高中数学必修1基本初等函数常考题型幂函数
高中数学人教版 必修1 第二章 基本初等函数(I) 2.3 幂函数
高中数学人教版必修1 第二章基本初等函数(I) 2.3 幂函数选择题下列函数中是幂函数的是()①y=?x2;②y=2x;③y=xπ;④y=(x?1)3;⑤y=;⑥y=x2+.A.①③⑤? B.①②⑤C.③⑤D.只有⑤【答案】C【解析】y=?x2的系数是?1而不是1,故不是幂函数;y=2x是指数函数;y=(x?1)3的底数是x?1而不是x,故不是幂函数;y=x2+是两个幂函数和的形式,也不是幂函数.y==x?2和y=xπ具有幂函数y=xα的形式,所以选C.选择题幂函数f(x)的图象过点(4,),那么f(8)的值为()A. B.64 C.2 ? D.【答案】A【解析】设幂函数的解析式为y=xα,依题意得,=4α,即22α=2?1,∴α=?.∴幂函数的解析式为y=,∴f(8)====, 故选A.选择题函数f(x)=(m2?m?1)是幂函数,且在x∈(0,+∞)上是减函数,则实数m的取值集合是()A.{m|m=?1或m=2} B.{m|?1解得m=2.选择题下列幂函数中图象过点(0,0),(1,1),且是偶函数的是()A.? y=?B.? y=C.? y=D.? y=【答案】B【解析】函数y=,y=不是偶函数,函数y=是偶函数,但其图象不过点(0,0).函数y=的图象过点(0,0),(1,1)且是偶函数,故选B.选择题函数f(x)=(n∈Z,a>0且a≠1)的图象必过定点()A.(1,1) ?B.(1,2)C.( ?1,0)D.( ?1,1)【解析】因为f(1)==1+1=2,所以f(x)=(n∈Z,a>0且a≠1)的图象必过定点(1,2),故选B.选择题下列命题中正确的是()A.当α=0时,函数y=xα的图象是一条直线B.幂函数的图象都经过(0,0)、(1,1)两点C.幂函数y=x0的定义域是RD.幂函数的图象不可能在第四象限【答案】D【解析】当α=0时,函数y=xα的定义域为{x|x≠0,x∈R},其图象不是直线,故A和C不? 正确;当α0,α∈R时,y=xα>0,则幂函数的图象都不在第四象限,故D正确.选择题设α∈{?2,?1,?,,,1,2,3},则使f(x)=xα为奇函数,且在(0,+∞)上递增的α的个数是()A.1 B.2 C.3 D.4【解析】f(x)为奇函数,则α=?1,,1,3,f(x)在(0,+∞)上递增,则α=,1,3,故选C.选择题在同一坐标系内,函数y=xa(a≠0)和y=ax?的图象可能是()【答案】C【解析】当a0,结合图象排除A,C,D,又y=xa在(0,+∞)上是减函数,∴B项也不正确.当a>0时,y=ax?是增函数,?0时,y=xa在(0,+∞)上是增函数,故A项不正确,故选C.选择题在函数,,,中,幂函数的个数为A.0? ? B.1C.2 D.3【解析】函数为幂函数;函数,前的系数不是1,所以它不是幂函数;函数是两个函数和的形式,所以它不是幂函数;函数与不是同一个函数,所以它也不是幂函数.所以只有1个是幂函数,故选B.选择题若函数是幂函数,且满足,则的值等于A.B.C.D.【答案】A【解析】令,因为,即,解得,所以,所以.选择题若幂函数的图象不过原点,则A.B.或C.D.【答案】B【解析】因为幂函数的图象不过原点,所以,解得或.故选B.选择题如图所示的曲线是幂函数在第一象限的图象,已知,相应曲线对应的值依次为A.B.C.D.【答案】B【解析】结合幂函数的单调性及图象,易知曲线对应的值依次为.故本题选B.选择题设,,,则的大小关系是A.B.C.D.【答案】B【解析】在上为减函数,,即.在上为增函数,,即.所以.选择题在同一直角坐标系中,函数,的图象可能是【答案】D【解析】对于A,没有幂函数的图象,不符合题目要求;对于B,中,中,舍去;对于C,中,中,舍去;对于D,中,中,故选D.选择题已知幂函数的图象过点,则A.B.1C.D.2【答案】A【解析】因为幂函数的图象过点,所以,解得,所以.故选A.选择题函数是幂函数,且在上为增函数,则实数的值是A.?1? B.2C.3 D.?1或2【答案】B【解析】是幂函数或.又在上是增函数,所以,故选B.填空题比较下列各组数的大小:(1)与的大小关系是______;(2),,的大小关系是______.【答案】(1) (2)【解析】1)∵在(0,+∞)上为减函数,且5.1>5.09,∴.(2),.∵在(0,+∞)上为增函数,且,∴.又,∴.填空题已知幂函数f(x)=,若f(a+1)=(x>0),易知f(x)在(0,+∞)上为减函数,又f(a+1)解得∴3,下列五个关系式:①0与y=的图象(如图所示),设,作直线y=m.如果m=0或1,则a=b;如果01,则1填空题若一个幂函数的图象过点,则.【答案】【解析】设幂函数的解析式为已知幂函数的图象过点,所以,即所以,则.填空题若,则满足的的取值范围是.【答案】【解析】根据幂函数的性质,由于,所以当时,当时,,因此的解集为.填空题下列函数中,在(0,1)上单调递减,且为偶函数的是.①;②y=x4;③y=x?2;④.【答案】③【解析】①中函数不具有奇偶性;②中函数y=x4是偶函数,但在[0,+∞)上为增函数;③中函数y=x?2是偶函数,且在(0,+∞)上为减函数;④中函数是奇函数.故填③.填空题已知幂函数,若f(a+1)<f(10?2a),则a的取值范围是.【答案】(3,5)【解析】∵,易知f(x)在(0,+∞)上为减函数,又f(a+1)<f(10?2a),∴,解得,∴3<a<5.解答题已知函数f(x)=?且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.【答案】(1)1 ?(2)奇函数?(3)略【解析】(1)因为f(4)=,所以,所以=1.(2)由(1)知f(x)=,因为f(x)的定义域为{x|x≠0},,所以f(x)是奇函数.(3) f(x)在(0,+∞)上单调递增.证明如下:设,则.因为,所以,,所以,所以f(x)在(0,+∞)上为单调递增函数.解答题已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)?α=2,∴f(x)=x2.同理可求出,在同一坐标系内作出y=f(x)与y=g(x)的图象,如图所示.由图象可知:(1)当x>1或xg(x).(2)当x=±1时,f(x)=g(x).(3)当?1,其中?2,,1;(2),,;【答案】(1);(2).【解析】(1)把1看作,幂函数在(0,+∞)上是增函数.∵,∴,即.(2)因为,,,幂函数在(0,+∞)上是增函数,且.∴.解答题已知幂函数()的图象关于轴对称,且在上是减函数.(1)求的值;(2)求满足不等式的实数a的取值范围.【答案】(1);(2).【解析】(1)因为函数在上是减函数,所以,所以.因为,所以或.又函数图象关于轴对称,所以是偶数,所以.(2)不等式等价于,解得.所以实数a的取值范围是.解答题已知幂函数(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.【答案】(1)f(x)=x4;(2)(3,+∞).【解析】(1)∵f(x)在区间(0,+∞)上是单调增函数,∴?m2+2m+3>0,即m2?2m?32对任意的x∈R恒成立,∴g(x)min>2,且x∈R,即c?1>2,解得c>3.故实数c的取值范围是(3,+∞).。
幂函数知识点高一必修一
幂函数知识点高一必修一幂函数是高中数学中的一个重要概念,它在解决实际问题和理论推导中都有广泛应用。
在高一必修一的数学课程中,学生将首次接触到幂函数的概念和相关知识。
本文将从定义、性质、图像和应用等方面进行介绍,帮助学生更好地理解和掌握幂函数。
一、幂函数的定义幂函数是形如$f(x)=x^a$的函数,其中$x$是自变量,$a$是常数且$a$可以为有理数、整数或实数。
当$a$为有理数时,幂函数的定义域是实数集;当$a$为整数时,幂函数的定义域可以是正实数集、负实数集或者零;当$a$为实数时,幂函数的定义域可以是正实数集和零集。
二、幂函数的性质1. 定义域:幂函数的定义域取决于指数的取值范围,通常为实数集或者特定的数集。
2. 奇偶性:当指数$a$为整数且为偶数时,幂函数是偶函数;当指数$a$为整数且为奇数时,幂函数是奇函数;当指数$a$为实数且为非整数时,幂函数既不是奇函数也不是偶函数。
3. 单调性:当指数$a>0$时,幂函数是增函数;当指数$a<0$时,幂函数是减函数。
4. 对称轴:当指数$a$为整数且为偶数时,幂函数的对称轴为$y$轴;当指数$a$为整数且为奇数时,幂函数没有对称轴。
三、幂函数的图像根据幂函数的性质可以推断出其图像的一些特点。
1. 当指数$a>1$时,幂函数的图像在原点左侧逐渐趋近于$x$轴且斜率逐渐增大;在原点右侧逐渐上升但斜率趋于0。
2. 当指数$a=1$时,幂函数的图像为直线$y=x$。
3. 当指数$0<a<1$时,幂函数的图像在整个定义域上单调递减,并且在$x$轴上趋于无穷。
4. 当指数$a=0$时,幂函数的图像为常数函数$y=1$。
5. 当指数$a<0$时,幂函数的图像在整个定义域上单调递减,但在$x$轴右侧逐渐趋近于0。
综上所述,幂函数的图像呈现出不同的形态和趋势,具体取决于指数的取值范围。
四、幂函数的应用幂函数在实际问题中有广泛的应用,尤其在自然科学和工程技术领域。
高一幂函数题型练习(全)
幂函数 知识梳理一、幂函数的定义与性质1.一般地,函数叫做幂函数.特别提醒:幂函数的表达式有四个特征:①解析式的右边是一个幂;②系数为1;③底数未自变量;④指数为常数.二、幂函数的图象及性质1.幂函数,,,,的性质图象定义域值域奇偶性奇偶奇非奇非偶奇单调性增递减递增增增递减递减定点,图象特点在第一象限内,幂函数的指数越小,其图象越靠近轴2.幂函数的图象及性质(1)当时,①图象都过点,;②在第一象限内,函数值随的增大而增大;③在第一象限内,时,图象是向下凸的,时,图象是向上凸的;④在第一象限内,过点后,图象向右上方无限伸展.(2)当时,①图象都多点;②在第一象限内,函数值随的增大而减小,图象是向下凸的;③在第一象限内,图象向左与轴无限接近,向右与轴无限接近;④在第一象限内,过点后,越大,图象下落的速度越快.三、幂函数的奇偶性对于幂函数,令,其中、互质,、.若为奇数,则的奇偶性取决于是奇数还是偶数,当是奇数时,则是奇函数;当是偶数时,是偶函数;若为偶数,则必定是奇数,此时既不是奇函数,也不是偶函数.四、幂的大小的比较方法比较两个幂值的大小,关键是构造适当的函数.若指数相同而底数不同,则考虑借助幂函数的单调性;若指数不同而底数相同,则考虑借助函数的图象来比较.题型训练题型一幂函数的概念(系数为1)1.若函数为幂函数,则等于?2.已知幂函数的图象经过点,则?3.若函数是幂函数,则?4.若幂函数的图像过点,则该幂函数的解析式为?5.若在幂函数的图象上,则?6.已知幂函数,其图象过原点,则实数的值为?题型二图像问题1.如图所示,曲线与分别是函数和在第一象限内的图象,则下列结论正确的是()A.B.C.D.2.若四个幂函数,,,在同一坐标系中的图象如图,则、、、的大小关系是()A.B.C.D.3.已知幂函数,当时,恒有,则 的取值范围是()A.B.C.D.4.使不等式成立的的取值范围是()A.或B.C.D.5.设时,若函数与则有两个不同的交点,求实数的取值范围?题型三过定点1.函数恒过定点?题型四幂函数单调性与奇偶性1.下列幂函数中是奇函数且在上单调递增的是(填序号).2.已知幂函数在上单调递减,则的值为?3.幂函数在上是减函数,且,则可能等于()A.B.C.D.4.下列函数中,既是偶函数,又在区间上单调递减的函数是()A.B.C.D.5.已知函数是定义在区间上的奇函数,则6.若函数是幂函数且在是递增的,则?7.已知幂函数的图象关于轴对称,且在上是减函数.(1)求的值;(2)求满足不等式的实数a的取值范围.题型五比大小1.比较两个幂的值的大小:,2.若,则实数的取值范围为?3.,;,;4.,,的大小关系是()A.B.C.D.5.设,,,则,,的大小关系是()A.B.C.D.6.当时,,,的大小关系是()A.B.C.D.7.当时,函数,,的大小关系是.题型六解不等式1.若,试求实数的取值范围.2.已知幂函数,若,则的取值范围是?3.已知幂函数,若,则a的取值范围是?4.已知幂函数的图象经过点,且,则实数的取值范围是()A.B.C.D.5.6.若,则实数x的取值范围()A.B.C.D.。
高中数学必修1 必修一幂函数专项练习题
必修一幂函数专项练习题1. 下列命题中正确的是( )A. 当α=0时,幂函数y =x α的图象是一条直线B. 幂函数的图象都经过(0,0)、(1,1)两点C. 若幂函数y =x α的图象关于原点对称,则在定义域内y 随x 的增大而增大D. 幂函数的图象不可能在第四象限 2. 幂函数y =x 43,y =x 31,y =x -43的定义域分别是M 、N 、P ,则( )A. M ⊂N ⊂PB. N ⊂M ⊂PC. M ⊂P ⊂ND. A 、B 、C 都不对3. (湖南高考,文)函数f (x )=x 21-的定义域是( ) A. (-∞,0] B. [0,+∞) C. (-∞,0) D. (-∞,+∞)4. (唐山十县联考)函数y =(-21+x )-21的定义域是( ) A. (-∞,-1) B. (-∞,-1] C. (1,+∞) D. [1,+∞) 5. (江西高考,理)已知实数a 、b 满足等式(21)a =(31)b ,下列五个关系式: ①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b ,其中不可能成立的有( )A. 1个B. 2个C. 3个D. 4个6. 下列函数中,是幂函数的为( ) A. y =x x B. y =3x 21 C. y =x 21+1 D. y =x 2-7. 若T1=(21)32,T 2=(51)32,T 3=(21)31,则下列关系式正确的是( ) A. T 1<T 2<T 3 B. T 3< T 1< T 2 C. T 2< T 3< T 1 D. T 2< T 1<T 38. (经典回放)对于幂函数f (x )=x 54,若0<x 1<x 2,则f (221x x +),x x f x f )()(21+的大小关系是( )A. f (221x x +)>x x f x f )()(21+ B. f (221x x +)<x x f x f )()(21+C. f (221x x +)=x x f x f )()(21+D. 无法确定9. 已知函数f (x )=x a +m 的图象经过点(1,3),又其反函数图象经过点(10,2),则f (x )的解析式为_________。
高中数学必修一同步练习题库:幂函数(简答题:一般)
幂函数(简答题:一般)1、已知幂函数的图象经过点.(1)求函数的解析式,并画出图象;(2)证明:函数在上是减函数.2、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.3、比较大小:1.20.5,1.20.6,0.51.2,0.61.2.4、若,求a的取值范围.5、已知幂函数f(x)=x (m∈N*).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.6、点(,2)与点分别在幂函数f(x),g(x)的图象上,问:当x为何值时,有:①f(x)>g(x)?②f(x)=g(x)?③f(x)<g(x)?7、计算下列各式:(1)(2)8、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.9、已知,且。
求满足的实数的取值范围。
10、已知函数的图象与x、y轴都无公共点,且关于y轴对称,求p的值,并画出图象。
11、已知函数为幂函数,且为奇函数.(1)求的值;(2)求函数在的值域.12、已知幂函数在上是增函数,又(),(1)求函数的解析式;(2)当时,的值域为,试求与的值.13、已知幂函数为偶函数,且在区间上是单调递增函数。
(Ⅰ)求函数的解析式;(Ⅱ)设,若能取遍内的所有实数,求实数的取值范围.14、已知幂函数f(x)=,其中−2<m<2,m∈Z,满足:(1)f(x)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f(−x) +f(x)=0.求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.15、已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).16、已知函数f(x)=−且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.17、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.18、如图,幂函数的图象关于轴对称,且与轴,轴均无交点,求此函数的解析式及不等式的解集.19、已知函数()是偶函数,且(1)求的解析式;(2)若(,)在区间上为增函数,求实数的取值范围20、已知(是常数)为幂函数,且在第一象限单调递增.(1)求的表达式;(2)讨论函数在上的单调性,并证之.21、已知函数y= (n∈Z)的图像与两坐标轴都无公共点,且其图像关于y轴对称,求n的值,并画出函数图像.22、(本题满分12分)已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记、的值域分别为集合、,若,求实数的取值范围.23、(本小题满分10分)已知幂函数在上单调递增,函数(1)求的值;(2)当时,记的值域分别为,若,求实数的取值范围.24、已知命题P:若幂函数过点,实数满足。
人教版高中数学必修一《幂函数》综合练习题含答案
数学1(必修)第三章 函数的应用(含幂函数)[基础训练A 组] 一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。
2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。
必修一幂函数(含答案)
必修⼀幂函数(含答案)2.7幂函数⼀、幂函数定义的应⽤〖例1〗已知函数f(x)=(m 2-m-1)x -5m-3,m 为何值时,f(x): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正⽐例函数; (4)是反⽐例函数.〖例2〗已知y=(m 2+2m-2)·211m x -+(2n-3)是幂函数,求m 、n 的值.⼆、幂函数的图象与性质〖例1〗已知点在幂函数()f x 的图象上,点124?-,,在幂函数()g x 的图象上.定义()()()()()()()≤??=?>??f x f xg x h x g x f x g x ,,,.试求函数h(x)的最⼤值以及单调区间.〖例2〗已知函数2245()44x x f x x x ++=++(1)求()f x 的单调区间;(2)⽐较()f π-与(2f -的⼤⼩(⼆)幂函数的性质与应⽤【例1】(1)试⽐较0.40.2,0.20.2,20.2,21.6的⼤⼩.(2)已知幂函数y=x 3m-9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增⼤⽽减⼩,求满⾜() ()--+<-m m 33a 132a 的a 的取值范围.三、幂函数中的三类讨论题〖例1〗已知函数223()()m m f x xm -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.例2已知函数2()f x x =,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.例3讨论函数2221()kk y k k x--=+在0x >时随着x 的增⼤其函数值的变化情况.【⾼考零距离】(2010陕西⽂数)7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满⾜f (x +y )=f (x )f (y )”的是[]()幂函数()对数函数()指数函数()余弦函数【考点提升训练】⼀、选择题(每⼩题6分,共36分)1.(2012·西安模拟)已知幂函数y=f(x)通过点,则幂函数的解析式为( ) ()y=212x()y=12x ()y= 32x()y=521x 22.函数y=1x-x 2的图象关于( ) ()y 轴对称 ()直线y=-x 对称 ()坐标原点对称()直线y=x 对称3.已知(0.71.3)m<(1.30.7)m,则实数m 的取值范围是( ) ()(0,+∞)()(1,+∞) ()(0,1) ()(-∞,0)4.已知幂函数f(x)=x m的部分对应值如表,则不等式f(|x|)≤2的解集为( )(){x|0){x|0≤x ≤4} (){x|x ){x|-4≤x ≤4}5.设函数f(x)=x1()7,x 02,x 0?-?≥<若f(a)<1,则实数a 的取值范围是( )()(-∞,-3) ()(1,+∞) ()(-3,1) ()(-∞,-3)∪(1,+∞) 6.(2012·漳州模拟)设函数f(x)=x 3,若0≤θ≤2π时,f(mcos θ)+f(1-m)>0恒成⽴,则实数m 的取值范围为( )()(-∞,1) ()(-∞, 12) ()(-∞,0) ()(0,1)⼆、填空题(每⼩题6分,共18分)7.(2012·武汉模拟)设x∈(0,1),幂函数y=x a的图象在直线y=x的上⽅,则实数a的取值范围是__________.8.已知幂函数f(x)=12x-,若f(a+1)<f(10-2a),则a的取值范围是_______.9.当0三、解答题(每⼩题15分,共30分)10.(2012·宁德模拟)已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.11.(易错题)已知点(2,4)在幂函数f(x)的图象上,点(12,4)在幂函数g(x)的图象上.(1)求f(x),g(x)的解析式;(2)问当x取何值时有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).【探究创新】(16分)已知幂函数y=f(x)=2p3p22x-++(p∈Z)在(0,+∞)上是增函数,且是偶函数.(1)求p的值并写出相应的函数f(x);(2)对于(1)中求得的函数f(x),设函数g(x)=-qf(f(x))+(2q-1)f(x)+1.试问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数;若存在,请求出来,若不存在,说明理由.答案解析1.【解析】选.设y=x α,则由已知得,α,即322=2α,∴α=32,∴f(x)= 32x .2.【解析】选.因为函数的定义域为{x|x ≠0},令y=f(x)=1x-x 2, 则f(-x)=1x -(-x)2=1x-x 2=f(x), ∴f(x)为偶函数,故选.3.【解析】选.因为0<0.71.3<0.70=1, 1.30.7>1.30=1,∴0<0.71.3<1.30.7.⼜(0.71.3)m <(1.30.7)m,∴函数y=x m在(0,+∞)上为增函数,故m >0.4.【解题指南】由表中数值,可先求出m 的值,然后由函数的奇偶性及单调性,得出不等式,求解即可.【解析】选.由(12)m m=12,∴f(x)= 12x ,∴f(|x|)=12x ,⼜∵f(|x|)≤2,∴12x ≤2,即|x|≤4,∴-4≤x ≤4.5.【解题指南】分a <0,a ≥0两种情况分类求解. 【解析】选.当a <0时,(12)a-7<1, 即2-a<23,∴a >-3,∴-3<a <0.当a ≥01,∴0≤a <1,综上可得:-3<a <1.6.【解题指南】求解本题先由幂函数性质知f(x)=x 3为奇函数,且在R 上为单调增函数,将已知不等式转化为关于m 与cos θ的不等式恒成⽴求解.【解析】选.因为f(x)=x 3为奇函数且在R 上为单调增函数,∴f(mcos θ)+f(1-m)>0? f(mcos θ)>f(m-1)? mcos θ>m-1?mcos θ-m+1>0恒成⽴,令g(cos θ)=mcos θ-m+1, ⼜0≤θ≤2π,∴0≤cos θ≤1, 则有:()()g 00g 10>,>即m 10m m 10-+??-+?>,>解得:m <1. 7.【解析】由幂函数的图象知a ∈(-∞,1).答案:(-∞,1) 8.【解析】由于f(x)= 12x-在(0,+∞)上为减函数且定义域为(0,+∞),则由f(a+1)<f(10-2a)得a 10102a 0,a 1102a +??-??+-?>>>解得:3<a <5. 答案:(3,5)9.【解题指南】在同⼀坐标系内画出三个函数的图象,数形结合求解. 【解析】画出三个函数的图象易判断f(x)答案:f(x)72,所以4m -24=72.所以m=1. (2)因为f(x)的定义域为{x|x ≠0},关于原点对称, ⼜f(-x)=-x-2x - =-(x-2x)=-f(x),所以f(x)是奇函数. (3)⽅法⼀:设x 1>x 2>0,则f(x 1)-f(x 2)= x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),[来源:/doc/7210e201581b6bd97e19ea07.html ]因为x 1>x 2>0,所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以f(x)在(0,+∞)上为单调递增函数. ⽅法⼆:∵f(x)=x-2x,∴f ′(x)=1+22x >0在(0,+∞)上恒成⽴,∴f(x)在(0,+∞)上为单调递增函数.11.【解析】(1)设f(x)=x α, ∵点(2,4)在f(x)的图象上,∴4=2α,∴α=2,即f(x)=x 2. 设g(x)=x β,∵点(12,4)在g(x)的图象上,∴4=(12)β,∴β=-2,即g(x)=x -2. (2)∵f(x)-g(x)=x 2-x -2=x 2-21x=()()222x 1x 1x-+(*)∴当-1<x <1且x ≠0时,(*)式⼩于零,即f(x)<g(x);当x=±1时,(*)式等于零,即f(x)=g(x);当x >1或x <-1时,(*)式⼤于零,即f(x)>g(x). 因此,①当x >1或x <-1时,f(x)>g(x);②当x=±1时,f(x)=g(x);③当-1<x <1且x ≠0时,f(x)<g(x).【误区警⽰】本题(2)在求解中易忽视函数的定义域{x|x ≠0}⽽失误.失误原因:将分式转化为关于x 的不等式时,忽视了等价性⽽致误.【探究创新】【解析】(1)∵幂函数y=x α在(0,+∞)上是增函数时,α>0,∴-12p 2+p+32>0,即p 2-2p-3<0,解得-1<p <3,⼜p ∈Z,∴p=0,1,2. 当p=0时,y=32x 不是偶函数;当p=1时,f(x)=x 2是偶函数;当p=2时,f(x)=32x 不是偶函数,∴p=1,此时f(x)=x 2.(2)由(1)得g(x)=-qx 4+(2q-1)x 2+1,设x 1<x 2,则g(x 1)-g(x 2)=q(4421x x -)+(2q-1)·(2212x x -)=(2221x x -)[q(2212x x +)-(2q-1)].若x 1<x 2≤-4,则2221x x -<0且2212x x +>32,要使g(x)在(-∞,-4]上是减函数,必须且只需q(2212x x +)-(2q-1)<0恒成⽴. 即2q-1>q(2212x x +)恒成⽴. 由2212x x +>32且q <0,得q(2212x x +)<32q ,只需2q-1≥32q 成⽴,则2q-1>q(2212x x +)恒成⽴.∴当q ≤-130时,g(x)在(-∞,-4]上是减函数,同理可证, 当q ≥-130时,g(x)在(-4,0)上是增函数, ∴当q=-130时,g(x)在(-∞,-4]上是减函数,在(-4,0)上是增函数.[来源:学科⽹ZXXK]。
考点11 幂函数【考点通关】高一数学题型归纳与解题策略(必修第一册)(原卷版)
考点11幂函数1、幂函数的判断及应用判断一个函数是否为幂函数的依据是该函数是否为y x α=(α是常数)的形式,即满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.只有同时满足这三个条件的函数才是幂函数,对于形如(2),2,6y x y x y x ααα===+等函数都不是幂函数。
2、幂函数的图象及应用(1)幂函数图象的画法①确定幂函数在第一象限内的图象:先根据α的取值,确定幂函数y x α=在第一象限内的图象.②确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数f(x)在其他象限内的图象.(2)要牢记幂函数的图象,并能灵活运用.由幂函数的图象,我们知道:①所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).②任何幂函数的图象与坐标轴最多只有一个交点(原点);任何幂函数的图象都不经过第四象限.③当α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象上抛;当0<α<1时,幂函数的图象右抛.④当α<0时,幂函数的图象在区间(0,+∞)上是减函数.⑤幂指数互为倒数的幂函数在第一象限内的图象关于直线y =x 对称.⑥在第一象限,作直线x =a (a >1),它同各幂函数图象相交,按交点从下到上的顺序,幂指数按从小到大的顺序排列.3、解决与幂函数有关的综合性问题的方法首先要考虑幂函数的概念,对于幂函数y x α=(α∈R),由于α的取值不同,所以相应幂函数的单调性和奇偶性也不同.同时,注意分类讨论思想的应用.考点一幂函数的定义(一)求幂函数的值或解析式1.(2022·甘肃庆阳·高一期末)已知幂函数()f x 的图象过点13,3⎛⎫⎪⎝⎭,则此函数的解析式为______.2.(2022·内蒙古·赤峰二中高一期末(文))已知点(a ,2)在幂函数()(3)b f x a x =-的图象上,则函数f (x )的解析式是()A .12()f x x =B .12()2f x x =C .3()f x x =D .1()f x x -=3.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)幂函数()y f x =的图象经过点(14,2),则1(4f =____.4.(2022·全国·高一课时练习)若函数()f x 是幂函数,满足(4)8(2)f f =,则1(1)3f f ⎛⎫+= ⎪⎝⎭_________.5.(2022·北京市第五中学高一期末)已知幂函数()a f x x =过点(28),,若0()5f x =-,则0x =________.6.(2022·上海中学高一期末)某厂商计划投资生产甲、乙两种商品,经市场调研发现,如图所示,甲、乙商品的投资x 与利润y (单位:万元)分别满足函数关系11ay k x =与22ay k x =.(1)求1k ,1a 与2k ,2a 的值;(2)该厂商现筹集到资金20万元,如何分配生产甲、乙商品的投资,可使总利润最大?并求出总利润的最大值.(二)根据函数是幂函数求参数值7.【多选】(2022·广东茂名·高一期末)若函数()225y k k x =--是幂函数,则实数k 的值可能是()A .3k =B .3k =-C .2k =-D .2k =8.【多选】(2022·广东·韶关市田家炳中学高一期末)如果幂函数()22233mm y m m x --=-+的图象不过原点,则实数m 的取值为()A .0B .2C .1D .无解9.(2022·湖南郴州·高一期末)已知幂函数()f x kx α=的图象过点()2,4,则k α+=__________.考点二幂函数的定义域和值域(一)幂函数的定义域10.(2022·江苏·高一)若()342x --有意义,则实数x 的取值范围是()A .[)2,+∞B .(],2-∞C .()2,+∞D .(),2-∞11.(2022·山西吕梁·高一期末)已知幂函数()f x 的图象过点(,则()f x 的定义域为()A .RB .()0,∞+C .[)0,∞+D .()(),00,∞-+∞U12.(2022·黑龙江绥化·高一期末)函数4()(1)f x x =-+)A .()1,∞+B .(2,)-+∞C .()()211∞-⋃+,,D .R13.(2022·全国·高一专题练习)设α∈11,132⎧⎫-⎨⎬⎩⎭,,则使函数y =xα的定义域为R 的所有α的值为()A .1,3B .-1,1C .-1,3D .-1,1,314.(2022·内蒙古·赤峰红旗中学松山分校高一期末)已知幂函数()1*4n y x n N -=∈的定义域为()0,∞+,且单调递减,则n =________.(二)幂函数的值域15.(2022·全国·高一专题练习)幂函数a y x =中a 的取值集合C 是11,0,,1,2,32⎧⎫-⎨⎬⎩⎭的子集,当幂函数的值域与定义域相同时,集合C 为()A .11,0,2⎧⎫-⎨⎬⎩⎭B .1,1,22⎧⎫⎨⎬⎩⎭C .11,,32⎧⎫-⎨⎬⎩⎭D .1,1,2,32⎧⎫⎨⎬⎩⎭16.(2022·全国·高一专题练习)函数213324y x x =++,其中8x - ,则其值域为___________.17.(2022·广东·广州六中高一期末)幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是()A .(),-∞+∞B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭18.(2022·上海师大附中高一期末)已知函数()()()2151Z m f x m m x m +=-+∈为幂函数,且为奇函数.(1)求m 的值,并确定()f x 的解析式;(2)令()()g x f x =,求()y g x =在1,12x ⎡⎤∈-⎢⎥⎣⎦的值域.19.(2022·贵州·六盘水市第五中学高一期末)已知幂函数()()1221m f m x m x -=--在()0,∞+上为增函数.(1)求实数m 的值;(2)求函数()()2345g x f x x =--+的值域.20.(2022·湖北黄石·高一期中)已知函数())2()x a f x x x a ⎧≥⎪=⎨<⎪⎩,若函数()f x 的值域为R ,则实数a 的取值范围为()A .(1,0)-B .(1,0]-C .[1,0)-D .[1,0]-考点三幂函数的图象和性质(一)幂函数的图象(1)依据图象高低判定幂指数大小21.(2022·全国·高一课时练习)图中1C ,2C ,3C 分别为幂函数1y x =α,2y x =α,3y x α=在第一象限内的图象,则1α,2α,3α依次可以是()A .12,3,1-B .1-,3,12C .12,1-,3D .1-,12,322.(2022·全国·高一课时练习)幂函数a b c d y x y x y x y x ====,,,在第一象限的图像如图所示,则a b c d ,,,的大小关系是()A .a b c d >>>B .d b c a >>>C .d c b a>>>D .b c d a>>>23.(2022·全国·高一课时练习)如图所示是函数mn y x =(*N m n ∈、且互质)的图象,则()A .m n 、是奇数且1mn<B .m 是偶数,n 是奇数,且1m n>C .m 是偶数,n 是奇数,且1m n<D .m n 、是偶数,且1m n>24.(2022·四川凉山·高一期末)如图,①②③④对应四个幂函数的图像,其中①对应的幂函数是()A .3y x =B .2y x =C .y x=D .58y x =(2)图象的识别25.(2022·全国·高一单元测试)下列四个图像中,函数34y x =的图像是()A .B .C .D .26.(2022·上海·高一单元测试)已知幂函数的图象经过点14,2P ⎛⎫⎪⎝⎭,则该幂函数的大致图象是()A .B .C .D .27.(2022·全国·高一单元测试)如图为某体育赛事举重成绩与运动员体重之间关系的折线图,下列模型中,最能刻画举重成绩y (单位:千克)和运动员体重x (单位:千克)之间的关系的是()A .y =()0m >B .y mx n =+()0m >C .2y mx n =+()0m >D .x y ma n =+(0m >,0a >且1a ≠)(二)幂函数的性质(1)由幂函数的单调性求参数28.(2022·广东广州·高一期末)函数()22211mm y m m x --=--是幂函数,且在()0,x ∈+∞上是减函数,则实数m =__________.29.(2022·河南开封·高一期末)已知函数()22my m m x =+幂函数,且在其定义域内为单调函数,则实数m =()A .12B .1-C .12或1-D .12-30.(2022·云南德宏·高一期末)“当()0,x ∈+∞时,幂函数()22231mm y m m x --=--为减函数”是“1m =-或2”的()条件A .既不充分也不必要B .必要不充分C .充分不必要D .充要31.(2022·江西省铜鼓中学高一期末)已知函数()()()2,16,(1a a x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是()A .[)7,2--B .(),2-∞-C .(),7-∞-D .()7,2--(2)由幂函数的单调性解不等式32.(2022·上海中学高一期末)不等式()()2021202142x x --->-的解为______.33.(2022·海南鑫源高级中学高一期末)已知幂函数()af x x =的图象经过点(.(1)求幂函数()f x 的解析式;(2)试求满足()()13f a f a +>-的实数a 的取值范围.34(2022·上海金山·高一期末)已知幂函数()y f x =在其定义域上是严格增函数,且()22mm f x x -=(m Z ∈).(1)求m 的值;(2)解不等式:()()32f x f x-<.(3)由幂函数的单调性比较大小35.(2022·重庆九龙坡·高一期末)已知111333332,,555a b c -⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系为()A .a b c<<B .b c a<<C .c a b<<D .a c b<<36.(2022·青海·大通回族土族自治县教学研究室高一期末)幂函数()()22251mm f x m m x +-=--在区间()0,∞+上单调递增,且0a b +>,则()()f a f b +的值()A .恒大于0B .恒小于0C .等于0D .无法判断(4)幂函数奇偶性的应用37.(2022·全国·高一课时练习)求出下列函数的定义域,并判断函数的奇偶性:(1)22()f x x x -=+;(2)23()3f x x x =+;(3)133()f x x x =+;(4)142()2f x x x -=+.38.(2022·全国·高一专题练习)已知幂函数()2()1mf x m m x =--的图象关于y 轴对称,则()f m =___________.39.(2022·重庆九龙坡·高一期末)已知幂函数()21()55m f x m m x +=-+为奇函数,则m =___________.40.(2022·山东济宁·高一期末)已知()y f x =是奇函数,当0x ≥时,()()23f x x m m =+∈R ,则()8f -=______.(5)幂函数的单调性和奇偶性的综合应用41.(2022·河南开封·高一期末)下列函数中,既是奇函数,又是增函数的是()①1y x=-;②y =||y x x =;④3y x x =+.A .①②B .①④C .②③D .③④42.(2022·云南玉溪·高一期末)幂函数22m m y x +-=()03,m m Z ≤≤∈的图象关于y 轴对称,且在(0,)+∞上是增函数,则m 的值为()A .0B .2C .3D .2和343.(2022·重庆巫山·高一期末)若幂函数()f x 过点()2,8,则满足不等式()()310f a f a -+-≤的实数a 的取值范围是______44.(2022·湖北·高一期末)已知函数()53352f x x x x =+++,若()()214f a f a +->,则实数a 的取值范围是()A .1,3⎛⎫+∞ ⎪⎝⎭B .1,3⎛⎫-∞ ⎪⎝⎭C .(),3-∞D .()3,+∞45.(2022·黑龙江·大庆实验中学高一期末)已知幂函数()223m m y xm N --*=∈的图象关于y 轴对称,且在()0,∞+上单调递减,则满足()()33132mma a --+<-的a 的取值范围为________.(6)幂函数性质的综合应用46.(2022·全国·高一)已知幂函数a y x =(a 是常数),则()A .()f x 的定义域是RB .()f x 在()0,∞+单调递增C .()f x 过定点()1,1D .()f x 可能过定点()1,3-47.【多选】(2022·广西玉林·高一期末)已知函数()a f x x =的图象经过点1,33⎛⎫ ⎪⎝⎭则()A .()f x 的图象经过点(3,9)B .()f x 的图象关于y 轴对称C .()f x 在(0,)+∞上单调递减D .()f x 在(0,)+∞内的值域为(0,)+∞48.【多选】(2022·广东揭阳·高一期末)已知幂函数()y f x =的图象经过点(9,3),则下列结论正确的有()A .()f x 为偶函数B .()f x 为增函数C .若1x >,则()1f x >D .若210x x >>,则()()121222f x f x x x f ++⎛⎫> ⎪⎝⎭。
幂函数题型归纳
幂函数知识点归纳及题型总结1、幂函数定义:对于形如:,其中为常数.叫做幂函数定义说明:1、定义具有严格性,系数必须是1,底数必须是2、取值是R .3、《考试标准》要求掌握α=1、2、3、½、-1五种情况2、幂函数的图像幂函数的图像是由决定的,可分为五类:1)时图像是竖立的抛物线.例如:2)时图像是一条直线.即3)时图像是横卧的抛物线.例如4)时图像是除去(0,1)的一条直线.即()5)时图像是双曲线(可能一支).例如具备规律:①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高)②幂指数互为倒数时,图像关于y=x对称③结合以上规律,要求会做出任意一种幂函数图像三、幂函数的性质幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。
1、定义域、值域与α有关,通常化分数指数幂为根式求解2、奇偶性要结合定义域来讨论3、单调性:α>0时,在(0,+∞)单调递增:α=0无单调性;α<0时,在(0,+∞)单调递减4、过定点:α>0时,过(0,0)、(1,1)两点;α≤0时,过(1,1)5、由可知,图像不过第四象限1、幂函数解析式的求法1. 利用定义(1)下列函数是幂函数的是 ______① ② ③ ④ ⑤(2)若幂函数的图像过点,则函数的解析式为______.(3)已知函数是幂函数,求此函数的解析式。
2.利用图象若函数是幂函数,且图像不经过原点,求此函数的解析式。
3.利用性质已知幂函数的图像关于y轴对称,且在上是减函数,求此函数的解析式。
2、幂函数的图像及应用1.分布规律幂函数图像的分布规律可用“一全有、二一偶、三一奇、四必无”来说明(1)、函数的图像是()(2)右图为幂函数在第一象限的图像,则的大小关系是()xOy2.比较大小(1)单调性比较比较与的大小比较与的大小把()-,(),(),()0按从小到大的顺序排列____________________.(2)利用图象比较大小当时,的大小关系是()A. B..C. D.3.幂函数的单调性与奇偶性函数在上是()A.增函数且是奇函数 B.增函数且是偶函数.C.减函数且是奇函数 D.减函数且是偶函数4.求参数的取值范围(1).已知函数f(x)=(m2+2m)·x m2+m-1,m为何值时,f(x)是:(1)正比例函数; (2)反比例函数;(3)二次函数; (4)幂函数?(2)已知幂函数的图像关于y轴对称,且在上是减函数,求满足的的取值范围。
高中数学《幂函数》题型战法试题及答案
第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像: 如右图所示(2)五个常见幂函数的性质:函数 性质 y =x12y x =y =x 2 y =x 3 1y x -=定义域 R [)0+∞, R R ()(),00,-∞+∞ 值域 R [)0+∞,[)0+∞,R ()(),00,-∞+∞奇偶性奇非奇非偶偶奇奇单调性 R 上增[)0+∞,上增 (-∞,0)上减 [0,+∞)上增R 上增(-∞,0)上减 (0,+∞)上减公共点(1)所有的幂函数在区间()0+∞,上都有定义,因此在第一象限内都有图像,并且图像都过点()1,1.(2)如果0α>,幂函数图像过原点,并且在[)0+∞,上是增函数 (3)如果0α<,幂函数图像过原点,并且在[)0+∞,上是减函数 题型战法题型战法一 幂函数的概念典例1.下列函数是幂函数的是( )A .2y x =B .21y x =-C .3y x =D .2x y =变式1-1.下列函数是幂函数的是( ) A .22y x = B .1y x -=- C .31y x = D .2x y =变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2题型战法二 幂函数的图像典例2.函数y =的图象大致为( )A .B .C .D .变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞变式3-2.函数()()()102121f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-变式4-4.已知幂函数()f x x α=1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞C .(,0)(0,)-∞⋃+∞D .(,)-∞+∞题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =变式5-1.已知函数()122()43f x x x =-+的增区间为( )A .(3,)+∞B .(2,)+∞C .(,2)-∞D .(,1)-∞变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( )A .[)7,2--B .(),2-∞-C .(),7-∞-D .()7,2--变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( ) A .2x y =B .1y x -=C .12log y x= D .2yx变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( ) A .2y xB .e e x x y -=+C .lg y x =D .23y x =变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x = B .2log y x = C .2y x= D .3y x =变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( ) A .2 B .1,2 C .12,2D .12,1,2变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( )A .3B .2C .1D .1或2题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >> B .a c b >> C .c a b >> D .c b a >>变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a << B .c a b << C .a b c<< D .b a c <<变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞) B .52,2⎛⎤⎥⎝⎦C .(),2-∞ D .[)1,2变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦B .21,3⎡⎫-⎪⎢⎣⎭C .2,3⎛⎫-∞ ⎪⎝⎭D .3,2⎛⎤-∞ ⎥⎝⎦第二章 函数2.6.1幂函数(题型战法)知识梳理一 幂函数的概念一般地,函数y x α=称为幂函数,其中α为常数.注意:幂函数中底数是自变量,而指数函数中指数为自变量.二 幂函数的图像与性质(1)五个常见幂函数的图像:如右图所示(2)五个常见幂函数的性质:()0,+∞()0,+∞0)上减∞)上减题型战法题型战法一幂函数的概念典例1.下列函数是幂函数的是()A.2=B.21y x=-y xC.3y=y x=D.2x【答案】C【解析】【分析】由幂函数定义可直接得到结果.【详解】形如y xα=为幂函数.y x=的函数为幂函数,则3故选:C.变式1-1.下列函数是幂函数的是()A .22y x =B .1y x -=-C .31y x =D .2x y =【答案】C 【解析】 【分析】根据幂函数的定义判断. 【详解】形如y x α=(α为常数且R α∈)为幂函数, 所以,函数331=xy x -=为幂函数,函数22y x =、1y x -=-、2x y =均不是幂函数. 故选:C.变式1-2.已知幂函数()y f x =的图象过点()2,8,则()2f -的值为( ) A .8 B .8- C .4 D .4-【答案】B 【解析】 【分析】设()af x x =,由已知条件求出a 的值,可得出函数()f x 的解析式,由此可求得()2f -的值. 【详解】设()a f x x =,由()228a f ==,可得3a =,则()3f x x =,因此,()()3228f -=-=-.故选:B.变式1-3.已知幂函数()22233m m y m m x --=-+的图象不过原点,则实数m 的取值为( )A .1B .2C .-2D .1或2【答案】A 【解析】 【分析】根据题意,可知系数为1,指数应小于0,由此列出不等式组,解得答案. 【详解】由题意可知:2233120m m m m ⎧-+=⎨--<⎩,解得1m = ,经经验,符合题意, 故选:A.变式1-4.已知幂函数()(,)f x kx k R R αα=∈∈的图象过点1(2,则k α+等于( ) A .12 B .1 C .32D .2【答案】A 【解析】 【分析】根据幂函数的定义,结合代入法进行求解即可. 【详解】因为()f x 是幂函数,所以1k =,又因为函数()f x 的图象过点1(2,所以1211()2222ααα-=⇒=⇒=-,因此12k α+=,故选:A题型战法二 幂函数的图像典例2.函数y = )A .B .C .D .【答案】A 【解析】 【分析】根据幂函数的性质判断函数值、增长特点,即可确定大致图象. 【详解】由0y ≥,排除B 、D ,根据对应幂函数的性质,第一象限增速逐渐变慢,排除C. 故选:A.变式2-1.已知幂函数()f x 的图象过点()9,3,则函数()f x 的图象是( )A .B .C .D .【答案】C 【解析】 【分析】设出函数的解析式,根据幂函数()y f x =的图象过点(9,3),构造方程求出指数的值, 【详解】设幂函数的解析式为()f x x α=, ①幂函数()y f x =的图象过点(9,3), ①39α=, 解得12α=①()y f x ==[0,)+∞,且是增函数,当01x <<时,其图象在直线y x =的上方.对照选项可知C 满足题意. 故选:C .变式2-2.如图,①①①①对应四个幂函数的图像,其中①对应的幂函数是( )A .3y x =B .2y xC .y x =D .58y x =【答案】D 【解析】 【分析】根据函数图象求出幂函数的指数取值范围,得到正确答案. 【详解】根据函数图象可得:①对应的幂函数y x α=在[)0,∞+上单调递增,且增长速度越来越慢,故()0,1α∈,故D 选项符合要求. 故选:D变式2-3.图中C 1、C 2、C 3为三个幂函数y x α=在第一象限内的图象,则解析式中指数α的值依次可以是( )A .12、3、1- B .1-、3、12C .12、1-、3D .1-、12、3【答案】D 【解析】 【分析】根据幂函数y x α=在第一象限内的图象性质,结合选项即可得出指数α的可能取值. 【详解】由幂函数y x α=在第一象限内的图象,结合幂函数的性质, 可得:图中C 1对应的0α<,C 2对应的01α<<,C 3对应的1α>, 结合选项知,指数α的值依次可以是11,,32-. 故选:D.变式2-4.已知幂函数()f x x α=和()g x x β=,其中0αβ>>,则有下列说法: ①()f x 和()g x 图象都过点()1,1; ①()f x 和()g x 图象都过点(1,1)-;①在区间[1,)+∞上,增长速度更快的是()f x ; ①在区间[1,)+∞上,增长速度更快的是()g x . 则其中正确命题的序号是( ) A .①① B .①①C .①①D .①①【答案】A 【解析】 【分析】由幂函数的性质进行分析判断即可 【详解】幂函数的图象过定点(1,1),①正确,在区间[1,)+∞上,α越大y x α=增长速度更快,①正确, 故选:A.题型战法三 幂函数的定义域典例3.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x =【答案】C 【解析】 【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0 【详解】对选项A ,则有:0x ≠对选项B ,则有:0x > 对选项C ,定义域为:R 对选项D ,则有:0x ≥故答案选:C变式3-1.若()342x --有意义,则实数x 的取值范围是( ) A .[)2,+∞ B .(],2-∞ C .()2,+∞ D .(),2-∞【答案】C 【解析】 【分析】将分式指数幂化为根式,结合根式的性质可得出关于实数x 的不等式,即可解得实数x 的取值范围. 【详解】由负分数指数幂的意义可知,()342x --=所以20x ->,即2x >,因此x 的取值范围是()2,+∞. 故选:C.变式3-2.函数()())10211f x x x -=-+-的定义域是( ) A .(],1-∞ B .11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭C .(),1-∞-D .1,12⎛⎫⎪⎝⎭【答案】B 【解析】 【分析】根据函数解析式有意义可得出关于实数x 的不等式组,由此可解得函数()f x 的定义域. 【详解】因为()()()()100212121f x x x x -=-+-=-, 则有10210x x ->⎧⎨-≠⎩,解得1x <且12x ≠,因此()f x 的定义域是11,,122⎛⎫⎛⎫-∞⋃ ⎪ ⎪⎝⎭⎝⎭.故选:B.变式3-3.5个幂函数:①2y x ;①45y x =;①54y x =;①23y x =;①45y x -=.其中定义域为R 的是( ) A .只有①① B .只有①① C .只有①① D .只有①①【答案】C 【解析】 【分析】分别写出所给函数的定义域,然后作出判断即可. 【详解】 ①2yx 的定义域为(,0)(0,)-∞+∞,①45y x =的定义域为R , ①54y x =的定义域为(0,)+∞, ①23y x =的定义域为R ,①45y x -=的定义域为(,0)(0,)-∞+∞,故选:C . 【点睛】本题考查幂函数的定义,侧重考查对基础知识的理解和掌握,属于基础题.变式3-4.若函数()12f x x -=则函数y =f (4 x -3)的定义域是( )A .(-∞,+∞)B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D 【解析】 【分析】 先求出()43f x -=,根据幂函数的定义域求解即可. 【详解】 幂函数()12f x x-==, ()43y f x =-=所以430x ->,所以34x >,所以函数()43y f x =-的定义域是3,4⎛⎫+∞ ⎪⎝⎭,故选D. 【点睛】本题主要考函数的定义域、不等式的解法,属于简单题.定义域的三种类型及求法:(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解;(2) 对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解;(3) 若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出.题型战法四 幂函数的值域典例4.函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .14B .14-C .4D .4-【答案】A 【解析】 【分析】 由于函数2y x 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,从而可求出其最小值【详解】 ①函数2yx 在区间1,22⎡⎤⎢⎥⎣⎦上是减函数,①2min 124y -==, 故选:A. 【点睛】此题考查由函数的单调性求最值,属于基础题变式4-1.在下列函数中,定义域和值域不同的是( ) A .13y x = B .12y x =C .53y x =D .23y x =【答案】D 【解析】 【分析】把幂函数写成根式的形式即可求出定义域及值域,逐项分析即可得解. 【详解】由13y x ==x ∈R ,y R ∈,定义域、值域相同; 由12y x ==[0,)x ∈+∞,[0,)y ∈+∞,定义域、值域相同; 由53y x ==x ∈R ,,定义域、值域相同y R ∈; 由23y x ==x ∈R ,[0,)y ∈+∞,定义域、值域不相同. 故选:D变式4-2.幂函数()y f x =的图象过点(,则函数()y x f x =-的值域是( ) A .(),-∞+∞ B .1,4⎛⎫-∞ ⎪⎝⎭C .1,4⎡⎫-+∞⎪⎢⎣⎭D .1,4⎛⎫-+∞ ⎪⎝⎭【答案】C 【解析】 【分析】设()af x x =,带点计算可得()12f x x =,得到12y x x =-,令12t x =转化为二次函数的值域求解即可. 【详解】设()af x x =,代入点(得2a =12a ∴=, ()12f x x ∴=则12y x x =-,令12t x =,0t ≥22111244t t t y ⎛⎫=--≥- ⎪⎝⎭∴=-函数()y x f x =-的值域是1,4⎡⎫-+∞⎪⎢⎣⎭. 故选:C.变式4-3.已知函数f (x )={3x −2,x ⩽1,x 12,1<x ⩽4,则函数()f x 值域是( )A .(],2-∞B .(]2,2-C .(]1,4D .(],4∞-【答案】B 【解析】 【分析】结合分段函数的单调性来求得()f x 的值域. 【详解】当1x 吋,32x y =-单调递增,值域为(]2,1-;当14x <时,12y x =单调递增,值域为(]1,2,故函数值域为(]2,2-. 故选:B变式4-4.已知幂函数()f x x α=的图象过点1(2,)2,则函数()f x 的值域为 A .(,0)-∞ B .(0,)+∞ C .(,0)(0,)-∞⋃+∞ D .(,)-∞+∞【答案】C 【解析】 【详解】试题分析:()f x x α=的图象过点1(2,)2()11212a a f x x -∴=∴=-∴=,值域为(,0)(0,)-∞⋃+∞考点:幂函数值域题型战法五 幂函数的单调性典例5.下列函数在(0,)+∞上为减函数的是( )A .y =B .1y x=C .2y xD .y x =【答案】B 【解析】 【分析】依据幂函数的性质去判断各选项的单调性即可解决. 【详解】选项A :由12>可得12y x ==(0,)+∞上单调递增.不符合要求,排除;选项B :由10-<可得11y x x-==在(0,)+∞上单调递减.符合要求,可选;选项C :由20>可得2y x 在(0,)+∞上单调递增.不符合要求,排除;选项D :由10>可得y x =在(0,)+∞上单调递增.不符合要求,排除. 故选:B变式5-1.已知函数()122()43f x x x =-+的增区间为( ) A .(3,)+∞ B .(2,)+∞ C .(,2)-∞ D .(,1)-∞【答案】A 【解析】先求得函数的定义域,再令243t x x =-+,结合12y t =的单调性,利用复合函数的单调性求解. 【详解】 由2430x x -+≥, 解得3x ≥或1x ≤,因为243t x x =-+在(,1]-∞递减,在[3,)+∞递增, 又因为12y t =在[0,)+∞递增, 所以()f x 增区间为(3,)+∞ 故选:A变式5-2.已知函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,则实数a 的取值范围是( ) A .[)7,2-- B .(),2-∞-C .(),7-∞-D .()7,2--【答案】A 【解析】 【分析】由分段函数()f x 是减函数及幂函数的单调性,可得()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解不等式组即可得答案. 【详解】解:因为函数()()()2,16,(1aa x x f x x x ⎧+≤=⎨->⎩)是减函数,所以()2001621a a a a ⎧+<⎪<⎨⎪-≤+⨯⎩,解得72a -≤<-,所以实数a 的取值范围是[)7,2--, 故选:A.变式5-3.已知幂函数()()22244m m f x m m x -=-+在()0,∞+上是增函数,则实数m 的值为( ) A .1或3- B .3 C .1- D .1-或3【答案】B 【解析】 【分析】由函数是幂函数,解得3m =或1m =,再代入原函数,由函数在()0,∞+上是增函数确定最后的m 值. 【详解】①函数是幂函数,则2441m m -+=,①3m =或1m =.当3m =时()3f x x =在()0,∞+上是增函数,符合题意;当1m =时()1f x x -=在()0,∞+上是减函数,不合题意.故选:B.变式5-4.已知幂函数()()282mf x m m x =-在()0,∞+上为增函数,则()4f =( )A .2B .4C .6D .8【答案】A 【解析】 【分析】由于幂函数在在()0,∞+上为增函数,所以可得282100m m m ⎧--=⎨>⎩,求出m 的值,从而可求出幂函数的解析式,进而可求得答案 【详解】由题意得282100m m m ⎧--=⎨>⎩,得12m =,则()12f x x =,()42f =. 故选:A题型战法六 幂函数的奇偶性典例6.下列函数是奇函数的为( )A .2x y =B .1y x -=C .12log y x =D .2y x【答案】B【解析】【分析】奇函数应该满足()()f x f x =--,且定义域关于原点对称,对选项一一判断即可.【详解】奇函数应该满足()()f x f x =--,22x x -≠-,12log y x=的定义域为()0,∞+显然A,C,不成立,当0x ≠时,有()11x x --=--,所以1y x -=为奇函数,由()22x x -=可知,2y x 为偶函数. 故选:B .变式6-1.下列函数中,值域是[)0,∞+且为偶函数的是( )A .2y xB .e e x x y -=+C .lg y x =D .23y x = 【答案】D【解析】【分析】根据函数的奇偶性和值域确定正确选项.【详解】2y x 的值域为()0,∞+,不符合题意,A 选项错误.e e 2x x y -=≥+,当0x =时等号成立,不符合题意,B 选项错误. lg y x =的定义域为()0,∞+,是非奇非偶函数,不符合题意,C 选项错误. 令()23f x x =,其定义域为R ,()()()2233f x x x f x =-=-=,所以()f x 是偶函数, 且230x ≥,即()f x 的值域为[)0,∞+,符合题意,D 选项正确.故选:D变式6-2.下列函数中,既是奇函数又是定义域内的增函数为( ) A .tan y x =B .2log y x =C .2y x =D .3y x = 【答案】D【解析】【分析】根据初等函数的性质及奇函数的定义结合反例逐项判断后可得正确的选项.【详解】对于A ,tan y x =的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,而233ππ>,但2tan tan 33ππ==,故tan y x =在定义域上不是增函数,故A 错误.对于B ,2log y x =的定义域为()0,+∞,它不关于原点对称,故该函数不是奇函数, 故B 错误.对于C ,因为21>时,2221<,故2y x=在定义域上不是增函数,故C 错误. 对于D ,因为3y x =为幂函数且幂指数为3,故其定义域为R ,且为增函数, 而()33-=-x x ,故3y x =为奇函数,符合.故选:D.变式6-3.设1,1,22α⎧⎫∈⎨⎬⎩⎭,使函数y x α=的定义域是R ,且为偶函数的所有α的值是( )A .2B .1,2C .12,2D .12,1,2 【答案】A【解析】【分析】 把1,1,22α=分别代入验证即可.【详解】当12α=时,y x α==[)0,∞+,故12α≠;当1α=时,y x x α==,定义域为R ,但是为奇函数,故1α≠;当2α=时,2y x x α==,定义域为R ,为偶函数,故2α=.故选:A变式6-4.已知幂函数()()2133a f x a a x +=-+为偶函数,则实数a 的值为( ) A .3B .2C .1D .1或2【答案】C【解析】【分析】 由题意利用幂函数的定义和性质,得出结论.【详解】幂函数()()2133a f x a a x +=-+为偶函数,2331a a ∴-+=,且1a +为偶数,则实数1a =,故选:C题型战法七 比较大小与解不等式典例7.设0.2 1.20.21.2,0.9,0.3a b c -===,则a ,b ,c 大小关系为( ) A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C【解析】【分析】利用有理指数幂和幂函数的单调性分别求得a ,b ,c 的范围即可得答案.【详解】200. 1.211.2a >==, 1.200.90.91b =<=, b a ∴<,又0.2y x =在(0,)+∞上单调递增,0.20.20.2101 1.20.3()3a -∴<=<=,b ac ∴<<,变式7-1.0.20.21210.5,log ,0.43a b c ===,则( )A .a c b >>B .b c a >>C .b a c >>D .c a b >>【答案】C【解析】【分析】 利用幂函数的单调性判断a b >,再利用对数函数的单调性、对数的换底公式即可求解.【详解】幂函数0.2y x =在(0,)+∞上单调递增, 00.20.20.50.50.4∴>>,1a c ∴>>, 1221log log 313b ==>, b ac ∴>>,故选:C .变式7-2.设120.7a =,120.8b =,31log 2c =,则( ) A .c b a <<B .c a b <<C .a b c <<D .b a c << 【答案】B【解析】【分析】根据函数单调性和中间值比较函数值大小.【详解】因为12y x =在[)0,∞+上单调递增,0.70.8<,所以121200780..b a <=<=,而331log log 102c =<=,故c a b <<. 故选:B变式7-3.已知1122(52)(1)m m -<-,则m 的取值范围是( ) A .(2,+∞)B .52,2⎛⎤ ⎥⎝⎦C .(),2-∞D .[)1,2【答案】B由幂函数的性质,可得0521m m ≤-<-,解不等式组可得答案【详解】 解:因为1122(52)(1)m m -<-, 所以0521m m ≤-<-, 解得522m <≤,故选:B变式7-4.若1122(1)(32)a a +<-,则实数a 的取值范围是( ) A .31,2⎡⎤-⎢⎥⎣⎦ B .21,3⎡⎫-⎪⎢⎣⎭ C .2,3⎛⎫-∞ ⎪⎝⎭ D .3,2⎛⎤-∞ ⎥⎝⎦ 【答案】B【解析】首先利用幂函数的单调性得到10320132a a a a +≥⎧⎪-≥⎨⎪+<-⎩,再解不等式组即可. 【详解】 因为1122(1)(32)a a +<-,所以10320132a a a a +≥⎧⎪-≥⎨⎪<-⎩,解得213a -≤<. 故选:B。
最新人教版高中数学必修1第二章《幂函数》典型例题
拓展延伸应用点一 幂函数的定义【例1】函数y =(a 2+1)·211a x-是幂函数,求a 的值.思路分析:形如y =x α的函数叫做幂函数,其中x 是自变量,α是常数,符合此定义即可.解:根据幂函数的定义知:若y =(a 2+1)·11ax -是幂函数,则⎩⎪⎨⎪⎧a 2+1=1,1-a 2≠0. 解得a =0即为所求.应用点二 幂函数的定义域、值域 【例2】求下列函数的定义域和值域. (1)23=y x-;(2)34=y x-.思路分析:本例是两个幂函数,且幂指数分别为-23,-34,可将分数指数幂化为根式求解.解:(1)解析式化为23=y x-=13x 2,其定义域为{x |x ∈R 且x ≠0}; 值域为(0,+∞). (2)解析式化为34=y x-=14x 3,其定义域为(0,+∞);值域为(0,+∞). 应用点三 幂函数的图象【例3】如图2.37所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于c 1,c 2,c 3,c 4的n 依次为( ).图2.3-7A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12思路分析:考虑幂函数在第一象限内的增减性.注意当n >0时,对于y =x n ,n 越大,y =x n 增幅越快,n <0时看|n |的大小.根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2,故选B.答案:B应用点四 比较大小【例4】比较下列各题中两个值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)212,1.813.思路分析:比较两个幂的大小关键要看是底数相同还是指数相同. 解:(1)函数y =3x 是增函数,所以30.8>30.7; (2)函数y =x 3是增函数,所以0.213<0.233; (3)212>1.812>1.813,所以212>1.813.下列函数为幂函数的是( ).A .y =2x 3-1B .y =2xC .y =1x2 D .y =2x 2求下列幂函数的定义域.y =x 3,13y x =,12y x =,y =x -2,12y x-=,y =x 0.下列幂函数的值域错误的是( ).A .43y x =的值域为[0,+∞) B .13y x =的值域为RC .y =x-2的值域为(0,+∞) D .12y x-=的值域为[0,+∞)函数y =x a ,y =x b ,y =x c 的图象如图所示,则实数a 、b 、c 的大小关系为( ).A .c <b <aB .a <b <cC .b <c <aD .c <a <b比较下列各组数的大小.(1)(23)0.5,(35)0.5;(2)788--,781()9-;(3)254.1,233.8-,351.9 -. 应用点五 解含幂的不等式【例5】(1)已知(0.71.3)m <(1.30.7)m ,求m 的取值范围; (2)已知2335x x >,求x 的取值范围.思路分析:根据幂函数的图象以及单调性比较大小,求出范围. 解:(1)根据幂函数y =x 1.3的图象, 当0<x <1时,0<y <1,∴0<0.71.3<1.又根据幂函数y =x 0.7的图象,当x >1时,y >1,∴1.30.7>1.于是0.71.3<1.30.7.考查幂函数y =x m ,由(0.71.3)m <(1.30.7)m 知当x >0时,y =x m 为增函数,∴m >0.(2)函数23y x =与35y x =的定义域都是R ,23y x =的图象分布在第一、二象限;35y x =的图象分布在第一、三象限,∴当x ∈(-∞,0)时,2335>x x ;当x =0时,显然不合题意;当x ∈(0,+∞)时,23>x 0,35>x 0,2335x x=115>1x ,∴x >1,即x >1时,2335>x x .综上所述,满足条件的x 的取值范围为{x |x <0或x >1}.迁移1.C 解析:幂函数的表达式y =x α(α∈R )的要求比较严格,系数是1,底数是x ,α∈R 为常数,选项A 、B 、D 都是幂函数类型的函数,选项C 中y =x-2是幂函数.迁移2.解:y =x 3的定义域是R ;13y x =的定义域是R ;12y x =的定义域是[0,+∞);y =x -2=1x2的定义域是(-∞,0)∪(0,+∞);12121y x x-==的定义域是(0,+∞);y =x 0的定义域是(-∞,0)∪(0,+∞). 迁移3.D 解析:12121y x x-=,∵x >0,∴y >0.∴值域为(0,+∞).迁移4.A 解析:按幂函数的图象特征判断,也可作一条直线x =m (m >1)与各图象相交,按交点的高低判断.迁移5.解:(1)∵幂函数y =x 0.5在(0,+∞)上是单调递增函数, 又∵23>35,∴(23)0.5>(35)0.5.(2)∵778818()8--=-,又∵幂函数y =78x 在(0,+∞)上是单调递增函数,又18>19,∴778811()>()89.∴778811()<()89--,即77881<()9--8-.(3)∵22554.1>1=1,0<22333.8<1--=1, 351.9<0--,∴2235354.1>3.8> 1.9---.。
高一数学必修一幂函数及基本初等函数综合
幂函数及基本初等函数综合教学目标1、掌握幂函数的概念及图形特征;2、熟悉函数图象与性质的应用。
知识梳理1、幂函数的概念一般地,我们把形如a xy=的函数称为幂函数,其中x是自变量,a是常数。
注意:(1)幂函数a xaay x且中,底数是y=的底数是自变量,指数是常数与指数函数)1=a,0(≠>常数,指数是自变量。
(2)只有形如a xy a+=(a是不为y=的函数才是幂函数,否则不是。
例如:axy=,aaxy=0,1的常数)。
a xy=中的a是任意实数。
(3)幂函数a xy=的定义域由a决定。
(4)幂函数a x2、幂函数的图像3、幂函数作图技巧y=在第一象限内的图像;(1)作出幂函数a xy=的定义域,左边是否有图像;(2)判断幂函数a x(3)若左边有图像,判断奇偶性,作出左边图像。
4、基本初等函数的综合应用知识点1:幂函数的概念【例1】下列函数中不是幂函数的是【 】x y = B.3x y = C.x y 22= D.1-=x y【例2】函数112)22(--+=m xm m y 是幂函数,则m =________。
【随堂练习】1、下面的函数中是幂函数的是___________。
① 22+=x y ; ②21x y = ; ③32x y =; ④43xy =; ⑤131+=x y .2、已知)32().22(1122-+-+=-n x m m y m 是幂函数,求m 、n 的值。
知识点2:幂函数的解析式【例1】已知幂函数)(x f y =的图象过点)22,2(,则=)(x f ________。
【例2】如果幂函数()f x x α=的图象经过点2(2,)2,则(4)f 的值等于【 】 A. 16 B. 2 C. 116 D. 12【例3】已知幂函数αkx x f =)(),(R R k ∈∈α的图像过点1,22⎛⎫⎪⎝⎭,则k α+=【 】 A .12 B .1 C .32D .2【随堂练习】1、若幂函数)(x f 的图像经过点)22,2(,则=)9(f ______。
高一数学幂函数试题答案及解析
高一数学幂函数试题答案及解析1.若函数是幂函数,则的值为()A.B.C.D.【答案】A【解析】由题意,得,解得.【考点】幂函数的解析式.2.计算等于()A.B.C.D.【答案】B【解析】。
故选B。
【考点】指数幂的运算点评:本题运用指数幂的运算公式:,。
3.已知幂函数的图象过点 .【答案】3【解析】幂函数形式为,其过点,则,求得,。
【考点】幂函数点评:幂函数的形式是。
本题需先确定幂函数的解析式。
4.当时,幂函数为减函数,则实数( )A.m=2B.m=-1C.m=2或m=-1D.【答案】A【解析】因为,当时,幂函数为减函数,所以或,解得,m=2,故选B。
【考点】本题主要考查幂函数的概念及其性质。
点评:简单题,注意形如为常数)的函数是幂函数。
5.(本小题12分)已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。
【答案】【解析】解:因为函数是幂函数且在上为减函数,所以有,解得,——————————5’①当是的单调递减区间,————————7’②当,解得——————————9’③,解得————————11’综合①②③可知————————12’【考点】幂函数与二次函数点评:解决的关键是对于常见的基本初等函数性质的熟练运用,属于基础题。
6.已知幂函数在增函数,则的取值范围 .【答案】(0,10)【解析】根据已知表达式可知,幂函数在增函数,首先分析对数式y=lga中真数大于零,即a>0,同时要满足在增函数,说明了幂指数为正数,即1-lga>0,得到lga<1=lg10,a<10,这样结合a>0,可知实数a的取值范围是(0,10)。
【考点】本试题主要是考查了幂函数的单调性与幂指数的正负之间的关系的应用,属于基础题。
点评:解决该试题关键是理解幂函数在y轴右侧的单调性是增,说明了幂指数为正,如果在y轴右侧为减,说明幂指数为负数。
同时对数真数大于零是易忽略点。
7.幂函数的图象过点(2, ), 则它的单调递增区间是()A.(-∞, 0)B.[0, +∞)C.(0, +∞)D.(-∞, +∞)【答案】A【解析】因为幂函数过点(2, ),所以=,即。
(完整版)高一数学幂函数题型复习总结,推荐文档
知识点一、幂的运算法则
初中知识点:(1) am an
(2) am n
指数幂与根式的互化: n am
1
练习: x3
例:计算
5 x2
am an
am bm
1 n am
x
2 3
an
1 4 x3
练习:
1
知识点二、幂函数图象
画图注意事项 1 定义域:偶次方根被开方数 0 ,奇次方根被开方数 R ,分母 0 . 2 奇偶性:判断 f (x) 与 f (x) 相等?相反数? 3 闲着描描点!极限情况靠想象!快快慢慢!增增减减!秒悟! 1、初级练场:常见幂函数图象:
1
(8) y x 4
3
(9) y x 2
总结:横看成岭侧成峰!
3
(1) (2)
4
5
3
3
2
练习:画函数图象 y x 3 , y x 2 , y x 5 , y x 4 , y x 5
知识点三、幂函数图象性质的应用
1、幂函数的定义
4
2、幂函数的图像
3、幂函数比较大小
1
1
例 1、(1)1.52
3、 4、比较大小 5、
7
“
”
“
”
At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!
人教版高中数学必修第一册知识点及题型总结----幂函数与函数零点
目录幂函数与函数零点 (2)模块一:幂函数 (2)考点1:幂函数的图像与性质 (3)模块二:函数的零点 (4)考点2:函数的零点判断 (4)课后作业: (6)幂函数与函数零点模块一:幂函数1.幂函数:一般地,形如的函数称为幂函数,其中为常数.2.幂函数的图象当分别为,,,,时,幂函数图象如下图:3.幂函数的性质⑴所有的幂函数在都有定义,并且图象都通过点;⑵如果,则幂函数的图象通过原点,并且在区间上是增函数;⑶如果,则幂函数在区间上是减函数.在第一象限内,当从右边趋向于原点时,图象在轴右方无限地逼近轴.当趋于时,图象在轴上方无限地逼近轴.⑷幂函数的奇偶性决定幂函数过的象限.奇函数过一、三象限;偶函数过一、二象限;非奇非偶函数只过第一象限.⑸ 当为负奇数时,幂函数为奇函数,图象在第一、三象限,但不过原点;⑹ 当为正分数时,设为(,是互质的正整数).①如果,都是奇数,幂函数为奇函数,图象过第一、三象限及原点;如②如果是偶数,为奇数,幂函数为非奇非偶函数,图象在第一象限及过原点;如()y xαα=∈Rαα1-12123(0)+∞,()11,α>[0)+∞,α<(0)+∞,xy y x+∞x x ααnmm nm n53y x==mn34y x==③如果为奇数,为偶数,幂函数为偶函数,图象过第一、二象限及原点.如是偶函数,图象为:⑺ 当为负分数时,设为(,是互质的正整数). ①如果,都是奇数,幂函数为奇函数,图象在第一、三象限; ②如果为偶数,为奇数,幂函数的图象只在第一象限; ③如果为奇数,为偶数,幂函数为偶函数,图象在第一、二象限.如是偶函数,图象为考点1:幂函数的图像与性质例1.(1)已知是幂函数,求的值.【解答】332m n =-=, (2)幂函数2223()(1)m m f x m m x +-=--在(0,)+∞上为增函数,则m 的取值是( )A .2m =或1m =-B .1m =-C .2m =D .31m -【解答】解:幂函数2223()(1)m m f x m m x +-=--在(0,)+∞上为增函数,则2211230m m m m ⎧--=⎨+->⎩,解得2m =.故选:C .模块二:函数的零点1.函数的零点(1)一般地,如果函数()y f x =在实数α处的值等于零,即()0f α=,则a 叫做这个函数的零点.mn 23y x ==αnm-m n m n m n mn 23y x -==()21212223my m m x n -=+-+-m n,要点诠释:①函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零; ②函数的零点也就是函数)(x f y =的图象与x 轴交点的横坐标; ③函数)(x f y =的零点就是方程0)(=x f 的实数根.④零点都是指变号零点(函数图象通过零点时穿过x 轴,则称这样的零点为变号零点). 归纳:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点.考点2:函数的零点判断例1.(1)设3()2x f x x =-.则在下列区间中,使函数()f x 有零点的区间是( ) A .(1,0)-B .(0,1)C .(1,2)D .(2,3)【解答】解:f (1)2110=-=>,f (2)23224840=-=-=-<, f (1)f (2)0<,则在(1,2)内函数()f x 存在零点, 故选:C .例2.(1)已知函数262,0()1,0x x x f x x x⎧-⎪=⎨<⎪⎩,若函数()()3g x f x x m =-+有3个零点,则实数m 的取值范围为( )A .9(,0]8-B .9[0,)8C .9[0,)4D .9(,0]4-【解答】解:函数()()3g x f x x m =-+有3个零点,即函数()y f x =的图象与3y x m =-的图象有3个交点. 如图,由图可知,当直线3y x m =-过原点O 时,满足题意; 联立2362y x m y x x=-⎧⎨=-⎩,得2230x x m --=. 由△980m =+=,得98m =-.∴若函数()()3g x f x x m =-+有3个零点,则实数m 的取值范围为9(8-,0].故选:A .(2)设函数22,1(),1x x f x log x x ⎧⎪=⎨>⎪⎩,()()2g x f x x a =++.若()g x 存在两个零点,则a 的取值范围是 .【解答】解:由题意可得()2f x x a =--有两个不同的实根, 即函数()f x 的图象与直线2y x a =--有两个交点, 作出()y f x =的图象和直线2y x a =--,当直线经过点(1,0)时,可得20a --=,即2a =-; 当直线经过点(1,2)可得22a --=,即4a =-, 可得42a -<-时,直线和()f x 的图象有两个交点, 故答案为:[4-,2)-.例3.已知()1||f x lgx =-,则函数22()3()1y f x f x =-+的零点个数为 . 【解答】解:根据题意,函数22()3()1y f x f x =-+, 若22()3()10y f x f x =-+=,解可得()1f x =或12, 若()1f x =,即1||1lgx -=,即0lgx =,解可得1x =,若1()2f x =,即11||2lgx -=,即12lgx =±,解可得x =,则函数22()3()1y f x f x =-+有3个零点; 故答案为:3课后作业:1.函数1()2xf x lgx =-的零点所在区间为( ) A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解答】解:函数1()2xf x lgx =-是增函数, f (1)110022=-=-<,f (2)1204lg =->, f ∴(1)f (2)0<, 1()2xf x lgx ∴=-的零点所在区间为(1,2). 故选:B .2.函数22,0()26,0x x f x x lgx x ⎧-=⎨-+>⎩的零点的个数为( )A .0B .1C .2D .3【解答】解:当0x 时,2()2f x x =-,令()0f x =,解得x =当0x >时,()26f x x lgx =-+,则()0f x =的解等价于函数62y x =-与y lgx =图象在0x >时的交点的横坐标,作出函数62y x =-与y lgx =图象如下:由图可知,此时两图象有一个交点,故0x >时,()0f x =有一个解, 综上()f x 共两个零点. 故选:C . 3.函数2||()()4x f x kx k R x =-∈+的零点个数最多是( ) A .2B .3C .4D .5【解答】解:函数2||()()4x f x kx k R x =-∈+的零点的个数, 即为函数2y kx =与||4x y x =+的图象交点个数, 在同一坐标系内分别作出函数2y kx =与||4x y x =+的图象, 知两函数图象最多有4个交点,即函数2||()()4x f x kx k R x =-∈+的零点个数最多是4. 故选:C .4.已知幂函数221()(33)mm f x m m x --=-+在(0,)+∞上单调递增,则m 值为 .【解答】解:幂函数221()(33)m m f x m m x --=-+在(0,)+∞上单调递增,2331m m ∴-+=,且210m m -->,解得2m =, 故答案为:2.。
3.3幂函数(7大题型)高一数学(人教A版必修第一册)课件
D . p 为 偶 数 , q为奇 数且 < 0
)
典型例题
题型四:幂函数的图象、定点问题
【对点训练8】(2023·全国·高一假期作业)已知 ( ) = (2 − 1) + 1,则函数 = ( )的图象恒过的定点
的坐标为
.
【答案】 (1,2)
【解析】令 2 − 1 = 1 ,得 = 1, = 2 ,
故选:C.
2 ;⑤
= ,其中幂函
典型例题
题型二:求函数解析式
【例2】若 = 2 − 4 + 5 − + + 1 是幂函数,则 2 =
【答案】
1
4
2
− 4 + 5 = 1 ,解得 ቊ = 2 ,
【解析】由题意得 ቊ
= −1
+1=0
故 = −2 ,所以 2 = 2 −2 =
典型例题
题型二:求函数解析式
1
2
【对点训练3】已知 ∈ −2, −1, − , 2 ,若幂函数 = 为偶函数,且在(0,+∞)上单调递减,则
=
.
【答案】 -2
【解析】因为函数在 0, +∞ 上单调递减,所以 < 0 ,
当 = −2 时, = −2 是偶函数,成立
当 = −1 时, = −1 是奇函数,不成立,
1
1
当 = − 时, = − 2 的定义域是 0, +∞ ,不是偶
2
函数,故不成立,
综上, = −2.
故答案为:−2
典型例题
题型三:定义域、值域问题
4
【例3】(1)函数 = 5 的定义域是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数【知识梳理】1.幂函数的概念一般地,函数y=xα叫做幂函数.其中x是自变量,α是常数.2.常见幂函数的图象与性质(1)所有的幂函数在区间(0,+∞)上都有定义,并且图象都过点(1,1).(2)α>0时,幂函数的图象通过原点,并且在区间[0,+∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸.(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴;当x趋于+∞时,图象在x轴上方无限地逼近x 轴正半轴.【常考题型】题型一、幂函数的概念【例1】(1)下列函数:①y=x3;②y=12x⎛⎫⎪⎝⎭;③y=4x2;④y=x5+1;⑤y=(x-1)2;⑥y=x;⑦y=a x(a>1).其中幂函数的个数为()A.1B.2C .3D .4(2)已知幂函数y =()22231m m m m x----,求此幂函数的解析式,并指出定义域.(1)[解析] ②⑦为指数函数,③中系数不是1,④中解析式为多项式,⑤中底数不是自变量本身,所以只有①⑥是幂函数,故选B.[答案] B(2)[解] ∵y =()22231mm m m x ----为幂函数,∴m 2-m -1=1,解得m =2或m =-1.当m =2时,m 2-2m -3=-3,则y =x -3,且有x≠0; 当m =-1时,m 2-2m -3=0,则y =x 0,且有x≠0.故所求幂函数的解析式为y =x -3,{x|x≠0}或y =x 0,{x|x≠0}. 【类题通法】判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.反之,若一个函数为幂函数,则该函数应具备这一形式,这是我们解决某些问题的隐含条件.【对点训练】函数f(x)=()2231m m m m x +---是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,求f(x)的解析式.解:根据幂函数的定义得m 2-m -1=1.解得m =2或m =-1.当m =2时,f(x)=x 3在(0,+∞)上是增函数; 当m =-1时,f(x)=x -3在(0,+∞)上是减函数,不符合要求.故f(x)=x 3.题型二、幂函数的图象【例2】 (1)如图,图中曲线是幂函数y =x α在第一象限的大致图象,已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2本文档如对你有帮助,请帮忙下载支持!C .-12,-2,2,12D .2,12,-2,-12(2)如图是幂函数y =mx 与y =nx 在第一象限内的图象,则( ) A .-1<n<0<m<1 B .n<-1,0<m<1 C .-1<n<0,m>1 D .n<-1,m>1[解析] (1)令x =2,则22>212>2-12>2-2,故相应于曲线C 1,C 2,C 3,C 4的α值依次为2,12,-12,-2.故选B.(2)此类题有一简捷的解决办法,在(0,1)内取x 0,作直线x =x 0,与各图象有交点,则“点低指数大”.如图,0<m<1,n<-1.[答案] (1)B (2)B 【类题通法】解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x 轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x 轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y =x-1或y =12x 或y =x 3)来判断.【对点训练】已知函数y =ax ,y =bx ,y =cx 的图象如图所示,则a ,b ,c 的大小关系为( ) A .c<b<a B .a<b<c C .b<c<aD .c<a<b解析:选A 由幂函数的图象特征知,c<0,a>0,b>0.由幂函数的性质知,当x>1,幂指数大的幂函数的函数值就大,则a>b.综上所述,可知c<b<a.题型三、利用幂函数的性质比较大小【例3】 比较下列各组数中两个数的大小.(1)0.525⎛⎫ ⎪⎝⎭与0.513⎛⎫⎪⎝⎭;(2)123-⎛⎫- ⎪⎝⎭与135-⎛⎫- ⎪⎝⎭;(3)3423⎛⎫⎪⎝⎭与2334⎛⎫ ⎪⎝⎭. [解] (1)∵幂函数y =0.5x 在(0,+∞)上是单调递增的,又25>13,∴0.525⎛⎫ ⎪⎝⎭>0.513⎛⎫⎪⎝⎭. (2)∵幂函数y =1x -在(-∞,0)上是单调递减的, 又-23<-35,∴123-⎛⎫- ⎪⎝⎭>135-⎛⎫- ⎪⎝⎭.(3)∵函数y 1=23x⎛⎫⎪⎝⎭为R 上的减函数,又34>23,∴2323⎛⎫⎪⎝⎭>3423⎛⎫ ⎪⎝⎭. 又∵函数y 2=23x 在(0,+∞)上是增函数,且34>23,∴2334⎛⎫⎪⎝⎭>2323⎛⎫ ⎪⎝⎭,∴2334⎛⎫ ⎪⎝⎭>3423⎛⎫⎪⎝⎭. 【类题通法】比较幂值大小的方法(1)若指数相同,底数不同,则考虑幂函数; (2)若指数不同,底数相同,则考虑指数函数;(3)若指数与底数都不同,则考虑插入中间数,使这个数的底数与所比较数的一个底数相同,指数与另一个数的指数相同,那么这个数就介于所比较的两数之间,进而比较大小.【对点训练】比较下列各题中两个幂的值的大小: (1)342.3,342.4;(2)32- ,32- ;(3)()650.31-,650.35.解:(1)∵y =34x 为[0,+∞)上的增函数,且2.3<2.4, ∴342.3<342.4.(2)∵y =32x - 为(0,+∞)∴32- >32- .(3)∵y =65x 为R 上的偶函数,∴()650.31-=650.31.又函数y =65x 为[0,+∞)上的增函数,且0.31<0.35, ∴650.31<650.35,即()650.31-<650.35.【练习反馈】1.下列函数是幂函数的是( ) A .y =2x B .y =2x -1C .y =(x +1)2D .y 解析:选D 由幂函数的概念可知D 正确. 2.下列命题:①幂函数的图象都经过点(1,1)和点(0,0); ②幂函数的图象不可能在第四象限; ③n =0,函数y =nx 的图象是一条直线; ④幂函数y =n x 当n>0时,是增函数;⑤幂函数y =nx 当n<0时,在第一象限内函数值随x 值的增大而减小. 正确的命题为( ) A .①④ B .④⑤ C .②③ D .②⑤解析:选D y =x-1不过(0,0)点,∴①错误,排除A ;当n =0时,y =nx 的图象为两条射线,③错误,排除C ;y =x 2不是增函数,④错误,排除B ;因此答案选D.3.已知幂函数f(x)的图象过点(4,2),则f ⎝⎛⎭⎫18=________. 解析:设f(x)=x α,则4α=2,∴α=12,即f(x)=12x ,∴f ⎝⎛⎭⎫18=1218⎛⎫ ⎪⎝⎭=4.答案:44.函数f(x)=()22231m m m m x +--+是幂函数,且在x ∈(0,+∞)时是减函数,则实数m =________.解析:由m 2-m +1=1,得m =0或m =1,再把m =0和m =1分别代入m 2+2m -3<0检验,得m =0. 答案:05.比较下列各题中两个幂的值的大小: (1)121.1,120.9;(2) 121.1- ,120.9- ;(3)343- ,3412⎛⎫⎪⎝⎭. 解:(1)∵y =12x 为[0,+∞)上的增函数,又1.1>0.9, ∴121.1>120.9. (2)∵y =12x - 为(0,+∞)上的减函数,又1.1>0.9,∴121.1- <120.9- .(3)∵343- =3413⎛⎫ ⎪⎝⎭,函数y =34x 为[0,+∞)上的增函数,且13<12,∴3413⎛⎫ ⎪⎝⎭<3412⎛⎫⎪⎝⎭,即343- <3412⎛⎫ ⎪⎝⎭.。