高中数学必修1基本初等函数测试题及答案

合集下载

高一数学必修一基本初等函数高考真题(含详细答案)

高一数学必修一基本初等函数高考真题(含详细答案)

基本初等函数11.(2012年高考(安徽文))23log 9log 4⨯=( )A .14B .12C .2D .4 22.(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+33.(2012年高考(重庆))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞44.(2012年高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+55.(2012年高考(四川))函数(0,1)x y a a a a =->≠的图象可能是66.(2012年高考(山东))函数1()ln(1)f x x =+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-77.(2012年高考(广东))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e = D.y =88.(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]1299.(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是1010.(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题1111.(2012年高考(上海))方程03241=--+x x的解是_________.1212.(2012年高考(陕西))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____ 1313.(2012年高考(北京))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.1414.(2012年高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.1515.(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______.1616.(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.三、解答题1717.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.基本初等函数参考答案一、选择题 1)【解析】选D23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2)(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B .y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3).(2012年高考(重庆文))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x>;由()2g x <得322x -<即34x <所以3log 4x <故(,1)MN =-∞4)(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数xy 2log =为偶函数,且当0>x时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.5)(2012年高考(四川文))函数(0,1)x y a a a a =->≠的图象可能是[答案]C[解析]采用特殊值验证法.函数(0,1)x y a a a a =->≠恒过(1,0),只有C 选项符合.6)(2012年高考(山东文))函数1()ln(1)f x x =++( ) A .[2,0)(0,2]- B .(1,0)(0,2]-C .[2,2]-D .(1,2]-解析:要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.7)(2012年高考(广东文))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e =D .y =:D.()()f x f x -===.8)(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9)(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是[答案]C[解析]采用排除法.函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C.10)(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD【解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为()(),00,-∞+∞.故选D.二、填空题11)(2012年高考(上海文))方程03241=--+x x的解是_________.[解析]0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x ,3log 2=x .12)(2012年高考(陕西文))设函数发0,()1(),0,2x x f x x ³=íï<ïïïî,则((4))f f -=_____解析:41(4)()162f --==,((4))(16)4f f f -==13)(2012年高考(北京文))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.【解析】首先看()22x g x =-没有参数,从()22x g x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),所以舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,所以30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,所以4m >-,又0m <,故(4,0)m ∈-,综上,m 的取值范围是(4,0)-.14)(2012年高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴=2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15)(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是___5___.16)(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ?[1,2]时,2-x ?[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x_s 12__。

高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!

高一数学必修一第二章《基本初等函数Ⅰ》测试 附有答案!

高一第二章《基本初等函数Ⅰ》测试一、选择题: 1.若32a =,则33log 82log 6-用a的代数式可表示为( )()A a -2 ()B 3a -(1+a )2 ()C 5a -2 ()D 3a -a 22.下列函数中,值域为(0,)+∞的是( )()A 125xy -= ()B 11()3xy -= ()C y =()D y = 3. 设1a >,实数,x y 满足()xf x a =,则函数()f x 的图象形状大致是(4.世界人口已超过56亿,若按千分之一的年增长率计算,则两年增长的人口就可相当于一个()()A 新加坡(270万) ()B 香港(560万) ()C 瑞士(700万)()D 上海(1200万)5.已知函数l o g (2)a y a x =-在[0,1]上是x 的减函数,则a 的取值范围是 ( )()A (0,1) ()B (0,2) ()C (1,2) ()D [2,+∞)6.函数lg (1)(01)()1lg() (10)1x x f x x x-≤<⎧⎪=⎨-<<⎪+⎩,则它是( )()A 偶函数且有反函数 ()B 奇函数且有反函数 ()C 非奇非偶函数且有反函数 ()D 无反函数 二、填空题:7.函数()1log 15.0-=x y 的定义域是 .8.化简⨯53xx 35xx ×35xx = .9.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .10.定义在(0,)+∞上的函数对任意的,(0,)x y ∈+∞,都有()()()f x f y f xy +=,且当01x << 上时,有()0f x >,则()f x 在(0,)+∞上的单调性是 . 三、解答题:(.解答应写出文字说明,证明过程或演算步骤.) 11.(Ⅰ)求x x x x f -+--=4lg 32)(的定义域; (Ⅱ)求212)(x x g -=的值域.12.若()1log 3,()2log 2x x f x g x =+=,试比较()f x 与()g x 的大小.13.已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.14.已知函数()x f 满足()()()1,01log 12≠>--=-a a xx a a x f a , (Ⅰ)求()x f 的解析式并判断其单调性;(Ⅱ)对定义在()1,1-上的函数()x f ,若()()0112<-+-m f m f ,求m 的取值范围;(Ⅲ)当()2,∞-∈x 时,关于x 的不等式()04<-x f 恒成立,求a 的取值范围.参考答案(仅供参考):ABADCB , 7(1,2), 8、1, 9、C4,C2,C3,C1 10单调递减, 11.(Ⅰ){243}x x x ≤<≠且 (Ⅱ)(0,2] 12.f (x)-g(x)=log x 3x-log x 4=log x 43x.当0<x<1时,f(x)>g(x);当x=34时,f(x)=g(x);当1<x<34时,f(x)<g(x);当x>34时,f(x)>g(x). 13解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数. (2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3. 由{21043a b a b -+=-=得a =1,b =1.14. (Ⅰ) 21()()1xxa f x a a a =-- …………………2′证明在(1,1)-上单调递增 ……………………………………4′(Ⅱ)判断函数()f x为奇函数,22111111111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪-<-⎩…4′(Ⅲ)[2(1,2 ………………4′。

高中数学必修一第二章 基本初等函数 2-1 指数函数课时提升作业及解析

高中数学必修一第二章 基本初等函数 2-1 指数函数课时提升作业及解析

a>0 且 a≠1.
(1)求 a 的值.
(2)求函数 y=f (x≥0)的值域.
【解析】(1)函数图象经过点
,所以 a2-1= ,则 a= .
,其中
(2)由(1)知函数为 f(x)=
(x≥0),由 x≥0,得 x-1≥-1.于是 0<

=2,所以函数的值域为(0,2].
(20 分钟 40 分) 一、选择题(每小题 5 分,共 10 分) 1.(2015·南昌高一检测)函数 f(x)=ax-b 的图象如图所示,其中 a,b 均为常数,则 下列结论正确的是 ( )
【解题指南】从直线位置得出 b 与 1 的大小及 a 的正负,从而判断 y=bax 的增减性. 【解析】选 A.选项 A 中,由直线位置可知 a>0,0<b<1,所以 y=bax 为减函数,故 A 正确.选项 B 中 a>0,b>1,所以 y=bax 为增函数,故 B 项不正确.选项 C 中,a<0,b>1,
2.(2015·昆明高一检测)化简[
的结果为 ( )
A.5
B.
C.-
D.-5
【解析】选 B.[
=(
= == .
【补偿训练】计算[(- )2 的结果是 ( )
A.
B.-
C.
D.-
【解析】选 C.[(- )2 =(
=( )-1= = ,故选 C.
3.
+(-1)-1÷0.75-2+
=( )
A.
B.
C.-
D.-
所以
= =.
的值.
课时提升作业(2)
指数幂及运算
(15 分钟 30 分) 一、选择题(每小题 4 分,共 12 分)

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

高一数学必修1《基本初等函数Ⅰ》测试卷(含答案)

第二章《基本初等函数Ⅰ》测试卷考试时间:120分钟 满分:150分一.选择题.(本大题共12小题,每小题5分,共60分)1.给出下列说法:①0的有理次幂等于0;②01()a a R =∈;③若0,x a R >∈,则0a x >;④11221()33-=.其中正确的是( )A.①③④B.③④C.②③④D. ③ 2.552log 10log 0.25+的值为( )A.0B.1C.2D.4 3.函数2()3x f x =的值域为( )[A.[)0,+∞B.(],0-∞C.[)1,+∞D.(),-∞+∞4.幂函数2()(1),(0,)m f x m m x x =--∈+∞当时为减函数,则m 的值为( ) A.1 B.1- C.12-或 D.25.若函数2013()2012(0,1)x f x a a a -=->≠且,则()f x 的反函数图象恒过定点( ) A.(2013,2011)B.(2011,2013)C.(2011,2012)D.(2012,2013)6.函数22()log (1)()f x x x x R =++∈的奇偶性为( ) A.奇函数而非偶函数 B.偶函数而非奇函数C.非奇非偶函数D.既是奇函数又是偶函数-7. 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的2倍,则a 的值为( )A. 24B. 22C. 14D. 128.如果60.7a =,0.76b =,0.7log 6c =,则( )A.a b c <<B.c b a <<C.c a b <<D.b c a <<9.函数2()log (1)2f x x =++的单调递增区间为( ) A.()1,-+∞ B.[)0,+∞ C.[]1,2 D.(]0,110.当1a >时,在同一坐标系中,函数x y a -=与log xa y =的图象是下图中的( )}11.对于0,1a a >≠,下列说法中,正确的是( )①若M N =则log log a a M N =; ②若log log a a M N =则M N =; ③若22log log a a M N =则M N =; ④若M N =则22log log a a M N =?A.①②③④B.①③C.②④D.②12.已知R 上的奇函数()f x 和偶函数()g x 满足()()2(0,1)x x f x g x a a a a -+=-+>≠且,若(2),(2)g a f =则的值为( )A.2B.154 C.174D.2a 二.填空题.(本大题共4小题,每小题5分,共20分)13.设12322()((2))log (1)2x e x f x f f x x -⎧<⎪=⎨-≥⎪⎩,,则的值为, . 14.函数215()log (1)f x x =+的单调递减区间为 .15.已知23234(0),log 9a a a =>则的值为 .16.关于函数()2x f x -=,对任意的1212,,x x R x x ∈≠且,有下列四个结论:&()(0)0()0,F x F x F x ∴=⎧⎪=⎨又是a0∴<①当max 1241()()/xf t -⎡∴∈⎢⎣=5.0lg1.5L =+(0)1(2)f ∴=对任意的。

高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案

高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案

第二章 基本初等函数 单元测试卷(B )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43 +y ;④3-5=6(-5)2.其中正确的个数是( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是( ) A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x=3y,则xy =( )A.lg2lg3B.lg3lg2 C .lg 23 D .lg 325.函数f (x )=x ln|x |的图象大致是( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为奇函数,g (x )为偶函数 C .f (x )与g (x )均为奇函数 D .f (x )为偶函数,g (x )为奇函数7.函数y =(m 2+2m -2)x 1m -1 是幂函数,则m =( ) A .1 B .-3 C .-3或1D .28.下列各函数中,值域为(0,+∞)的是( ) A .y =2-x2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x -1;④y =x 12 ;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)=( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎨⎧(a -2)x ,x ≥2,(12)x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .(-∞,138] C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知a 12 =49(a >0),则log 23a =________.14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________. 15.若函数y =log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22 x ,y =x 12 ,y =(22)x 的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax,a 为常数,且函数的图象过点(-1,2). (1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.第二章 基本初等函数 单元综合测试二 答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分) 1.[答案] B [解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2, ∴log 215<20.1<20.2,选A. 3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e <0,从而排除B ,故选A.6.[答案] D[解析]因为f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)是偶函数,g(x)为奇函数,故选D.7.[答案] B[解析]因为函数y=(m2+2m-2)x 1m-1是幂函数,所以m2+2m-2=1且m≠1,解得m=-3.8.[答案] A[解析]A,y=2-x2=(22)x的值域为(0,+∞).B,因为1-2x≥0,所以2x≤1,x≤0,y=1-2x的定义域是(-∞,0],所以0<2x≤1,所以0≤1-2x<1,所以y=1-2x的值域是[0,1).C,y=x2+x+1=(x+12)2+34的值域是[34,+∞),D,因为1x+1∈(-∞,0)∪(0,+∞),所以y=31x+1的值域是(0,1)∪(1,+∞).9.[答案] D[解析]根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析]f(-2)=1+log2(2-(-2))=3,f(log212)=2log212-1=2log26=6,∴f(-2)+f(log212)=9,故选C.11.[答案] B[解析]由题意知函数f(x)是R上的减函数,于是有⎩⎨⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B. 12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.[答案] 4[解析] ∵a 12 =49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4, ∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2. 则f (14)<0,∴f (f (14))=3-2=19. 15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a6,依题意,有⎩⎨⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8.∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22 x 的图象上,所以2=log 22 x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12 的图象上, 所以2=x B 12 ,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14, 所以点D 的坐标为(12,14).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35 =2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a=2,解得a =1. (2)由(1)知f (x )=(12)x,又g (x )=f (x ),则4-x-2=(12)x ,即(14)x -(12)x-2=0,即[(12)x ]2-(12)x-2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1. 19.[解析] (1)当a =2时,f (x )=log 2(1+x ), 在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2, ∴原不等式化为a 8-x 2>a -2x . 当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数,∴8-x2<-2x,解得x<-2或x>4.故当a>1时,x的集合是{x|-2<x<4};当0<a<1时,x的集合是{x|x<-2或x>4}.21.[解析](1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2.因为f(x)的定义域是[0,3],所以0≤2x≤3,0≤x+2≤3,解得0≤x≤1.于是g(x)的定义域为{x|0≤x≤1}.(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.∵x∈[0,1],∴2x∈[1,2],∴当2x=2,即x=1时,g(x)取得最小值-4;当2x=1,即x=0时,g(x)取得最大值-3.22.[解析](1)令log a x=t(t∈R),则x=a t,∴f(t)=aa2-1(a t-a-t).∴f(x)=aa2-1(a x-a-x)(x∈R).∵f(-x)=aa2-1(a-x-a x)=-aa2-1(a x-a-x)=-f(x),∴f(x)为奇函数.当a>1时,y=a x为增函数,y=-a-x为增函数,且a2a2-1>0,∴f(x)为增函数.当0<a<1时,y=a x为减函数,y=-a-x为减函数,且a2a2-1<0,∴f(x)为增函数.∴f(x)在R上为增函数.(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数.由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即aa2-1(a2-a-2)≤4.∴aa2-1(a4-1a2)≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-3≤a≤2+ 3.又a≠1,∴a的取值范围为[2-3,1)∪(1,2+3].。

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。

此时,a 的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。

此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。

正的n 次方根与负的n 次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。

3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。

有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。

高中数学基本初等函数课后练习题(含答案)-精选教育文档

高中数学基本初等函数课后练习题(含答案)-精选教育文档

高中数学基本初等函数课后练习题(含答案)人教必修一第二章基本初等函数课后练习题(含答案)2.1 指数函数2.1.1 根式与分数指数幂1.27的平方根与立方根分别是()A.3 3,3 B.3 3,3C.3 3,3 D.3 3,32. 的运算结果是()A.2 B.-2C.2 D.不确定3.若a2-2a+1=a-1,则实数a的取值范围是() A.[1,+) B.(-,1)C.(1,+) D.(-,1]4.下列式子中,正确的是()A. =2B. =-4C. =-3D.=25.下列根式与分数指数幂的互化中,正确的是()A.-x= (x0)B. = (y0)C.= (x0)D.=- (x0)6.设a,bR,下列各式总能成立的是()A.( - )3=a-bB. =a2+b2C. -=a-bD. =a+b7.计算:+ (a0,n1,nN*).8.化简:6+4 2+6-4 2=__________.9.化简:++=()A.1 B.-1 C.3 D.-310.已知a,b是方程x2-6x+4=0的两根,且a>b>0,求a-ba+b的值.2.1.2 指数幂的运算1.化简的结果是()A.35B.53C.3 D.52.计算[(-2)2] 的值为()A.2 B.-2C.22 D.-223.若(1-2x) 有意义,则x的取值范围是()A.xR B.xR,且x12C.x D.x124.设a0,计算( )2( )2的结果是()A.a8 B.a4C.a2 D.a5.的值为()A.103 B.3C.-13 D.66.计算:(-1.8)0+(1.5)-2 +=________.7.化简: .8.化简:ab3 ba3 a2b=__________.9.若x0,则(2x +3 )(2x -3 )-4x (x-x )=__________. 10.已知f(x)=ex-e-x,g(x)=ex+e-x(e=2.718…).(1)求[f(x)]2-[g(x)]2的值;(2)设f(x)f(y)=4,g(x)g(y)=8,求gx+ygx-y的值.2.1.3 指数函数及其图象1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=x(1)C.y=-4x D.y=ax+2(a0,且a1)2.y=2x+2-x的奇偶性为()A.奇函数B.偶函数C.既是偶函数又是奇函数D.既不是奇函数也不是偶函数3.函数f(x)=1-2x的定义域是()A.(-,0] B.[0,+)C.(-,0) D.(-,+)4.已知0<a<1,b<-1,则函数f(x)=ax+b的图象不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限5.如图K21所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,yR,A={x|y=2x-x2},B={y|y=3x(x0)},则A#B为()图K21A.{x|02}B.{x|12}C.{x|01或x2}D.{x|01或x2}6.函数y=a|x|(a1)的图象是()A B C D7.求函数y=16-4x的值域.8.已知f(x)是偶函数,且当x0时,f(x)=10x,则当x0时,f(x)=()A.10x B.10-xC.-10x D.-10-x9.对于函数f(x)定义域中任意的x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)f(x2);②f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1-1x10);⑤f(-x1)=1fx1.当f(x)=12x时,上述结论中,正确结论的序号是____________.10.(1)当x>0时,函数f(x)=(a2-1)x的值总大于1,求实数a的取值范围;(2)对于任意实数a,函数y=ax-3+3的图象恒过哪一点?2.1.4 指数函数的性质及其应用1.13 ,34,13-2的大小关系是()A.13 13-2B.13 -132C.13-234D.13-2132.若122a+1123-2a,则实数a的取值范围为() A.(1,+) B.12,+C.(-,1) D.-,123.下列选项中,函数y=|2x-2|的图象是()4.函数y=ax在[0,1]上的最大值与最小值之和为3,则函数y=3ax-1在[0,1]上的最大值为()A.6 B.1 C.3 D.325.(2019年四川泸州二模)已知在同一直角坐标系中,指数函数y=ax和y=bx的图象如图K22,则下列关系中正确的是()图K22A.a<b<1 B.b<a<1C.a>b>1 D.b>a>16.下列函数中,既是偶函数,又在(0,+)上单调递增的函数是()A.y=x3 B.y=|x|+1C.y=-x2+1 D.y=2-|x|7.已知函数f(x)=12xx4,fx+1 x<4,求f(3)的值.8.设函数f(x)=2-x, x-,1,x2,x[1,+.若f(x)4,则x的取值范围是________________.9.函数f(x)=的值域为__________.10.已知f(x)=10x-10-x10x+10-x.(1)判断函数f(x)的奇偶性;(2)证明f(x)是定义域内的增函数;(3)求f(x)的值域.2.2 对数函数2.2.1 对数与对数运算1.下列各组指数式与对数式互化,不正确的是()A.23=8与log28=3B.=13与log2713=-13C.(-2)5=-32与log-2(-32)=5D.100=1与lg1=02.已知函数f(x)=log2(x+1),若f(a)=1,则a=() A.0 B.1C.2 D.33.以下四个命题:①若logx3=3,则x=9;②若log4x=12,则x=2;③若=0,则x=3;④若=-3,则x=125.其中是真命题的个数是()A.1个 B.2个C.3个 D.4个4.方程=14的解是()A.x=19 B.x=33C.x=3 D.x=95.若f(ex)=x,则f(e)=()A.1 B.eeC.2e D.06.设集合P={3,log2a},Q={a,b},若PQ={0},则PQ =()A.{3,0} B.{3,0,1}C.{3,0,2} D.{3,0,1,2}7.求下列各式中x的取值范围:(1)log(x-1)(x+2);(2)log(x+3)(x+3).8.设f(x)=lgx,x0,10x,x0,则f[f(-2)]=__________. 9.已知=49(a0) ,则=__________.10.(1)若f(log2x)=x,求f12的值;(2)若log2[log3(log4x)]=0,log3[log4(log2y)]=0,求x+y的值.2.2.2 对数的性质及其应用1.计算log23log32的结果为()A.1 B.-1C.2 D.-22.(2019年陕西)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()A.logablogcb=logcaB.logablogca=logcbC.logabc=logablogacD.loga(b+c)=logab+logac3.(2019年四川泸州一模)2lg2-lg125的值为()A.1 B.2C.3 D.44.lg12.5-lg58+lg0.5=()A.-1 B.1C.2 D.-25.若log513log36log6x=2,则x=()A.9 B.19C.25 D.1256.设2a=5b=m,且1a+1b=2,则m=()A.10 B.10C.20 D.1007.计算:lg2lg52+lg0.2lg40.8.已知lg2=a,lg3=b,用a,b表示log1245=______________.9.已知log83=p,log35=q,以含p,q的式子表示lg2. 10.已知lga和lgb是关于x的方程x2-x+m=0的两个根,而关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根.求实数a,b和m的值.2.2.3 对数函数及其性质(1)1.若log2a<0,12b>1,则()A.a>1,b>0 B.a>1,b<0C.0<a<1, b>0 D.0<a<1, b<02.(2019年广东揭阳一模)已知集合A={x|y=lg(x+3)},B={x|x2},则下列结论正确的是()A.-3A B.3BC.AB=B D.AB=B3.函数y=log2x与y=log x的图象关于()A.x轴对称 B.y轴对称B.原点对称 D.直线y=x对称4.函数y=1log0.54x-3的定义域为()A.34,1B.34,+C.(1,+)D.34,1(1,+)5.若函数f(x)=loga(x+1)(a0,a1)的定义域和值域都是[0,1],则a=()A.13B.2C.22 D.26.已知a0,且a1,函数y=ax与y=loga(-x)的图象只能是图中的()7.若函数y=loga(x+b)(a0,a1)的图象过点(-1,0)和(0,1),求a,b的值.8.已知A={x|2},定义在A上的函数y=logax(a>0,且a1)的最大值比最小值大1,则底数a的值为()A.2B.2C.-2 D.2或29.设a=log54,b=(log53)2,c=log45,则()A.ab B.baC.ac D.bc10.已知函数f(x)=lnkx-1x-1(k0).(1)求函数f(x)的定义域;(2)若函数f(x)在区间[10,+)上是增函数,求实数k的取值范围.2.2.4 对数函数及其性质(2)1.已知函数y=ax与y=logax(a>0,且a1),下列说法不正确的是()A.两者的图象都关于直线y=x对称B.前者的定义域、值域分别是后者的值域、定义域C.两函数在各自的定义域内的增减性相同D.y=ax的图象经过平移可得到y=logax的图象2.若函数y=f(x)的反函数图象过点(1,5),则函数y=f(x)的图象必过点()A.(1,1) B.(1,5)C.(5,1) D.(5,5)3.点(4,16)在函数y=logax的反函数的图象上,则a=() A.2 B.4C.8 D.164.已知a=log23.6,b=log43.2,c=log43.6,则() A.ac B.abC.bc D.cb5.若0y1,则()A.3y B.logx3logy3C.log4xlog4y D.14x14y6.设loga23<1,则实数a的取值范围是()A.0<a<23 B.23<a<1C.0<a<23或a>1 D.a>237.在下面函数中,与函数f(x)=lg1+x1-x有相同奇偶性的是()A.y=x3+1B.y=e0-1e0+1C.y=|2x+1|+|2x-1|D.y=x+1x8.函数y=ln(4+3x-x2)的单调递增区间是___________.9.对于函数f(x)定义域中的任意x1,x2(x1x2),有如下结论:①f(x1+x2)=f(x1)② f(x1x2)=f(x1)+f(x2);③fx1-fx2x1-x20;④fx1+x22fx1+fx22.当f(x)=lgx时,上述结论中,正确结论的序号是____________.10.设f(x)=log 1-axx-1为奇函数,a为常数,(1)求a的值;(2)证明f(x)在(1,+)上单调递增;(3)若对于[3,4]上的每一个x值,不等式f(x)>12x+m恒成立,求实数m的取值范围.2.2.5 对数函数及其性质(3)1.设a=log 2,b=log 3,c=120.3,则()A.ac B.abC.ba D.bc2.将函数y=3x-2的图象向左平移2个单位,再将所得图象关于直线y=x对称后,所得图象的函数解析式为() A.y=4+log3x B.y=log3(x-4)C.y=log3x D.y=2+log3x3.方程log2x=x2-2的实根有()A.3个 B.2个C.1个 D.0个4.设函数f(x)=loga(x+b)(a0,a1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b=()A.3 B.4C.5 D.65.如图K21,给出函数y=ax,y=logax,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=ax,y=logax,y=log(a +1)x,y=(a-1)x2依次对应的图象是()图K21A.①②③④ B.①③②④C.②③①④ D.①④③②6.函数y=e|lnx|-|x-1|的图象大致是()7.已知函数f(x)=loga(2x+b-1)(a0,a1)的图象如图K22,则a,b满足的关系是()图K22A.0a-11B.0a-11C.0b-11D.0a-1b-118.下列函数的图象中,经过平移或翻折后不能与函数y=log2x的图象重合的函数是()A.y=2x B.y=log xC.y=4x2 D.y=log21x+19.若函数f(x)=loga(x+x2+2a2)是奇函数,求a的值.10.已知函数f(x)=loga(1-x)+loga(x+3)(01).(1)求函数f(x)的定义域;(2)求方程f(x)=0的解;(3)若函数f(x)的最小值为-4,求a的值.2.3 幂函数1.所有幂函数的图象都经过的定点的坐标是()A.(0,0) B.(0,1)C.(1,1) D.(-1,-1)2.下列说法正确的是()A.y=x4是幂函数,也是偶函数B.y=-x3是幂函数,也是减函数C.y=x是增函数,也是偶函数D.y=x0不是偶函数3.已知幂函数f(x)的图象经过点2,22,则f(4)的值为() A.16 B.116C.12 D.24.下列函数中,既是偶函数,又是在区间(0,+)上单调递减的函数为()A.y=x-2 B.y=x-1C.y=x2 D.y=x5.当x(1,+)时,下列函数的图象全在直线y=x下方的偶函数是()A.y=x B.y=x-2C.y=x2 D.y=x-16.设a=0.7 ,b=0.8 ,c=log30.7,则()A.ca B.cbC.ac D.bc7.若幂函数y=(m2-3m+3)x 的图象不经过坐标原点,求实数m的取值范围.8.给出函数的一组解析式如下:①y=;②y=;③y=;④y=;⑤y=;⑥y=;⑦y=;⑧y=x3;⑨y=x-3;⑩y= .回答下列问题:(1)图象关于y轴对称的函数有__________;(2)图象关于原点对称的函数有__________.9.请把相应的幂函数图象代号填入表格.①y=;②y=x-2;③y=;④y=x-1;⑤y=;⑥y=;⑦y=;⑧y= .函数代号① ② ③ ④ ⑤ ⑥ ⑦ ⑧图象代号10.已知函数f(x)=(m2-m-1)x-5m-3,当m为何值时,f(x)是:(1)幂函数;(2)幂函数,且是(0,+)上的增函数;(3)正比例函数;(4)反比例函数;(5)二次函数.第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1 根式与分数指数幂1.B 2.A 3.A4.B 解析:A错,=2;C错,=|-3|=3;D错,( )5=-2.5.C 解析:A错,-x=-x (x0);B错,=(-y) (y0);D错,x = (x0).6.B7.解:当n为奇数时,原式=a-b+a+b=2a;当n为偶数时,原式=b-a-a-b=-2a.8.4 解析:原式=22+222+22+22-222+22=2+22+2-22=2+2+2-2=4.9.B 解析:∵3.1410,=-3.143.14-=-1,=10--10=-1,而=1.故原式=-1+1-1=-1.10.解:∵a,b是方程x2-6x+4=0的两根,a+b=6,ab=4.∵a>b>0,a-ba+b2=a+b2-4aba+b+2ab=2019=2.a-ba+b=2.2.1.2 指数幂的运算1.B2.C 解析:[(-2)2] =(2) =(2)-1=22.3.D4.C 解析:原式==a2.5.A 解析:原式=310 =103.6.29 解析:原式=1+23232 +=1+1+27=29. 7.解:原式=== .8. 解析:原式=ab3 ba3 a2b=a b ba3 a2b =a b b a a2b=a b a b =a b=a0b = .9.-23 解析:(2x +3 )(2x -3 )-4x (x-x )=4x -33-4x +4=-23.10.解:(1)[f(x)]2-[g(x)]2=[f(x)+g(x)][f(x)-g(x)]=2ex(-2e-x)=-4e0=-4.(2)f(x)f(y)=(ex-e-x)(ey-e-y)=ex+y+e-(x+y)-ex-y-e-(x-y)=g(x+y)-g(x-y)=4,①同法可得g(x)g(y)=g(x+y)+g(x-y)=8. ②由①②解方程组gx+y-gx-y=4,gx+y+gx-y=8.解得g(x+y)=6,g(x-y)=2,gx+ygx-y=62=3.2.1.3 指数函数及其图象1.B 2.B 3.A4.A 解析:g(x)=ax的图象经过一、二象限,f(x)=ax+b是将g(x)=ax的图象向下平移|b|(b<-1)个单位而得,因而图象不经过第一象限.5.D 解析:A={x|y=2x-x2}={x|2x-x20}={x|02},B ={y|y=3x(x0)}={y|y1},则AB={x|x0},AB={x|12},根据新运算,得A#B=AB(AB)={x|01或x2}.故选D. 6.B 解析:函数关于y轴对称.7.解:∵4x0,016-4x16,016-4x4.8.B 解析:设x0,则-x0,f(-x)=10-x,∵f(x)为偶函数.f(x)=f(-x)=10-x.9.①③④⑤解析:因为f(x)=12x,f(x1+x2)===f(x1)f(x2),所以①成立,②不成立;显然函数f(x)=12x单调递减,即fx1-fx2x1-x20,故③成立;当x10时,f(x1)1,fx1-1x10,当x10时,0f(x1)1,fx1-1x10,故④成立;f(-x1)=12 ==1fx1,故⑤成立.10.解:(1)∵当x>0时,f(x)=(a2-1)x的值总大于1,a2-1>1.a2>2.a>2或a<-2.(2)∵函数y=ax-3的图象恒过定点(3,1),函数y=ax-3+3的图象恒过定点(3,4).2.1.4 指数函数的性质及其应用1.A 2.B3.B 解析:由y=|2x-2|=2x-2, x1,-2x+2, x1,分两部分:一部分为y1=2x-2(x1),只须将y=2x的图象沿y轴的负半轴平移2个单位即可,另一部分为y2=-2x+2(x1),只须将y=2x的图象对称于x轴的图象y=-2x,然后再沿y轴的正半轴平移2个单位,即可得到y=-2x+2的图象.故选B.4.C 解析:由于函数y=ax在[0,1]上是单调的,因此最大值与最小值都在端点处取到,故有a0+a1=3,解得a=2,因此函数y=3ax-1在[0,1]上是单调递增函数,最大值当x =1时取到,即为3.5.C 解析:很显然a,b均大于1;且y=bx函数图象比y =ax变化趋势小,故b<a,综上所述,a>b>1.6.B7.解:f(3)=f(3+1)=f(4)=124=116.8.(-,-2)(2,+)9.(0,3] 解析:设y=13u,u=x2-2x,∵函数y=13u是单调减函数,函数y=f(x)与u=x2-2x增减性相反.∵u有最小值-1,无最大值,y有最大值13-1=3,无最小值.又由指数函数值域y0知所求函数的值域为(0,3].10.(1)解:∵f(x)的定义域是R,且f(-x)=10-x-10x10-x+10x=-f(x),f(x)是奇函数.(2)证法一:f(x)=10x-10-x10x+10-x=102x-1102x+1=1-2102x+1.令x2>x1,则f(x2)-f(x1)=-∵y=10x为增函数,当x2>x1时,->0.又∵ +1>0, +1>0,故当x2>x1时,f(x2)-f(x1)>0,即f(x2)>f(x1).f(x)是增函数.证法二:考虑复合函数的增减性.由f(x)=10x-10-x10x+10-x=1-2102x+1.∵y=10x为增函数,y=102x+1为增函数,y=2102x+1为减函数,y=-2102x+1为增函数,y=1-2102x+1为增函数.f(x)=10x-10-x10x+10-x在定义域内是增函数.(3)解:令y=f(x).由y=102x-1102x+1,解得102x=1+y1-y.∵102x>0,1+y1-y>0,解得-1<y<1.即f(x)的值域为(-1,1).2.2 对数函数2.2.1 对数与对数运算1.C 2.B 3.B 4.A5.A 解析:令ex=t,则x=lnt,f(t)=lnt.f(e)=lne =1.6.B 解析:log2a=0,a=1.从而b=0,PQ={3,0,1}.7.解:(1)由题意知x+20,x-10,x-11,解得x1,且x2. 故x的取值范围为(1,2)(2,+).(2)由题意知x+30,x+31,解得x-3,且x-2.故x的取值范围为(-3,-2)(-2,+).8.-2 解析:∵x=-20,f(-2)=10-2=11000,f(10-2)=lg10-2=-2,即f[f(-2)]=-2.9.3 解析:(a ) =232 a=233log a=log 233=3. 10.解:(1)令log2x=t,则2t=x.因为f(log2x)=x,所以f(t)=2t.所以f12=2 =2.(2)因为log2[log3(log4x)]=0,所以log3(log4x)=1.所以log4x=3,所以x=43=64.又因为log3[log4(log2y)]=0.所以log4(log2y)=1.所以log2y=4.所以y=24=16.所以x+y=64+16=80.2.2.2 对数的性质及其应用1.A 2.B 3.B4.B 解析:方法一:原式=lg10023-lg1024+lg12=lg100-lg23-lg10+lg24+lg1-lg2=lg102-3lg2-1+4lg2-lg2=2-1=1.方法二:原式=lg12.51258=lg10=1.5.D6.A 解析:∵1a+1b=logm2+logm5=logm10=2,m2=10.又∵m0,m=10.7.解:原式=lg2lg1022+lg210lg(2210)=lg2(1-2lg2)+(lg2-1)(2lg2+1)=lg2-2(lg2)2+2(lg2)2-2lg2+lg2-1=-1.8.2b+1-a2a+b 解析:log1245=lg45lg12=2lg3+lg52lg2+lg3=2b+1-a2a+b.9.解:由log83=p,得lg3lg8=p,即lg3=3lg2p.①由log35=q,得lg5lg3=q,即1-lg2=lg3q.②①代入②中,得1-lg2=3lg2pq.(3pq+1)lg2=1.∵3pq+10,lg2=13pq+1.10.解:∵lga和lgb是关于x的方程x2-x+m=0的两个根,lga+lgb=1,①lgalgb=m. ②∵关于x的方程x2-(lga)x-(1+lga)=0有两个相等的实根,=(lga)2+4(1+lga)=0.lga=-2,即a=1100.将lga=-2代入①,得lgb=3.b=1000.再将lga=-2,lgb=3代入②,得m=-6.综上所述,a=1100,b=1000,m=-6.2.2.3 对数函数及其性质(1)1.D 解析:由log2a0,得01.由12b1,得b0.故选D. 2.D3.A 解析:y=log x=-log2x.4.A 解析:由log0.54x-30,4x-30,解得341.5.D6.B 解析:y=loga(-x)与y=logax关于y轴对称.7.a=2,b=28.D9.D 解析:∵log45log54log531,(log53)2log54log45.bc.故选D.10.解:(1)由kx-1x-10,得(kx-1)(x-1)0.又∵k0,x-1k(x-1)0.当k=1时,函数f(x)的定义域为{x|x1};由01时,函数f(x)的定义域为xx1或x1k,当k1时,函数f(x)的定义域为xx1k或x1.(2)f(x)=lnkx-1+k-1x-1=lnk+k-1x-1,∵函数f(x)在区间[10,+)上是增函数,k-10,即k1.又由10k-110-10,得k110.综上所述,实数k的取值范围为1101.2.2.4 对数函数及其性质(2)1.D 2.C 3.A4.B 解析:∵a=log23.6log22=1.又∵y=log4x,x(0,+)为单调递增函数,log43.2log43.6log44=1,ba.5.C6.C 解析:由loga23<1=logaa,得(1)当0<a<1时,由y=logax是减函数,得0<a<23;(2)当a>1时,由y=logax是增函数,得a>23,a>1.综合(1)(2),得0<a<23或a>1.7.D 解析:f(x)的定义域为(-1,1),且对定义域内任意x,f(-x)=lg1-x1+x=lg1+x1-x-1=-lg1+x1-x=-f(x);又可以验证f-12f12,因此,f(x)是奇函数但不是偶函数.用同样的方法可有:y=x3+1既不是奇函数又不是偶函数;y=e0-1e0+1=0(xR)既是奇函数又是偶函数;y=|2x+1|+|2x-1|是偶函数而不是奇函数,只有y=12x-1+12是奇函数但不是偶函数.故选D.8.-1,32 解析:令u(x)=4+3x-x2,又∵4+3x-x2>0x2-3x-4<0,解得-1<x<4.又u(x)=-x2+3x+4=-x-322+254,对称轴为x=32,开口向下的抛物线;u(x)在-1, 32上是增函数,在32,4上是减函数,又y=lnu(x)是定义域上的增函数,根据复合函数的单调性,y=ln(4+3x-x2)在-1, 32上是增函数.9.②③10.(1)解:∵f(x)是奇函数,f(-x)=-f(x).log 1+ax-x-1=-log 1-axx-11+ax-x-1=x-11-ax>01-a2x2=1-x2a=1.检验a=1(舍),a=-1.(2)证明:任取x1>x2>1,x1-1>x2-1>0.0<2x1-1<2x2-10<1+2x1-1<1+2x2-10<x1+1x1-1<x2+1x2-1log x1+1x1-1>log x2+1x2-1,即f(x1)>f(x2).f(x)在(1,+)内单调递增.(3)解:f(x)-12x>m恒成立.令g(x)=f(x)-12x.只需g(x)min>m,用定义可以证g(x)在[3,4]上是增函数,g(x)min=g(3)=-98.当m<-98时原式恒成立.2.2.5 对数函数及其性质(3)1.D 解析:c=120.30,a=log 20,b=log 30,并且log 2log 3,所以cb.2.C 解析:y=3x-2的图象向左平移2个单位得到y=3x 的图象,其反函数为y=log3x.3.B 4.B 5.B 6.D 7.A8.C 解析:将A项函数沿着直线y=x对折即可得到函数y =log2x.将B沿着x轴对折,将D向下平移1个单位再沿x 轴对折即可.9.22 提示:利用奇函数的定义或f(0)=0.10.解:(1)要使函数有意义,则有1-x0,x+30,解得-31.所以函数f(x)的定义域为(-3,1).(2)函数可化为f(x)=loga(1-x)(x+3)=loga(-x2-2x+3),由f(x)=0,得-x2-2x+3=1,即x2+2x-2=0,x=-13.∵-13(-3,1),方程f(x)=0的解为-13.(3)函数可化为f(x)=loga(-x2-2x+3)=loga[-(x+1)2+4],∵-31,0-(x+1)2+44.∵01,loga[-(x+1)2+4]loga4,即f(x)min=loga4.由loga4=-4,得a-4=4.a=4-14=22.2.3 幂函数1.C 2.A3.C 解析:设f(x)=x,则有2=22,解得=-12,即f(x)=x ,所以f(4)=4 =12.4.A 5.B 6.B7.解:m2-3m+3=1,m2-m-20,解得m=1或m=2. 8.(1)②④(2)①⑤⑧⑨9.依次是E,C,A,G,B,D,H,F10.解:(1)若f(x)是幂函数,故m2-m-1=1,即m2-m-2=0.解得m=2或m=-1.(2)若f(x)是幂函数且又是(0,+)上的增函数,则m2-m-1=1,-5m-30.所以m=-1.(3)若f(x)是正比例函数,则-5m-3=1,解得m=-45.此时m2-m-10,故m=-45.(4)若f(x)是反比例函数,则-5m-3=-1,则m=-25,此时m2-m-10,故m=-25.(5)若f(x)是二次函数,则-5m-3=2,即m=-1,此时m2-m-10,故m=-1.综上所述,当m=2或m=-1时,f(x)是幂函数;当m=-1时,f(x)既是幂函数,又是(0,+)上的增函数;当m=-45时,f(x)是正比例函数;当m=-25时,f(x)是反比例函数;当m=-1时,f(x)是二次函数.。

高一数学必修一易错题基本初等函数习题

高一数学必修一易错题基本初等函数习题

集合局部错题库1.假设全集{}{}0,1,2,32U U C A ==且,那么集合A 真子集共有〔 〕 A .3个 B .5个 C .7个 D .8个 2.集合M ={(x ,y)|x +y =3},N ={(x ,y)|x -y =5},那么集合M ∩N 为 A.x =4,y =-1 B.(4,-1) C.{4,-1} D.{(4,-1)}3.集合A ={x|x 2-5x+6<0},B ={x|x< a2},假设A B ,那么实数a 范围为A.[6,+∞)B.(6,+∞)C.(-∞,-1)D.(-1,+∞) 4.满足{x|x 2-3x +2=0}M {x ∈N|0<x<6}集合M 个数为 A.2 C.65.图中阴影局部所表示集合是〔 〕A.)]([C A C B U ⋃⋂B.)()(C B B A ⋃⋃⋃C.)()(B C C A U ⋂⋃D. )]([C A C B U ⋂⋃6.高一某班有学生45人,其中参加数学竞赛有32人,参加物理竞赛有28人,另外有5人两项竞赛均不参加,那么该班既参加数学竞赛又参加物理竞赛有__________人.7.集合12,6A x x N N x⎧⎫=∈∈⎨⎬-⎩⎭用列举法表示集合A 为8. 集合{}2210,A x ax x x R =++=∈,a 为实数 〔1〕假设A 是空集,求a 取值范围 〔2〕假设A 是单元素集,求a 值〔3〕假设A 中至多只有一个元素,求a 取值范围 9.判断如下集合A 与B 之间有怎样包含或相等关系: (1)A={x|x=2k-1,k ∈Z},B={x|x=2m+1,m ∈Z}; (2)A={x|x=2m,m ∈Z},B={x|x=4n,n ∈Z}.10.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m -1}, (1)假设B ⊆A,求实数m 取值范围; (2)当x ∈Z 时,求A 非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 取值范围. 函数概念局部错题库1、与函数y = 〕A.y = B. y =C.y =-y x =2、为了得到函数(2)y f x =-图象,可以把函数(12)y f x =-图象适当平移,这个平移是〔 〕A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移12个单位3、假设函数()y f x =定义域是[0,2],那么函数(2)()1f xg x x =-定义域是 A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)4、假设函数()y f x =值域是1[,3]2,那么函数1()()()F x f x f x =+值域是〔 〕 A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]35、函数f 〔x 〕=221xx +,那么f 〔1〕+f 〔2〕+f 〔21〕+f 〔3〕+f 〔31〕+f 〔4〕+f 〔41〕=_____. 6、⎩⎨⎧<-≥=0,10,1)(x x x f ,那么不等式(2)(2)5x x f x ++⋅+≤解集是 。

高中数学必修1→第2章 基本初等函数(1)习题详解

高中数学必修1→第2章  基本初等函数(1)习题详解

1、用根式的形式表示下列各式(0)a >:12a ,34a ,35a -,23a -。

【解析】12a34a =35a -=23a-=2、用分数指数幂表示下列各式:(1(0)x >;(2(0)a b +>; (3()m n >; (4()m n >(5(0)p >;(63【解析】(123x =;(234()a b =+;(323()m n =-; (42()m n =-;(5532p q=;(6153322m m m -==。

3、计算下列各式: (1)323649⎛⎫⎪⎝⎭;(2)(3)111824a a a-;(4)11233312(2)2x x x ---。

【解析】(1)333222236662164977343⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11121111312636236213323(32)2362-+++=⨯⨯⨯⨯=⨯=;(3)11115118248824a a aaa -+-==;(4)112111233333331142(2)222122x x x x x x x x------=⨯-⨯=-。

1、在同一平面直角坐标系中画出下列函数的图像: (1)3xy =;(2)1()3xy =。

【解析1该图由Mathematica8.0绘制。

【解析2】该图由几何画板5.0绘制。

2、求下列函数的定义域: (1)y =(2)112xy ⎛⎫= ⎪⎝⎭。

【解析】(1)由20x -≥,得2x ≥,所以函数y =[2,)+∞;(2)由1x ,知0x ≠,所以函数112xy ⎛⎫= ⎪⎝⎭的定义域为(,0)(0,)-∞+∞ 。

3、某种细胞分裂时,由1个分裂成2个,2个分裂成4个……以此类推,写出1个这样的细胞分裂x 次后,得到的细胞个数y 与x 的函数解析式。

【解析】由题意得,*2()xy x N =∈。

2.1、指数函数A 组1、求下列各式的值:(1;(2 (3(4()x y >。

基本初等函数练习题与答案

基本初等函数练习题与答案

5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.

x
|
x

1

,y
|
y

0,
且y

1
2x
1
0,
x

1

y

1
8 2 x 1

0, 且y
1

2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3

2log2 3
log2
1 8

2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)

log a
(1
1 a
)

log a
(1

a)

log a
(1

1 a
)
③ a1a

高一数学必修一基本初等函数高考真题(含详细答案)

高一数学必修一基本初等函数高考真题(含详细答案)

基本初等函数11.(2012年高考(安徽文))23log 9log 4⨯=( )A .14B .12C .2D .4 22.(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B.y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+33.(2012年高考(重庆))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞44.(2012年高考(天津))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+55.(2012年高考(四川))函数(0,1)x y a a a a =->≠的图象可能是66.(2012年高考(山东))函数1()ln(1)f x x =+( ) A .[2,0)(0,2]- B .(1,0)(0,2]- C .[2,2]-D .(1,2]-77.(2012年高考(广东))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e = D.y =88.(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]1299.(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是1010.(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xx二、填空题1111.(2012年高考(上海))方程03241=--+x x的解是_________.1212.(2012年高考(陕西))设函数发0,()1(),0,2x x f x x ìï³ïï=íï<ïïïî,则((4))f f -=_____ 1313.(2012年高考(北京))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.1414.(2012年高考(北京))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.1515.(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是______.1616.(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.三、解答题1717.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.基本初等函数参考答案一、选择题 1)【解析】选D23lg 9lg 42lg 32lg 2log 9log 44lg 2lg 3lg 2lg 3⨯=⨯=⨯= 2)(2012年高考(广东理))(函数)下列函数中,在区间()0,+∞上为增函数的是( )A .()ln 2y x =+ B .y =C .12xy ⎛⎫= ⎪⎝⎭D .1y x x=+解析:A.()ln 2y x =+在()2,-+∞上是增函数.3).(2012年高考(重庆文))设函数2()43,()32,x f x x x g x =-+=-集合{|(())0},M x R f g x =∈>{|()2},N x R g x =∈<则MN 为 ( )A .(1,)+∞B .(0,1)C .(-1,1)D .(,1)-∞【答案】:D 【解析】:由(())0f g x >得2()4()30g x g x -+>则()1g x <或()3g x >即321x -<或323x ->所以1x <或3log 5x>;由()2g x <得322x -<即34x <所以3log 4x <故(,1)MN =-∞4)(2012年高考(天津文))下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )A .cos 2y x =B .2log ||y x =C .2x xe e y --=D .31y x =+【解析】函数xy 2log =为偶函数,且当0>x时,函数x x y 22log log ==为增函数,所以在)2,1(上也为增函数,选B.5)(2012年高考(四川文))函数(0,1)x y a a a a =->≠的图象可能是[答案]C[解析]采用特殊值验证法.函数(0,1)x y a a a a =->≠恒过(1,0),只有C 选项符合.6)(2012年高考(山东文))函数1()ln(1)f x x =++( ) A .[2,0)(0,2]- B .(1,0)(0,2]-C .[2,2]-D .(1,2]-解析:要使函数)(x f 有意义只需⎩⎨⎧≥-≠+040)1ln(2x x ,即⎩⎨⎧≤≤-≠->220,1x x x ,解得21≤<-x ,且0≠x .答案应选B.7)(2012年高考(广东文))(函数)下列函数为偶函数的是( )A .sin y x =B .3y x =C .x y e =D .y =:D.()()f x f x -===.8)(2012年高考(安徽文))设集合{3213}A x x =-≤-≤,集合B 是函数lg(1)y x =-的定义域;则A B =( )A .(1,2)B .[1,2]C .[,)12D .(,]12【解析】选D {3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=9)(2012年高考(四川理))函数1(0,1)x y a a a a=->≠的图象可能是[答案]C[解析]采用排除法.函数(0,1)x y a a a a =->≠恒过(1,0),选项只有C 符合,故选C.10)(2012年高考(江西理))下列函数中,与函数定义域相同的函数为 ( )A .y=1sin xB .y=1nxxC .y=xe xD .sin xxD【解析】函数y =的定义域为()(),00,-∞+∞,而答案中只有sin xy x=的定义域为()(),00,-∞+∞.故选D.二、填空题11)(2012年高考(上海文))方程03241=--+x x的解是_________.[解析]0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x ,3log 2=x .12)(2012年高考(陕西文))设函数发0,()1(),0,2x x f x x ³=íï<ïïïî,则((4))f f -=_____解析:41(4)()162f --==,((4))(16)4f f f -==13)(2012年高考(北京文))已知()(2)(3)f x m x m x m =-++,()22x g x =-.若,()0x R f x ∀∈<或()0g x <,则m 的取值范围是________.【解析】首先看()22x g x =-没有参数,从()22x g x =-入手,显然1x <时,()0g x <,1x ≥时,()0g x ≥,而对,()0x R f x ∀∈<或()0g x <成立即可,故只要1x ∀≥时,()0f x <(*)恒成立即可.当0m =时,()0f x =,不符合(*),所以舍去;当0m >时,由()(2)(3)0f x m x m x m =-++<得32m x m --<<,并不对1x ∀≥成立,舍去;当0m <时,由()(2)(3)0f x m x m x m =-++<,注意20,1m x ->≥,故20x m ->,所以30x m ++>,即(3)m x >-+,又1x ≥,故(3)(,4]x -+∈-∞-,所以4m >-,又0m <,故(4,0)m ∈-,综上,m 的取值范围是(4,0)-.14)(2012年高考(北京文))已知函数()lg f x x =,若()1f ab =,则22()()f a f b +=_________.【解析】()lg ,()1f x x f ab ==,lg()1ab ∴=2222()()lg lg 2lg()2f a f b a b ab ∴+=+==15)(2012年高考(上海春))函数224log ([2,4])log y x x x=+∈的最大值是___5___.16)(2012年高考(江苏))函数x x f 6log 21)(-=的定义域为____.1266000112log 0log 620<x >x >x >x x x x -≥≤≤⎧⎧⎧⎪⎪⇒⇒⎨⎨⎨⎩⎪⎪⎩⎩三、解答题18.(2012年高考(上海文理))已知函数)1lg()(+=x x f .(1)若1)()21(0<--<x f x f ,求x 的取值范围;(2)若)(x g 是以2为周期的偶函数,且当10≤≤x 时,有)()(x f x g =,求函数)(x g y =])2,1[(∈x 的反函数.[解](1)由⎩⎨⎧>+>-01022x x ,得11<<-x .由1lg )1lg()22lg(0122<=+--<+-x x x x 得101122<<+-x x 因为01>+x ,所以1010221+<-<+x x x ,3132<<-x .由⎩⎨⎧<<-<<-313211x x 得3132<<-x (2)当x ?[1,2]时,2-x ?[0,1],因此)3lg()2()2()2()(x x f x g x g x g y -=-=-=-==由单调性可得]2lg ,0[∈y .因为y x 103-=,所以所求反函数是x y 103-=,]2lg ,0[∈x_s 12__。

必修1人教B版数学同步训练:第3章基本初等函数(Ⅰ)测评(B卷)(附答案)

必修1人教B版数学同步训练:第3章基本初等函数(Ⅰ)测评(B卷)(附答案)

第三章 基本初等函数(Ⅰ)测评(B 卷)【说明】 本试卷分为第Ⅰ、Ⅱ 卷两部分,请将第Ⅰ卷选择题的答案填入答题栏内,第Ⅱ卷可在各题后直接作答.共120分,考试时间90分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.函数y =log122-的定义域为A .[- 2,-1)∪(1, 2]B .(- 2,-1)∪(1, 2)C .[-2,-1)∪(1,2]D .(-2,-1)∪(1,2)2.方程log 2(x 2-x)=1的解集为M ,方程22x +1-9·2x+4=0的解集为N ,那么M 与N 的关系是A .M =NB .N ⊂MC .N ⊃MD .M∩N=∅3.幂函数f(x)=x α的图象过点(2,14),则f(x)的一个单调递增区间是A .[0,+∞)B .(0,+∞)C .(-∞,0]D .(-∞,0)4.函数y =0.52,(,1]log ,(1,)x x x x ⎧∈-∞⎨∈+∞⎩的值域是A .{y|y≤1,且y≠0}B .{y|y≤2}C .{y|y<1且y≠0} D .{y|y≤2且y≠0}5.函数y =e |-lnx|-|x -1|的图象大致是6.若x∈(e -1,1),a =lnx ,b =2lnx ,c =ln 3x ,则 A .a<b<c B .c<a<b C .b<a<c D.b<c<a7.已知函数f(x)=log a (2x+b -1)(a>0,b≠1)的图象如下图所示,则a ,b 满足的关系是A .0<a -1<b<1 B .0<b<a -1<1C .0<b -1<a<1D .0<a -1<b -1<1 8.函数f(x)=log a |x +b|是偶函数,且在区间(0,+∞)上单调递减,则f(b -2)与f(a+1)的大小关系为A .f(b -2)=f(a +1)B .f(b -2)>f(a +1)C .f(b -2)<f(a +1)D .不能确定9.若a =ln22,b =ln33,c =ln55,则A .a>b>cB .c<b<aC .c<a<bD .b<a<c 10.将y =2x的图象先进行下面哪种变换,再作关于直线y =x 对称的图象,可以得到函数y =log 2(x +1)的图象.A .先向左平移1个单位B .先向右平移1个单位C .先向上平移1个单位D .先向下平移1个单位第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上)11.函数y =log 12(x 2-3x +2)的单调递减区间是__________12.偶函数f(x)在[2,4]上单调递减,则f(log 128)与f(3log 3π2)的大小关系是__________.13.设方程2lnx =7-2x 的解为x 0,则关于x 的不等式x -2<x 0的最大整数解为__________.14.已知函数f(x)的定义域为(12,8],则f(2x)的定义域为__________.三、解答题(本大题共5小题,共54分.15~17题每小题10分,18~19题每小题12分.解答应写出必要的文字说明,解题步骤或证明过程)15.求函数y =4-x -2-x+1,x∈[-3,2]的最大值和最小值.16.设0<a<1,x ,y 满足log a x +3log x a -log x y =3,如果y 有最大值 24,求此时a 和x 的值.17.已知函数f(x 2-3)=lg x2x -6.(1)求f(x)的定义域;(2)求f(x)的反函数f -1(x).18.某纯净水制造厂在净化水的过程中,每增加一次过滤可减少水中杂质的20%. (1)写出水中杂质含量y 与过滤的次数x 之间的函数关系式. (2)要使水中杂质减少到原来的5%以下,则至少需要过滤几次?19.设定义域为R 的函数f(x)=log 3x 2+ax +bx 2+x +1,是否存在实数a 、b ,使函数f(x)同时满足下列三个条件:①函数f(x)的图象经过原点;②函数f(x)在[1,+∞)上单调递增;③函数f(x)在(-∞,-1]上的最大值为1.若存在,求出实数a 、b 的值;若不存在,请说明理由.答案与解析1.A 由log 12(x 2-1)≥0,得0<x 2-1≤1,1<x 2≤2,∴1<x≤ 2或- 2≤x<-1. 2.A3.D 由f(2)=14,得α=-2,∴f(x)=x -2,它的单调递增区间是(-∞,0).4.D 当x∈(-∞,1]时,y =2x∈(0,2]; 当x∈(1,+∞)时,y =log 0.5x∈(-∞,0), ∴函数y 的值域为{y|y≤2且y≠0}. 5.D y =e |-lnx|-|x -1|=⎩⎪⎨⎪⎧1x +x -1,0<x<1,1,x≥1,分两段画出函数图象即可.6.C 因为a =lnx 在(0,+∞)上单调递增,故当x∈(e -1,1)时,a∈(-1,0).于是b -a =2lnx -lnx =lnx<0,从而b<a.又a -c =lnx -ln 3x =a(1+a)(1-a)<0, 从而a<c.综上所述,b<a<c.7.A 由题中图象,易知a>1,-1<f(0)<0.由于f(0)=log a (20+b -1)=log a b , 所以-1<log a b<0,可得1a <b<1,故选A.8.C 由f(x)为偶函数,得b =0, ∵f(x)在(0,+∞)上单调递减, ∴由复合函数的单调性,可知0<a<1. ∴b-2=-2,1<a +1<2. ∴|b-2|>|a +1|>0. ∴f(b-2)<f(a +1).9.C b a =2ln 33ln 2=ln 9ln 8=log 89>1,且a ,b>0,所以b>a ;a c =5ln 22ln 5=log 2532>1,且a ,c>0,所以a>c ,所以b>a>c.10.D 由y =log 2(x +1)得x =2y-1,所以y =log 2(x +1)的图象关于y =x 对称的图象对应解析式为y =2x -1,它是由y =2x的图象向下平移1个单位得到的.11.(2,+∞) 函数定义域为(-∞,1)∪(2,+∞).令t =x 2-3x +2,函数t 在(2,+∞)上为增函数,∴函数y 在(2,+∞)上为减函数.12.f(log 128)<f(3log 3π2)log 128=-3,3log 3π2=π24,∵f(x)为偶函数,∴f(-3)=f(3). ∵4>3>π24>2,∴f(3)<f(π24).∴f(log 128)<f(3log 3π2).13.4 设f(x)=2lnx -7+2x ,又f(2)=2ln2-3<0,f(3)=2ln3-1>0, ∴x 0∈(2,3).∴x-2<x 0的最大整数解为4. 14.(-1,3] x 满足12<2x≤8,∴-1<x≤3.15.解:令2-x =t ,t∈[14,8],则y =t 2-t +1=(t -12)2+34.∴t=12时,y min =34;t =8时,y max =(152)2+34=57.∴所求函数的最大值为57,最小值为34.16.解:利用换底公式,可得log a x +3log a x -log a ylog a x =3,即log a y =(log a x)2-3log a x +3=(log a x -32)2+34,所以,当log a x =32时,log a y 有最小值34.因为0<a<1,所以y 有最大值a 34.由题意,得a 34= 24=2-32=(12)32=(14)34,所以a =14,此时x =a 32=(14)32=18.17.解:(1)设t =x 2-3,则x 2=t +3,t≥-3,f(t)=lg t +3t -3.又t +3t -3>0,∴t>3或t<-3. ∴f(x)的定义域为(3,+∞). (2)设y =lgu ,u =x +3x -3(x>3),则u>1,∴lgu>0,即y>0. 由y =lg x +3x -3,得10y=x +3x -3,∴x=y+10y-1.∴f(x)的反函数为f -1(x)=x+10x-1(x>0).18.解:(1)设刚开始水中杂质含量为1,第1次过滤后,y =1-20%;第2次过滤后,y =(1-20%)(1-20%)=(1-20%)2;第3次过滤后,y =(1-20%)2(1-20%)=(1-20%)3; ……第x 次过滤后,y =(1-20%)x.∴y=(1-20%)x =0.8x ,x≥1,x∈N *.(2)由(1)得0.8x<5%,∴x>log 0.80.05=lg2+11-3lg2≈13.4.∴至少需要14次.19.解:假设同时满足三个条件的实数a 、b 存在,则由条件①,知f(0)=0,∴b=1. 又当x≠0时,有f(x)=log 3x 2+ax +1x 2+x +1=log 3(1+a -1x +1x +1),∵函数y =x +1x +1在[1,+∞)上单调递增,且y>0,∴1y =1x +1x+1在[1,+∞)上单调递减.∴f(x)在[1,+∞)上单调递增.∴u=1+a -1x +1x+1在[1,+∞)上单调递增.∴a-1<0.∴a<1.又f(x)的定义域为R , ∴x 2+ax +1>0在R 上恒成立.由Δ=a 2-4<0,得-2<a<1,再由函数单调性定义,可证得f(x)在(-∞,-1]上也单调递增,从而由③可知,f(-1)=1,即1-a +11-1+1=3,∴a=-1.综上可知,存在a =-1,b =1满足题中三个条件.。

必修一基本初等函数练习题(含详细答案解析)

必修一基本初等函数练习题(含详细答案解析)

必修一基本初等函数练习题(含详细答案解析)一、选择题1.对数式log32-(2+3)的值是().A.-1 B.0 C.1 D.不存在1.A解析:log32-(2+3)=log32-(2-3)-1,故选A.2.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是().A B C D2.A解析:当a>1时,y=log a x单调递增,y=a-x单调递减,故选A.3.如果0<a<1,那么下列不等式中正确的是().A.(1-a)31>(1-a)21B.log1-a(1+a)>0C.(1-a)3>(1+a)2D.(1-a)1+a>13.A解析:取特殊值a=21,可立否选项B,C,D,所以正确选项是A.4.函数y=log a x,y=log b x,y=log c x,y=log d x的图象如图所示,则a,b,c,d的大小顺序是().A.1<d<c<a<bB.c<d<1<a<bC.c<d<1<b<aD.d<c<1<a<b4.B解析:画出直线y=1与四个函数图象的交点,它们的横坐标的值,分别为a,b,c,d的值,由图形可得正确结果为B.(第4题)5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34 B .8 C .18 D .21 5.D6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥36.D7.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R7.C+∞).8.已知-1<a <0,则( ).A .(0.2)a <a⎪⎭⎫⎝⎛21<2aB .2a <a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a8.B9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫ ⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,9.C解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)10.B解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数 y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数 y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.满足2-x >2x 的 x 的取值范围是 .11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 12.参考答案:f (3)<f (4).解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4). 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 .16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 解析:∵ f (x )为奇函数,三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.17.参考答案:a =100,b =10.解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100.18.已知函数f (x )=lg (ax 2+2x +1) .(1)若函数f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围.18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值.②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.求下列函数的定义域、值域、单调区间: (1)y =4x +2x +1+1; (2)y =2+3231x -x ⎪⎭⎫⎝⎛.19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.20.参考答案:(1){x |-1<x<1};(2)奇函数;(3)当0<a<1时,-1<x<0;当a>1时,0<x<1.(2)设F(x)=f(x)-g(x),其定义域为(-1,1),且F(-x)=f(-x)-g(-x)=log a(-x+1)-log a(1+x)=-[log a(1+x)-log a(1-x)]=-F(x),所以f(x)-g(x)是奇函数.(3)f(x)-g(x)>0即log a(x+1)-log a(1-x)>0有log a(x+1)>log a(1-x).。

高一数学必修一第二章基本初等函数练习题难题带答案

高一数学必修一第二章基本初等函数练习题难题带答案

高一数学必修一基本初等函数一.选择题(共30小题)1.设a=log43,b=log54,c=2﹣0.01,则a,b,c的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a2.已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a3.函数f(x)=(|x|﹣7)e|x|则()A.B.f(0.76)<f(60.5)<f(log0.76)C.D.4.已知P(x,y)为函数f(x)=图象上一动点,则的最大值为()A.B.C.2D.5.设a=3,b=3log3π,c=πlogπ3,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a6.若a=0.220.33,b=0.330.22,c=log0.330.22,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.已知a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>a>b B.a>c>b C.c>b>a D.b>a>c8.已知2a=log2|a|,,c=sin c+1,则实数a,b,c的大小关系是()A.b<a<c B.a<b<c C.c<b<a D.a<c<b9.已知实数a,b,c分别满足2a=﹣a,log0.5b=b,log2c=,那么()A.a<b<c B.a<c<b C.b<c<a D.c<b<a10.已知a=log1213,b=(),c=log1314,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>c>a D.a>c>b11.已知a>b>0,ab=1,设,则log x2x,log y2y,log z2z的大小关系为()A.log x2x>log y2y>log z2z B.log y2y>log z2z>log x2xC.log x2x>log z2z>log y2y D.log y2y>log x2x>log z2z12.已知,,c=log23,则a,b,c的大小关系为()A.b>a>c B.a>c>b C.a>b>c D.b>c>a13.下列命题为真命题的个数是()①②③A.0B.1C.2D.314.设,实数c满足e﹣c=lnc,(其中e为自然常数),则()A.a>b>c B.b>c>a C.b>a>c D.c>b>a15.若实数x,y,z满足,则x,y,z的大小关系是()A.x<y<z B.x<z<y C.z<x<y D.z<y<x16.已知x1=ln,x2=e,x3满足e=lnx3,则下列各选项正确的是()A.x1<x3<x2B.x1<x2<x3C.x2<x1<x3D.x3<x1<x217.已知t>1,x=log2t,y=log3t,z=log5t,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z18.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|恰有6个不同零点,则a的取值范围是()A.(,]∪(5,7] B.(,]∪(5,7]C.(,]∪(3,5] D.(,]∪(3,5]19.已知函数f(x)=,g(x)=x2﹣2x,设a为实数,若存在实数m,使f(m)﹣2g(a)=0,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]∪[3,+∞)C.[﹣1,3] D.(﹣∞,3]20.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.13B.12C.11D.1021.设a=log46,,,则()A.a>b>c B.b>c>a C.a>c>b D.c>b>a22.已知实数a>0,b>0,a≠1,且满足lnb=,则下列判断正确的是()A.a>b B.a<b C.log a b>1D.log a b<123.设a=π﹣e,b=lnπ﹣1,c=eπ﹣e e,则()A.a<b<c B.b<c<a C.c<b<a D.b<a<c24.若函数f(x)=在区间[2019,2020]上的最大值是M,最小值是m,则M﹣m()A.与a无关,但与b有关B.与a无关,且与b无关C.与a有关,但与b无关D.与a有关,且与b有关25.正数a,b满足1+log2a=2+log3b=3+log6(a+b),则的值是()A.B.C.D.26.已知实数a,b,c,d满足,则(a﹣c)2+(b﹣d)2的最小值为()A.8B.4C.2D.27.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+2=0上(其中m,n>0),则的最小值等于()A.10B.8C.6D.428.若m,n,p∈(0,1),且log3m=log5n=lgp,则()A.B.C.D.29.已知a=log2e,b=ln3,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.b>c>a30.若函数f(x)=ln(ax2﹣2x+3)的值域为R,则实数a的取值范围是()A.[0,]B.(,+∞)C.(﹣∞,]D.(0,]二.填空题(共6小题)31.已知函数f(x)在R上连续,对任意x∈R都有f(﹣3﹣x)=f(1+x);在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;若f(2a﹣1)<f(3a﹣2),则实数a的取值范围是.32.若存在正数x,y,使得(y﹣2ex)(lny﹣lnx)z+x=0(其中e为自然对数的底数),则实数z的取值范围是33.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.34.已知函数f(x)的图象与函数g(x)=2x关于直线y=x对称,令h(x)=f(1﹣|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0,0)对称;(2)h(x)的图象关于y轴对称;(3)h(x)的最小值为0;(4)h(x)在区间(﹣1,0)上单调递增.中正确的是.35.设a,b为非零实数,x∈R,若,则=.36.函数f(x)=log2x在区间[a,2a](a>0)上的最大值与最小值之差为.三.解答题(共4小题)37.已知函数f(x)=的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=(x+k)在[2,3]上有解,求k的取值范围.38.已知函数f(x)=log a(2﹣x)﹣log a(2+x)(a>0且a≠1),且1是函数y=f(x)+x的零点.(1)求实数a的值;(2)求使f(x)>0的实数x的取值范围.39.已知函数f(x)=(a2﹣3a+3)a x是指数函数.(1)求f(x)的解析式;(2)判断函数F(x)=f(x)﹣f(﹣x)的奇偶性,并证明;(3)解不等式log a(1﹣x)>log a(x+2).40.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=(﹣x+1)(1)求f(3)+f(﹣1);(2)求函数f(x)的解析式;(3)若f(a﹣1)<﹣1,求实数a的取值范围.参考答案与试题解析一.选择题(共30小题)1.【解答】解:因为0=log41<a=log43<log44=1,0<b=log54<log55=1,c=2﹣0.01>2≈0.92,log54=≈0.86,==log43×log45<()2=()2<1,∴a,b,c的大小关系为a<b<c.故选:B.2.【解答】解:,,=,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,当x=e时,f′(x)=0,当x>e时,f′(x)<0,当0<x<e时,f′(x)>0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.3.【解答】解,60.5>1>0.76>0>log0.76,函数f(x)为偶函数,则,当x>0时,f(x)=(x﹣7)e x,则f′(x)=(x﹣6)e x,易知函数f(x)在(0,6)上单调递减,又,故,即﹣log0.76<6,又,故,即﹣log0.76>3,则0<0.76<1<60.5<﹣log0.76<6,所以f(0.76)>f(60.5)>f(﹣log0.76)=f(log0.76),故选:D.4.【解答】解:设Q(,1),原点O,则=(,1),=(x,y),∴即.∴当OP与f(x)在y轴右侧相切时取最大值,设直线y=kx(k>0)与函数f(x)相切于点P0(x0,y0),y′=k,f′(x)=2x,则,解得.即切点P0(,),∴,即的最大值为.故选:D.5.【解答】解:构造函数f(x)=(x>1),则f′(x)=,当x∈(1,e2)时,f′(x)>0,则f(x)在(1,e2)上为增函数,∴f(π)>f(3),即>,∴>,即3log3π>πlogπ3,则b>c;设g(x)=,则g′(x)=,当x>3时,g′(x)>30ln3﹣1>0,∴g(x)在(3,+∞)上为增函数,则g(π)>g(3)=0,即>π,则3π>π3.又πlogπ3=>.∴a<c<b.故选:B.6.【解答】解:由1>a=0.220.33>0,1>b=0.330.22>0,c=log0.330.22>log0.330.33=1,所以c>a,且c>b;又ln0.220.33=0.33ln0.22,ln0.330.22=0.22ln0.33;不妨设0.33ln0.22<0.22ln0.33,则有<;构造函数f(x)=,x>0,所以f′(x)=,令f′(x)=0,解得x=e;所以x∈(0,e)时,f′(x)>0,f(x)是单调增函数;所以f(0.22)<f(0.33),即<,所以b>a;综上知,c>b>a.故选:D.7.【解答】解:已知a,b,c∈R,令==﹣=﹣1,则:,所以c>1.由于3b>0,且,故lnb<0,解得0<b<1,同理2a>0,且,故lna<0,解得0<a<1.由于0<a<1,0<b<1,==﹣<0,所以2a<3b,故lnb<lna,整理得b<a,所以c>1>a>b>0.故选:A.8.【解答】解:作出函数y=2x和y=log2|x|的图象,由图1可知,交点A的横坐标a<0;作出函数y=和y=的图象,由图2可知,交点B的横坐标0<b<1;作出函数y=x和y=sin x+1的图象,由图3可知,交点C的横坐标c>1所以,a<b<c.故选:B.9.【解答】解:∵log0.5b=﹣log2b=b,∴log2b=﹣b,在同一坐标系内画出函数y=2x,y=﹣x,y=log2x,y=的图象.可知a<0<b<1<c.故选:A.10.【解答】解:=,∵=<1,∴log1314<log1213,且log1314>1,,∴a>c>b.故选:D.11.【解答】解:,=,,∵a>b>0,ab=1,∴a>1>b>0,∴,log2(a+b)<2,∴,∴,∴,又0<,∴,∴log y2y>log z2z>log x2x.故选:B.12.【解答】解:根据指数运算与对数运算的性质,>3,1<<2,1<c=log23<2,设b=,c=log23,由于函数m=log2t为增函数,由于的值接近于4,所以a>b>c.故选:C.13.【解答】解:构造函数f(x)=,x∈(0,+∞),∴,令f'(x)=0得:x=e,∵当x∈(0,e)时,f'(x)>0,f(x)单调递增;当x∈(e,+∞)时,f'(x)<0,f(x)单调递减,∴f(e)>f(3)>f(π),即,故①正确,②错误,构造函数g(x)=,x∈(0,+∞),∵,令g'(x)=0得:x=e,∵当x∈(0,e)时,g'(x)<0,g(x)单调递减;当x∈(e,+∞)时,g'(x)>0,g(x)单调递增,∴g(e)<g(3),即0<,∴ln3<,∴,故③正确,∴真命题的个数是2个,故选:C.14.【解答】解:∵e﹣c>0,∴lnc>0,∴c>1,∴,∴,∴1<c<2,又,∴b>c>a.故选:B.15.【解答】解:设=p,∴p>0,设y1=log2x,y2=log3y,y3=2z,作出3个函数的图象,如图所示:由图可知:z<x<y,故选:C.16.【解答】解:依题意,因为y=lnx为(0,+∞)上的增函数,所以x1=ln<ln1=0;因为y=e x为R上的增函数,且e x>0,所以0<x2=e<e0=1;x3满足e=lnx3,所以x3>0,所以>0,所以lnx3>0=ln1,又因为y=lnx为(0,+∞)的增函数,所以x3>1,综上:x1<x2<x3.故选:B.17.【解答】解:∵t>1,∴lgt>0.又0<lg2<lg3<lg5,∴2x=2>0,3y=3>0,5z=>0,∴=>1,可得5z>2x.=>1.可得2x>3y.综上可得:3y<2x<5z.故选:D.18.【解答】解:首先将函数g(x)=f(x)﹣log a|x|恰有6个零点,这个问题转化成f(x)=log a|x|的交点来解决.数形结合:如图,f(x+2)=f(x),知道周期为2,当﹣1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(﹣7,7)上面的图象,以下分两种情况:(1)当a>1时,log a|x|如图所示,左侧有4个交点,右侧2个,此时应满足log a5≤1<log a7,即log a5≤log a a<log a7,所以5≤a<7.(2)当0<a<1时,log a|x|与f(x)交点,左侧有2个交点,右侧4个,此时应满足log a5>﹣1,log a7≤﹣1,即log a5<﹣log a a≤log a7,所以5<a﹣1≤7.故≤a<综上所述,a的取值范围是:5≤a<7或≤a<,故选:A.19.【解答】解:∵g(x)=x2﹣2x,设a为实数,∴2g(a)=2a2﹣4a,a∈R,∵y=2a2﹣4a,a∈R,∴当a=1时,y最小值=﹣2,∵函数f(x)=,f(﹣7)=6,f(e﹣2)=﹣2,∴值域为[﹣2,6]∵存在实数m,使f(m)﹣2g(a)=0,∴﹣2≤2a2﹣4a≤6,即﹣1≤a≤3,故选:C.20.【解答】解:由题意,函数f(x)满足:定义域为R,且f(x+2)=2f(x),当x∈[﹣1,1]时,f(x)=﹣|x|+1;在同一坐标系中画出满足条件的函数f(x)与函数y=log4|x|的图象,如图:由图象知,两个函数的图象在区间[﹣10,10]内共有11个交点;故选:C.21.【解答】解:,,,∵0<log34<log35<log36,∴,∴a>b>c.故选:A.22.【解答】解:∵lnb=,∴lnb﹣lna=,构造函数∴f(x)=;∴==;∴≥0;∴f(x)在(0,+∞)单调递增.且f(1)=0;当x∈(0,1)时,f(x)<0,当x∈(1.+∞)时f(x)>0;∵a≠1∴当0<a<1时,f(a)<0⇒0即lnb﹣lna<0⇒b<a,∴lnb<lna<0⇒⇒log a b>1,当a>1时,f(a)>0⇒即lnb﹣lna>0⇒b>a,∴lnb>lna>0⇒⇒log a b>1,故选:C.23.【解答】解:∵a=π﹣e>0,b=lnπ﹣1=lnπ﹣lne>0,c=eπ﹣e e>0;设y=lnx,则=,表示了连接两点(π,lnπ),(e,lne)的割线的斜率,而y'=,当x>1时,曲线切线的斜率0<k<1;故0<=<1,故b<a;设y=e x,则=,表示了连接两点(π,eπ),(e,e e)的割线的斜率,而y'=e x,当x>1时,曲线切线的斜率k>1;故=>1,故c>a;故b<a<c;故选:D.24.【解答】解:,令,则y=2019t2+bt+a的最大值是M,最小值是m,而a是影响图象的上下平移,此时最大和最小值同步变大或变小,故M﹣m与a无关,而b是影响图象的左右平移,故M﹣m与b有关,故选:A.25.【解答】解,依题意,设1+log2a=2+log3b=3+log6(a+b)=k,则a=2k﹣1,b=3k﹣2,a+b=6k﹣3,所以=====,故选:A.26.【解答】解:∵实数a,b,c,d满足,∴b=lna,d=c+1.考查函数y=lnx,与y=x+1.∴(a﹣c)2+(b﹣d)2就是曲线y=lnx与直线y=x+1之间的距离的平方值,对曲线y=lnx求导:y′=,与直线y=x+1平行的切线斜率k=1=,解得:x=1,将x=1代入y=lnx得:y=0,即切点坐标为(1,0),∴切点(1,0)到直线y=x+1的距离d==,即d2=2,则(a﹣c)2+(b﹣d)2的最小值为2.故选:C.27.【解答】解:令x+3=1,求得x=﹣2,可得函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A(﹣2,﹣1),若点A在直线mx+ny+2=0上(其中m,n>0),则﹣2m﹣n+2=0,即2m+n=2.由基本不等式可得2≥2,即mn≤,即≥2,当且仅当2m=n=1时,取等号.则==≥4,故选:D.28.【解答】解:∵m,n,p∈(0,1),且log3m=log5n=lgp=k,∴lgm,lgn,lgp<0,m=3k,n=5k,p=10k,∴==,==,==,因为,=53=125,所以,同理=5×5=25,=10,所以,所以>0,又因为y=x k(k<0)在(0,+∞)上单调递减,∴即<<.故选:A.29.【解答】解:根据题意,c=log=ln2<lne=1,则c<1,ln3>ln2,∴c<b,a=log2e>log22=1,即a>c,ln3﹣log2e=ln3﹣=,∵2=lne2>ln6=ln2+ln3>2,∴<1,即ln2ln3<1,则ln3﹣log2e=ln3﹣=<0,即ln3<log2e,即a>b,综上a>b>c,故选:A.30.【解答】解:若函数f(x)=ln(ax2﹣2x+3)的值域为R,即有t=ax2﹣2x+3取得一切的正数,当a=0时,t=3﹣2x取得一切的正数,成立;当a<0不成立;当a>0,△≥0即4﹣12a≥0,解得0<a≤,综上可得0≤a≤.故选:A.二.填空题(共6小题)31.【解答】解:由f(﹣3﹣x)=f(1+x)可知函数f(x)关于直线x=﹣1对称;在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;可知函数f(x)在区间(﹣∞,﹣1)上单调递减,由对称性可知函数f(x)在区间(﹣1,+∞)上单调递增,不妨设f(x)=(x+1)2,则由f(2a﹣1)<f(3a﹣2)可得4a2<(3a﹣1)2,整理得5a2﹣6a+1>0,即(a﹣1)(5a﹣1)>0,解得或a>1,所以实数a的取值范围是.故答案为:.32.【解答】解:则(y﹣2ex)(lny﹣lnx)z+x=0可化为:,令t=,得(t﹣2e)lnt=﹣.令f(t)=(t﹣2e)lnt,(t>0),则f′(t)=g(t)=lnt+1﹣,则g′(t)=,故g(t)为(0,+∞)上的增函数,又因为f′(e)=g(e)=1+1﹣2=0,故当t∈(0,e)时,f′(t)<0,当t>e时,f′(t)>0,所以f(t)在(0,e)上单调递减,在(e,+∞)上单调递增,所以f(t)在(0,+∞)存在最小值f(e)=﹣e,即f(t)的值域为(﹣e,+∞),∴﹣∈(﹣e,+∞),所以z∈(﹣∞,0)∪[,+∞),故填:(﹣∞,0)∪[,+∞),33.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].34.【解答】解:由于函数f(x)的图象与函数g(x)=2x关于直线y=x对称,故函数f(x)与函数g(x)=2x互为反函数.故函数f(x)=log2x.∴h(x)=f(1﹣|x|)=log2(1﹣|x|),故函数h(x)是偶函数,图象关于y对称,故(2)正确而(1)不正确.函数h(x)的定义域为(﹣1,1),在(﹣1,0)上是增函数,在(0,1)上是减函数,故(4)正确.故当x=0时,函数h(x)取得最大值为0,故(3)不正确.故答案为②④.35.【解答】解:由成立,得=(sin2x+cos2x)2,化简得:,即,∴,又sin2x+cos2x=1,得,.∴.则==•(sin2x+cos2x)=.故答案为:.36.【解答】解:∵f(x)=log2x在区间[a,2a]上是增函数,∴f(x)max﹣f(x)min=f(2a)﹣f(a)=log22a﹣log2a=1.故答案为:1.三.解答题(共4小题)37.【解答】解:(1)函数f(x)=的图象关于原点对称,∴f(x)+f(﹣x)=0,即+=0,∴()=0,∴=1恒成立,即1﹣a2x2=1﹣x2,即(a2﹣1)x2=0恒成立,所以a2﹣1=0,解得a=±1,又a=1时,f(x)=无意义,故a=﹣1;(2)x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,即+(x﹣1)<m,∴(x+1)<m在(1,+∞)恒成立,由于y=(x+1)是减函数,故当x=1,函数取到最大值﹣1,∴m≥﹣1,即实数m的取值范围是m≥﹣1;(3)f(x)=在[2,3]上是增函数,g(x)=(x+k)在[2,3]上是减函数,∴只需要即可保证关于x的方程f(x)=(x+k)在[2,3]上有解,下解此不等式组.代入函数解析式得,解得﹣1≤k≤1,即当﹣1≤k≤1时关于x的方程f(x)=(x+k)在[2,3]上有解.38.【解答】解:(1)∵1是函数y=f(x)+x的零点,∴f(1)=﹣1,即log a(2﹣1)﹣log a(2+1)+1=0,即log a3=1,解得a=3.(2)由(1)可知函数f(x)是递增函数,f(x)>0得log3(2﹣x)>log3(2+x),所以:有解得﹣2<x<0,所使f(x)>0的实数x的取值集合为{x|﹣2<x<0}.39.【解答】解:(1)a2﹣3a+3=1,可得a=2或a=1(舍去),∴f(x)=2x;(2)F(x)=2x﹣2﹣x,∴F(﹣x)=﹣F(x),∴F(x)是奇函数;(3)不等式:log2(1﹣x)>log2(x+2),即1﹣x>x+2>0,∴﹣2<x<﹣,解集为{x|﹣2<x<﹣}.40.【解答】解:(I)∵f(x)是定义在R上的偶函数,x≤0时,f(x)=(﹣x+1),∴f(3)+f(﹣1)=f(﹣3)+f(﹣1)=4+2=﹣2﹣1=﹣3;(II)令x>0,则﹣x<0,f(﹣x)=(x+1)=f(x)∴x>0时,f(x)=(x+1),则f(x)=.(Ⅲ)∵f(x)=(﹣x+1)在(﹣∞,0]上为增函数,∴f(x)在(0,+∞)上为减函数∵f(a﹣1)<﹣1=f(1)∴|a﹣1|>1,∴a>2或a<0。

高一数学必修一第二章基本初等函数综合素能检测及答案

高一数学必修一第二章基本初等函数综合素能检测及答案

第二章基本初等函数综合素能检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符号题目要求的。

)1.函数y =log 12(x -1)的定义域是( )A .[2,+∞)B .(1,2]C .(-∞,2] D.⎣⎡⎭⎫32,+∞ [答案] B[解析] log 12(x -1)≥0,∴0<x -1≤1,∴1<x ≤2.故选B.2.(·浙江文,2)已知函数f (x )=log 2(x +1),若f (α)=1,则α=( ) A .0 B .1 C .1 D .3 [答案] B[解析] 由题意知,f (α)=log 2(α+1)=1,∴α+1=2,∴α=1.3.已知集合A ={y |y =log 2x ,x >1},B ={y |y =(12)x ,x >1},则A ∩B =( )A .{y |0<y <12} B .{y |0<y <1}C .{y |12<y <1} D .∅[答案] A[解析] A ={y |y >0},B ={y |0<y <12}∴A ∩B ={y |0<y <12},故选A.4.(·重庆理,5)函数f (x )=4x +12x 的图象( )A .关于原点对称B .关于直线y =x 对称C .关于x 轴对称D .关于y 轴对称 [答案] D[解析] ∵f (-x )=2-x +12-x =2x +12x =f (x )∴f (x )是偶函数,其图象关于y 轴对称.5.(·辽宁文,10)设2a =5b =m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .100 [答案] A[解析] ∵2a =5b =m ∴a =log 2m b =log 5m ∴1a +1b =1log 2m +1log 5m =log m 2+log m 5=log m 10=2 ∴m =10 选A.6.已知f (x )=⎩⎪⎨⎪⎧f (x +2) x ≤0log 12x x >0,则f (-8)等于( )A .-1B .0C .1D .2[答案] A[解析] f (-8)=f (-6)=f (-4)=f (-2)=f (0)=f (2)=log 122=-1,选A.7.若定义域为区间(-2,-1)的函数f (x )=log (2a -3)(x +2),满足f (x )<0,则实数a 的取值范围是( )A.⎝⎛⎭⎫32,2 B .(2,+∞) C.⎝⎛⎭⎫32,+∞ D.⎝⎛⎭⎫1,32 [答案] B[解析] ∵-2<x <-1,∴0<x +2<1, 又f (x )=log (2a -3)(x +2)<0, ∴2a -3>1,∴a >2.8.已知f (x )是偶函数,它在[0,+∞)上是减函数.若f (lg x )>f (1),则x 的取值范围是( )A .(110,1)B .(0,110)∪(1,+∞)C .(110,10) D .(0,1)∪(10,+∞)[答案] C[解析] ∵f (x )为偶函数, ∴f (lg x )>f (1)化为f (|lg x |)>f (1),又f (x )在[0,+∞)上为减函数,∴|lg x |<1,∴-1<lg x <1,∴110<x <10,选C.9.幂函数y =x m 2-3m -4(m ∈Z )的图象如下图所示,则m 的值为( )A .-1<m <4B .0或2C .1或3D .0,1,2或3[答案] D[解析] ∵y =x m 2-3m -4在第一象限为减函数 ∴m 2-3m -4<0即-1<m <4 又m ∈Z ∴m 的可能值为0,1,2,3. 代入函数解析式知都满足,∴选D.10.(09·北京理)为了得到函数y =lg x +310的图像,只需把函数y =lg x 的图像上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度 [答案] C[解析] y =lg x +310=lg(x +3)-1需将y =lg x 图像先向左平移3个单位得y =lg(x +13)的图象,再向下平移1个单位得y =lg(x +3)-1的图象,故选C.11.已知log 12b <log 12a <log 12c ,则( ) A .2b >2a >2c B .2a >2b >2c C .2c >2b >2aD .2c >2a >2b[答案] A[解析] ∵由log 12b <log 12a <log 12c ,∴b >a >c , 又y =2x 为增函数,∴2b >2a >2c .故选A.12.若0<a <1,则下列各式中正确的是( )A .log a (1-a )>0B .a 1-a >1 C .log a (1-a )<0 D .(1-a )2>a 2 [答案] A[解析] 当0<a <1时,log a x 单调减,∵0<1-a <1,∴log a (1-a )>log a 1=0.故选A.[点评] ①y =a x 单调减,0<1-a <1,∴a 1-a <a 0=1. y =x 2在(0,1)上为增函数.当1-a >a ,即a <12时,(1-a )2>a 2;当1-a =a ,即a =12时,(1-a )2=a 2;当1-a <a ,即12<a <1时,(1-a )2<a 2.②由于所给不等式在a ∈(0,1)上成立,故取a =12时有log a (1-a )=log 1212=1>0,a 1-a=⎝⎛⎭⎫1212=22<1,(1-a )2-a 2=⎝⎛⎭⎫122-⎝⎛⎭⎫122=0, ∴(1-a )2=a 2,排除B 、C 、D ,故选A.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.函数y =a x (a >0,且a ≠1)在[1,3]上的最大值比最小值大a2,则a 的值是________.[答案] 22或62.[解析] 当a >1时,y =a x 在[1,3]上递增, 故a 3-a =a 2,∴a =62;当0<a <1时,y =a x 在[1,3]上单调递减,故a -a 3=a 2,∴a =22,∴a =22或62.[点评] 指数函数的最值问题一般都是用单调性解决.14.若函数f (2x )的定义域是[-1,1],则f (log 2x )的定义域是________. [答案] [2,4][解析] ∵y =f (2x )的定义域是[-1,1],∴12≤2x ≤2,∴y =f (x )的定义域是⎣⎡⎦⎤12,2,由12≤log 2x ≤2得,2≤x ≤4. 15.函数y =lg(4+3x -x 2)的单调增区间为________.[答案] (-1,32][解析] 函数y =lg(4+3x -x 2)的增区间即为函数y =4+3x -x 2的增区间且4+3x -x 2>0,因此所求区间为(-1,32].16.已知:a =x m,b =x m2,c =x 1m ,0<x <1,0<m <1,则a ,b ,c 的大小顺序(从小到大)依次是__________.[答案] c ,a ,b[解析] 将a =x m ,b =x m2,c =x 1m 看作指数函数y =x P (0<x <1为常数,P 为变量), 在P 1=m ,P 2=m 2,P 3=1m时的三个值,∵0<x <1,∴y =x P 关于变量P 是减函数,∵0<m <1,∴m 2<m <1m ,∴x m2>x m >x 1m ;∴c <a <b .三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)在同一坐标系中,画出函数f (x )=log 2(-x )和g (x )=x +1的图象.当f (x )<g (x )时,求x 的取值范围.[解析] f (x )与g (x )的图象如图所示;显然当x =-1时,f (x )=g (x ),由图可见,使f (x )<g (x )时,x 的取值范围是-1<x <0.18.(本题满分12分)把下列各数按从小到大顺序排列起来. ⎝⎛⎭⎫340,⎝⎛⎭⎫2334,⎝⎛⎭⎫-323,⎝⎛⎭⎫32-45,⎝⎛⎭⎫-433, log 2332,log 143,log 34,log 35,log 142.[分析] 先区分正负,正的找出大于1的,小于1的,再比较.[解析] 首先⎝⎛⎭⎫340=1;⎝⎛⎭⎫2334、⎝⎛⎭⎫32-45∈(0,1);log 35、log 34都大于1;log 2332=-1;⎝⎛⎭⎫-323,⎝⎛⎭⎫-433都小于-1,log 142=-12,-1<log 143<0. (1)⎝⎛⎭⎫32-45=⎝⎛⎭⎫2345,∵y =⎝⎛⎭⎫23x 为减函数,34<45,∴⎝⎛⎭⎫2334>⎝⎛⎭⎫2345=⎝⎛⎭⎫32-45;(2)∵y =x 3为增函数,-32<-43<-1,∴⎝⎛⎭⎫-323<⎝⎛⎭⎫-433<-1; (3)y =log 14x 为减函数,∴-12=log 142>log 143>log 144=-1;(4)y =log 3x 为增函数,∴log 35>log 34>log 33=1.综上可知,⎝⎛⎭⎫-323<⎝⎛⎭⎫-433<log 143<log 142<⎝⎛⎭⎫32-45<⎝⎛⎭⎫2334<⎝⎛⎭⎫340<log 34<log 35. 19.(本题满分12分)已知f (x ) 是偶函数,当x ≥0时,f (x )=a x (a >1),若不等式f (x )≤4的解集为[-2,2],求a 的值.[解析] 当x <0时,-x >0,f (-x )=a -x , ∵f (x )为偶函数,∴f (x )=a -x , ∴f (x )=⎩⎪⎨⎪⎧a x x ≥0⎝⎛⎭⎫1a x x <0,∴a >1,∴f (x )≤4化为⎩⎪⎨⎪⎧ x ≥0,a x ≤4,或⎩⎪⎨⎪⎧x <0⎝⎛⎭⎫1a x ≤4,∴0≤x ≤log a 4或-log a 4≤x <0,由条件知log a 4=2,∴a =2.20.(本题满分12分)在已给出的坐标系中,绘出同时符合下列条件的一个函数f (x )的图象.(1)f (x )的定义域为[-2,2];(2)f (x )是奇函数; (3)f (x )在(0,2]上递减;(4)f (x )是既有最大值,也有最小值; (5)f (1)=0.[解析] ∵f (x )是奇函数, ∴f (x )的图象关于原点对称,∵f (x )的定义域为[-2,2],∴f (0)=0,由f (x )在(0,2]上递减知f (x )在[-2,0)上递减, 由f (1)=0知f (-1)=-f (1)=0,符合一个条件的一个函数的图象如图.[点评] 符合上述条件的函数不只一个,只要画出符合条件的一个即可,再结合学过的一次、二次、幂、指、对函数可知,最简单的为一次函数.下图都是符合要求的.21.(本题满分12分)设a >0,f (x )=e xa +aex 是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数.[解析] (1)依题意,对一切x ∈R 有f (-x )=f (x )成立,即e x a +a e x =1aex +ae x ,∴⎝⎛⎭⎫a -1a ⎝⎛⎭⎫e x -1e x =0,对一切x ∈R 成立,由此得到a -1a=0,∴a 2=1,又a >0,∴a =1.(2)设0<x 1<x 2,f (x 1)-f (x 2)=ex 1-ex 2+1ex 1-1ex 2=(ex 2-ex 1)<0∴f (x 1)<f (x 2),∴f (x )在(0,+∞)上为增函数.22.(本题满分14分)某民营企业生产A 、B 两种产品,根据市场调查与预测,A 产品的利润与成正比,其关系如图1,B 产品的利润与的算术平方根成正比,其关系如图2(注:利润与单位:万元)(1)分别将A 、B 两种产品的利润表示为的函数关系式;(2)该企业已筹集到10万元资金,并全部投入A 、B 两种产品的生产,问:怎样分配这10万元,才能使企业获得最大利润,其最大利润约为多少万元?(精确到1万元)[解析] (1)设各x 万元时,A 产品利润为f (x )万元,B 产品利润为g (x )万元,由题设f (x )=k 1x ,g (x )=k 2x ,由图知f (1)=14,∴k 1=14,又g (4)=52,∴k 2=54,从而:f (x )=14x (x ≥0),g (x )=54x (x ≥0).(2)设A 产品投入x 万元,则B 产品投入10-x 万元;设企业利润为y 万元.y =f (x )+g (10-x )=x 4+5410-x (0≤x ≤10),令10-x =t ,则0≤t ≤10,∴y =10-t 24+54t =-14(t -52)2+6516(0≤t ≤10),当t =52时,y max =6516≈4,此时x =10-254=3.75.∴当A 产品投入3.75万元,B 产品投入6.25万元时,企业获得最大利润约4万元.。

必修 基本初等函数练习题及答案

必修 基本初等函数练习题及答案

第二章 基本初等函数部分练习题(2)一、选择题:(只有一个答案正确,每小题5分共40分)1、若0a >,且,m n 为整数,则下列各式中正确的是 ( D )A 、m m n n a a a ÷=B 、n m n m a a a a =⋅C 、()n m m n aa += D 、01n n a a -÷= 2、已知(10)x f x =,则()100f = ( D )A 、100B 、10010C 、lg10D 、23、对于0,1a a >≠,下列说法中,正确的是 ( D )①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =。

A 、①②③④B 、①③C 、②④D 、②4、函数22log (1)y x x =+≥的值域为 ( C )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( C )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>6、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( B )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<7、计算()()5lg 2lg 25lg 2lg 22⋅++等于 ( B ) A 、0 B 、1 C 、2 D 、38、已知3log 2a =,那么33log 82log 6-用a 表示是( B )A 、52a -B 、2a -C 、23(1)a a -+D 、 231a a --二、填空题:(每小题4分,共20分)9、某企业生产总值的月平均增长率为p ,则年平均增长率为()1112-+p . 10、[]643log log (log 81)的值为 0 .11、若)log 11x =-,则x =12+.12.已知幂函数的图像经过点(2,32)则它的解析式是5x y =三.解答题 (共40分)13.求下列函数的定义域:(每小题5分,共10分)(1)3)1(log 1)(2-+=x x f (2)2312log )(--=x x x f 解:要使原函数有意义,须使: 解:要使原函数有意义,须使:()⎩⎨⎧≠-+>+,031log ,012x x 即⎩⎨⎧≠->,7,1x x ⎪⎩⎪⎨⎧≠->->-,112,012,023x x x 得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠>>.1,21,32x x x 所以,原函数的定义域是: 所以,原函数的定义域是: (-1,7)Y (7,∞+). (32,1) Y (1, ∞+). 14、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,问现在价格为8100元的计算机经过15年后,价格应降为多少? (10 分)解:设15年后的价格为y 元,则依题意,得33118100⎪⎭⎫ ⎝⎛-⋅=y =2400 (元) 答:15年后的价格为 2400元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修1 第二章 基本初等函数(1)
一、选择题: 1.3334)21()21()
2()2(---+-+----的值 ( ) A 4
37 B 8 C -24 D -8 2.函数x y 24-=的定义域为 ( )
A ),2(+∞
B (]2,∞-
C (]2,0
D [)+∞,1
3.下列函数中,在),(+∞-∞上单调递增的是 ( ) A ||x y = B x y 2log = C 31
x y = D x y 5.0=
4.函数x x f 4log )(=与x x f 4)(=的图象 ( )
A 关于x 轴对称
B 关于y 轴对称
C 关于原点对称
D 关于直线x y =对称
5.已知2log 3=a ,那么6log 28log 33-用a 表示为 ( )
A 2-a
B 25-a
C 2)(3a a a +-
D 132--a a
6.已知10<<a ,0log log <<n m a a ,则 ( )
A m n <<1
B n m <<1
C 1<<n m
D 1<<m n
7.已知函数f (x )=2x ,则f (1—x )的图象为 ( )
A B C
D
8.有以下四个结论 ① l
g(l g10)=0 ② l g(l n e )=0 ③若10=l g x ,则x=10 ④ 若e =ln x,则
x =e 2, 其中正确的是 ( )
A. ① ③
B.② ④
C. ① ②
D. ③ ④
9.若y=log 56·log 67·log 78·log 89·log 910,则有 ( )
A. y ∈(0 , 1) B . y ∈(1 , 2 ) C. y ∈(2 , 3 ) D. y =1
10.已知
f (x )=|lgx |,则f (41)、f (31)、f (2) 大小关系为 ( )
A. f (2)> f (31)>f (
41) B. f (41)>f (31)>f (2) C. f (2)> f (41)>f (31) D. f (3
1)>f (41)>f (2) 11.若f (x )是偶函数,它在[)0,+∞上是减函数,且f (lg x )>f (1),则x 的取值范围是( )
A. (110,1)
B. (0,110)(1,+∞)
C. (110,10)
D. (0,1)(10,+∞)
12.若a 、b 是任意实数,且a >b ,则 ( )
A. a 2>b 2
B. a b <1
C. ()lg a b - >0
D.12a ⎛⎫ ⎪⎝⎭<12b
⎛⎫ ⎪⎝⎭ 二、填空题:
13. 当x ∈[-1,1]时,函数f (x )=3x
-2的值域为 14.已知函数⎩⎨⎧<+≥=-),
3)(1(),3(2)(x x f x x f x 则=)3(log 2f _________.
15.已知)2(log ax y a -=在]1,0[上是减函数,则a 的取值范围是_________
16.若定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f (2
1)=0,则不等式 f (l og 4x )>0的解集是______________.
三、解答题:
17.已知函数x y 2=
(1)作出其图象;
(2)由图象指出单调区间;
(3)由图象指出当x 取何值时函数有最小值,最小值为多少?
18. 已知f (x )=log a 11x x
+- (a >0, 且a ≠1) (1)求f (x )的定义域
(2)求使 f (x )>0的x 的取值范围.
19. 已知函数()log (1)(0,1)a f x x a a =+>≠在区间[1,7]上的最大值比最小值大12
,求a 的值。

20.已知[]2,1,4329)(-∈+⨯-=x x f x x (1)设[]2,1,3-∈=x t x
,求t 的最大值与最小值; (2)求)(x f 的最大值与最小值;
必修1 第二章 基本初等函数(1)
《基本初等函数1》参考答案
一、1~8 C B C D A A C C 9-12 B B C D
二、13、[—35,1] 14、121 15、{}
21<<a a 16、x >2或0<x <2
1 三、17、(1)如图所示:
(3)由图象可知:当0=x 时,函数取到最小值1min =y
18.(1)函数的定义域为(—1,1)
(2)当a>1时,x ∈(0,1) 当0<a<1时,x ∈(—1,0)
19. 解:若a >1,则()log (1)(0,1)a f x x a a =+>≠在区间[1,7]上的最大值为log 8a ,
最小值为log 2a ,依题意,有1log 8log 22
a a -=,解得a = 16; 若0<a <1,则()log (1)(0,1)a f x x a a =+>≠在区间[1,7]上的最小值为
log 8a ,最大值为log 2a ,依题意,有1log 2log 82a a -=
,解得a =116。

综上,得a = 16或a =116。

20、解:(1)x t 3= 在[]2,1-是单调增函数∴ 932max ==t ,3
131min ==-t (2)令x t 3=,[]2,1-∈x ,⎥⎦

⎢⎣⎡∈∴9,31t 原式变为:42)(2+-=t t x f , 3)1()(2+-=∴t x f ,⎥⎦
⎤⎢⎣⎡∈9,31t ,∴当1=t 时,此时1=x ,3)(min =x f ,
x
当9=t 时,此时2=x ,67)(max =x f 。

相关文档
最新文档