高中数学选修(A版)2-2课后题答案
高中数学 3.2.1复数代数形式的加、减运算及其几何意义课后习题 新人教A版选修2-2
3.2.1 复数代数形式的加、减运算及其几何意义课时演练·促提升A组1.已知z1=2+i,z2=1-2i,则复数z=z2-z1对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:z=z2-z1=(1-2i)-(2+i)=-1-3i,故z对应的点为(-1,-3),在第三象限.答案:C2.已知复数z满足z+i-3=3-i,则z等于()A.0B.2iC.6D.6-2i解析:z=3-i-(i-3)=6-2i.答案:D3.若复数z1=a-i,z2=-4+b i,z1-z2=6+i,z1+z2+z3=1(a,b∈R),则z3为()A.-1-5iB.-1+5iC.3-4iD.3+3i解析:∵z1-z2=(a-i)-(-4+b i)=a+4-(1+b)i=6+i,∴a=2,b=-2,∴z3=1-z1-z2=1-2+i+4+2i=3+3i.故选D.答案:D4.若复平面上的▱ABCD中,对应复数6+8i,对应复数为-4+6i,则对应的复数是()A.-1-7iB.2+14iC.1+7iD.2-14i解析:设对应的复数分别为z1与z2,则有于是2z2=2+14i,z2=1+7i,故对应的复数是-1-7i.答案:A5.A,B分别是复数z1,z2在复平面内对应的点,O是原点,若|z1+z2|=|z1-z2|,则三角形AOB一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形解析:根据复数加(减)法的几何意义知,以为邻边所作的平行四边形的对角线相等,则此平行四边形为矩形,故三角形OAB为直角三角形.答案:B6.计算(-1+2i)+(i+i2)-|1+2i|=.解析:原式=-1+2i+(i-1)-=-2+3i-=-(2+)+3i.答案:-(2+)+3i7.已知复数z1=(a2-2)+(a-4)i,z2=a-(a2-2)i(a∈R),且z1-z2为纯虚数,则a=.解析:z1-z2=(a2-a-2)+(a-4+a2-2)i=(a2-a-2)+(a2+a-6)i(a∈R)为纯虚数,所以解得a=-1.答案:-18.已知z1=(3x+y)+(y-4x)i,z2=(4y-2x)-(5x+3y)i(x,y∈R).若z1-z2=13-2i,求z1,z2.解:∵z1-z2=(3x+y)+(y-4x)i-[(4y-2x)-(5x+3y)i]=[(3x+y)-(4y-2x)]+[(y-4x)+(5x+3y)]i=(5x-3y)+(x+4y)i,又z1-z2=13-2i,∴(5x-3y)+(x+4y)i=13-2i.∴解得∴z1=(3×2-1)+(-1-4×2)i=5-9i,z2=[4×(-1)-2×2]-[5×2+3×(-1)]i=-8-7i.9.在复平面内A,B,C三点对应的复数分别为1,2+i,-1+2i.(1)求对应的复数;(2)判断△ABC的形状;(3)求△ABC的面积.解:(1)对应的复数为2+i-1=1+i,对应的复数为-1+2i-(2+i)=-3+i,对应的复数为-1+2i-1=-2+2i.(2)∵||=,||=,||==2,∴||2+||2=||2,∴△ABC为直角三角形.(3)S△ABC=×2=2.B组1.复数z=x+y i(x,y∈R)满足条件|z-4i|=|z+2|,则2x+4y的最小值为()A.2B.4C.4D.16解析:∵复数z=x+y i(x,y∈R)满足|z-4i|=|z+2|,∴|x+(y-4)i|=|(x+2)+y i|,化简得x+2y=3.∴2x+4y≥2=2=2=4,当且仅当x=2y=时,等号成立.答案:C2.△ABC的三个顶点所对应的复数分别为z1,z2,z3,复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点是△ABC的()A.外心B.内心C.重心D.垂心解析:设复数z与复平面内的点Z相对应,由△ABC的三个顶点所对应的复数分别为z1,z2,z3及|z-z1|=|z-z2|=|z-z3|可知点Z到△ABC的三个顶点的距离相等,由三角形外心的定义可知,点Z即为△ABC的外心.答案:A3.设纯虚数z满足|z-1-i|=3,则z=.解析:∵z为纯虚数,∴设z=b i(b∈R,且b≠0).由|z-1-i|=3,得|-1+(b-1)i|=3.∴1+(b-1)2=9.∴b-1=±2.∴b=1±2.答案:(1±2)i4.已知复数z=x+y i(x,y∈R),且|z-2|=,则的最大值为.解析:∵z=x+y i(x,y∈R),且|z-2|=,∴(x-2)2+y2=3.由图可知.答案:5.已知复平面内的A,B对应的复数分别是z1=sin2θ+i,z2=-cos2θ+icos 2θ,其中θ∈(0,π),设对应的复数是z.(1)求复数z;(2)若复数z对应的点P在直线y=x上,求θ的值.解:(1)∵点A,B对应的复数分别是z1=sin2θ+i,z2=-cos2θ+icos 2θ,∴点A,B的坐标分别是A(sin2θ,1),B(-cos2θ,cos 2θ),∴=(-cos2θ,cos 2θ)-(sin2θ,1)=(-cos2θ-sin2θ,cos 2θ-1)= (-1,-2sin2θ).∴对应的复数z=-1+(-2sin2θ)i.(2)由(1)知点P的坐标是,代入y=x,得-2sin2θ=-,即sin2θ=,∴sin θ=±.又θ∈(0,π),∴sin θ=,∴θ=.6.若z∈C,且|z+2-2i|=1,求|z-2-2i|的最小值.解:设z=x+y i,x,y∈R,由|z+2-2i|=1,得|z-(-2+2i)|=1,表示以(-2,2)为圆心,1为半径的圆,如图所示,则|z-2-2i|=表示圆上的点与定点(2,2)的距离,由数形结合得|z-2-2i|的最小值为3.7.设z1=1+2a i,z2=a-i,a∈R,A={z||z-z1|<},B={z||z-z2|≤2},已知A∩B=⌀,求a的取值范围.解:因为z1=1+2a i,z2=a-i,|z-z1|<,即|z-(1+2a i)|<,|z-z2|≤2,即|z-(a-i)|≤2,由复数减法及模的几何意义知,集合A是以 (1,2a)为圆心,为半径的圆的内部的点对应的复数,集合B是以(a,-1)为圆心,2为半径的圆周及其内部的点所对应的复数,若A∩B=⌀,则两圆圆心距大于或等于半径和,即≥3,解得a≤-2或a≥.中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版A版高中数学选修2-2:定积分的概念教学内容
求和:求出n个小矩形面积之和,作为曲边梯
n
形面积S的近似值,即S Sn i1
1 f i 1 n n
n
由 Sn
i 1
1 f i 1 n n
n
1
i
1
2
i1 n n
1
0
1
1
2
1
2
2
1
n
1
2
n n n n n n n
1 n3
n
1n2n
1
0.8
0.6
0.4
f(x) = x2
0.2
01
n
0.2
2 3 4 0.5 nn n
i 1 i nn
f (i 1) n
1 n
A
1
f(i) n
f (i 1) n
f(i) n
1 n
1 n
1.5
2
0.4
1.4
以第一种方1.2法为例,可把曲边梯形分割成n个小矩形
1
0.8
0.6
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的小矩形越来越多时,观察所有的矩形面积之 1.4
和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 10.00
0.4
f(x) = x2
0.2
0
0.5
1
0.2
当分割的1.4小矩形越来越多时,观察所有的矩形面积之 和与曲边梯形的面积有什么关系
1.2
1
0.8
0.6
n = 20.00
即S
高中数学选修2-2综合测试题(全册含答案)
高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。
2.复数就像向量,有大小和方向。
3.复数就像计算机中的复数类型,有实部和虚部。
4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。
改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。
一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。
①复数的加减法运算可以类比多项式的加减法运算法则。
②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。
③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。
其中类比得到的结论正确的是:A。
①③B。
②④C。
②③D。
①④2.删除明显有问题的段落。
3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。
14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。
4.解答题:15.1) F(x)的单调区间为(-∞。
0)和(2.+∞)。
2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。
又因为AB⊥AC,所以AC²=AD²+DC²。
高中数学 第一章 导数及其应用 1.1.3 导数的几何意义学案 新人教A版选修2-2-新人教A版高二
1.1.3 导数的几何意义1.理解曲线的切线的含义.2.理解导数的几何意义.3.会求曲线在某点处的切线方程.4.理解导函数的定义,会用定义法求简单函数的导函数.1.导数的几何意义(1)切线的定义如图,对于割线PP n,当点P n趋近于点P时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为点P 处的切线.(2)导数的几何意义当点P n无限趋近于点P时,k n无限趋近于切线PT的斜率.因此,函数f(x)在x=x0处的导数就是切线PT的斜率k,即k=limΔx→0f(x0+Δx)-f(x0)Δx=f′(x0).2.导函数的概念(1)定义:当x变化时,f′(x)便是x的一个函数,我们称它为f(x)的导函数(简称导数).(2)记法:f′(x)或y′,即f′(x)=y′=limΔx→0f(x+Δx)-f(x)Δx.1.此处切线定义与以前所学过的切线定义的比较(1)初中我们学习过圆的切线:直线和圆有唯一的公共点时,称直线和圆相切,唯一的公共点叫做切点,直线叫做圆的切线.但因为圆是一种特殊的曲线,所以圆的切线定义不适用于一般的曲线.如图中的曲线C ,直线l 1与曲线C 有唯一的公共点M ,但l 1不是曲线C 的切线;l 2虽然与曲线C 有不止一个公共点,但l 2是曲线C 在点N 处的切线.(2)此处是通过逼近方法,将割线趋近于确定的位置的直线定义为切线,适用于各种曲线.所以这种定义才真正反映了切线的本质.2.函数f (x )在x =x 0处的导数f ′(x 0)、导函数f ′(x )之间的区别与联系区别:(1)f ′(x 0)是在x =x 0处函数值的改变量与自变量的改变量之比的极限,是一个常数,不是变量.(2)f ′(x )是函数f (x )的导数,是对某一区间内任意x 而言的,即如果函数y =f (x )在开区间(a ,b )内的每点处都有导数,此时对于每一个x ∈(a ,b ),都对应着一个确定的导数f ′(x ),从而构成了一个新的函数——导函数f ′(x ).联系:函数f (x )在x =x 0处的导数f ′(x 0)就是导函数f ′(x )在x =x 0处的函数值.这也是求函数在x =x 0处的导数的方法之一.判断正误(正确的打“√”,错误的打“×”) (1)函数在一点处的导数f ′(x 0)是一个常数.( )(2)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.( )(3)函数f (x )=0没有导数.( )(4)直线与曲线相切,则直线与该曲线只有一个公共点.( ) 答案:(1)√ (2)√ (3)× (4)×如图,直线l 是曲线y =f (x )在x =4处的切线,则f ′(4)=( ) A. 12 B .3 C .4D .5解析:选A.根据导数的几何意义知f ′(4)是曲线y =f (x )在x =4处的切线的斜率k ,注意到k =5-34-0=12,所以f ′(4)=12.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析:选B.由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小,结合导数的几何意义知f ′(x A )<f ′(x B ),选 B.曲线y =-2x 2+1在点(0,1)处的切线的斜率是________. 解析:因为Δy =-2(Δx )2,所以Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0(-2Δx )=0,由导数的几何意义知切线的斜率为0.答案:0探究点1 求曲线在定点处的切线方程求曲线y =2x -x 3在点(-1,-1)处的切线方程. 【解】 因为y ′=lim Δx →02(x +Δx )-(x +Δx )3-2x +x3Δx=lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.所以y ′|x =-1=2-3(-1)2=2-3=-1.所以切线方程为y -(-1)=-[x -(-1)], 即x +y +2=0.求过点(-1,-2)且与曲线y =2x -x 3相切的直线方程.解:y ′=lim Δx →0Δy Δx =lim Δx →02(x +Δx )-(x +Δx )3-2x +x 3Δx =lim Δx →0[2-3x 2-3x Δx -(Δx )2]=2-3x 2.设切点坐标为(x 0,2x 0-x 30),则切线方程为y -2x 0+x 30=(2-3x 20)(x -x 0). 因为切线过点(-1,-2),所以-2-2x 0+x 30=(2-3x 20)·(-1-x 0), 即2x 30+3x 20=0,解得x 0=0或x 0=-32.所以切点坐标为(0,0)或⎝ ⎛⎭⎪⎫-32,38. 当切点坐标为(0,0)时,切线斜率k =-2-0-1-0=2,切线方程为y =2x ;当切点坐标为⎝ ⎛⎭⎪⎫-32,38时,切线斜率k =38-(-2)-32-(-1)=-194,切线方程为y +2=-194(x +1),即19x +4y +27=0.综上可知,过点(-1,-2)且与曲线y =2x -x 3相切的直线方程为y =2x 或19x +4y +27=0.解决曲线的切线问题的思路(1)求曲线y =f (x )在点P (x 0,f (x 0))处的切线方程,即点P 的坐标既满足曲线方程,又满足切线方程时,若点P 处的切线斜率存在,则点P 处的切线方程为y =f ′(x 0)(x -x 0)+f (x 0);若曲线y =f (x )在点P 处的切线斜率不存在(此时切线平行于y 轴),则点P 处的切线方程为x =x 0.(2)若切点未知,则需设出切点坐标,再根据题意列出关于切点横坐标的方程,最后求出切点纵坐标及切线的方程,此时求出的切线方程往往不止一个.已知曲线C :y =x 3.(1)求曲线C 上横坐标为1的点处的切线方程;(2)试问(1)中的切线与曲线C 是否还有其他的公共点?若有,求出公共点的坐标;若没有,说明理由.解:(1)将x =1代入曲线C 的方程得y =1,所以切点为(1,1). Δy Δx =(1+Δx )3-13Δx =3Δx +3(Δx )2+(Δx )3Δx =3+3Δx +(Δx )2, 当Δx 趋近于0时,ΔyΔx 趋近于3,所以y ′|x =1=3.故所求切线方程为y -1=3(x -1),即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)2(x +2)=0, 解得x 1=1,x 2=-2.从而求得公共点为(1,1),(-2,-8).故(1)中的切线与曲线C 的公共点除切点(1,1)外,还有点(-2,-8). 探究点2 求切点坐标在曲线y =x 2上取一点,使得在该点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.【解】 设y =f (x ),则f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x2Δx =limΔx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为点P 处的切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4).(2)因为点P 处的切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94. (3)因为点P 处的切线的倾斜角为135°,所以切线的斜率为tan 135°=-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.求满足某条件的曲线的切点坐标的步骤(1)先设切点坐标(x 0,y 0). (2)求导函数f ′(x ). (3)求切线的斜率f ′(x 0).(4)由斜率间的关系列出关于x 0的方程,解方程求x 0.(5)点(x 0,y 0)在曲线f (x )上,将(x 0,y 0)代入求y 0得切点坐标.1.已知曲线y =x 24的一条切线的斜率为12,则切点的横坐标为( )A .1B .2C .3D .4解析:选A.因为y ′=lim Δx →0Δy Δx =12x =12, 所以x =1,所以切点的横坐标为 1.2.已知曲线f (x )=x 2+6在点P 处的切线平行于直线4x -y -3=0,求点P 的坐标. 解:设切点P 坐标为(x 0,y 0).f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )2+6-(x 2+6)Δx=lim Δx →0(2x +Δx )=2x .所以点P 在(x 0,y 0)处的切线的斜率为2x 0. 因为切线与直线4x -y -3=0平行,所以2x 0=4,x 0=2,y 0=x 20+6=10,即切点为(2,10). 探究点3 导数几何意义的应用我市某家电制造集团为尽快实现家电下乡提出四种运输方案,据预测,这四种方案均能在规定时间T 内完成预期的运输任务Q 0,各种方案的运输总量Q 与时间t 的函数关系如下所示.在这四种方案中,运输效率(单位时间内的运输量)逐步提高的是( )【解析】 从函数图象上看,要求图象在[0,T ]上越来越陡峭,在各选项中,只有B 项中的切线斜率在不断增大,也即运输效率(单位时间内的运输量)逐步提高.【答案】 B(1)曲线f (x )在x 0附近的变化情况可通过x 0处的切线刻画.f ′(x 0)>0说明曲线在x 0处的切线的斜率为正值,从而得出在x 0附近曲线是上升的;f ′(x 0)<0说明在x 0附近曲线是下降的.(2)曲线在某点处的切线斜率的大小反映了曲线在相应点处的变化情况,由切线的倾斜程度,可以判断出曲线升降的快慢.1.已知函数f (x )的图象如图所示,f ′(x )是f (x )的导函数,则下列结论正确的是( )A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f (3)-f (2)<f ′(2)C .0<f ′(3)<f ′(2)<f (3)-f (2)D .0<f (3)-f (2)<f ′(2)<f ′(3)解析:选B.从图象上可以看出f (x )在x =2处的切线的斜率比在x =3处的斜率大,且均为正数,所以有0<f ′(3)<f ′(2),过此两点的割线的斜率f (3)-f (2)3-2比f (x )在x =2处的切线的斜率小,比f (x )在x =3处的斜率大,所以0<f ′(3)<f (3)-f (2)<f ′(2),故选B.2.李华在参加一次同学聚会时,他用如图所示的圆口杯喝饮料,李华认为:如果向杯子中倒饮料的速度一定(即单位时间内倒入的饮料量相同),那么杯子中饮料的高度h 是关于时间t 的函数h (t ),则函数h (t )的图象可能是( )解析:选B.由于圆口杯的形状是“下细上粗”,则开始阶段饮料的高度增加较快,以后高度增加得越来越慢,仅有B 中的图象符合题意.1.下列说法中正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处没有切线B .若曲线y =f (x )在x =x 0处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在x =x 0处的切线斜率不存在D .若曲线y =f (x )在x =x 0处的切线斜率不存在,则曲线在该点处没有切线解析:选C.f ′(x 0)的几何意义是曲线y =f (x )在x =x 0处的切线的斜率,切线斜率不存在,但其切线方程可以为x =x 0,所以A ,B ,D 错误.2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在解析:选B.由题意可知,f ′(x 0)=-12.3.如图,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)等于________.解析:易得切点P (5,3), 所以f (5)=3,k =-1, 即f ′(5)=-1.所以f (5)+f ′(5)=3-1=2. 答案:2 4.已知曲线y =1t -x 上两点P (2,-1),Q ⎝⎛⎭⎪⎫-1,12. (1)求曲线在点P ,Q 处的切线的斜率; (2)求曲线在点P ,Q 处的切线方程. 解:将点P (2,-1)代入y =1t -x, 得t =1,所以y =11-x.y ′=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →011-(x +Δx )-11-x Δx=limΔx →0Δx[1-(x +Δx )](1-x )Δx=limΔx →01(1-x -Δx )(1-x )=1(1-x )2,(1)曲线在点P 处的切线斜率为y ′|x =2=1(1-2)2=1;曲线在点Q 处的切线斜率为y ′|x =-1=14.(2)曲线在点P 处的切线方程为y -(-1)=x -2, 即x -y -3=0,曲线在点Q 处的切线方程为y -12=14[x -(-1)],即x -4y +3=0.知识结构深化拓展导数与函数图象的关系在x =x 0附近各切线的斜率反映切线的升降变化情况,导数f ′(x 0)反映函数在x =x 0附近的增减情况,而在x =x 0处的切线斜率k =f ′(x 0),所以反映在图形上它们的变化情况是一致的,如图.曲线的升降、切线的斜率与导数符号的关系如下表:曲线f (x )在x =x 0附近切线的斜率k切线的倾斜角 f ′(x 0)>0上升k >0 锐角f ′(x 0)<0下降k <0 钝角 f ′(x 0)=0k =0零角(切线与x 轴平行)[注意] 导数绝对值的大小反映了曲线上升或下降的快慢.[A 基础达标]1.已知二次函数f (x )的图象的顶点坐标为(1,2),则f ′(1)的值为( ) A .1 B .0 C .-1D .2解析:选B.因为二次函数f (x )的图象的顶点坐标为(1,2),所以过点(1,2)的切线平行于x 轴,即切线的斜率为0,所以f ′(1)=0,选B.2.曲线f (x )=9x在点(3,3)处的切线的倾斜角等于( )A .45°B .60°C .135°D .120°解析:选C.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =9lim Δx →01x +Δx -1x Δx =-9limΔx →01(x +Δx )x=-9x2,所以f ′(3)=-1.又切线的倾斜角的范围为[0°,180°),所以所求倾斜角为135°.3.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B. 12 C .-12D .-1解析:选A.因为y ′|x =1=lim Δx →0a (1+Δx )2-a ×12Δx=lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a ,所以2a =2, 所以a =1.4.若曲线f (x )=x 2的一条切线l 与直线x +4y -8=0垂直,则l 的方程为( ) A .4x -y -4=0 B .x +4y -5=0 C .4x -y +3=0D .x +4y +3=0解析:选A.设切点为(x 0,y 0),因为f ′(x )=lim Δx →0(x +Δx )2-x2Δx =lim Δx →0 (2x +Δx )=2x .由题意可知,切线斜率k =4,即f ′(x 0)=2x 0=4,所以x 0=2.所以切点坐标为(2,4),切线方程为y -4=4(x -2),即4x -y -4=0,故选A.5.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1D .a =-1,b =-1解析:选A.因为点(0,b )在直线x -y +1=0上,所以b =1.又y ′=lim Δx →0(x +Δx )2+a (x +Δx )+1-x 2-ax -1Δx =2x +a ,所以过点(0,b )的切线的斜率为y ′|x =0=a =1.6.已知函数y =f (x )在点(2,1)处的切线与直线3x -y -2=0平行,则y ′|x =2=________.解析:因为直线3x -y -2=0的斜率为3,所以由导数的几何意义可知y ′|x =2=3. 答案:37.已知f (x )=x 2+ax ,f ′(1)=4,曲线f (x )在x =1处的切线在y 轴上的截距为-1,则实数a 的值为________.解析:由导数的几何意义,得切线的斜率为k =f ′(1)=4.又切线在y 轴上的截距为-1,所以曲线f (x )在x =1处的切线方程为y =4x -1,从而可得切点坐标为(1,3),所以f (1)=1+a =3,即a =2.答案:28.设f (x )存在导函数,且满足lim Δx →0f (1)-f (1-2Δx )2Δx =-1,则曲线y =f (x )上点(1,f (1))处的切线斜率为________.解析:limΔx →0f (1)-f (1-2Δx )2Δx=lim Δx →0f (1-2Δx )-f (1)-2Δx=f ′(x )=-1. 答案:-19.已知曲线y =13x 3上一点P ⎝ ⎛⎭⎪⎫2,83,求: (1)曲线在点P 处的切线方程; (2)过点P 的曲线的切线方程.解:(1)因为函数y =13x 3的导函数为y ′=lim Δx →0ΔyΔx =lim Δx →013(x +Δx )3-13x 3Δx =13lim Δx →03x 2Δx +3x (Δx )2+(Δx )3Δx =13lim Δx →0[3x 2+3x Δx +(Δx )2]=x 2, 所以y ′|x =2=22=4.所以曲线在点P 处的切线的斜率等于4.故曲线在点P 处的切线方程是y -83=4(x -2),即12x -3y -16=0.(2)设切点为(x 0,y 0),由(1)知y ′=x 2,则点(x 0,y 0)处的切线斜率k =x 20,切线方程为y -y 0=x 20(x -x 0).又切线过点P ⎝ ⎛⎭⎪⎫2,83,且(x 0,y 0)在曲线y =13x 3上,所以⎩⎪⎨⎪⎧83-y 0=x 2(2-x 0),y 0=13x 30,整理得x 30-3x 20+4=0,即(x 0-2)2(x 0+1)=0,解得x 0=2或x 0=-1.当x 0=2时,y 0=83,切线斜率k =4,切线方程为12x -3y -16=0;当x 0=-1时,y 0=-13,切线斜率k =1,切线方程为3x -3y +2=0.故过点P 的切线方程为12x -3y -16=0或3x -3y +2=0.10.已知曲线f (x )=ax-x 在x =4处的切线方程为5x +16y +b =0,求实数a 与b 的值.解:因为直线5x +16y +b =0的斜率k =-516,所以f ′(4)=-516.而f ′(4)=lim Δx →0(a 4+Δx -4+Δx )-(a4-4)Δx=limΔx →0(a 4+Δx -a4)-(4+Δx -2)Δx=lim Δx →0[-a 4(4+Δx )-14+Δx +2]=-a +416,所以-a +416=-516,解得a =1. 所以f (x )=1x -x ,所以f (4)=14-4=-74,即切点为(4,-74).因为(4,-74)在切线5x +16y +b =0上,所以5×4+16×(-74)+b =0,即b =8,从而a =1,b =8.[B 能力提升]11.曲线y =x +1x上任意一点P 处的切线斜率为k ,则k 的取值范围是( )A .(-∞,-1)B .(-1,1)C .(-∞,1)D .(1,+∞)解析:选C.y =x +1x上任意一点P (x 0,y 0)处的切线斜率为k =y ′|x =x 0=lim Δx →0(x 0+Δx )+1x 0+Δx -⎝⎛⎭⎪⎫x 0+1x 0Δx=lim Δx →0⎝ ⎛⎭⎪⎫1-1x 20+x 0Δx =1-1x 20<1.即k <1.12.若抛物线y =x 2-x +c 上一点P 的横坐标是-2,在点P 处的切线恰好过坐标原点,则实数c 的值为________.解析:y ′=limΔx →0ΔyΔx =2x -1,在点P 处切线的斜率为2×(-2)-1=-5.因为点P 的横坐标是-2,所以点P 的纵坐标是6+c ,故直线OP 的斜率为-6+c 2,根据题意有-6+c2=-5,解得c =4.答案:413.已知直线l :y =4x +a 与曲线C :y =x 3-2x 2+3相切,求a 的值及切点坐标. 解:设直线l 与曲线C 相切于点P (x 0,y 0), 因为f ′(x )=limΔx →0f (x +Δx )-f (x )Δx=lim Δx →0(x +Δx )3-2(x +Δx )2+3-(x 3-2x 2+3)Δx=3x 2-4x , 由题意可知k =4, 即3x 20-4x 0=4, 解得x 0=-23或x 0=2,所以切点的坐标为(-23,4927)或(2,3).当切点为(-23,4927)时,有4927=4×(-23)+a ,a =12127.当切点为(2,3)时,有3=4×2+a ,a =-5.所以当a =12127时,切点为(-23,4927);当a =-5时,切点为(2,3).14.(选做题)已知曲线y =x 2-1在x =x 0处的切线与曲线y =1-x 3在x =x 0处的切线互相平行,试分别求出这两条平行的切线方程.解:对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0.对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20,又y =1-x 3与y =x 2-1在x =x 0处的切线互相平行, 所以2x 0=-3x 20,解得x 0=0或x 0=-23.(1)当x 0=0时,两条切线的斜率k =0, 曲线y =x 2-1上的切点坐标为(0,-1), 切线方程为y =-1,曲线y =1-x 3上的切点坐标为(0,1),切线方程为y =1. 但直线y =1并不是曲线的切线,不符合题意. (2)当x 0=-23时,两条切线的斜率k =-43,曲线y =x 2-1上的切点坐标为⎝ ⎛⎭⎪⎫-23,-59,切线方程为y +59=-43⎝ ⎛⎭⎪⎫x +23,即12x +9y+13=0,曲线y =1-x 3上的切点坐标为⎝ ⎛⎭⎪⎫-23,3527,切线方程为y -3527=-43⎝ ⎛⎭⎪⎫x +23,即36x +27y-11=0.综上,两曲线的切线方程分别是12x+9y+13=0,36x+27y-11=0.。
高中数学人教A版选修2-2学案:第一章 1.7 定积分的简单应用含解析
定积分的简单应用预习课本P56~59,思考并完成下列问题(1)利用定积分求平面图形的面积时,需要知道哪些条件?(2)两条曲线相交围成的平面图形能否用定积分求其面积?[新知初探]1.定积分与平面图形面积的关系(1)已知函数f (x )在[a ,b ]上是连续函数,由直线y =0,x =a ,x =b 与曲线y =f (x )围成的曲边梯形的面积为S .f (x )的符号 平面图形的面积与定积分的关系f (x )≥0 S =⎠⎛a bf (x )d x f (x )<0S =-⎠⎛a b f (x )d x(2)一般地,如图,如果在公共的积分区间[a ,b ]上有f (x )>g (x ),那么直线x =a ,x =b 与曲线y =f (x ),y =g (x )围成的平面图形的面积为S =⎠⎛a b[f (x )-g (x )]d x .[点睛] 对于不规则平面图形面积的处理原则定积分只能用于求曲边梯形的面积,对于非规则的曲边梯形,一般要将其分割或补形为规则的曲边梯形,再利用定积分的和与差求面积.对于分割或补形中的多边形的面积,可直接利用相关面积公式求解.2.变速直线运动的路程做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )(v (t )≥0)在时间区间[a ,b ]上的定积分,即s =⎠⎛a bv (t )d t .3.力做功(1)恒力做功:一物体在恒力F (单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向移动了s ,则力F 所做的功为W =Fs .(2)变力做功:如果物体在变力F (x )的作用下做直线运动,并且物体沿着与F (x )相同的方向从x =a 移动到x =b (a <b ),那么变力F (x )所做的功为W =⎠⎛a bF (x )d x .[点睛] 变速直线运动物体的路程、位移与定积分的关系如果做变速直线运动物体的速度-时间函数为v =v (t ),则物体在区间[a ,b ]上的位移为定积分⎠⎛a bv (t )d t ;物体在区间[a ,b ]上的路程为⎠⎛a b|v (t )|d t .[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)曲线y =x 3与直线x +y =2,y =0围成的图形面积为⎠⎛01x 3d x +⎠⎛12(2-x )d x .( ) (2)曲线y =3-x 2与直线y =-1围成的图形面积为⎠⎛-2 2(4-x 2)d x .( )(3)速度是路程与时间的函数关系的导数.( )(4)一个物体在2≤t ≤4时,运动速度为v (t )=t 2-4t ,则它在这段时间内行驶的路程为⎠⎛24(t 2-4t )d t .( )答案:(1)√ (2)√ (3)√ (4)×2.曲线y =cos x ⎝⎛⎭⎫0≤x ≤3π2与坐标轴所围成的图形面积是( ) A .2 B .3 C.52 D .4答案:B3.已知做自由落体运动的物体的速度为v =gt ,则物体从t =0到t =t 0所走过的路程为( )A.13gt 20B. gt 20C. 12gt 20D.14gt 20答案:C4.一列车沿直线轨道前进,刹车后列车速度v (t )=27-0.9t ,则列车从刹车到停车所前进的路程为________.答案:405利用定积分求平面图形的面积[典例] 求抛物线y 2=2x 和直线y =-x +4所围成的图形的面积.[解] 先求抛物线和直线的交点,解方程组⎩⎪⎨⎪⎧y 2=2x ,y =-x +4,求出交点坐标为A (2,2)和B (8,-4).法一:选x 为积分变量,变化区间为[0,8],将图形分割成两部分(如图),则面积为S =S 1+S 2=2⎠⎛022x d x +⎠⎛28()2x -x +4d x =423x 3220+⎝⎛⎭⎫223x 32-12x 2+4x 82=18.法二:选y 作积分变量,则y 的变化区间为[-4,2],如图得所求的面积为 S =⎠⎛2-4⎝⎛⎭⎫4-y -y22d y =⎝⎛⎭⎫4y -y 22-y362-4=18.利用定积分求由两条曲线围成的平面图形的面积的解题步骤 (1)画出图形.(2)确定图形范围,通过方程组求出交点的横坐标,确定积分上限和积分下限. (3)确定被积函数及积分变量,确定时可以综合考察下列因素:①被积函数的原函数易求;②较少的分割区域;③积分上限和积分下限比较简单. (4)写出平面图形的面积的定积分表达式.(5)运用微积分基本定理计算定积分,求出平面图形的面积. [活学活用]求曲线y =e x ,y =e -x 及直线x =1所围成的图形的面积.解: 如图,由⎩⎪⎨⎪⎧y =e x ,y =e -x ,解得交点为(0,1), 所求面积为S =⎠⎛01(e x -e -x )d x =(e x +e -x )10=e +1e -2.求变速直线运动的路程、位移[典例] 有一动点P 从原点出发沿x 轴运动,在时刻为t 时的速度为v (t )=8t -2t 2(速度的正方向与x 轴正方向一致).求(1)t =6时,点P 离开原点后运动的路程和点P 的位移; (2)经过时间t 后又返回原点时的t 值. [解] (1)由v (t )=8t -2t 2≥0得0≤t ≤4, 即当0≤t ≤4时,P 点沿x 轴正方向运动, 当t >4时,P 点向x 轴负方向运动. 故t =6时,点P 离开原点后运动的路程 s 1=⎠⎛04(8t -2t 2)d t -⎠⎛46(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪ 40-⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪64=1283. 当t =6时,点P 的位移为⎠⎛06(8t -2t 2)d t =⎝⎛⎭⎫4t 2-23t 3⎪⎪⎪60=0.(2)依题意,⎠⎛0t(8t -2t 2)d t =0, 即4t 2-23t 3=0,解得t =0或t =6,因为t =0对应于点P 刚开始从原点出发的情况,所以t =6为所求,(1)用定积分解决变速直线运动的位移和路程问题时,将物理问题转化为数学问题是关键.(2)路程是位移的绝对值之和,因此在求路程时,要先判断速度在区间内是否恒正,若符号不定,应求出使速度恒正或恒负的区间,然后分别计算,否则会出现计算失误.[活学活用]一质点在直线上从时刻t =0(s)开始以速度v =t 2-4t +3(m/s)运动,求点在t =4 s 时的位置及经过的路程.解:在t =4 s 时该点的位移为 ⎠⎛04(t 2-4t +3)d t =⎝⎛⎭⎫13t 3-2t 2+3t ⎪⎪⎪4=43(m). 即在t =4 s 时该点距出发点43m.又因为v (t )=t 2-4t +3=(t -1)(t -3), 所以在区间[0,1]及[3,4]上的v (t )≥0, 在区间[1,3]上,v (t )≤0.所以在t =4 s 时的路程为s =⎠⎛01(t 2-4t +3)d t -⎠⎛13(t 2-4t +3)d t +⎠⎛34(t 2-4t +3)d t =⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪1-⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪31+⎝⎛⎭⎫t 33-2t 2+3t ⎪⎪⎪ 43=4(m).求变力做功[典例] 一物体在变力F (x )=⎩⎪⎨⎪⎧2x +4,0≤x ≤2,x 2+2x ,2≤x ≤5,(x 的单位:m ,F 的单位:N)的作用下,沿着与力F 相同的方向从x =0运动到x =5处,求变力所做的功.[解] 变力F (x )所做的功为 W =⎠⎛02(2x +4)d x +⎠⎛25(x 2+2x )d x=(x 2+4x ) ⎪⎪⎪2+⎝⎛⎭⎫13x 3+x 2⎪⎪⎪52=12+60=72(J).求变力做功的方法步骤(1)要明确变力的函数式F (x ),确定物体在力的方向上的位移. (2)利用变力做功的公式W =⎠⎛ab F (x )d x 计算.(3)注意必须将力与位移的单位换算为牛顿与米,功的单位才为焦耳. [活学活用]在弹性限度内,用力把弹簧从平衡位置拉长10 cm 所用的力是200 N ,求变力F 做的功. 解:设弹簧所受到的拉力与弹簧伸长的函数关系式为F (x )=kx (k >0),当x =10 cm =0.1 m 时,F (x )=200 N ,即0.1k =200,得k =2 000,故F (x )=2 000x , 所以力F 把弹簧从平衡位置拉长10 cm 所做的功是W =⎠⎛0 0.12 000x d x =1 000x 2⎪⎪⎪1=10(J).层级一 学业水平达标1.在下面所给图形的面积S 及相应的表达式中,正确的有( )A .①③B .②③C .①④D .③④解析:选D ①应是S =⎠⎛a b[f (x )-g (x )]d x ,②应是S =⎠⎛0822x d x -⎠⎛48(2x -8)d x ,③和④正确.故选D.2.一物体以速度v =(3t 2+2t )m/s 做直线运动,则它在t =0 s 到t =3 s 时间段内的位移是( )A .31 mB .36 mC .38 mD .40 m解析:选B S =⎠⎛03(3t 2+2t )d t =(t 3+t 2)30=33+32=36(m),故应选B. 3.如图所示,阴影部分的面积是( ) A .2 3 B .2- 3 C.323D.353解析:选C S =⎠⎛-3 1(3-x 2-2x )d x ,即F (x )=3x -13x 3-x 2,则F (1)=3-13-1=53,F (-3)=-9+9-9=-9.∴S =F (1)-F (-3)=53+9=323.故应选C.4.由y =x 2,y =14x 2及x =1围成的图形的面积S =( )A.14B.12C.13D .1解:选A 图形如图所示,S =⎠⎛01x 2d x -⎠⎛0114x 2d x=⎠⎛0134x 2d x=14x 310=14. 5.曲线y =x 3-3x 和y =x 围成的图形面积为( ) A .4 B .8 C .10D .9解析:选B 由⎩⎪⎨⎪⎧ y =x 3-3x ,y =x ,解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧ x =2,y =2或⎩⎪⎨⎪⎧x =-2,y =-2.∵两函数y =x 3-3x 与y =x 均为奇函数,∴S =2⎠⎛02[x -(x 3-3x )]d x =2·⎠⎛02(4x -x 3)d x=2⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪20=8,故选B.6.若某质点的初速度v (0)=1,其加速度a (t )=6t ,做直线运动,则质点在t =2 s 时的瞬时速度为________.解析:v (2)-v (0)=⎠⎛02a (t )d t =⎠⎛026t d t =3t 2⎪⎪⎪2=12,所以v (2)=v (0)+3×22=1+12=13. 答案:137.一物体沿直线以速度v =1+t m/s 运动,该物体运动开始后10 s 内所经过的路程是______.解析:S =⎠⎛0101+t d t =23(1+t )32 ⎪⎪⎪10=23⎝⎛⎭⎫1132-1. 答案: 23⎝⎛⎭⎫1132-1 8.由y =1x,x =1,x =2,y =0所围成的平面图形的面积为________.解析:画出曲线y =1x (x >0)及直线x =1,x =2,y =0,则所求面积S 为如图所示的阴影部分面积.∴S =⎠⎛121x d x =ln x ⎪⎪⎪21=ln 2-ln 1=ln 2.答案:ln 29.计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.解:由⎩⎪⎨⎪⎧y =x +3,y =x 2-2x +3,解得x =0及x =3.从而所求图形的面积S =⎠⎛03[(x +3)-(x 2-2x +3)]d x =⎠⎛03(-x 2+3x )d x =⎝⎛⎭⎫-13x 3+32x 2⎪⎪⎪30=92. 10. 设y =f (x )是二次函数,方程f (x )=0有两个相等的实根,且f ′(x )=2x +2. (1)求y =f (x )的表达式;(2)求y =f (x )的图象与两坐标轴所围成图形的面积. 解:(1)∵y =f (x )是二次函数且f ′(x )=2x +2, ∴设f (x )=x 2+2x +c . 又f (x )=0有两个等根,∴4-4c =0,∴c =1,∴f (x )=x 2+2x +1.(2)y =f (x )的图象与两坐标所围成的图形的面积S =⎠⎛-10(x 2+2x +1)d x =13x 3+x 2+x ⎪⎪⎪-1=13. 层级二 应试能力达标1.一物体在力F (x )=4x -1(单位:N)的作用下,沿着与力F 相同的方向,从x =1运动到x =3处(单位:m),则力F (x )所做的功为( )A .8 JB .10 JC .12 JD .14 J解析:选D 由变力做功公式有:W =⎠⎛13(4x -1)d x =(2x 2-x ) ⎪⎪⎪31=14(J),故应选D.2.若某产品一天内的产量(单位:百件)是时间t 的函数,若已知产量的变化率为a =36t,那么从3小时到6小时期间内的产量为( )A.12B .3-322 C .6+3 2D .6-3 2解析:选D ⎠⎛3636t d t =6t ⎪⎪⎪63=6-32,故应选D.3.以初速40 m/s 竖直向上抛一物体,t s 时刻的速度v =40-10t 2,则此物体达到最高时的高度为( )A.1603 m B.803 m C.403m D.203m 解析:选A 由v =40-10t 2=0,得t 2=4,t =2. ∴h =⎠⎛02(40-10t 2)d t =⎝⎛⎭⎫40t -103t 3⎪⎪⎪2=80-803=1603(m).故选A. 4.(山东高考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为( ) A .2 2 B .4 2 C .2D .4解析:选D 由4x =x 3,解得x =0或x =2或x =-2(舍去),根据定积分的几何意义可知,直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积为⎠⎛02(4x -x 3)d x=⎝⎛⎭⎫2x 2-14x 4⎪⎪⎪2=4.5.椭圆x 216+y 29=1所围区域的面积为________.解析:由x 216+y 29=1,得y =±3416-x 2.又由椭圆的对称性知,椭圆的面积为S =4⎠⎛043416-x 2d x =3⎠⎛0416-x 2d x. 由y =16-x 2,得x 2+y 2=16(y ≥0).由定积分的几何意义知⎠⎛0416-x 2d x 表示由直线x =0,x =4和曲线x 2+y 2=16(y ≥0)及x 轴所围成图形的面积,∴⎠⎛0416-x 2d x =14×π×16=4π,∴S =3×4π=12π.答案:12π6.如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则它落到阴影部分的概率为____________.解析:∵S 阴=2⎠⎛01(e -e x )d x =2(e x -e x ) ⎪⎪⎪1=2,S 正方形=e 2,∴P =2e 2.答案:2e27.求由曲线xy =1及直线x =y ,y =3所围成平面图形的面积.解:作出曲线xy =1,直线x =y ,y =3的草图,所求面积为图中阴影部分的面积.求交点坐标:由⎩⎪⎨⎪⎧xy =1,y =3,得⎩⎪⎨⎪⎧x =13,y =3,故A ⎝⎛⎭⎫13,3;由⎩⎪⎨⎪⎧xy =1,y =x , 得⎩⎪⎨⎪⎧ x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1(舍去), 故B(1,1);由⎩⎪⎨⎪⎧y =x ,y =3得⎩⎪⎨⎪⎧x =3,y =3,故C(3,3),8.函数f(x)=ax 3+bx 2-3x ,若f(x)为实数集R 上的单调函数,且a ≥-1,设点P 的坐标为(b ,a ),试求出点P 的轨迹所形成的图形的面积S .解:当a =0时,由f (x )在R 上单调,知b =0.当a ≠0时,f (x )在R 上单调⇔f ′(x )≥0恒成立或f ′(x )≤0恒成立.∵f ′(x )=3ax 2+2bx -3,∴⎩⎪⎨⎪⎧Δ=4b 2+36a ≤0,a ≥-1.∴a ≤-19b 2且a ≥-1.因此满足条件的点P (b ,a )在直角坐标平面xOy 的轨迹所围成的图形是由曲线y =-19x 2与直线y =-1所围成的封闭图形.联立⎩⎪⎨⎪⎧y =-19x 2,y =-1,解得⎩⎪⎨⎪⎧ x =-3,y =-1或⎩⎪⎨⎪⎧x =3,y =-1,如图,其面积S =⎠⎛3-3⎝⎛⎭⎫1-19x 2d x =⎝⎛⎭⎫x -x 327⎪⎪⎪3-3=(3-1)-(-3+1)=4.(时间: 120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若f (x )=sin α-cos x ,则f ′(x )等于( ) A .sin x B .cos x C .cos α+sin xD .2sin α+cos x解析:选A 函数是关于x 的函数,因此sin α是一个常数.2.以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是( )A.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π B .[0,π) C.⎣⎡⎦⎤π4,3π4D.⎣⎡⎦⎤0,π4∪⎝⎛⎦⎤π2,3π4 解析:选A y ′=cos x ,∵cos x ∈[-1,1],∴切线的斜率范围是[-1,1],∴倾斜角的范围是⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 3.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个解析:选A 设极值点依次为x 1,x 2,x 3且a <x 1<x 2<x 3<b ,则f (x )在(a ,x 1),(x 2,x 3)上递增,在(x 1,x 2),(x 3,b )上递减,因此,x 1,x 3是极大值点,只有x 2是极小值点.4.函数f (x )=x 2-ln x 的单调递减区间是( ) A. ⎝⎛⎦⎤0, 22 B.⎣⎡⎭⎫22,+∞ C. ⎝⎛⎦⎤-∞,-22,⎝⎛⎭⎫0, 22 D.⎣⎡⎭⎫-22, 0,⎝⎛⎦⎤0, 22 解析:选A ∵f ′(x )=2x -1x =2x 2-1x ,当0<x ≤22时,f ′(x )≤0,故f (x )的单调递减区间为⎝⎛⎦⎤0,22. 5.函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A .1 B.12 C .0D .-1解析:选A f ′(x )=3-12x 2,令f ′(x )=0, 则x =-12(舍去)或x =12,f (0)=0,f (1)=-1,f ⎝⎛⎭⎫12=32-12=1,∴f (x )在[0,1]上的最大值为1.6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3处取得极值,则a =( ) A .2 B .3 C .4D .5解析:选D f ′(x )=3x 2+2ax +3,∵f ′(-3)=0. ∴3×(-3)2+2a ×(-3)+3=0,∴a =5.7.函数f (x )=13ax 3+12ax 2-2ax +1的图象经过四个象限,则实数a 的取值范围是( )A.⎝⎛⎭⎫-310,67 B.⎝⎛⎭⎫-85,-316 C.⎝⎛⎭⎫-83,-116 D.⎝⎛⎭⎫-∞,-310∪⎝⎛⎭⎫67,+∞ 解析:选D f ′(x )=ax 2+ax -2a =a (x +2)(x -1),要使函数f (x )的图象经过四个象限,则f (-2)f (1)<0,即⎝⎛⎭⎫103a +1⎝⎛⎭⎫-76a +1<0,解得a <-310或a >67. 故选D.8.已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )解析:选D 由导函数图象可知,当x <0时,函数f (x )递减,排除A 、B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.9.定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}解析:选B 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0,∴当x <1时, g (x )<0,即2f (x )<x +1,故选B.10.某产品的销售收入y 1(万元)是产量x (千台)的函数:y 1=17x 2,生产成本y 2(万元)是产量x (千台)的函数:y 2=2x 3-x 2(x >0),为使利润最大,应生产( )A .6千台B .7千台C .8千台D .9千台解析:选A 设利润为y ,则y =y 1-y 2=17x 2-(2x 3-x 2)=18x 2-2x 3,y ′=36x -6x 2,令y ′=0得x =6或x =0(舍),f (x )在(0,6)上是增函数,在(6,+∞)上是减函数,∴x =6时y 取得最大值.11.已知定义在R 上的函数f (x ),f (x )+x ·f ′(x )<0,若a <b ,则一定有( ) A .af (a )<bf (b ) B .af (b )<bf (a ) C .af (a )>bf (b )D .af (b )>bf (a )解析:选C [x ·f (x )]′=x ′f (x )+x ·f ′(x )=f (x )+x ·f ′(x )<0, ∴函数x ·f (x )是R 上的减函数, ∵a <b ,∴af (a )>bf (b ).12.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是( )A .a >bB .a <bC .a =bD .a ,b 的大小不能确定解析:选A f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,则g ′(x )=-x sin x +cos x-cos x =-x sin x .∵0<x <1,∴g ′(x )<0,即函数g (x )在(0,1)上是减函数,得g (x )<g (0)=0,故f ′(x )<0,函数f (x )在(0,1)上是减函数,得a >b ,故选A.二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中的横线上) 13.若f (x )=13x 3-f ′(1)x 2+x +5,则f ′(1)=________.解析:f ′(x )=x 2-2f ′(1)x +1,令x =1,得f ′(1)=23.答案:2314.设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.解析:S =⎠⎛0ax d x =23x 32a0=23a 32=a 2,∴a =49. 答案:4915.已知函数f (x )满足f (x )=f (π-x ),且当x ∈⎝⎛⎭⎫-π2,π2时,f (x )=x +sin x ,设a =f (1),b =f (2),c =f (3),则a ,b ,c 的大小关系是________.解析:f (2)=f (π-2),f (3)=f (π-3), 因为f ′(x )=1+cos x ≥0, 故f (x )在⎝⎛⎭⎫-π2,π2上是增函数, ∵π2>π-2>1>π-3>0, ∴f (π-2)>f (1)>f (π-3),即c <a <b . 答案:c <a <b 16.若函数f (x )=4xx 2+1在区间(m,2m +1)上单调递增,则实数m 的取值范围是__________.解析:f ′(x )=4-4x 2(x 2+1)2,令f ′(x )>0,得-1<x <1,即函数f (x )的增区间为(-1,1). 又f (x )在(m,2m +1)上单调递增, 所以⎩⎪⎨⎪⎧m ≥-1,m <2m +1,2m +1≤1.解得-1<m ≤0.答案:(-1,0]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)若函数y =f (x )在x =x 0处取得极大值或极小值,则称x 0为函数y =f (x )的极值点.已知a ,b 是实数,1和-1是函数f (x )=x 3+ax 2+bx 的两个极值点.(1)求a 和b 的值;(2)设函数g (x )的导函数g ′(x )=f (x )+2,求g (x )的极值点. 解:(1)由题设知f ′(x )=3x 2+2ax +b ,且f ′(-1)=3-2a +b =0,f ′(1)=3+2a +b =0, 解得a =0,b =-3. (2)由(1)知f (x )=x 3-3x . 因为f (x )+2=(x -1)2(x +2),所以g ′(x )=0的根为x 1=x 2=1,x 3=-2, 于是函数g (x )的极值点只可能是1或-2. 当x <-2时,g ′(x )<0;当-2<x <1时, g ′(x )>0,故-2是g (x )的极值点. 当-2<x <1或x >1时,g ′(x )>0, 故1不是g (x )的极值点. 所以g (x )的极值点为-2.18. (本小题满分12分)(北京高考)设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间. 解:(1)因为f (x )=x e a -x +bx , 所以f ′(x )=(1-x )e a -x +b .依题设有⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得⎩⎪⎨⎪⎧a =2,b =e.(2)由(1)知f(x)=x e2-x+e x.由f′(x)=e2-x(1-x+e x-1)及e2-x>0知,f′(x)与1-x+e x-1同号.令g(x)=1-x+e x-1,则g′(x)=-1+e x-1.所以当x∈(-∞,1)时,g′(x)<0,g(x)在区间(-∞,1)上单调递减;当x∈(1,+∞)时,g′(x)>0,g(x)在区间(1,+∞)上单调递增.故g(1)=1是g(x)在区间(-∞,+∞)上的最小值,从而g(x)>0,x∈(-∞,+∞).综上可知,f′(x)>0,x∈(-∞,+∞),故f(x)的单调递增区间为(-∞,+∞).19.(本小题满分12分)某个体户计划经销A,B两种商品,据调查统计,当投资额为x(x≥0)万元时,在经销A,B商品中所获得的收益分别为f(x)万元与g(x)万元,其中f(x)=a(x-1)+2,g(x)=6ln(x+b)(a>0,b>0).已知投资额为零时收益为零.(1)求a,b的值;(2)如果该个体户准备投入5万元经销这两种商品,请你帮他制定一个资金投入方案,使他能获得最大利润.解:(1)由投资额为零时收益为零,可知f(0)=-a+2=0,g(0)=6ln b=0,解得a=2,b=1.(2)由(1)可得f(x)=2x,g(x)=6ln(x+1).设投入经销B商品的资金为x万元(0<x≤5),则投入经销A商品的资金为(5-x)万元,设所获得的收益为S(x)万元,则S(x)=2(5-x)+6ln(x+1)=6ln(x+1)-2x+10(0<x≤5).S′(x)=6x+1-2,令S′(x)=0,得x=2.当0<x<2时,S′(x)>0,函数S(x)单调递增;当2<x≤5时,S′(x)<0,函数S(x)单调递减.所以当x=2时,函数S(x)取得最大值,S(x)max=S(2)=6ln 3+6≈12.6万元.所以,当投入经销A商品3万元,B商品2万元时,他可获得最大收益,收益的最大值约为12.6万元.20.(本小题满分12分)已知函数f (x )=ax 2+2ln(1-x )(a 为常数).(1)若f (x )在x =-1处有极值,求a 的值并判断x =-1是极大值点还是极小值点; (2)若f (x )在[-3,-2]上是增函数,求a 的取值范围. 解:(1)f ′(x )=2ax -21-x,x ∈(-∞,1), f ′(-1)=-2a -1=0, 所以a =-12.f ′(x )=-x -21-x =(x +1)(x -2)1-x. ∵x <1,∴1-x >0,x -2<0, 因此,当x <-1时f ′(x )>0, 当-1<x <1时f ′(x )<0, ∴x =-1是f (x )的极大值点.(2)由题意f ′(x )≥0在x ∈[-3,-2]上恒成立, 即2ax -21-x≥0在x ∈[-3,-2]上恒成立 ∴a ≤1-x 2+x 在x ∈[-3,-2]上恒成立,∵-x 2+x =-⎝⎛⎭⎫x -122+14 ∈[-12,-6], ∴1-x 2+x ∈⎣⎡⎦⎤-16,-112, ∴⎝⎛⎭⎫1-x 2+ x min =-16,a ≤-16.即a 的取值范围为⎝⎛⎦⎤-∞,-16. 21.(本小题满分12分)已知函数f (x )=x 2-m ln x ,h (x )=x 2-x +a . (1)当a =0时,f (x )≥h (x )在(1,+∞)上恒成立,求实数m 的取值范围;(2)当m =2时,若函数k (x )=f (x )-h (x )在区间(1,3)上恰有两个不同零点,求实数a 的取值范围.解:(1)由f (x )≥h (x ), 得m ≤xln x在(1,+∞)上恒成立. 令g (x )=xln x ,则g ′(x )=ln x -1(ln x )2, 当x ∈(1,e)时,g ′(x )<0;当x ∈(e ,+∞)时,g ′(x )>0,所以g (x )在(1,e)上递减,在(e ,+∞)上递增. 故当x =e 时,g (x )的最小值为g (e)=e. 所以m ≤e.即m 的取值范围是(-∞,e]. (2)由已知可得k (x )=x -2ln x -a . 函数k (x )在(1,3)上恰有两个不同零点,相当于函数φ(x )=x -2ln x 与直线y =a 有两个不同的交点. φ′(x )=1-2x =x -2x,当x ∈(1,2)时,φ′(x )<0,φ(x )递减, 当x ∈(2,3)时,φ′(x )>0,φ(x )递增. 又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3, 要使直线y =a 与函数φ(x )=x -2ln x 有两个交点, 则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).22.(本小题满分12分)已知函数f (x )=(x -2)e x +a (x -1)2有两个零点. (1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 解:(1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ). ①设a =0,则f (x )=(x -2)e x ,f (x )只有一个零点. ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)内单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ). 若a ≥-e2,则l n(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)内单调递增. 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 若a <-e2,则ln(-2a )>1,故当x∈(1,ln(-2a))时,f′(x)<0;当x∈(ln(-2a),+∞)时,f′(x)>0.因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.综上,a的取值范围为(0,+∞).(2)证明:不妨设x1<x2,由(1)知,x1∈(-∞,1),x2∈(1,+∞),2-x2∈(-∞,1),又f(x)在(-∞,1)内单调递减,所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.由于f(2-x2)=-x2e2-x2+a(x2-1)2,而f(x2)=(x2-2)e x2+a(x2-1)2=0,所以f(2-x2)=-x2e2-x2-(x2-2)e x2.设g(x)=-x e2-x-(x-2)e x,则g′(x)=(x-1)(e2-x-e x).所以当x>1时,g′(x)<0,而g(1)=0,故当x>1时,g(x)<0.从而g(x2)=f(2-x2)<0,故x1+x2<2.。
高中数学人教A版选修2-2(课时训练):1.6 微积分基本定理 Word版含答案
1.6 微积分基本定理[学习目标]1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的定积分. [知识链接]1.导数与定积分有怎样的联系?答 导数与定积分都是微积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.在下面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?答 根据定积分与曲边梯形的面积的关系知: 图(1)中S =⎠⎛ab f (x )d x ,图(2)中S =-⎠⎛ab f (x )d x ,图(3)中S =⎠⎛0b f (x )d x -⎠⎛a0f (x )d x .[预习导引] 1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).2.函数f (x )与其一个原函数的关系 (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln_x (x >0);(4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1);(6)若f (x )=sin x ,则F (x )=-cos_x ; (7)若f (x )=cos x ,则F (x )=sin_x .要点一 求简单函数的定积分 例1 计算下列定积分 (1)⎠⎛123d x ; (2)⎠⎛02(2x +3)d x ;(3)⎠⎛3-1(4x -x 2)d x ; (4)⎠⎛12(x -1)5d x .解 (1)因为(3x )′=3,所以⎠⎛123d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以⎠⎛02(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10.(3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以⎠⎛3-1(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203. (4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以⎠⎛21(x -1)5d x=16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6 =16. 规律方法 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②f (x )的原函数有无穷多个,如F (x )+c ,计算时,一般只写一个最简单的,不再加任意常数c .跟踪演练1 求下列定积分: (1)∫π20(3x +sin x )d x ;(2)⎠⎛21⎝⎛⎭⎫e x -1x d x . 解 (1)∵⎝⎛⎭⎫32x 2-cos x ′=3x +sin x , ∴∫π20(3x +sin x )d x =⎝⎛⎭⎫32x 2-cos x ⎪⎪⎪⎪π20=⎣⎡⎦⎤32×⎝⎛⎭⎫π22-cos π2-⎝⎛⎭⎫32×0-cos 0=3π28+1; (2)∵(e x -ln x )′=e x -1x,∴⎠⎛21(e x-1x )d x =()e x -ln x ⎪⎪⎪21=(e 2-ln 2)-(e -0) =e 2-e -ln 2.要点二 求较复杂函数的定积分 例2 求下列定积分:(1)⎠⎛41x (1-x )d x ; (2)∫π202cos 2x2d x ;(3)⎠⎛41(2x +1x)d x . 解 (1)∵x (1-x )=x -x , 又∵⎝⎛⎭⎫23x 32-12x 2′=x -x . ∴⎠⎛41x (1-x )d x =⎝⎛⎭⎫23x 32-12x 2⎪⎪⎪41 =⎝⎛⎭⎫23×432-12×42-⎝⎛⎭⎫23-12=-176. (2)∵2cos 2x2=1+cos x ,(x +sin x )′=1+cos x ,∴原式=∫π20(1+cos x )d x =(x +sin x )⎪⎪⎪⎪π20=π2+1.(3)∵⎝⎛⎭⎫2xln 2+2x ′=2x +1x,∴⎠⎛41(2x+1x)d x =⎝⎛⎭⎫2x ln 2+2x ⎪⎪⎪41 =⎝⎛⎭⎫24ln 2+24-⎝⎛⎭⎫2ln 2+2=14ln 2+2. 规律方法 求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余弦函数、指数、对数函数与常数的和与差. (2)确定积分区间,分清积分下限与积分上限. 跟踪演练2 计算下列定积分: (1)∫π30(sin x -sin 2x )d x ;(2)⎠⎛0ln 2e x (1+e x )d x .解 (1)sin x -sin 2x 的一个原函数是-cos x + 12cos 2x ,所以∫π30(sin x -sin 2x )d x =⎝⎛⎭⎫-cos x +12cos 2x ⎪⎪⎪⎪π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14. (2)∵e x (1+e x )=e x +e 2x , ∴⎝⎛⎭⎫e x +12e 2x ′=e x +e 2x , ∴⎠⎛0ln 2e x (1+e x )d x =⎠⎛0ln 2()e x+e2xd x=⎝⎛⎭⎫e x +12e 2x ⎪⎪⎪ln 2=e ln 2+12e 2ln 2-e 0-12e 0=2+12×4-1-12=52.要点三 定积分的简单应用例3 已知f (a )=⎠⎛10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x , ∴⎠⎛10(2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10=23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.规律方法 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪演练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛10f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2. ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ②而⎠⎛10f (x )d x =⎠⎛10(ax 2+bx +c )d x =⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪1=13a +12b +c , ∴13a +12b +c =-2, ③由①②③式得a =6,b =0,c =-4. 要点四 求分段函数的定积分 例4 计算下列定积分:(1)若f (x )=⎩⎪⎨⎪⎧x 2 (x ≤0)cos x -1 (x >0),求∫π2-1f (x )d x ;(2)⎠⎛30|x 2-4|d x .解 (1)∫π2-1f (x )d x =⎠⎛0-1x 2d x +∫π20(cos x -1)d x ,又∵⎝⎛⎭⎫13x 3′=x 2,(sin x -x )′=cos x -1 ∴原式=13x 3⎪⎪⎪0-1+(sin x -x )⎪⎪⎪⎪π20=⎝⎛⎭⎫0+13+⎝⎛⎭⎫sin π2-π2-(sin 0-0) =43-π2.(2)∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4 (x ≥2或x ≤-2),4-x 2(-2<x <2), 又∵⎝⎛⎭⎫13x 3-4x ′=x 2-4,⎝⎛⎭⎫4x -13x 3′=4-x 2, ∴⎠⎛30|x 2-4|d x =⎠⎛20(4-x 2)d x +⎠⎛32(x 2-4)d x=⎝⎛⎭⎫4x -13x 3⎪⎪⎪20+⎝⎛⎭⎫13x 3-4x ⎪⎪⎪32 =⎝⎛⎭⎫8-83-0+(9-12)-⎝⎛⎭⎫83-8=233. 规律方法 (1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论. 跟踪演练4 求⎠⎛3-3(|2x +3|+|3-2x |)d x .解 ∵|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,x <-32,6,-32≤x ≤32,4x ,x >32,∴⎠⎛3-3(|2x +3|+|3-2x |)d x=∫-32-3(-4x )d x +∫32-326d x +∫3324x d x=-2x 2⎪⎪⎪⎪-32-3+6x ⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=45.1.∫π2-π2(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2答案 D解析 ∵(x +sin x )′=1+cos x , ∴⎪⎪∫π2-π2(1+cos x )d x =(x +sin x )π2-π2=π2+sin π2-⎣⎡⎦⎤-π2+sin ⎝⎛⎭⎫-π2=π+2. 2.若⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2答案 D解析 ⎠⎛1a ⎝⎛⎭⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x =x 2|a 1+ ln x ⎪⎪a1=a 2-1+ln a =3+ln 2,解得a =2.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x =________. 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪⎪20-x 2320=83-43=43. 4.已知f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算⎠⎛0πf (x )d x .解 ⎠⎛0πf (x )d x =∫π20f (x )d x +错误!f (x )d x=∫π20(4x -2π)d x +错误!cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x .所以∫π20(4x -2π)d x +错误!cos x d x =(2x 2-2πx )错误!+sin x ⎪⎪⎪ππ2=-12π2-1,即⎠⎛0πf (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础达标1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )⎪⎪ba ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =li m n→∞∑i =1n b -ans ′(ξi ); ④它在时间段[a ,b ]内的位移是s =⎠⎛ab s ′(t )d t .A .①B .①②C .①②④D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3.⎠⎛01(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1答案 C解析 ⎠⎛01(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32 B .43C .23D .-23答案 B解析 ⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+1=13+1=43,故选B. 5.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.答案33解析 由已知得13a +c =ax 20+c ,∴x 20=13,又∵0≤x 0≤1,∴x 0=33. 6.(2013·湖南)若⎠⎛0T x 2d x =9,则常数T 的值为________.答案 3解析 ⎠⎛0T x 2d x =⎪⎪13x 3T 0=13T 3=9,即T 3=27,解得T =3. 7.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b 的值.解 ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛1-1(x 3+ax )d x =0,∴⎠⎛1-1(x 3+ax +3a -b )d x=⎠⎛1-1(x 3+ax )d x +⎠⎛1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3,①又f (t )=⎪⎪⎣⎡⎦⎤x 44+a2x 2+(3a -b )x t 0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0,②由①②得a =-3,b =-9. 二、能力提升8.∫π20sin 2x2d x 等于( )A.π4B .π2-1C .2D .π-24答案 D解析 ∫π20sin 2x 2d x =∫π201-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,故选D. 9.(2013·江西)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D . S 3<S 2<S 1答案 B解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x |21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a =________.答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式.解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛a 1b x d x =13a +12b =176. 由⎩⎨⎧12a +b =513a +12b =176,得⎩⎪⎨⎪⎧a =4b =3.即f (x )=4x +3.12.若函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x =x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 三、探究与创新13.求定积分⎠⎛3-4|x +a |d x . 解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛3-4(x +a )d x = ⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时,原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛3-a(x +a )d x =⎝⎛⎭⎫-x 22-ax ⎪⎪-a -4+ ⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252. (3)当-a ≥3即a ≤-3时,原式=⎠⎛3-4[-(x +a )]d x = ⎪⎪⎝⎛⎭⎫-x 22-ax 3-4= -7a +72. 综上,得⎠⎛3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。
高中数学(人教A版选修2-2)练习:1.5.3 定积分的概念
课时提升作业(十)定积分的概念一、选择题(每小题3分,共12分)1.(2014·广州高二检测)关于定积分m=dx,下列说法正确的是( )A.被积函数为y=-xB.被积函数为y=-C.被积函数为y=-x+C,D.被积函数为y=-x3【解析】选B.由定积分的定义知,被积函数为y=-.2.定积分f(x)dx(f(x)>0)的积分区间是( )A.[-2,2]B.[0,2]C.[-2,0]D.不确定【解析】选A.由定积分的概念得定积分f(x)dx的积分区间是[-2,2].3.设f(x)=则f(x)dx的值是( )A.x2dxB.2x dxC.x2dx+2x dxD.2x dx+x2dx【解析】选D.因为f(x)在不同区间上的解析式不同,所以积分区间应该与对应的解析式一致.利用定积分的性质可得正确答案为D.4.(2014·南昌高二检测)下列等式不成立的是( )A.[mf(x)+ng(x)]dx=m f(x)dx+n g(x)dxB.[f(x)+1]dx=f(x)dx+b-aC.f(x)g(x)dx=f(x)dx·g(x)dxD.sinxdx=sinxdx+sinxdx【解析】选C.由定积分的性质知选项A,B,D正确.【误区警示】应用定积分的性质计算定积分时,要特别注意积分区间及被积函数的符号.二、填空题(每小题4分,共8分)5.(2014·长春高二检测)定积分(-3)dx=__________.【解析】3dx表示图中阴影部分的面积S=3×2=6,(-3)dx=-3dx=-6.答案:-66.计算:(1-cosx)dx=________.【解题指南】根据定积分的几何意义,运用余弦曲线的对称性计算,或通过补形转化为矩形的面积计算.【解析】根据定积分的几何意义,得1dx=2π,cosxdx=cosxdx+cosxdx+cosxdx+cosxdx=cosxdx-cosxdx-cosxdx+cosxdx=0,所以(1-cosx)dx=1dx-cosxdx=2π-0=2π.答案:2π【一题多解】在公共积分区间[0,2π]上,(1-cosx)dx表示直线y=1与余弦曲线y=cosx在[0,2π]上围成封闭图形的面积,如图,由于余弦曲线y=cosx在[0,π]上关于点中心对称,在上关于点中心对称,所以区域①与②的面积相等,所求平面图形的面积等于边长分别为1,2π的矩形的面积,其值为2π.所以(1-cosx)dx=2π.答案:2π三、解答题(每小题10分,共20分)7.(2014·济南高二检测)已知x3dx=,x3dx=,x2dx=,x2dx=,求:(1)3x3dx.(2)6x2dx.(3)(3x2-2x3)dx.【解析】(1)3x3dx=3x3dx=3=3=12.(2)6x2dx=6x2dx=6(x2dx+x2dx)=6=126.(3)(3x2-2x3)dx=3x2dx-2x3dx=3×-2×=-.8.求定积分(-x)dx的值.【解析】(-x)dx表示圆(x-1)2+y2=1(y≥0)的一部分与直线y=x所围成的图形(图中阴影部分)的面积,故原式=×π×12-×1×1=-.【拓展延伸】1.利用定积分的几何意义求定积分的方法步骤(1)确定被积函数和积分区间.(2)准确画出图形.(3)求出各部分的面积.(4)写出定积分,注意当f(x)≥0时,S=f(x)dx,而当f(x)≤0时,S=-f(x)dx.2.利用定积分的几何意义求定积分的注意点准确理解其几何意义,同时要合理利用函数的奇偶性、对称性来解决问题.另外,要注意结合图形的直观辅助作用.一、选择题(每小题4分,共12分)1.(2014·黄冈高二检测)设曲线y=x2与直线y=x所围成的封闭区域的面积为S,则下列等式成立的是( )A.S=(x2-x)dxB.S=(x-x2)dxC.S=(y2-y)dyD.S=(y-)dy【解析】选B.将曲线方程y=x2与直线方程y=x联立方程组,解得x=0或x=1,结合图形可得B正确.2.如图所示,图中曲线方程为y=x2-1,用定积分表示围成封闭图形(阴影部分)的面积是( )A.B.(x2-1)dxC.|x2-1|dxD.(x2-1)dx+(x2-1)dx【解题指南】由定积分的几何意义及性质即可得出.【解析】选 C.由定积分的几何意义和性质可得:图中围成封闭图形(阴影部分)的面积S=(1-x2)dx+(x2-1)dx=|x2-1|dx,故选C.【举一反三】将本题中的函数改为f(x)=x-1,则(x-1)dx=__________.【解析】直线y=x-1,与x=0,x=1.y=0围成的图形为三角形,面积为S=×1×1=.由定积分的几何意义得(x-1)dx=-.答案:-3.(2013·天津高二检测)曲线y=与直线y=x,x=2所围成的图形面积用定积分可表示为( )A.dxB.dxC.dxD.dx【解析】选A.如图所示,阴影部分的面积可表示为xdx-dx=dx.二、填空题(每小题4分,共8分)4.(2014·深圳高二检测)定积分2014dx=__________.【解析】根据定积分的几何意义2014dx表示直线x=2014,x=2015,y=0,y=2014围成的图形的面积,故2014dx=2014×(2015-2014)=2014.答案:20145.定积分(2+)dx=________.【解题指南】利用定积分的几何意义先分别求出2dx,dx.再由性质求和.【解析】原式=2dx+dx.因为2dx=2,dx=,所以(2+)dx=2+.答案:2+三、解答题(每小题10分,共20分)6.(2014·青岛高二检测)根据定积分的几何意义求下列定积分的值:(1)xdx.(2)cosxdx.(3)|x|dx.【解析】(1)如图(1),xdx=-A1+A1=0.(2)如图(2),cosxdx=A1-A2+A3=0.(3)如图(3),因为A1=A2,所以|x|dx=2A1=2×=1.(A1,A2,A3分别表示图中相应各处面积)【拓展延伸】利用几何意义求定积分的注意点(1)关键是准确确定被积函数的图象,以及积分区间.(2)正确利用相关的几何知识求面积.(3)不规则的图形常用分割法求面积,注意分割点的准确确定.7.一辆汽车的速度——时间曲线如图所示,求汽车在这一分钟内行驶的路程.【解析】依题意,汽车的速度v与时间t的函数关系式为v(t)=所以该汽车在这一分钟内所行驶的路程为s=v(t)dt=tdt+(50-t)dt+10dt=300+400+200=900(米).关闭Word文档返回原板块。
11-12学年高中数学 第一章 导数及其应用 综合检测 新人教A版选修2-2
导数及其应用综合检测时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( ) A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1[答案] A[解析] y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1.2.一物体的运动方程为s=2t sin t+t,则它的速度方程为( )A.v=2sin t+2t cos t+1B.v=2sin t+2t cos tC.v=2sin tD.v=2sin t+2cos t+1[答案] A[解析] 因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sin t+2t cos t+1,故选A.3.曲线y=x2+3x在点A(2,10)处的切线的斜率是( )A.4B.5C.6D.7[答案] D[解析] 由导数的几何意义知,曲线y=x2+3x在点A(2,10)处的切线的斜率就是函数y=x2+3x在x =2时的导数,y′|x=2=7,故选D.4.函数y=x|x(x-3)|+1( )A.极大值为f(2)=5,极小值为f(0)=1B.极大值为f(2)=5,极小值为f(3)=1C.极大值为f(2)=5,极小值为f(0)=f(3)=1D.极大值为f(2)=5,极小值为f(3)=1,f(-1)=-3[答案] B[解析] y =x |x (x -3)|+1=⎩⎪⎨⎪⎧x 3-3x 2+1 (x <0或x >3)-x 3+3x 2+1 (0≤x ≤3)∴y ′=⎩⎪⎨⎪⎧3x 2-6x (x <0或x >3)-3x 2+6x (0≤x ≤3)x 变化时,f ′(x ),f (x )变化情况如下表:x (-∞,0)0 (0,2) 2 (2,3) 3 (3,+∞)f ′(x ) ++-+f (x )无极值极大值5极小值1f x 极大f f x 极小f 故应选B.5.(2009·安徽理,9)已知函数f (x )在R 上满足f (x )=2f (2-x )-x 2+8x -8,则曲线y =f (x )在点(1,f (1))处的切线方程是( )A .y =2x -1B .y =xC .y =3x -2D .y =-2x +3 [答案] A[解析] 本题考查函数解析式的求法、导数的几何意义及直线方程的点斜式. ∵f (x )=2f (2-x )-x 2+8x -8, ∴f (2-x )=2f (x )-x 2-4x +4, ∴f (x )=x 2,∴f ′(x )=2x ,∴曲线y =f (x )在点(1,f (1))处的切线斜率为2,切线方程为y -1=2(x -1),∴y =2x -1. 6.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( ) A .2 B .3 C .4 D .5 [答案] D[解析] f ′(x )=3x 2+2ax +3, ∵f (x )在x =-3时取得极值, ∴x =-3是方程3x 2+2ax +3=0的根, ∴a =5,故选D.7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)[答案] D[解析] 令F(x)=f(x)·g(x),易知F(x)为奇函数,又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)内单调递增,又F(x)为奇函数,所以F(x)在(0,+∞)内也单调递增,且由奇函数知f(0)=0,∴F(0)=0.又由g(-3)=0,知g(3)=0∴F(-3)=0,进而F(3)=0于是F(x)=f(x)g(x)的大致图象如图所示∴F(x)=f(x)·g(x)<0的解集为(-∞,-3)∪(0,3),故应选D.8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A.①②B.③④C.①③D.①④[答案] B[解析] ③不正确;导函数过原点,但三次函数在x =0不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选B.9.(2010·湖南理,5)⎠⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2 [答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎛241xdx =ln x |42=ln4-ln2=ln2.10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 [答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.11.已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( ) A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152[答案] B[解析] 由题意f ′(x )=3x 2+2bx +c 在[-1,2]上,f ′(x )≤0恒成立.所以⎩⎪⎨⎪⎧f ′(-1)≤0f ′(2)≤0即⎩⎪⎨⎪⎧2b -c -3≥04b +c +12≤0令b +c =z ,b =-c +z ,如图 过A ⎝⎛⎭⎪⎫-6,-32得z 最大, 最大值为b +c =-6-32=-152.故应选B.12.设f (x )、g (x )是定义域为R 的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (x ) [答案] C [解析] 令F (x )=f (x )g (x )则F ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0f (x )、g (x )是定义域为R 恒大于零的实数∴F (x )在R 上为递减函数, 当x ∈(a ,b )时,f (x )g (x )>f (b )g (b )∴f (x )g (b )>f (b )g (x ).故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.⎠⎛-2-1d x(11+5x )3=________.[答案]772[解析] 取F (x )=-110(5x +11)2,从而F ′(x )=1(11+5x )3则⎠⎛-2-1d x(11+5x )3=F (-1)-F (-2)=-110×62+110×12=110-1360=772. 14.若函数f (x )=ax 2-1x的单调增区间为(0,+∞),则实数a 的取值范围是________.[答案] a ≥0[解析] f ′(x )=⎝ ⎛⎭⎪⎫ax -1x ′=a +1x2,由题意得,a +1x2≥0,对x ∈(0,+∞)恒成立,∴a ≥-1x2,x ∈(0,+∞)恒成立,∴a ≥0.15.(2009·陕西理,16)设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n=lg x n ,则a 1+a 2+…+a 99的值为________.[答案] -2[解析] 本小题主要考查导数的几何意义和对数函数的有关性质.k =y ′|x =1=n +1,∴切线l :y -1=(n +1)(x -1), 令y =0,x =n n +1,∴a n =lg nn +1, ∴原式=lg 12+lg 23+…+lg 99100=lg 12×23×…×99100=lg 1100=-2.16.如图阴影部分是由曲线y =1x,y 2=x 与直线x =2,y =0围成,则其面积为________.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝ ⎛⎭⎪⎫2,12.故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)(2010·江西理,19)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2),f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)求曲线y =2x -x 2,y =2x 2-4x 所围成图形的面积.[解析] 由⎩⎪⎨⎪⎧y =2x -x 2,y =2x 2-4x 得x 1=0,x 2=2.由图可知,所求图形的面积为S =⎠⎛02(2x -x 2)d x +|⎠⎛02(2x 2-4x )d x |=⎠⎛02(2x -x 2)d x -⎠⎛02(2x 2-4x )d x .因为⎝⎛⎭⎪⎫x 2-13x 3′=2x -x 2,⎝ ⎛⎭⎪⎫23x 3-2x 2′=2x 2-4x ,所以S =⎝⎛⎭⎪⎫x 2-13x 3⎪⎪⎪20-⎝ ⎛⎭⎪⎫23x 3-2x 2⎪⎪⎪2=4.19.(本题满分12分)设函数f (x )=x 3-3ax +b (a ≠0).(1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值; (2)求函数f (x )的单调区间与极值点.[分析] 考查利用导数研究函数的单调性,极值点的性质,以及分类讨论思想. [解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增,此时函数f (x )没有极值点. 当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. 20.(本题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.[解析] (1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=x +1x,故f ′(x )>0,∴f (x )的单调增区间为(0,+∞). (2)设g (x )=23x 3-12x 2-ln x ,∴g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0,∴g (x )在(1,+∞)上为增函数, ∴g (x )>g (1)=16>0,∴当x >1时,12x 2+ln x <23x 3.21.(本题满分12分)设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围.[分析] 本题主要考查导数的应用及转化思想,以及求参数的范围问题. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.22.(本题满分14分)已知函数f (x )=-x 3+ax 2+1(a ∈R ).(1)若函数y =f (x )在区间⎝ ⎛⎭⎪⎫0,23上递增,在区间⎣⎢⎡⎭⎪⎫23,+∞上递减,求a 的值; (2)当x ∈[0,1]时,设函数y =f (x )图象上任意一点处的切线的倾斜角为θ,若给定常数a ∈⎝ ⎛⎭⎪⎫32,+∞,求θ的取值范围;(3)在(1)的条件下,是否存在实数m ,使得函数g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象与函数y =f (x )的图象恰有三个交点.若存在,请求出实数m 的值;若不存在,试说明理由.[解析] (1)依题意f ′⎝ ⎛⎭⎪⎫23=0,由f ′(x )=-3x 2+2ax ,得-3⎝ ⎛⎭⎪⎫232+2a ·23=0,即a =1.(2)当x ∈[0,1]时,tan θ=f ′(x )=-3x 2+2ax =-3⎝ ⎛⎭⎪⎫x -a 32+a23.由a ∈⎝ ⎛⎭⎪⎫32,+∞,得a 3∈⎝ ⎛⎭⎪⎫12,+∞. ①当a 3∈⎝ ⎛⎦⎥⎤12,1,即a ∈⎝ ⎛⎦⎥⎤32,3时,f ′(x )max =a 23,f (x )min =f ′(0)=0.此时0≤ta n θ≤a 23.②当a3∈(1,+∞),即a ∈(3,+∞)时,f ′(x )max =f ′(1)=2a -3,f ′(x )min =f ′(0)=0,此时,0≤tan θ≤2a -3.又∵θ∈[0,π),∴当32<a ≤3时,θ∈⎣⎢⎡⎦⎥⎤0,arctan a 23, 当a >3时,θ∈[0,arctan(2a -3)].(3)函数y =f (x )与g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象恰有3个交点,等价于方程-x 3+x 2+1=x 4-5x 3+(2-m )x 2+1恰有3个不等实根,∴x 4-4x 3+(1-m )x 2=0,显然x =0是其中一个根(二重根),方程x 2-4x +(1-m )=0有两个非零不等实根,则⎩⎪⎨⎪⎧Δ=16-4(1-m )>01-m ≠0∴m >-3且m ≠1故当m >-3且m ≠1时,函数y =f (x )与y =g (x )的图象恰有3个交点.。
高中数学 综合测试题3 新人教A版选修2-2
高中新课标数学选修(2-2)综合测试题一、选择题1.函数2y x =在区间[12],上的平均变化率为( ) A.2 B.3 C.4 D.5答案:B2.已知直线y kx =是ln y x =的切线,则k 的值为( )A.1e B.1e- C.2e D.2e -答案:A3.如果1N 的力能拉长弹簧1cm ,为了将弹簧拉长6cm (在弹性限度内)所耗费的功为( ) A.0.18J B.0.26J C.0.12J D.0.28J答案:A4.方程2(4)40()x i x ai a ++++=∈R 有实根b ,且z a bi =+,则z =( )A.22i - B.22i + C.22i -+ D.22i --答案:A5.ABC △内有任意三点不共线的2002个点,加上A B C ,,三个顶点,共2005个点,把这2005个点连线形成不重叠的小三角形,则一共可以形成小三角形的个数为( ) A.4005 B.4002 C.4007 D.4000答案:A6.数列1,2,2,3,3,3,4,4,4,4,的第50项( ) A.8 B.9 C.10 D.11答案:C7.在证明()21f x x =+为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数()21f x x =+满足增函数的定义是大前提;④函数()21f x x =+满足增函数的定义是大前提.其中正确的命题是( ) A.①② B.②④ C.①③ D.②③答案:C8.若a b ∈R ,,则复数22(45)(26)a a b b i -++-+-表示的点在( ) A.第一象限B.第二象限C.第三象限D.第四象限答案:D9.一圆的面积以210πcm /s 速度增加,那么当圆半径20cm r =时,其半径r 的增加速率u 为( )A.12cm/s B.13 cm/s C.14 cm/s D.15 cm/s答案:C10.用数学归纳法证明不等式“11113(2)12224n n n n +++>>++”时的过程中,由n k =到1n k =+时,不等式的左边( )A.增加了一项12(1)k +B.增加了两项11212(1)k k +++ C.增加了两项11212(1)k k +++,又减少了一项11k + D.增加了一项12(1)k +,又减少了一项11k +答案:C11.在下列各函数中,值域不是[22]-,的函数共有( ) (1)(sin )(cos )y x x ''=+ (2)(sin )cos y x x '=+ (3)sin (cos )y x x '=+(4)(sin )(cos )y x x ''=· A.1个B.2个C.3个D.4个答案:C12.如图是函数32()f x x bx cx d =+++的大致图象,则2212x x +等于( ) A.23B.43 C.83D.123答案:C二、填空题13.函数3()31f x x x =-+在闭区间[30]-,上的最大值与最小值分别为 .答案:3,17-14.若113z i =-,268z i =-,且12111z z z +=,则z 的值为 .答案:42255i -+15.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数n a 与所搭三角形的个数n 之间的关系式可以是 .答案:21n a n =+16.物体A 的运动速度v 与时间t 之间的关系为21v t =-(v 的单位是m/s ,t 的单位是s ),物体B 的运动速度v 与时间t 之间的关系为18v t =+,两个物体在相距为405m 的同一直线上同时相向运动.则它们相遇时,A 物体的运动路程为 .答案:72m三、解答题17.已知复数1z ,2z 满足2212121052z z z z +=,且122z z +为纯虚数,求证:123z z -为实数.证明:由2212121052z z z z +=,得22112210250z z z z -+=, 即221212(3)(2)0z z z z -++=,那么222121212(3)(2)[(2)]z z z z z z i -=-+=+, 由于,122z z +为纯虚数,可设122(0)z z bi b b ==∈≠R ,且, 所以2212(3)z z b -=,从而123z z b -=±, 故123z z -为实数.18.用总长14.8的钢条做一个长方体容器的框架,如果所做容器的底面的一边长比另一边长多0.5m ,那么高是多少时容器的容积最大?并求出它的最大容积.解:设该容器底面矩形的短边长为x cm ,则另一边长为(0.5)x +m ,此容器的高为14.8(0.5) 3.224y x x x =--+=-, 于是,此容器的容积为:32()(0.5)(3.22)2 2.2 1.6V x x x x x x x =+-=-++,其中0 1.6x <<,即2()6 4.4 1.60V x x x '=-++=,得11x =,2415x =-(舍去), 因为,()V x '在(01.6),内只有一个极值点,且(01)x ∈,时,()0V x '>,函数()V x 递增; (11.6)x ∈,时,()0V x '<,函数()V x 递减;所以,当1x =时,函数()V x 有最大值3(1)1(10.5)(3.221) 1.8m V =⨯+⨯-⨯=, 即当高为1.2m 时,长方体容器的空积最大,最大容积为31.8m . 19.如图所示,已知直线a 与b 不共面,直线c a M =,直线b c N =,又a 平面A α=,b 平面B α=,c 平面C α=,求证:A B C ,,三点不共线.证明:用反证法,假设A B C ,,三点共线于直线l , A B C α∈,,∵,l α⊂∴.c l C =∵,c ∴与l 可确定一个平面β. c a M =∵,M β∈∴.又A l ∈,a β⊂∴,同理b β⊂,∴直线a ,b 共面,与a ,b 不共面矛盾. 所以A B C ,,三点不共线.20.已知函数32()31f x ax x x =+-+在R 上是减函数,求a 的取值范围.解:求函数()f x 的导数:2()361f x ax x '=+-. (1)当()0()f x x '<∈R 时,()f x 是减函数.23610()0ax x x a +-<∈⇔<R 且36120a ∆=+<3a ⇔<-.所以,当3a <-时,由()0f x '<,知()()f x x ∈R 是减函数; (2)当3a =-时,33218()331339f x x x x x ⎛⎫=-+-+=--+ ⎪⎝⎭,由函数3y x =在R 上的单调性,可知当3a =-时,()()f x x ∈R 是减函数; (3)当3a >-时,在R 上存在使()0f x '>的区间,所以,当3a >-时,函数()()f x x ∈R 不是减函数. 综上,所求a 的取值范围是(3)--,∞.21.若0(123)i x i n >=,,,,,观察下列不等式:121211()4x x x x ⎛⎫++ ⎪⎝⎭≥,123123111()9x x x x x x ⎛⎫++++ ⎪⎝⎭≥,,请你猜测1212111()n nx x x x x x ⎛⎫++++++⎪⎝⎭满足的不等式,并用数学归纳法加以证明.解:满足的不等式为21212111()(2)n n x x x n n x x x ⎛⎫++++++⎪⎝⎭≥≥,证明如下: 1.当2n =时,结论成立;2.假设当n k =时,结论成立,即21212111()k kx x x k x x x ⎛⎫++++++⎪⎝⎭12121121121111111()()1k k k k k x x x x x x x x x x x x x ++⎛⎫⎛⎫=+++++++++++++++ ⎪ ⎪⎝⎭⎝⎭· 212111)1k kk x x x x ⎛⎫+++++++ ⎪⎝⎭≥ 2221(1)k k k ++=+≥.显然,当1n k =+时,结论成立.22.设曲线2(0)y ax bx c a =++<过点(11)-,,(11),. (1)用a 表示曲线与x 轴所围成的图形面积()S a ; (2)求()Sa 的最小值.解:(1)曲线过点(11)-,及(11),,故有1a b c a b c =-+=++,于是0b =且1c a =-,令0y =,即2(1)0ax a +-=,得x = 记α=,β,由曲线关于y 轴对称, 有2300()2[(1)]2(1)3a S a ax a dx x a x ββ⎡⎤=+-=+-⎢⎥⎣⎦⎰|2(13a a ⎡=-=⎢⎣· (2)()S a 3(1)()(0)a f a a a-=<,则223221(1)()[3(1)(1)](21)a f a a a a a a a -'=---=+.令()0f a '=,得12a =-或1a =(舍去).又12a ⎛⎫∈-- ⎪⎝⎭,∞时,()0f x'<;102a ⎛⎫∈- ⎪⎝⎭,时,()0f x '>.所以,当12a =-时,()f a 有最小值274,此时()S a高中新课标数学选修(2-2)综合测试题一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数cos sin y x x x =-的导数为 ( ) (A )cos x x (B )sin x x - (C )sin x x (D )cos x x -2.下列说法正确的是 ( ) (A )当0()0f x '=时,0()f x 为()f x 的极大值(B )当0()0f x '=时,0()f x 为()f x 的极小值 (C )当0()0f x '=时,0()f x 为()f x 的极值 (D )当0()f x 为()f x 的极值时, 0()0f x '=3.如果z 是34i +的共轭复数,则z 对应的向量OA 的模是 ( ) (A )1 (B 7 (C 13(D )54.若函数3()y a x x =-的递减区间为33(,33-,则a 的取值范围是 ( ) (A )(0,)+∞ (B )(1,0)- (C )(1,)+∞ (D )(0,1)5.下列四条曲线(直线)所围成的区域的面积是 ( ) (1)sin y x =;(2) s y co x =; (3)4x π=-;(4) 4x π=2 (B)22226.由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,叫 ( )(A )合情推理 (B )演绎推理 (C )类比推理 (D )归纳推理7.复数a bi -与c di +的积是实数的充要条件是 ( ) (A )0ad bc += (B )0ac bd += (C )0ad bc -= (D )0ac bd -= 8.已知函数1sin 2sin 2y x x =+,那么y '是 ( ) (A )仅有最小值的奇函数 (B )既有最大值又有最小值的偶函数 (C )仅有最大值的偶函数 (D )非奇非偶函数9.用边长为48厘米的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒。
(完整版)数学选修2-2练习题及答案
目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。
高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案
导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).
.
.
.
高考不提分,赔付1万元,关注快乐学了解详情。
解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为
.
A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。
【小初高学习】新版高中数学人教A版选修2-2习题:第二章推理与证明 检测B
第二章检测(B)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1下列说法正确的有()①演绎推理是由一般到特殊的推理;②演绎推理得到的结论一定是正确的;③演绎推理的一般模式是“三段论”形式;④演绎推理得到的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个解析演绎推理只有大前提、小前提和推理形式都正确才能保证结论正确,故②错误,其他都正确.故选C.答案C2有一段演绎推理是这样的:“若直线平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,a⊂平面α,直线b∥平面α,则直线b∥直线a”,这显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析“直线平行于平面,则该直线平行于平面内所有直线”是错误的,即大前提是错误的.故选A.答案A3(1)已知p3+q3=2,求证:p+q≤2.用反证法证明此命题时可假设p+q≥2;(2)已知a,b∈R,|a|+|b|<1,求证:关于x的方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明此命题时可假设方程至少有一根的绝对值大于或等于1.以下结论正确的是()A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确,(2)的假设错误D.(1)的假设错误,(2)的假设正确解析反证法证明问题的第一步是“假设命题的结论不成立,即假设结论的反面成立”,而命题(1)结论的反面应为“p+q>2”;对命题(2),其结论的反面为“方程x2+ax+b=0的两根的绝对值至少有一个大于或等于1”.故选D.答案D4如图,4个小动物换座位,开始时鼠、猴、兔、猫分别坐1,2,3,4号座位,如果第1次前后排动物互换座位,第2次左右列动物互换座位,第3次前后排动物互换座位,第4次左右列动物互换座位,……这样交替进行下去,那么第2 017次互换座位后,小兔所坐的座位号为()A.1B.2C.3D.4解析由题意得第4次互换座位后,4个小动物又回到了原座位,即每经过4次互换座位后,小动物回到原座位,而2 017=4×504+1,所以第2 017次互换座位后结果与第1次互换座位结果相同,故小兔坐在1号座位上,故选A.答案A5若f0(x)=sin x,f1(x)=f0'(x),f2(x)=f1'(x),…,f n+1(x)=f n'(x),n∈N*,则f2 017(x)等于()A.sin xB.-sin xC.cos xD.-cos x解析由题意可知,函数f n(x)的表达式是呈周期性变化的,周期为4,而2 017=4×504+1, 故f2 017(x)=f1(x)=cos x,故选C.答案C6观察式子:1+,1+,1+,……,则可归纳出一般式子为()A.1++…+(n≥2,n∈N)B.1++…+(n≥2,n∈N)C.1++…+(n≥2,n∈N)D.1++…+(n≥2,n∈N)答案C7已知a,b为两条不同的直线,α,β为两个不同的平面,则下列四个命题中正确的是()A.若a,b与α所成的角相等,则a∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,a∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,则a⊥b解析对于选项A,直线a,b有可能相交或异面;对于选项B,直线a,b有可能相交或异面;对于选项C,平面α,β有可能相交;对于选项D,若a⊥α,b⊥β,当a⊂β时,有b⊥a,当a⊄β时,因为α⊥β,所以a∥β,所以b⊥a,故选D.答案D8对于奇数列1,3,5,7,9,…,现在进行如下分组:第一组有1个数{1},第二组有2个数{3,5},第三组有3个数{7,9,11},……,则每组内奇数之和S n与其所在组的编号数n的关系是()A.S n=n2B.S n=n3C.S n=n4D.S n=n(n+1)解析当n=1时,S1=1;当n=2时,S2=8=23;当n=3时,S3=27=33;故归纳猜想S n=n3,故选B.答案B9古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:①②他们研究过图①中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图②中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数,又是正方形数的是()A.289B.1 024C.1 225D.1 378解析根据图形的规律可知,第n个三角形数为a n=,第n个正方形数为b n=n2,由此可排除选项D(1 378不是平方数),将选项A,B,C中的数代入到三角形数与正方形数表达式中检验可知,符合题意的是选项C,故选C.答案C10六个面都是平行四边形的四棱柱称为平行六面体.如图①所示,在平行四边形ABCD中,有AC2+BD2=2(AB2+AD2),在如图②所示的平行六面体ABCD-A1B1C1D1中,A+B+C+D等于()A.2(AB2+AD2+A)B.3(AB2+AD2+A)C.4(AB2+AD2+A)D.4(AB2+AD2)解析如图,连接A1C1,AC,则四边形AA1C1C是平行四边形,故A1C2+A=2(A+AC2).连接BD,B1D1,则四边形BB1D1D是平行四边形,∴B+D=2(B+BD2).又在▱ABCD中,AC2+BD2=2(AB2+AD2).∵A=B,∴A+B+C+D=2(A+AC2)+2(B+BD2)=2(AC2+BD2+B+A)=2[2(AB2+AD2)+2A]=4(A B2+AD2+A).故选C.答案C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11用三段论证明f(x)=x3+sin x(x∈R)为奇函数的步骤为.答案对定义域内的任意x,若满足f(-x)=-f(x),则函数f(x)为奇函数, 大前提因为x∈R,则-x∈R,f(-x)=(-x)3+sin(-x)=-x3-sin x=-f(x), 小前提所以函数f(x)=x3+sin x(x∈R)为奇函数.结论12观察分析下表中的数据:猜想一般凸多面体中F,V,E所满足的等式是.解析因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F+V-E=2.答案F+V-E=213为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密的原理如下:明文密文密文明文已知加密为y=a x-2(x为明文,y为密文),明文“3”通过加密后得到的密文为“6”,再发送,接收方通过解密得到明文“3”,若接收方收到的密文为“14”,则原发送的明文为.解析由题意知,当x=3时,函数y=a x-2的函数值为6,即6=a3-2,∴a3=8,∴a=2.∴y=2x-2.则当y=14时,有14=2x-2,∴2x=16.∴x=4,故原发送的明文为4.答案414观察图象,第行的各数之和等于2 0172.解析观察知,题图中的第n行的各数构成一个首项为n,公差为1,共(2n-1)项的等差数列,其各项和为:S n=(2n-1)n+=(2n-1)n+(2n-1)(n-1)=(2n-1)2.令(2n-1)2=2 0172,得2n-1=2 017,∴n=1 009.答案1 00915蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看做是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数,则用n表示的f(n)=.解析由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,推测当n≥2时,有f(n)-f(n-1)=6(n-1),∴f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+[f(n-2)-f(n-3)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.又f(1)=1=3×12-3×1+1,∴f(n)=3n2-3n+1.答案3n2-3n+1三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)实数的乘法与向量的数量积有以下类似的性质:a·b=b·a,a·b=b·a,(a+b)·c=a·c+b·c,(a+b)·c=a·c+b·c.则由①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c,猜想对于向量的数量积有什么样的结论,猜想是否正确?解猜想:①(a·b)·c=a·(b·c),②若a≠0,a·c=a·b,则b=c.这两个结论都不正确.①式左边表示与c共线的向量,右边表示与a共线的向量,c与a不一定共线,故等式不一定成立.②设a与c的夹角为α,a与b的夹角为β,由a·c=a·b,得|a||c|cos α=|a||b|cos β,可得|c|cos α=|b|cos β,则c,b在a方向上的投影相等,b,c不一定相等.故等式不一定成立.17(8分)已知△ABC的三边a,b,c的倒数成等差数列,证明角B为锐角.分析在△ABC中,要证角B为锐角,只要证cos B>0,结合余弦定理可解决问题.证明要证明角B为锐角,只需证cos B>0.又因为cos B=,所以只需证明a2+c2-b2>0,即a2+c2>b2.因为a2+c2≥2ac,所以只需证明2ac>b2.由已知,得,即2ac=b(a+c).所以只需证明b(a+c)>b2,即只需证明a+c>b.而已知a,b,c为△ABC的三边,即a+c>b成立,所以角B为锐角.18(9分)设{a n},{b n}是公比不相等的两个等比数列,c n=a n+b n,证明数列{c n}不是等比数列.分析假设数列{c n}是等比数列,利用{a n},{b n}是公比不相等的等比数列的条件推出矛盾,即知假设不成立.证明假设数列{c n}是等比数列,则当n≥2时,(a n+b n)2=(a n-1+b n-1)(a n+1+b n+1).①因为{a n},{b n}是公比不相等的两个等比数列,设公比分别为p,q,所以=a n-1a n+1,=b n-1b n+1.代入①并整理,得2a n b n=a n+1b n-1+a n-1b n+1=a n b n,即2=.②当p,q异号时,<0,与②相矛盾;当p,q同号时,因为p≠q,所以>2,与②相矛盾.故数列{c n}不是等比数列.19(10分)已知椭圆=1(a>b>0)的离心率为,短轴的一个端点为M(0,1),直线l:y=kx-与椭圆相交于不同的两点A,B.(1)若|AB|=,求k的值;(2)求证:不论k取何值,以AB为直径的圆恒过点M.(1)解由题意知,b=1.由a2=b2+c2可得c=b=1,a=,所以椭圆的方程为+y2=1.由消去y得(2k2+1)x2-kx-=0.Δ=k2-4(2k2+1)×=16k2+>0恒成立.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=-.所以|AB|=·|x1-x2|=,化简得23k4-13k2-10=0,即(k2-1)(23k2+10)=0,解得k=±1.(2)证明因为=(x1,y1-1),=(x2,y2-1),所以=x1x2+(y1-1)(y2-1)=(1+k2)x1x2-k(x1+x2)+=-=0.所以不论k取何值,以AB为直径的圆恒过点M.20(10分)已知数列{a n}的各项均为正数,b n=n a n(n∈N*),e为自然对数的底数.(1)求函数f(x)=1+x-e x的单调区间,并比较与e的大小;(2)计算,由此推测计算的公式,并给出证明;(3)令c n=(a1a2…a n,数列{a n},{c n}的前n项和分别记为S n,T n,证明:T n<e S n.解(1)f(x)的定义域为(-∞,+∞),f'(x)=1-e x.当f'(x)>0,即x<0时,f(x)单调递增;当f'(x)<0,即x>0时,f(x)单调递减.故f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞).当x>0时,f(x)<f(0)=0,即1+x<e x.令x=,得1+,即<e.①(2)=1·=1+1=2;=2·2=(2+1)2=32;=32·3=(3+1)3=43.由此推测:=(n+1)n.②下面用数学归纳法证明②.(ⅰ)当n=1时,左边=右边=2,②成立.(ⅱ)假设当n=k时,②成立,即=(k+1)k.当n=k+1时,b k+1=(k+1)a k+1,由归纳假设可得=(k+1)k(k+1)=(k+2)k+1.所以当n=k+1时,②也成立.根据(ⅰ)(ⅱ),可知②对一切正整数n都成立.(3)由c n的定义、②、算术-几何平均值不等式、b n的定义及①得T n=c1+c2+c3+…+c n=(a1+(a1a2+(a1a2a3+…+(a1a2…a n=+…+≤+…+=b1+b2+…++…+b n·=b1+b2+…+b n+…+a1+a2+…+a n<e a1+e a2+…+e a n=e S n,即T n<e S n.。
(完整版)人教版高中数学选修2-2课后习题参考答案(可编辑修改word版)
3V 34新课程标准数学选修 2—2 第一章课后习题解答第一章 导数及其应用 3.1 变化率与导数练习(P6)在第 3 h 和 5 h 时,原油温度的瞬时变化率分别为-1和 3. 它说明在第 3 h 附近,原 油温度大约以 1 ℃/h 的速度下降;在第 5 h 时,原油温度大约以 3 ℃/h 的速率上升. 练习(P8)函数h (t ) 在t = t 3 附近单调递增,在t = t 4 附近单调递增. 并且,函数h (t ) 在t 4 附近比在t 3 附近增加得慢. 说明:体会“以直代曲”1 的思想.练习(P9)函数r (V ) = (0 ≤ V ≤ 5) 的图象为根据图象,估算出r '(0.6) ≈ 0.3 , r '(1.2) ≈ 0.2 .说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题 1.1 A 组(P10)1、在t 处,虽然W (t ) = W (t ) ,然而W 1 (t 0 ) -W 1 (t 0 - ∆t ) ≥ W 2 (t 0 ) -W 2 (t 0 - ∆t ) .0 1 0 2 0-∆t -∆t所以,企业甲比企业乙治理的效率高.说明:平均变化率的应用,体会平均变化率的内涵.2、 ∆h = h (1+ ∆t ) - h (1) = -4.9∆t - 3.3 ,所以, h '(1) = -3.3 .∆t ∆t这说明运动员在t = 1s 附近以 3.3 m /s 的速度下降.3、物体在第 5 s 的瞬时速度就是函数 s (t ) 在t = 5 时的导数.∆s = s (5 + ∆t ) - s (5) = ∆t +10 ,所以, s '(5) = 10 . ∆t ∆tt 因 此 , 物 体 在 第 5 s 时 的 瞬 时 速 度 为 10 m / s , 它 在 第 5 s 的 动 能 E = 1⨯ 3⨯102 = 150 J. k24、设车轮转动的角度为,时间为t ,则= kt 2 (t > 0) . 由题意可知,当t = 0.8 时,= 2. 所以k =25,于是= 25 2. 88车轮转动开始后第 3.2 s 时的瞬时角速度就是函数(t ) 在t = 3.2 时的导数. ∆=(3.2 + ∆t ) -(3.2) = 25∆t + 20,所以'(3.2) = 20.∆t∆t8因此,车轮在开始转动后第 3.2 s 时的瞬时角速度为20s -1 .说明:第 2,3,4 题是对了解导数定义及熟悉其符号表示的巩固.5、由图可知,函数 f (x ) 在 x = -5 处切线的斜率大于零,所以函数在 x = -5 附近单调递增. 同理可得,函数 f (x ) 在 x = -4 , -2 ,0,2 附近分别单调递增,几乎没有变化,单调递减,单调递减.说明:“以直代曲”思想的应用.6、第一个函数的图象是一条直线,其斜率是一个小于零的常数,因此,其导数 f '(x )的图象如图(1)所示;第二个函数的导数 f '(x ) 恒大于零,并且随着 x 的增加, f '(x )的值也在增加;对于第三个函数,当 x 小于零时, f '(x ) 小于零,当 x 大于零时,f '(x ) 大于零,并且随着 x 的增加, f '(x ) 的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系.习题 3.1 B 组(P11)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻 画的是速度变化的快慢,根据物理知识,这个量就是加速度.1 2 x -11 33 4V 23 2、说明:由给出的v (t ) 的信息获得 s (t ) 的相关信息,并据此画出 s (t ) 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由(1)的题意可知,函数 f (x ) 的图象在点(1, -5) 处的切线斜率为-1,所以此点 附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状. 下面是一种参考答案.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思想的领悟. 本题的答案不唯一. 1.2 导数的计算练习(P18)1、 f '(x ) = 2x - 7 ,所以, f '(2) = -3 , f '(6) = 5 .2、(1) y ' = 1x l n 2;(2) y ' = 2e x ;(3) y ' = 10x 4 - 6x ;(4) y ' = -3sin x - 4 cos x ;(5) y ' = - 1 sin x;(6) y ' =.3 3习题 1.2 A 组(P18)1、 ∆S = S (r + ∆r ) - S (r ) = 2r + ∆r ,所以, S '(r ) = lim(2r + ∆r ) = 2r .∆r ∆r∆r →02、h '(t ) = -9.8t + 6.5 .3、r '(V ) =.2 x =0 4、(1) y ' = 3x 2 +1x l n 2; (2) y ' = nx n -1e x + x n e x ;(3) y ' 3x 2 sin x - x 3 cos x + cos x sin 2x; (4) y = 99(x +1)98;(5) y ' = -2e -x ;(6) y ' = 2 s in(2x + 5) + 4x cos(2x + 5) .5、 f '(x ) = -8 + 2 2x . 由 f '(x 0 ) = 4 有 4 = -8 + 2 2x 0 ,解得 x 0 = 3 .6、(1) y ' = ln x +1; (2) y = x -1.7 、 y = - x +1.8、(1)氨气的散发速度 A '(t ) = 500 ⨯ln 0.834 ⨯ 0.834t .(2) A '(7) = -25.5 ,它表示氨气在第 7 天左右时,以 25.5 克/天的速率减少. 习题 1.2 B 组(P19) 1、(1)(2) 当h 越来越小时, y =sin(x + h ) - sin x就越来越逼近函数 y = cos x .h(3) y = sin x 的导数为 y = cos x .2、当 y = 0 时, x = 0 . 所以函数图象与 x 轴交于点 P (0, 0) .y ' = -e x ,所以 y ' = -1 .所以,曲线在点 P 处的切线的方程为 y = -x .2、d '(t ) = -4 sin t . 所以,上午 6:00 时潮水的速度为-0.42 m /h ;上午 9:00 时潮水 的速度为-0.63 m /h ;中午 12:00 时潮水的速度为-0.83 m /h ;下午 6:00 时潮水的速度为-1.24 m /h.1.3 导数在研究函数中的应用练习(P26)1、(1)因为 f (x ) = x 2 - 2x + 4 ,所以 f '(x ) = 2x - 2 .当 f '(x ) > 0 ,即 x > 1 时,函数 f (x ) = x 2 - 2x + 4 单调递增;= '当 f '(x ) < 0 ,即 x < 1时,函数 f (x ) = x 2 - 2x + 4 单调递减.(2)因为 f (x ) = e x - x ,所以 f '(x ) = e x -1.当 f '(x ) > 0 ,即 x > 0 时,函数 f (x ) = e x - x 单调递增; 当 f '(x ) < 0 ,即 x < 0 时,函数 f (x ) = e x - x 单调递减. (3)因为 f (x ) = 3x - x 3 ,所以 f '(x ) = 3 - 3x 2 .当 f '(x ) > 0 ,即-1 < x < 1时,函数 f (x ) = 3x - x 3 单调递增; 当 f '(x ) < 0 ,即 x < -1或 x > 1 时,函数 f (x ) = 3x - x 3 单调递减. (4)因为 f (x ) = x 3 - x 2 - x ,所以 f '(x ) = 3x 2 - 2x -1.当 f '(x ) > 0 ,即 x < - 1或 x > 1 时,函数 f (x ) = x 3 - x 2 - x 单调递增;3 当 f '(x ) < 0 ,即- 1< x < 1 时,函数 f (x ) = x 3 - x 2 - x 单调递减.32、注:图象形状不唯一.3、因为 f (x ) = ax 2 + bx + c (a ≠ 0) ,所以 f '(x ) = 2ax + b .(1)当a > 0 时,f '(x ) > 0 ,即 x > - b2a f '(x ) < 0 ,即 x < - b2a(2)当a < 0 时,f '(x ) > 0 ,即 x < - b 2a f '(x ) < 0 ,即 x > - b2a时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递增;时,函数 f (x ) = ax 2 + bx + c (a ≠ 0) 单调递减.4、证明:因为 f (x ) = 2x 3 - 6x 2 + 7 ,所以 f '(x ) = 6x 2 -12x .当 x ∈(0, 2) 时, f '(x ) = 6x 2 -12x < 0 ,因此函数 f (x ) = 2x 3 - 6x 2 + 7 在(0, 2) 内是减函数.练习(P29)1、 x 2 , x 4 是函数 y = f (x ) 的极值点,1 1 其中 x = x2 是函数 y = f (x ) 的极大值点, x = x 4 是函数 y = f (x ) 的极小值点.2、(1)因为 f (x ) = 6x 2 - x - 2 ,所以 f '(x ) = 12x -1 .令 f '(x ) = 12x -1 = 0 ,得 x =1.12调递减.当 x >1时, f '(x ) > 0 , f (x ) 单调递增;当 x < 112 12时, f '(x ) < 0 , f (x ) 单 所 以 , 当x = 1时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为f ( ) = 6 ⨯( )2 - 1 - 2 = - 49. 12 12 12 24(2)因为 f (x ) = x 3 - 27x ,所以 f '(x ) = 3x 2 - 27 .令 f '(x ) = 3x 2 - 27 = 0 ,得 x = ±3 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -3 或 x > 3 时;②当 f '(x ) < 0 ,即-3 < x < 3 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x = -3 时, f (x ) 有极大值,并且极大值为 54; 当 x = 3 时, f (x ) 有极小值,并且极小值为-54 . (3)因为 f (x ) = 6 +12x - x 3 ,所以 f '(x ) = 12 - 3x 2 .令 f '(x ) = 12 - 3x 2 = 0 ,得 x= ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即-2 < x < 2 时;②当 f '(x ) < 0 ,即 x < -2 或 x > 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:=-因此,当x =-2 时,f (x) 有极小值,并且极小值为-10 ;当x = 2 时,f (x) 有极大值,并且极大值为22(4)因为 f (x) = 3x -x3,所以 f '(x) = 3 - 3x2.令 f '(x) = 3 - 3x2= 0 ,得 x =±1 .下面分两种情况讨论:①当f '(x) > 0 ,即-1 <x < 1时;②当f '(x) < 0 ,即x <-1或x > 1 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-1 时,f (x) 有极小值,并且极小值为-2 ;当x = 1 时,f (x) 有极大值,并且极大值为2练习(P31)(1)在[0, 2] 上, 当 x =1 49f ( ) .12 24 1 时,12f (x) = 6x2-x - 2 有极小值,并且极小值为又由于 f (0) =-2 , f (2) = 20 .因此,函数 f (x) = 6x2-x - 2 在[0, 2] 上的最大值是 20、最小值是-49.24(2)在[-4, 4] 上,当 x =-3 时, f (x) =x3- 27x 有极大值,并且极大值为 f (-3) = 54 ;当x = 3 时, f (x) =x3- 27x 有极小值,并且极小值为 f (3) =-54 ;又由于 f (-4) = 44 , f (4) =-44 .(0, ) ,所以 f (x )因此,函数 f (x ) = x 3 - 27x 在[-4, 4] 上的最大值是 54、最小值是-54 .( 3) 在[- 1, 3] 上, 当 x = 2 时, 3f (x ) = 6 +12x - x 3 有极大值, 并且极大值为f (2) = 22 .又由于 f (- 1) = 55, f (3) = 15 .3 27因此,函数 f (x ) = 6 +12x - x 3 在[- 1 , 3] 上的最大值是 22、最小值是 55.3 27(4)在[2, 3] 上,函数 f (x ) = 3x - x 3 无极值.因为 f (2) = -2 , f (3) = -18 .因此,函数 f (x ) = 3x - x 3 在[2, 3] 上的最大值是-2 、最小值是-18 . 习题 1.3 A 组(P31)1、(1)因为 f (x ) = -2x +1,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = -2x +1是单调递减函数.(2)因为 f (x ) = x + cos x , x ∈ ' = 1- sin x > 0 , x ∈ 2(0, ) . 2 因此,函数 f (x ) = x + cos x 在 (0, ) 上是单调递增函数. 2(3)因为 f (x ) = -2x - 4 ,所以 f '(x ) = -2 < 0 .因此,函数 f (x ) = 2x - 4 是单调递减函数.(4)因为 f (x ) = 2x 3 + 4x ,所以 f '(x ) = 6x 2 + 4 > 0 .因此,函数 f (x ) = 2x 3 + 4x 是单调递增函数.2、(1)因为 f (x ) = x 2 + 2x - 4 ,所以 f '(x ) = 2x + 2 .当 f '(x ) > 0 ,即 x > -1 时,函数 f (x ) = x 2 + 2x - 4 单调递增.当 f '(x ) < 0 ,即 x < -1时,函数 f (x ) = x 2 + 2x - 4 单调递减.(2)因为 f (x ) = 2x 2 - 3x + 3 ,所以 f '(x ) = 4x - 3 .当 f '(x ) > 0 ,即 x > 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递增.4当 f '(x ) < 0 ,即 x < 3时,函数 f (x ) = 2x 2 - 3x + 3 单调递减.4(3)因为 f (x ) = 3x + x 3 ,所以 f '(x ) = 3 + 3x 2 > 0 .因此,函数 f (x ) = 3x + x 3 是单调递增函数.(4)因为 f (x ) = x 3 + x 2 - x ,所以 f '(x ) = 3x 2 + 2x -1.当 f '(x ) > 0 ,即 x < -1或 x > 1时,函数 f (x ) = x 3 + x 2 - x 单调递增.3 当 f '(x ) < 0 ,即-1 < x < 1时,函数 f (x ) = x 3 + x 2 - x 单调递减.33、(1)图略. (2)加速度等于 0.4、(1)在 x = x 2 处,导函数 y = f '(x ) 有极大值;(2) 在 x = x 1 和 x = x 4 处,导函数 y = f '(x ) 有极小值;(3) 在 x = x 3 处,函数 y =(4) 在 x = x 5 处,函数 y = f (x ) 有极大值;f (x ) 有极小值.5、(1)因为 f (x ) = 6x 2 + x + 2 ,所以 f '(x ) = 12x +1.令 f '(x ) = 12x +1 = 0 ,得 x = - 1.12当 x > - 112 当 x < - 112时, f '(x ) > 0 , f (x ) 单调递增;时, f '(x ) < 0 , f (x ) 单调递减.所 以 ,x = - 1 时 , 12f (x ) 有 极 小 值 , 并 且 极 小 值 为 f (- 1 ) = 6 ⨯(- 1 )2 - 1 - 2 = - 49 .12 12 12 24(2)因为 f (x ) = x 3 -12x ,所以 f '(x ) = 3x 2 -12 .令 f '(x ) = 3x 2 -12 = 0 ,得 x = ±2 . 下面分两种情况讨论:①当 f '(x ) > 0 ,即 x < -2 或 x > 2 时;②当 f '(x ) < 0 ,即-2 < x < 2 时.当 x 变化时, f '(x ) , f (x ) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 16;当x = 2 时, f (x) 有极小值,并且极小值为-16 .(3)因为 f (x) = 6 -12x +x3,所以 f '(x) =-12 + 3x2.令 f '(x) =-12 + 3x2= 0 ,得 x =±2 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当 x =-2 时, f (x) 有极大值,并且极大值为 22;当x = 2 时, f (x) 有极小值,并且极小值为-10 .(4)因为 f (x) = 48x -x3,所以 f '(x) = 48 - 3x2.令 f '(x) = 48 - 3x2= 0 ,得 x =±4 .下面分两种情况讨论:①当f '(x) > 0 ,即x <-2 或x > 2 时;②当f '(x) < 0 ,即-2 <x < 2 时. 当x 变化时,f '(x) ,f (x) 变化情况如下表:因此,当x =-4 时,f (x) 有极小值,并且极小值为-128 ;当x = 4 时,f (x) 有极大值,并且极大值为128.6、(1)在[-1,1] 上,当 x =-112时,函数f (x) = 6x2+x + 2 有极小值,并且极小值为47.24由于f (-1) = 7 ,f (1) = 9 ,所以,函数f (x) = 6x2+x + 2 在[-1,1] 上的最大值和最小值分别为9,47.24(2)在[-3, 3] 上,当 x =-2 时,函数 f (x) =x3-12x 有极大值,并且极大值为 16; 当x = 2 时,函数 f (x) =x3-12x 有极小值,并且极小值为-16 .由于f (-3) = 9 ,f (3) =-9 ,所以,函数 f (x) =x3-12x 在[-3, 3] 上的最大值和最小值分别为 16, -16 .(3)在[-1,1] 上,函数f (x) = 6 -12x +x3在[-1,1] 上无极值.3 3由于f (-1) =269,f (1) =-5 ,3 27所以,函数f (x) = 6 -12x +x3在[-1,1] 上的最大值和最小值分别为269,-5 .3 27(4)当x = 4 时,f (x) 有极大值,并且极大值为128..由于f (-3) =-117 ,f (5) = 115 ,所以,函数 f (x) = 48x -x3在[-3, 5] 上的最大值和最小值分别为 128, -117 . 习题3.3 B 组(P32)1、(1)证明:设 f (x) = sin x -x ,x ∈(0,) .因为 f '(x) = cos x -1 < 0 , x ∈(0,)所以f (x) = sin x -x 在(0,) 内单调递减因此 f (x) = sin x -x <f (0) = 0 , x ∈(0,) , 即 sin x <x , x ∈(0,) . 图略(2)证明:设 f (x) =x -x2, x ∈(0,1) .因为 f '(x) = 1- 2x , x ∈(0,1)又1 1所以,当 x ∈1(0, )2时,f '(x) = 1- 2x > 0 ,f (x) 单调递增,f (x) =x -x2> f (0) = 0 ;当 x ∈1时,f '(x) = 1- 2x < 0 ,f (x) 单调递减,( ,1)2f (x) =x -x2> f (1) = 0 ;f ( ) => 0 . 因此, x -x22 4>0 ,x ∈(0,1) . (3)证明:设 f (x) =e x-1-x , x ≠ 0 .因为 f '(x) =e x-1, x ≠ 0所以,当x > 0 时,f '(x) =e x-1 > 0 ,f (x) 单调递增,f (x) =e x-1-x > f (0) = 0 ;当x < 0 时,f '(x) =e x-1 < 0 ,f (x) 单调递减,f (x) =e x-1-x >f (0) = 0 ;综上,e x-1 >x ,x ≠ 0 . 图略(4)证明:设 f (x) = ln x -x ,x > 0 .因为 f '(x) =1-1 ,x ≠ 0 x所以,当0 <x < 1时,f '(x) =1-1 > 0 ,f (x) 单调递增,xf (x) = ln x -x < f (1) =-1 < 0 ;当x > 1 时,f '(x) =1-1 < 0 ,f (x) 单调递减,xf (x) = ln x -x < f (1) =-1 < 0 ;当x =1 时,显然ln1 <1. 因此,ln x <x .由(3)可知, e x>x +1 >x , x > 0 .. 综上,ln x <x <e x,x > 0 图略2、(1)函数f (x) =ax3+bx2+cx +d 的图象大致是个“双峰”图象,类似“”或“”的形状. 若有极值,则在整个定义域上有且仅有一个极大值和一个极小值,从图象图略( ) 上能大致估计它的单调区间.(2)因为 f (x ) = ax 3 + bx 2 + cx + d ,所以 f '(x ) = 3ax 2 + 2bx + c . 下面分类讨论:当a ≠ 0 时,分a > 0 和a < 0 两种情形: ①当a > 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减.12当a > 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≥ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递增.②当a < 0 ,且b 2 - 3ac > 0 时,设方程 f '(x ) = 3ax 2 + 2bx + c = 0 的两根分别为 x , x ,且 x < x ,1212当 f '(x ) = 3ax 2 + 2bx + c > 0 ,即 x < x < x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递12增;当 f '(x ) = 3ax 2 + 2bx + c < 0 ,即 x < x 或 x > x 时,函数 f (x ) = ax 3 + bx 2 + cx + d 单12调递减.当a < 0 ,且b 2 - 3ac ≤ 0 时,此时 f '(x ) = 3ax 2 + 2bx + c ≤ 0 ,函数 f (x ) = ax 3 + bx 2 + cx + d 单调递减 1.4 生活中的优化问题举例习题 1.4 A 组(P37)1、设两段铁丝的长度分别为 x , l - x ,则这两个正方形的边长分别为 x , l - x,4 4两个正方形的面积和为 S = f (x ) = x 2 + (l - x )2 = 1 (2x 2- 2lx + l 2 ) , 0 < x < l .4 4 16 令 f '(x ) = 0 ,即4x - 2l = 0 , x = l.2当 x ∈ l (0, ) 2时, f '(x ) < 0 ;当 x ∈ l( , l ) 2 时, f '(x ) > 0 .因此, x = l是函数 f (x ) 的极小值点,也是最小值点.2V3 2 V321 ni 所以,当两段铁丝的长度分别是 l时,两个正方形的面积和最小.22、如图所示,由于在边长为a 的正方形铁片的四角截去四个边长为 x 的小正方形,做成一个无盖方盒,所以无盖方盒的底面为正方形,且边长为a - 2x ,高为 x .(1)无盖方盒的容积V (x ) = (a - 2x )2 x , 0 < x < a.2(2)因为V (x ) = 4x 3 - 4ax 2 + a 2 x ,所以V '(x ) = 12x 2 - 8ax + a 2 .令V '(x ) = 0 ,得 x = a (舍去),或 x = a.(第 2 题)当 x ∈ a (0, ) 6 2 时,V '(x ) > 0 ;当 x ∈ 6 a a( , ) 6 2 时,V '(x ) < 0 . 因此, x = a是函数V (x ) 的极大值点,也是最大值点.6 所以,当 x = a时,无盖方盒的容积最大.63、如图,设圆柱的高为h ,底半径为 R ,则表面积 S = 2Rh + 2R 2由V = R 2h ,得h =V .R 2因此, S (R ) = 2R2V V R 2 + 2R 2 = 2V + 2R 2 , R > 0 . R令 S '(R ) = - + 4R = 0 ,解得 R = .R当 R ∈(0, 3 V) 时, S '(R ) < 0 ;2当 R ∈( 3 V2, +∞) 时, S '(R ) > 0 .(第 3 题)因 此 , R =是 函 数 S (R ) 的 极 小 值 点 , 也 是 最 小 值 点 . 此 时 ,h = V R 2 = 23 V= 2R .2所以,当罐高与底面直径相等时,所用材料最省.n 4、证明:由于 f (x ) = ∑(x - a )2,所以 f '(x ) = 2 ∑(x - a ) .n i =1 n i =1i8a 4 + 令 f (x ) = 0 ,得 x = n ∑ = n ∑ n ∑ )x ' 1 na i =11 n可以得到, x a i是函数 f (x ) 的极小值点,也是最小值点.i =11 n这个结果说明,用 n 个数据的平均值 a i 表示这个物体的长度是合理i =1的,这就是最小二乘法的基本原理.5、设矩形的底宽为 x m ,则半圆的半径为 x 2m ,半圆的面积为x 2 8m 2 ,矩形的面积为a -x 2 8 m 2 ,矩形的另一边长为( a x - x ) m8因此铁丝的长为l (x ) =x + x + 2a - x = (1+ + 2a, 0 < x < 2 x 4 4 x令l '(x ) = 1+ - 4 2a = 0 ,得 x = x2(负值舍去).当 x ∈(0, ) 时, l '(x ) < 0 ;当 x ∈( 8a ,8a ) 时, l '(x ) > 0 .因此, x = 4 +是函数l (x ) 的极小值点,也是最小值点.所以,当底宽为m 时,所用材料最省.6、利润 L 等于收入 R 减去成本C ,而收入 R 等于产量乘单价. 由此可得出利润 L 与产量q 的函数关系式,再用导数求最大利润.收入 R = q ⋅ p = q (25 - 1 q ) = 25q - 1q 2 ,8 8 利润 L = R - C = (25q - 1 q 2 ) - (100 + 4q ) = - 1q 2 + 21q -100 , 0 < q < 200 .8 8求导得 L ' = - 1q + 214 令 L ' = 0 ,即- 1q + 21 = 0 , q = 84 .4当 q ∈(0,84) 时, L ' > 0 ;当 q ∈(84, 200) 时, L ' < 0 ;8a8a 4 + 8a4 + 8a4 +i ,n ∆ ( ) ⋅ + ⋅ ] 因此, q = 84 是函数 L 的极大值点,也是最大值点.所以,产量为 84 时,利润 L 最大,习题 1.4 B 组(P37)1、设每个房间每天的定价为 x 元,那么宾馆利润 L (x ) = (50 - x -180)(x - 20) = - 110 10令 L '(x ) = - 1x + 70 = 0 ,解得 x = 350 .5x 2 + 70x -1360 ,180 < x < 680 .当 x ∈(180, 350) 时, L '(x ) > 0 ;当 x ∈(350, 680) 时, L '(x ) > 0 .因此, x = 350 是函数 L (x ) 的极大值点,也是最大值点.所以,当每个房间每天的定价为 350 元时,宾馆利润最大. 2、设销售价为 x 元/件时,利润 L (x ) = (x - a )(c + c b - x ⨯ 4) = c (x - a )(5 - 4 x ) , a < x < 5b.b b 4令 L '(x ) = - 8c x + 4ac + 5bc = 0 ,解得 x = 4a + 5b.b b 8 当 x ∈(a , 4a + 5b ) 时, L '(x ) > 0 ;当 x ∈( 4a + 5b , 5b) 时, L '(x ) < 0 .8 8 4 当 x = 4a + 5b 是函数 L (x ) 的极大值点,也是最大值点.8所以,销售价为 4a + 5b元/件时,可获得最大利润.81.5 定积分的概念练习(P42) 8 . 3说明:进一步熟悉求曲边梯形面积的方法和步骤,体会“以直代曲”和“逼近”的思想.练习(P45)1、∆s ≈ ∆s ' = v ( i )∆t = [-( i )2 + 2]⋅ 1 = -( i )2 ⋅ 1 + ⋅ 2, i = 1, 2, , n .i i n n n n n n于是 s = ∑ ∆s ≈ ∑ ∆s ' = ∑ i v ( ) ti =1 i ii =1 i =1n= ∑ i =1[- i 2 1 2n n n = - 1 2 1n -1 2 1 n 2 1( n ) ⋅ n- - ( ) ⋅ - ( ) n n n ⋅ + 2 n = - 1[1+ 22 + + n 2 ] + 2n 3nn n= ∑ i =1i =1i =1⎰ ∑a= - 1 ⋅ n (n +1)(2n +1) + 2 n 3 6 = - 1 (1+ 1 )(1+ 1) + 23 n 2n 取极值,得s = lim ∑ 1 i n[ v ( )] lim [- 1 (1+ 1 )(1+ 1 ) + 2] = 5n →∞ i =1 nn n →∞ i =1 3 n 2n 3 说明:进一步体会“以不变代变”和“逼近”的思想. 2、 22 km.3说明:进一步体会“以不变代变”和“逼近”的思想,熟悉求变速直线运动物体路程的方法和步骤. 练习(P48)2x 3dx = 4 .说明:进一步熟悉定积分的定义和几何意义.从几何上看,表示由曲线 y = x 3 与直线 x = 0 , x = 2 , y = 0 所围成的曲边梯形的面积 S = 4 . 习题 1.5 A 组(P50)2100i -1 1 1、(1) ⎰1 (x -1)dx ≈ ∑[(1+ 100 ) -1]⨯ 100 = 0.495 ; 2500i -1 1 (2) ⎰1 (x -1)dx ≈ ∑[(1+ 500) -1]⨯ 500 = 0.499 ; 21000i -1 1 (3) ⎰1 (x -1)dx ≈ ∑[(1+ 1000) -1]⨯ 1000 = 0.4995 . 说明:体会通过分割、近似替换、求和得到定积分的近似值的方法. 2、距离的不足近似值为:18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1+ 0 ⨯1 = 40 (m ); 距离的过剩近似值为: 27 ⨯1+18⨯1+12 ⨯1+ 7 ⨯1+ 3⨯1 = 67 (m ). 3、证明:令 f (x ) = 1 . 用分点 a = x 0 < x 1 < < x i -1 < x i < < x n = b将区间[a , b ] 等分成 n 个小区间, 在每个小区间[x i -1 , x i ] 上任取一点i(i = 1, 2, , n )作和式∑ f (i )∆x = ∑ b - an = b - a , i =1bi =1nb - a 从而 1dx = lim n →∞i =1= b - a ,nnn n⎰1- x 2 1 ⎰⎰⎰⎰⎰⎰-1-1说明:进一步熟悉定积分的概念. 4、根据定积分的几何意义, ⎰01- x 2 dx 表示由直线 x = 0 , x = 1 , y = 0 以及曲线y = 所围成的曲边梯形的面积, 即四分之一单位圆的面积, 因此 1- x 2 d x = . 0 4 5、(1) ⎰0 x 3dx = - 1 . -1 4由于在区间[-1, 0] 上 x 3≤ 0 ,所以定积分 0x 3dx 表示由直线 x = 0 , x = -1 , y = 0-1和曲线 y = x 3 所围成的曲边梯形的面积的相反数.(2)根据定积分的性质,得⎰1x 3dx = ⎰0x 3dx + ⎰1x 3dx = - 1 + 1= 0 .-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0,1] 上 x 3≥ 0 ,所以定积分 1x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.(3)根据定积分的性质,得⎰2 x 3dx = ⎰0 x 3dx + ⎰2 x 3dx = - 1 + 4 = 15-1 -1 0 4 4由于在区间[-1, 0] 上 x 3 ≤ 0 ,在区间[0, 2] 上 x 3 ≥ 0 ,所以定积分 2x 3dx 等于位于 x-1轴上方的曲边梯形面积减去位于 x 轴下方的曲边梯形面积.说明:在(3)中,由于 x 3 在区间[-1, 0] 上是非正的,在区间[0, 2] 上是非负的,如果直接利用定义把区间[-1, 2] 分成n 等份来求这个定积分,那么和式中既有正项又 有负项,而且无法抵挡一些项,求和会非常麻烦. 利用性质 3 可以将定积分 2x 3dx-1化为 0 x 3dx + 2x 3dx ,这样, x 3 在区间[-1, 0] 和区间[0, 2] 上的符号都是不变的,再-1利用定积分的定义,容易求出⎰0x 3dx , ⎰2x 3dx ,进而得到定积分⎰2x 3dx 的值. 由此可见,利用定积分的性质可以化简运算.在(2)(3)中,被积函数在积分区间上的函数值有正有负,通过练习进一步体会定积分的几何意义.习题 1.5 B 组(P50)1、该物体在t = 0 到t = 6 (单位:s )之间走过的路程大约为 145 m.说明:根据定积分的几何意义,通过估算曲边梯形内包含单位正方形的个数来估计物体走过的路程. 2、(1) v = 9.81t .8 i 1 1 8⨯ 9(2)过剩近似值: ∑9.81⨯ ⨯ = 9.81⨯ ⨯ = 88.29 (m ); i =12 2 4 2 1⎰4 4∑ i l ∑ ∑ ∑ n8i -1 1 1 8⨯ 7不足近似值: ∑9.81⨯i =1⨯ = 9.81⨯ ⨯ 2 2 4 2 = 68.67 (m )(3) ⎰09.81tdt ; 3、(1)分割⎰09.81t d t = 78.48 (m ).在区间[0, l ] 上等间隔地插入n -1个分点,将它分成n 个小区间:l l 2l(n - 2)l [0, ] ,[ , ],……,[ , l ] , n n n n 记第i 个区间为[(i -1)l iln , n ] ( i = 1, 2, n ),其长度为 ∆x = il - (i -1)l = l .n n n 把细棒在小段 ll 2l(n - 2)l[0, ] ,[ , ],……,[ , l ] 上质量分别记作: n n n n∆m 1 , ∆m 2 , , ∆m n ,则细棒的质量m = ∑∆m i .i =1 (2) 近似代替当n 很大,即∆x 很小时,在小区间[(i -1)l , il] 上,可以认为线密度(x ) = x 2 n n的值变化很小, 近似地等于一个常数, 不妨认为它近似地等于任意一点 ∈[(i -1)l il处的函数值 () = 2. 于是, 细棒在小段 [(i -1)l il上质量 i , ] i i , ] n n n n∆m ≈ ()∆x = 2 l ( i = 1, 2, n ).i i i n(3) 求和得细棒的质量n nnm = ∆m ≈ ()∆x = 2. i ii n(4) 取极限i =1i =1nl2i =1l 2细棒的质量 m = limn →∞i =1n,所以m = ⎰0 x dx ..1.6 微积分基本定理练习(P55)(1)50;(2) 50 ;(3)4 2 - 5; (4)24; 33 3(5) 3 - ln 2 ; (6) 1 ;(7)0;(8) -2 .2 23 6 说明:本题利用微积分基本定理和定积分的性质计算定积分. 习题 1.6 A 组(P55)1、(1) 40 ; (2) - 1- 3ln 2 ;(3) 9+ ln 3 - ln 2 ;3 (4) - 17 ;(5) 6232 82+1; (6) e 2- e - 2 ln 2 .说明:本题利用微积分基本定理和定积分的性质计算定积分.2、 3sin xdx = [-cos x ]3= 2 . ⎰0 它表示位于 x 轴上方的两个曲边梯形的面积与 x 轴下方的曲边梯形的面积之差. 或表述为:位于 x 轴上方的两个曲边梯形的面积(取正值)与 x 轴下方的曲边梯形的面积(取负值)的代数和. 习 题 1.6 B 组 (P55)1 e2 11 11、(1)原式=[ e 2x ]1 = - ;(2)原式=[ sin 2x ]4 = - ;2 0 2 22x 3 62 4 (3)原式=[ ln 2]1 = ln 2.2、(1) sin mxdx = [- cos mx ]= - 1[cos m - cos(-m )] = 0 ; ⎰-m - msin mx 1(2) cos mxdx = | = [sin m - sin(-m )] = 0 ;⎰-m - m(3) sin 2 mxdx = 1- cos 2mx dx = [ x - sin 2mx ]= ;⎰- ⎰- 2 2 4m - (4) cos 2mxdx = 1+ cos 2mx dx = [ x + sin 2mx ] = .⎰- ⎰- 2 2 4m -3、 ( 1) s (t ) = t g (1- e -kt )dt = g+ g e - kt ]t = g t + g e - kt - g = 49t + 245e -0.2t - 245 . ⎰0 k [ k t k2 0 k k 2 k 2(2)由题意得 49t + 245e -0.2t - 245 = 5000 .这是一个超越方程,为了解这个方程,我们首先估计t 的取值范围.根据指数函数的性质,当t > 0 时, 0 < e -0.2t < 1 ,从而 5000 < 49t < 5245 ,因此, 5000 < t < 5245 .49 49因此245e-0.2⨯500049≈ 3.36 ⨯10-7 , 245e-0.2⨯524549≈ 1.24 ⨯10-7 ,所以,1.24 ⨯10-7 < 245e -0.2t < 3.36 ⨯10-7 .从而,在解方程49t + 245e -0.2t - 245 = 5000 时, 245e -0.2t 可以忽略不计.240 ⎰ ⎰= ⎰ 0a a 1]a 3因此,. 49t - 245 ≈ 5000 ,解之得 t ≈5245(s ).49说明:B 组中的习题涉及到被积函数是简单的复合函数的定积分,可视学生的具体情况选做,不要求掌握. 1.7 定积分的简单应用练习(P58)(1) 32; (2)1.3说明:进一步熟悉应用定积分求平面图形的面积的方法与求解过程.练习(P59)52 51、 s = (2t + 3)dt = [t + 3t ] = 22 (m ).⎰3 2、W = ⎰0 (3x + 4)dx = [ 2 3x 2 + 4x ]4 = 40 (J ). 习题 1.7 A 组(P60)1、(1)2; (2) 9.2 2、W = ⎰b k q dr = [-q b = k q - k q.a r r a b3、令v (t ) = 0 ,即40 -10t = 0 . 解得t = 4 . 即第 4s 时物体达到最大高度.42 4最大高度为 h = (40 -10t )dt = [40t - 5t ] = 80 (m ).⎰4、设t s 后两物体相遇,则 0t(3t 2+1)dt = t10tdt + 5 , 0解之得t = 5 . 即 A , B 两物体 5s 后相遇.此时,物体 A 离出发地的距离为 5(3t 2 +1)dt = [t 3 + t ]5 = 130 (m ).⎰5、由 F = kl ,得10 = 0.01k . 解之得k = 1000 .所做的功为 0.1W1000ldl = 500l 2 |0.1= 5 (J ). 06、(1)令v (t ) = 5 - t + 551+ t= 0 ,解之得t = 10 . 因此,火车经过 10s 后完全停止.(2) s = (5 - t + 55 )dt = [5t - 1 t 2 + 55 ln(1+ t )]10 = 55 ln11(m ). ⎰1+ t2习题 1.7 B 组(P60)1、(1) ⎰- aa 2 - x 2 dx 表示圆 x 2 + y 2 = a 2 与 x 轴所围成的上半圆的面积,因此⎰- adx =a 22(2) ⎰[ - x ]dx 表示圆(x -1)2 + y 2 = 1与直线( 第 1( 2)2 a 2- x 21- (x -1)210k3 x 2 33x33x= 2bh . (第 2 题) 0⎩ ⎰ ⎰ y = x 所围成的图形(如图所示)的面积,1⨯12 1 1因此, ⎰0 [ - x ]dx =- ⨯1⨯1 = - . 4 2 4 22、证明:建立如图所示的平面直角坐标系,可设抛物线的方程为 y = ax 2 ,则h = a ⨯ (b )2 ,所以a = 4h. 2 b 2从而抛物线的方程为y = 4h x 2. b 2b4h4h b 于是,抛物线拱的面积 S = 2 2(h - 0b 2 x 2 )dx = 2[hx - 3b 2 x 3 ]2 3⎧ y = x 2 + 23、如图所示.解方程组⎨ y = 3x得曲线 y = x 2 + 2 与曲线 y = 3x 交点的横坐标 x = 1 , x = 2 .12于是,所求的面积为 1[(x 2 + 2) - 3x ]dx + 2[3x - (x 2 + 2)]dx = 1 .0 14、证明:W = R +h G Mm dr = [-G Mm ]R +h = GMmh .⎰Rr2rRR (R + h )第一章 复习参考题 A 组(P65)1、(1)3;(2) y = -4 .2、(1) y ' =2 s in x cos x + 2x; (2) y ' = 3(x - 2)2 (3x +1)(5x - 3) ;cos 2x(3) y ' =2x ln x ln 2 + 2x x;(4) y 2x - 2x 2(2x +1)4.3、 F ' = -2GMm .r34、(1) f '(t ) < 0 . 因为红茶的温度在下降.(2) f '(3) = -4 表明在 3℃附近时,红茶温度约以 4℃/min 的速度下降. 图略.5、因为 f (x ) = ,所以 f '(x ) =2 .当 f '(x ) =2> 0 ,即 x > 0 时, f (x ) 单调递增; 1- (x -1)2 ⎰ ' =33x=当 f '(x ) =2< 0 ,即 x < 0 时, f (x ) 单调递减.6、因为 f (x ) = x 2 + px + q ,所以 f '(x ) = 2x + p .当 f '(x ) = 2x + p = 0 ,即 x = - p= 1 时, f (x ) 有最小值.2由- p= 1,得 p = -2 . 又因为 f (1) = 1- 2 + q = 4 ,所以q = 5 .27、因为 f (x ) = x (x - c )2 = x 3 - 2cx 2 + c 2 x ,所以 f '(x ) = 3x 2 - 4cx + c 2 = (3x - c )(x - c ) .当 f '(x ) = 0 ,即 x = c,或 x = c 时,函数 f (x ) = x (x - c )2 可能有极值.3由题意当 x = 2 时,函数 f (x ) = x (x - c )2 有极大值,所以c > 0 . 由于所以,当x = c 时,函数 f (x ) = x (x - c )2 有极大值. 此时, c = 2 , c = 6 . 3 3 8、设当点 A 的坐标为(a , 0) 时, ∆AOB 的面积最小.因为直线 AB 过点 A (a , 0) , P (1,1) ,所以直线 AB 的方程为 y - 0 = x - a,即 y =x - 0 1- a1 (x - a ) . 1- a 当 x = 0 时, y = a ,即点 B 的坐标是(0, a) .a -1因此, ∆AOB 的面积 S ∆AOB = S (a ) = a -11 aa 22 a a -1 2(a -1) .令 S '(a ) = ' = 1 ⋅a 2 - 2a =0 ,即 S (a ) 2 (a -1)2 0 .当a = 0 ,或a = 2 时, S '(a ) = 0 , a = 0 不合题意舍去.x (-∞, c )3c 3( c , c ) 3c(c , +∞)f '(x ) +-+f (x )单调递增 极大值 单调递减 极小值 单调递增由于所以,当a = 2 ,即直线 AB 的倾斜角为135︒ 时, ∆AOB 的面积最小,最小面积为 2. 9、 D .10、设底面一边的长为 x m ,另一边的长为(x + 0.5) m. 因为钢条长为 14.8m. 所以,长方体容器的高为14.8 - 4x - 4(x + 0.5) = 12.8 - 8x = 3.2 - 2x .4 4设容器的容积为V ,则V = V (x ) = x (x + 0.5)(3.2 - 2x ) = -2x 3 + 2.2x 2 +1.6x , 0 < x < 1.6 .令V '(x ) = 0 ,即-6x 2 + 4.4x +1.6 = 0 .所以, x = - 4 15(舍去),或 x = 1 .当 x ∈(0,1) 时,V '(x ) > 0 ;当 x ∈(1,1.6) 时,V '(x ) < 0 .因此, x = 1 是函数V (x ) 在(0,1.6) 的极大值点,也是最大值点. 所以,当长方体容器的高为 1 m 时,容器最大,最大容器为 1.8 m 3. 11、设旅游团人数为100 + x 时,旅行社费用为 y = f (x ) = (100 + x )(1000 - 5x ) = -5x 2 + 500 +100000 (0 ≤ x ≤ 80) .令 f '(x ) = 0 ,即-10x + 500 = 0 , x = 50 .又 f (0) = 100000 , f (80) = 108000 , f (50) = 112500 .所以, x = 50 是函数 f (x ) 的最大值点.所以,当旅游团人数为 150 时,可使旅行社收费最多. 12、设打印纸的长为 x cm 时,可使其打印面积最大.因为打印纸的面积为 623.7,长为 x ,所以宽为 623.7,x打印面积 S (x ) = (x - 2 ⨯ 2.54)( 623.7- 2 ⨯ 3.17)x= 655.9072 - 6.34x - 3168.396, 5.08 < x < 98.38 .x2 令 S '(x ) = 0 ,即6.34 - 3168.396 = 0 , x ≈ 22.36 (负值舍去), 623.7≈ 27.89 .x 2 22.365 2dx = 2 (cos x - sin x )dx = [sin x + cos x ]2 = 0 ; (5)原式= 2 dx = [ ]2 = x = 22.36 是函数 S (x ) 在(5.08, 98.38) 内唯一极值点,且为极大值,从而是最大值点.所以,打印纸的长、宽分别约为 27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为 y 元.则 y = R (q ) - 20000 -100q = - 1q 2 + 300q - 20000 (0 < q ≤ 400, q ∈ N ) .2令 y ' = 0 ,即-q + 300 = 0 , q = 300 .当q = 300 时, y = 25000 ;当q = 400 时, y = 20000 .q = 300 是函数 y ( p ) 在(0, 400] 内唯一极值点,且为极大值点,从而是最大值点.所以,每年养 300 头猪时,可使总利润最大,最大总利润为 25000 元. 14、(1) 2 - 2 ;(2) 2e - 2 ; (3)1;cos 2 x - sin 2 x⎰0cos x + sin x⎰01- cos x x - sin x - 2⎰0 2 2 0 4 15、略. 说明:利用函数图象的对称性、定积分的几何意义进行解释.16、2 - 2 .17、由 F = kl ,得0.049 = 0.01k . 解之得k = 4.9 .0.3l 2 0.3所做的功为 W = ⎰0.1 4.9ldl = 4.9 ⨯ 2|0.1 = 0.196 (J )第一章 复习参考题 B 组(P66)1、(1) b '(t ) = 104 - 2 ⨯103t . 所以,细菌在t = 5 与t = 10 时的瞬时速度分别为 0 和-104 .(2)当0 ≤ t < 5 时, b '(t ) > 0 ,所以细菌在增加;当5 < t < 5 + 5 时, b '(t ) < 0 ,所以细菌在减少.2、设扇形的半径为r ,中心角为弧度时,扇形的面积为 S .因为 S = 1r 2 , l - 2r =r ,所以= l- 2 .2 rS = 1r 2 = 1 ( l - 2)r 2 = 1 (lr - 2r 2 ) , 0 < r < l .2 2 r 2 23 2 (4)原式= .令 S ' = 0 ,即l - 4r = 0 , r = l,此时为 2 弧度.4r = l 是函数 S (r ) 在 4 l(0, ) 内唯一极值点,且是极大值点,从而是最大值点.2所以,扇形的半径为 l、中心角为 2 弧度时,扇形的面积最大.43、设圆锥的底面半径为r ,高为h ,体积为V ,那么r 2 + h 2 = R 2 . 因此,V =1r 2h = 1(R 2 - h 2 )h = 1R 2h -1h 3 , 0 < h < R .3 3 33令V ' = 1R 2 -h 2 = 0 ,解得h = 33 R .3容易知道, h =3 R 是函数V (h ) 的极大值点,也是最大值点.3所以,当h =3 R 时,容积最大.3把h =3 R 代入r 2 + h 2 = R 2 ,得r =36 R .3由 R = 2r ,得= 2 6 .3所以,圆心角为=2 6 时,容积最大.34、由于80 = k ⨯102 ,所以k = 4.5设船速为 x km /h 时,总费用为 y ,则 y = 4 x 2 ⨯ 20 + 20⨯ 4805 x x令 y ' = 0 ,即16 - 9600= 0 , x ≈ 24 .x2 = 16x + 9600, x > 0x容易知道, x = 24 是函数 y 的极小值点,也是最小值点.当 x = 24 时, (16 ⨯ 24 + 9600) ÷ ( 20) ≈ 941(元/时)24 24所以,船速约为 24km /h 时,总费用最少,此时每小时费用约为 941 元.5、 设汽车以 x km / h 行驶时, 行车的总费用y = 390x(3 +x 2 360 ) + 130 ⨯14 , x。
第1章导数及其应用专解3 求函数的单调区间-人教A版高中数学选修2-2专题考点训练(必备知识点)
【必备知识点】1.函数的单调性与导数的关系我们知道,如果函数()f x在某个区间是增函数或减函数,那么就说()f x在这一区间具有单调性.已知函数2()43f x x x=-+的图象如图所示,由函数的单调性易知,当2x<时,()f x是减函数;当2x>时,()f x是增函数.现在我们看看各个单调区间内任意一点的切线情况:考虑到曲线()y f x=的在某点处切线的斜率就是函数()f x在改点的导数值,从图象可以看到:在区间(-∞,2)内,任意一点的切线的斜率为负,即'()240f x x=<时,()f x为减函数.在区间(2,+∞)内,任意一点的切线的斜率为正,即'()240f x x=>时,()f x为增函数.导数的符号与函数的单调性:一般地,设函数()y f x=在某个区间内有导数,则在这个区间上,(1)若()0f x '>,则()f x 在这个区间上为增函数; (2)若()0f x '<,则()f x 在这个区间上为减函数; (3)若恒有()0f x '=,则()f x 在这一区间上为常函数.反之,若()f x 在某区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);若()f x 在某区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0).2.利用导数研究函数的单调性利用导数判断函数单调性的基本方法: 设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数.【典例展示】例1. 确定函数32()267f x x x =-+的单调区间.【解析】第一步:确定函数的定义域: ()f x 的定义域为R ;第二步:求导:2'()6126(2)f x x x x x =-=-, 第三步:方法一:解不等式'()0f x >确定函数的单调增区间: 令'()0f x >,解得x <0或x >2, 则函数()f x 在x <0或x >2时是增函数; 方法二:列表法:令'()=0f x ,解得x =0或x =2.当x 变化时,()f x '、()f x 的变化状态如下表:第四步:确定单调区间:因此,函数()f x 的单调增区间为(-∞,0)和(2,+∞),而单调减区间为(0,2).例2 求函数22ln y x x =-的单调区间.【解析 】第一步:确定函数的定义域:函数22ln y x x =-的定义域为(-∞,0)∪(0,+∞);第二步:求导:222(1)2(1)(1)()2x x x f x x x x x --+'=-==;第三步:方法一:解不等式()0f x '>确定单调增区间:令2(1)(1)x x x -+>,利用穿线法解不等式,得1<0x < 或1x >.方法二:令()=0f x '得,=1x ±.当x 变化时,()f x '、()f x 的变化状态如下表:第四步:确定单调区间:函数()f x 的单调增区间是(-1,0)和(1,+∞),减区间是(-∞,-1)和(0,1).例3. 已知函数22()(1)(1)x bf x x x -=≠-,求导函数'()f x ,并确定()f x 的单调区间.【解析】第一步:确定函数的定义域:()f x 的定义域为(,1)(1,)-∞+∞;第二步:求导:2432(1)(2)2(1)2[(1)]'()(1)(1)x x b x x b f x x x ---⋅----==--; 第三步:解不等式'()0f x >,求单调增区间: 令'()0f x >,得32[(1)]0(1)x b x --->-,同解于[(1)](1)0x b x ---<.当11b ->,即2b >,不等式的解为11x b <<-; 当11b -=,即2b =,不等式的解为空集; 当11b -<,即2b <,不等式的解为11b x -<<.综上,当2b >时,()f x 的单调增区间为(1,1)b -,单调减区间为(,1)(1,)b -∞-+∞和; 当2b =时,()f x 的单调减区间为(,1)(1,)-∞+∞和,无增区间;当2b <时,()f x 的单调增区间为(1,1)b -,单调减区间为(,1)(1,)b -∞-+∞和.例4.证明不等式2(1)ln 1x x x ->+,其中1x >.【解析】设2(1)()ln ,(1)1x f x x x x -=->+,214'()(1)f x x x =-+,1,'()0x f x >∴>,()f x ∴在(1,)+∞内为单调增函数.又(1)0f =,当1x >时,()(1)0f x f ∴>=,即2(1)ln 01x x x -->+,2(1)ln 1x x x -∴>+.【思路总结与方法】1. 思路:求函数的单调区间即为求使其导函数为正(或负)的x 值的范围,先正确求出函数的导函数,然后再在函数的定义域内解导函数的不等式即可。
[高二数学]数学选修2-2-导数及其应用
三、函数的单调性与导数 1.导数与函数单调性 函数y=f(x)在某个区间(a,b)内可导,如果f′(x)>0,则 y=f(x)在这个区间内单调递增;如果f′(x)<0,则y=f(x)在 这个区间内单调递减.
2.讨论函数单调性应注意的问题 (1)在利用导数来讨论函数的单调区间时,首先要确定函数的 定义域,解决问题的过程只能在定义域内通过讨论导数的符号 来判断函数的单调区间. (2)一般利用使导数等于零的点来分函数的单调区间. (3)如果一个函数具有相同单调性的单调区间不止一个,那么 这些单调区间之间不能用“∪”连接,而只能用“,”或“和” 字隔开.
二、导数的计算
1.基本初等函数的导数公式
(1)(c)′=0,(c为常数).
(2)(xα)′=αxα-1(α∈Q*).
(3)(sinx)′=cosx.
(4)(cosx)′=-sinx.
(5)(ax)′=axlna(a>0且a≠1).
(6)(ex)′=ex.
(7)(logax)′=
1 x ln a
(a>0且a≠1).
(4)注意在某一区间内f′(x)>0(或f′(x)<0)是函数f(x)在 该区间上为增(或减)函数的充分不必要条件,而不是充要条件 (例如,f(x)=x3). (5)如果函数在某个区间内恒有f′(x)=0,则f(x)为常数函数. (6)利用导数的符号判断函数的增减性,这是导数的几何意义 在研究曲线变化规律中的一个应用,它充分体现了数形结合思 想. (7)若在某区间上有有限个点使f′(x)=0,在其余的点恒有 f′(x)>0,则f(x)在该区间上仍为增函数.
七、微积分基本定理
定理内容
符号表示
作用
如果f(x)是区间[a,b]上 的连续函数,并且 F′(x)=f(x),那么
【全程复习方略】2014-2015学年高中数学 第二章 推理与证明 阶段复习课课件 新人教A版选修2-2
即a≥-x2在[1,e]上恒成立,所以a≥-1. (2)当a=1时,f(x)= 1 x2+lnx,x∈[1,e].
2 令F(x)=f(x)- 2 x3= 1 x2+lnx- 2 x3, 3 2 3 2 1 x 1 x 2x 1 2
又F′(x)=x+
阶段复习课 第 二 章
【答案速填】 ①由部分到整体,由个别到一般 ③演绎推理 ⑤综合法 ⑦反证法 ②类比推理 ④由一般到特殊 ⑥执果索因 ⑧数学归纳法
【核心解读】 1.合情推理 (1)归纳推理:由部分到整体、由个别到一般的推理. (2)类比推理:由特殊到特殊的推理. (3)合情推理:归纳推理和类比推理都是根据已有的事实,经过 观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的 推理,我们把它们统称为合情推理.
3 3
此时三个角的正弦值之和为0,且第一个角为α,第二个角与 第一个角的差与第三个角与第二个角的差相等,即有
( 4 2 2 2 ) ( ) ( ) . 3 3 3 3
依此类推,可得当四点等分单位圆时,为四个角正弦值之和
为0,且第一个角为α,第二个角为 2 +α,第三个角
为 2 =π+α,第四个角为π+α+ 2 3 +α,即其关
4 2 系为 sin sin( ) sin sin( 3 ) 0. 2 2 3 答案: sin sin( ) sin sin( ) 0 2 2 2 4 4 2
x1x 2 当0<x1<x2≤ a 时,因为a>0,b>0, b 所以x2-x1>0,0<x1x2< a , a >b, b x1x 2