其所占比例分别为20%、40%、40%。

双容液位控制系统

双容液位控制系统

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊长春大学课程设计说明书题目名称双容液位控制系统院(系)电子信息工程学院专业(班级)自动化四班学生姓名指导教师李学军起止日期2013.06.03-2013.06.14┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录1. 设计题目 (3)2. 设计任务 (3)3. 设计要求 (3)4.设计任务分析 (3)5.设计内容 (4)5.1双容、多容水箱系统的数学建模 (4)5.1.1双容、多容水箱系统机理模型 (4)5.1.2双容、多容水箱系统模型的参数辨识 (5)5.2双容、多容水箱系统数学建模的仿真 (7)5.2.1控制系统仿真环境 (7)5.3双容、多容水箱系统数学建模的参数整定 (10)5.3.1 PID控制算法的参数整定 (10)5.4双容、多容水箱前馈反馈控制系统的仿真分析 (13)5.5运用力控组态软件对系统进行设计分析 (16)5.5.1I/O点收集及表单 (16)5.5.2创建实时数据库 (17)5.5.3制作双容液液位控制系统主画面 (18)5.5.4力控控制策略的运用 (19)6实习心得 (21)参考文献 (21)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1.设计题目双容水箱液位前馈反馈控制系统设计。

2.设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。

试设计前馈反馈控制系统以维持下水箱液位的恒定。

1图1 双容水箱液位控制系统示意图3.设计要求1)上下水箱高都约为16m,具体几何尺寸不详,需仿真实验建模;2)进水量最大为16平方米/小时,调节阀前后压差最大为3.2Mpa;3)进水量的扰动为主要扰动。

4.设计任务分析1)要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s后施加的均值为0、方差为0.01的白噪声);2)针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID参数的整定要求写出整定的依据(选择何种整定方法,P、I、D各参数整定的依据如何),对仿真结果进行评述;3)针对该受扰的液位系统设计前馈反馈控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计任务书
2012—2013学年第一学期
专业:测控技术与仪器学号:姓名:
课程设计名称:过程控制系统课程设计
设计题目:双容水箱液位自动控制系统的整定
完成期限:自2012 年11 月12 日至2012 年11 月23 日共2 周一、设计依据
在我国随着社会的发展,很早就实行了自动化控制。

而在我国液位控制系统也得到了广泛应用,特别是水箱液位控制还在黄河治水中得到了利用,通过液位控制系统检测黄河的水位高低,以免黄河水位过高而在不了解的情况下,给我们人民带来生命危险和财产损失。

本设计目的是使学生通过该实践环节,能对经典控制理论有较全面的了解和掌握,同时能熟悉和掌握自动控制的基本理论在过程控制中的应用,掌握过程控制系统的组成原理及分析方法,加深理解调节器参数对控制系统质量的影响,掌握过程控制系统的工程整定方法,从而增加解决实际问题的能力,并为今后的学习和工作打下良好的基础。

二、要求及主要内容
1、说明双容水箱液位自动控制系统的工作原理,并详细画出控制系统结构图,根据被控对象的工作原理进行动态特性的测取。

2、分别对双容水箱单回路和串级控制系统进行整定。

3、根据参数整定情况,检查系统性能是否满足给定指标要求。

如若不满足要求,应根据测试结果,进行适当调整,如果因系统原因不能满足的指标和要求要给出分析的结果,并最后记录相关的性能指标。

4、撰写课程设计的技术报告,应将全部分析、设计、调试的结果,进行系统的总结,分章节撰写成文。

报告中应书写工整,图表齐全,对调试结果要有分析说明。

三、途径和方法
1、熟悉双容水箱自动调节装置
2、通过动态特性试验,对双容水箱对象的模型参数进行测取。

3、对单回路控制系统调节器参数进行整定并实现要求
4、对串级控制系统参数调节器参数进行整定并实现要求;
5、完善两个控制系统的参数整定和调试
四、时间安排
1.课题讲解:2小时。

2.阅读资料:10小时。

3.撰写设计说明书:12小时。

4.修订设计说明书:6小时。

五、主要参考资料
[1] 胡寿松自动控制原理科学出版社2011
[2] 邵裕森.过程控制工程.北京:机械工业出版社2000
[3] 于海生。

微型计算机控制技术。

北京:清华大学出版社。

2004
[4] 郑阿奇。

MATLAB实用教程。

电子工业出版社。

2005
[5] 金以慧。

过程控制。

清华大学出版社。

2003
[6] 刘金琨。

先进PID控制及MA TLAB仿真。

电子工业出版社。

2004
[7] 陈桂明。

应用MATLAB建模与仿真。

科学出版社。

2001
[8] MCGS用户指南。

北京昆仑通态自动化有限公司。

2004
指导教师(签字):教研室主任(签字):
批准日期:年月日。

相关文档
最新文档