通信原理实验七

合集下载

通信原理实验指导书(8个实验)

通信原理实验指导书(8个实验)

实验一 CPLD 可编程数字信号发生器实训一、实验目的1、熟悉各种时钟信号的特点及波形;2、熟悉各种数字信号的特点及波形。

二、实验设备与器件1、通信原理实验箱一台;2、模拟示波器一台。

三、实验原理1、CPLD 可编程模块电路的功能及电路组成CPLD可编程模块(芯片位号:U101)用来产生实验系统所需要的各种时钟信号和数字信号。

它由 CPLD可编程器件 ALTERA公司的 EPM7128(或者是Xilinx 公司的 XC95108)、编程下载接口电路(J104)和一块晶振(OSC1)组成。

晶振用来产生系统内的16.384MHz 主时钟。

本实验要求参加实验者了解这些信号的产生方法、工作原理以及测量方法,才可通过CPLD可编程器件的二次开发生成这些信号,理论联系实践,提高实际操作能力,实验原理图如图1-1 所示。

2、各种信号的功用及波形CPLD 型号为 EPM7128 由计算机编好程序从 J104 下载写入芯片,OSC1 为晶体,频率为 16.384MHz,经 8 分频得到 2.048MHz 主时钟,面板测量点与EPM7128 各引脚信号对应关系如下:SP101 2048KHz 主时钟方波对应 U101EPM7128 11 脚SP102 1024KHz 方波对应 U101EPM7128 10 脚SP103 512KHz 方波对应 U101EPM7128 9 脚SP104 256KHz 方波对应 U101EPM7128 8 脚SP105 128KHz 方波对应 U101EPM7128 6 脚SP106 64KHz 方波对应 U101EPM7128 5 脚SP107 32KHz 方波对应 U101EPM7128 4 脚SP108 16KHz 方波对应 U101EPM7128 81 脚SP109 8KHz 方波对应 U101EPM7128 80脚SP110 4KHz 方波对应 U101EPM7128 79脚SP111 2KHz 方波对应 U101EPM7128 77脚SP112 1KHz 方波对应 U101EPM7128 76脚SP113 PN32KHz 32KHz伪随机码对应U101EPM7128 75脚SP114 PN2KHz 2KHz伪随机码对应U101EPM7128 74脚SP115 自编码自编码波形,波形由对应 U101EPM7128 73 脚J106 开关位置决定SP116 长 0 长 1 码码形为1、0 连“1”对应 U101EPM7128 70脚、0 连“0”码SP117 X 绝对码输入对应 U101EPM7128 69 脚SP118 Y 相对码输出对应 U101EPM7128 68 脚SP119 F80 8KHz0 时隙取样脉冲对应 U101EPM7128 12 脚此外,取样时钟、编码时钟、同步时钟、时序信号还将被接到需要的单元电路中。

通信原理实验

通信原理实验

上海工程技术大学通信原理综合实验报告学院电子电气工程学院专业电子信息工程班级学号022211117学生沈文杰指导教师赵晓丽一.验证性实验1.模拟信号源实验一、实验目的1、熟悉各种模拟信号的产生方法及其用途2、观察分析各种模拟信号波形的特点。

二、实验内容1、测量并分析各测量点波形及数据。

2、熟悉几种模拟信号的产生方法、来源及去处,了解信号流程。

三、设计思想利用信号源模块和20M 双踪示波器进行模拟信号源实验。

主要测试点和可调器件说明如下:1、测试点2K同步正弦波:2K的正弦波信号输出端口,幅度由W1调节。

64K同步正弦波:64K的正弦波信号输出端口,幅度由W2调节。

128K同步正弦波:64K的正弦波信号输出端口,幅度由W3调节。

非同步信号源:输出频率范围100Hz~16KHz的正弦波、三角波、方波信号,通过JP2选择波形,可调电阻W4改变输出频率,W5改变输出幅度。

音乐输出:音乐片输出信号。

音频信号输入:音频功放输入点(调节W6改变功放输出信号幅度)。

2、可调器件K1:音频输出控制端。

K2:扬声器控制端。

W1:调节2K同步正弦波幅度。

W2:调节64K同步正弦波幅度。

W3:调节128K同步正弦波幅度。

W4:调节非同步正弦波频率。

W5:调节非同步正弦波幅度。

W6:调节扬声器音量大小。

四、实验方法1、用示波器测量“2K同步正弦波”、“64K同步正弦波”、“128K同步正弦波”各点输出的正弦波波形,对应的电位器W1,W2,W3可分别改变各正弦波的幅度。

参考波形如下:2、用示波器测量“非同步信号源”输出波形。

1)将跳线开关JP2选择为“正弦波”,改变W5,调节信号幅度(调节范围为0~4V),用示波器观察输出波形。

2)保持信号幅度为3V,改变W4,调节信号频率(调节范围为0~16KHz),用示波器观察输出波形。

3)将波形分别选择为三角波,方波,重复上面两个步骤。

3、将控制开关K1设为“ON”,令音乐片加上控制信号,产生音乐信号输出,用示波器在“音乐输出”端口观察音乐信号输出波形。

通信原理实验大全(完整版)

通信原理实验大全(完整版)

通信实验指导书电气信息工程学院实验一 AM调制与解调实验 (1)实验二FM调制与解调实验 (5)实验三ASK调制与解调实验 (8)实验四FSK调制与解调实验 (11)实验五时分复用数字基带传输 (14)实验六光纤传输实验 (19)实验七模拟锁相环与载波同步 (27)实验八数字锁相环与位同步 (32)实验一 AM调制与解调实验一、实验目的理解AM调制方法与解调方法。

二、实验原理本实验中AM调制方法:原始调制信号为1.5V直流+ 1KHZ正弦交流信号,载波为20KHZ E弦交流信号,两者通过相乘器实现调制过程。

本实验中AM解调方法:非相干解调(包络检波法)。

三、实验所需部件调制板、解调板、示波器、计算机(数据采集设备)。

四、实验步骤1.熟悉实验所需部件。

2.按下图接线。

MODULATION BOARDDEMODULATION BOARDSetting values on theMODULATION BOARD:J T f - 20 kHz f 二 1 kH2 U M3. 用示波器(或计算机)分别测出上图所示的几个点的波形,各图中。

4. 结合上述实验结果深入理解AM 调制方法与解调方法。

ZZtdl It HzUDCV-% Ui巧LO =Q UCEW cHU QUI T ! I 1 沁 3.2.u = 2 V0 - 1 VU - 1.5 V并绘制于下面□l Nil【J】1 [ns]实验一参考结果实验二FM调制与解调实验、实验目的理解FM调制方法与解调方法。

二、实验原理本实验中FM调制方法:原始调制信号为2KHZ正弦交流信号,让其通过V/F (电压/频率转换,即VCO压控振荡器)实现调制过程。

本实验中FM解调方法:鉴频法(电容鉴频+包络检波+低通滤波)、实验所需部件调制板、解调板、示波器、计算机(数据采集设备)四、实验步骤1.熟悉实验所需部件2.按下图接线。

Setting values on the MODULATION BOARD:U lM f = 2 kHz u = 0.5 V3.用示波器(或计算机)分别测出上图所示的几个点的波形,并绘制于下面各图中。

实验7频带传输系统综合实验-信息系统综合实践实验中心-桂林电子

实验7频带传输系统综合实验-信息系统综合实践实验中心-桂林电子

实验7 频带传输系统综合实验一、实验目的:1、将所做过的独立实验进行组合,构成可通话的频带传输系统。

掌握系统工作原理,了解信号流程并完成两人通话功能。

2、分析系统连接后所遇到的问题,且提出解决向题的方料3、了解载波相位误差,位同步相位误差对系统的性能的影响。

4、了解相位抖动对系统的影响。

二、实验内容:1、了解二人通话的2DPSK频带传输系统的原理,掌握实验模块的正确组合和连线。

2、了解决收端载波相位误差,位同步相位误差对系统造成影响的方法。

3、观察相位抖动对系统的影响。

4、分析系统组成后容易出现什么问题,提出解决问题的方法。

5、当发端发送固定数字信号时,将收、发端关键波形按相位关系绘画出来。

且加以说明。

三、预习要求1、复习前面各章有关的独立实验内容。

2、了解可通话2DPSK频带传输实验的原理。

3、自行设计实验方案及测试步骤。

四、实验仪器1、直流电源一台2、示波器一台3、数字信源模块、数字调制模块、载波时钟提取模块、数字解调模块、帧同步/终端模块、PCM编译码模块各一块。

五、实验原理图3-16-1 系统流程图1. 数字信源中的多路信号的复接原理数字信源模块的原理框图如附图所示。

1.1时序信号的产生本模块通过二进制分频器,得到16kHZ和8kHZ方波信号,然后送入2/4译码器,得到反相的脉宽为八个时钟周期的四个脉冲信号,经反相器后得到正相的时序脉冲信号。

其波形及相位关系如图1所示。

图1 复接器中的时序脉冲信号1.2四路数据码的复接本信源模块中的四路独立的八位数码,在以上四路时序信号的控制下,依次选通模拟开关1、2、3、4,按顺序依次将四路数码接入同一通道,形成了一路串行码,完成四路数据码的复接。

在本基带传输实验中,将其中第一路数据码置成帧同步码(巴克码)X1110010。

2. 数字终端模块的分接器原理原理框图如附图所示。

2.1时序脉冲产生电路由U7、U8、U9(74LS164)八位移存器和U12(74LS04)非门、U10(74LS74)D触发器组成。

通信原理的实验报告

通信原理的实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。

2. 掌握模拟通信和数字通信的基本技术。

3. 熟悉调制、解调、编码、解码等基本过程。

4. 培养实际操作能力和实验技能。

三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。

1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。

模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。

2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。

数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。

五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。

2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。

(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。

六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。

2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。

(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。

七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。

通信原理实验_实验报告

通信原理实验_实验报告

一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。

三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。

2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。

3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。

4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。

通信原理实验报告--PCM

通信原理实验报告--PCM

大连理工大学实验报告实验七PCM编译码器系统一、实验目的和要求见预习报告二、实验内容PCM编码器1.输出时钟和帧同步时隙信号观测2.抽样时钟信号与PCM编码数据测量PCM译码器1.PCM译码器输出模拟信号观测三、实验仪器1、J H5001通信原理综合实验系统一台2、20MHz双踪示波器一台3、函数信号发生器一台四、实验结果PCM编码器1.输出时钟和帧同步时隙信号观测CH1:TP504 CH2:TP503分析和掌握PCM编码抽样时钟信号与输出时钟的对应关系由图可以看出在抽样时钟信号的高电平部分,输出时钟有8个脉冲,即进行了PCM编码,且为8bit/s2.抽样时钟信号与PCM编码数据测量方法一:CH1:TP502 CH2:TP504分析和掌握PCM编码输出数据(TP504)与抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系。

由图可以看出,每个抽样区间都各不相同,看似随机,实际遵循一定的编码规律。

PCM量化编码后是“0”,“1”的数字信号,可以根据一定的规律,如A率将其恢复成原来的电平,再经过抽样、滤波恢复原始的波形。

方法二:K502在右端:K502在左端:CH1:TP502 CH2:TP504 CH1:TP502 CH2:TP504分析和掌握PCM编码输出数据与帧同步时隙信号、发送时钟信号的对应关系由图可以看出,PCM编码输出数据与帧同步时隙信号、发送时钟信号同步PCM译码器PCM译码器输出模拟信号观测(1)定性观测解码恢复出的模拟信号质量(2)频率固定1000Hz,测试信号电平1.27VCH1:TP506 CH2:TP501 CH1:TP506 CH2:TP501分析:从图中可以看出,输入的是1004Hz的正弦信号,输出也是1004Hz的正弦信号,输出信号较输入信号有放大,通过坐标比较,输出信号与输入信号并不是完全同步的,有65us的延时。

(3)频率固定1000Hz,测试信号电平1.52V (4)频率固定1000Hz,测试信号电平3.41V(5)频率固定1000Hz,测试信号电平5V (6)测试信号电平固定1Vp-p,信号频率1.037kHz(7)测试信号电平固定1Vp-p,信号频率3.6kHz(8)测试信号电平固定1Vp-p,信号频率4kHz分析:当频率固定,增加电平过多时,会导致译码输出畸变,信噪比下降;当电平固定,频率提高,信输出电平几乎维持不变,只有略微地上升。

通信原理实验

通信原理实验

实验报告课程名称通信原理实验名称通信原理实验专业通信工程班级学号姓名指导教师2012年12月26日实验一实验名称数字调制评分实验日期年月日指导教师姓名专业班级学号一、实验目的1.1 ASK调制与解调1、掌握用键控法产生ASK信号的方法;2、掌握ASK非相干解调的原理。

1.2 FSK调制与解调1、掌握用键控法产生FSK信号的方法;2、掌握2FSK过零检测解调的原理。

1.3 PSK/DPSK调制与解调1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法;2、掌握用键控法产生PSK/DPSK信号的方法;3、掌握PSK/DPSK相干解调的原理;4、掌握相对码波形与PSK信号波形之间的关系以及绝对码波形与DPSK信号波形之间的关系。

二、实验内容2.1 ASK调制与解调1、观察ASK调制信号波形;2、观察ASK解调信号波形。

2.2 FSK调制与解调1、观察FSK调制信号波形;2、观察FSK解调信号波形;3、观察FSK过零检测解调器各点波形。

2.3 PSK/DPSK调制与解调1、观察绝对码和相对码的波形;2、观察PSK/DPSK调制调信号波形;3、观察PSK/DPSK解调调信号波形。

三、实验仪器3.1 ASK调制与解调1、信号源模块2、模块3、4、73、连接线 若干4、20M 双踪示波器 一台3.2 FSK 调制与解调1、信号源模块2、模块33、模块44、模块7 可选5、20M 双踪示波器 一台6、连接线 若干3.3 PSK/DPSK 调制与解调1、信号源模块2、模块33、模块44、模块7 可选5、20M 双踪示波器 一台6、连接线 若干四、实验原理4.1 ASK 调制与解调4.2 FSK 调制与解调信号源CPLD隔离电路模拟开关4066NRZ 64K 同步正弦波(8K)(载波输入)ASK 载波ASK-OUTASK 调制电路ASK-NRZ (基带信号输入)输出耦合电路低通滤波器抽样判决器半波整流器ASK-OUT 输入ASKIN 位同步信号(7号板)DIN 输入BS 输出输入ASK-BS ASK 解调电路TH1TH2输出OUT1ASK-DOUT 输出2FSK信号的产生通常有两种方式:(1)频率选择法;(2)载波调频法。

通信原理实验报告

通信原理实验报告

通信原理实验报告七实验十六:眼图实验——2014xxxxxx 许子涵一、实验目的1、了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、掌握眼图观测的方法并记录研究二、实验内容1、观测眼图并记录分析。

三、实验器材1、信号源模块一块2、③号模块一块3、④号模块一块4、 20M 双踪示波器一台四、实验数据1、ASK调制解调眼图ASK-DOUT TH2FSK眼图PSK/DPSK眼图五、分析眼图是通过用示波器观察接收端的基带信号波形,从而估计和调整系统性能的一种方法。

具体做法是:用一个示波器跨接在抽样判决器的输入端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

这样就可以从示波器上显示的波形来观察码间串扰和信道噪声等因素影响的情况,从而估计系统系能的优劣。

如果存在码间串扰,示波器的扫描迹线就不完全重合,“眼睛”的线迹会显得杂乱,而且张开的较小;如果码间串扰小到可以忽略,则眼图将会是标准的“大眼睛”。

当存在噪声时,眼图的线迹就变成比较模糊的带状的线,噪声越大,线条越粗越模糊,“眼睛”张开得越小。

同时我们还可以利用眼图来找到最佳判决门限,求出噪声容限,改善系统性能。

接收二进制双极性波形时,在一个码元周期内只能看到一只眼睛;若是M进制的双极性波形,则在一个码元周期内可以看到纵向显示的(M-1)只眼睛。

若接收的是经过码型变换后得到的AMI码或HDB3码,眼图中间将会出现一根代表0的水平线,因为它们的波形都具有三电平。

六、思考题思考信噪比、码间干扰是如何在眼图中体现的?答:眼图的“眼睛”张开的大小反映着码间串扰的强弱。

“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。

当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。

若同时存在码间串扰,“眼睛”将张开得更小。

与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。

噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

通信原理实验实验报告

通信原理实验实验报告

1. 理解并掌握通信系统基本组成及工作原理。

2. 掌握通信系统中信号的传输与调制、解调方法。

3. 学习通信系统性能评估方法及分析方法。

二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。

(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。

(3)通过实验验证通信系统的工作原理。

2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。

(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。

(3)通过实验验证调制、解调方法的有效性。

3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。

(2)通过实验测量通信系统性能参数,如误码率、信噪比等。

(3)分析实验数据,总结通信系统性能。

1. 观察通信原理实验平台,了解通信系统的基本组成。

2. 设置实验参数,如调制方式、载波频率、调制指数等。

3. 观察并记录实验过程中各模块的输出信号。

4. 利用示波器、信号分析仪等仪器分析实验数据。

5. 计算通信系统性能参数,如误码率、信噪比等。

6. 分析实验结果,总结实验结论。

五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。

2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。

例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。

3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。

实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。

4. 分析实验数据,总结实验结论。

实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。

六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。

通信原理实验振幅键控(ASK)调制与解调实验

通信原理实验振幅键控(ASK)调制与解调实验

《通信原理》实验报告实验七: 振幅键控(ASK)调制与解调实验实验九:移相键控(PSK/DPSK)调制与解调实验系别:信息科学与技术系专业班级:电信0902学生姓名:同组学生:成绩:指导教师:惠龙飞(实验时间:2011年12月1日——2011年12月1日)华中科技大学武昌分校ﻬ实验七振幅键控(ASK)调制与解调实验一、实验目的1、掌握用键控法产生ASK信号的方法。

2、掌握ASK非相干解调的原理。

一、实验器材1、 信号源模块一块 2、 ③号模块一块 3、 ④号模块一块 4、 ⑦号模块一块 5、 20M双踪示波器一台 6、 连接线若干二、基本原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2AS K)、二进制移频键控(2FSK)、二进制移相键控(2PS K)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1、 2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2AS K信号,这种二进制振幅键控方式称为通—断键控(O OK )。

2ASK 信号典型的时域波形如图9-1所示,其时域数学表达式为:2()cos ASK n c S t a A t ω=⋅(9-1)式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n 个码元:⎩⎨⎧=PP a n -出现概率为出现概率为110 ﻩﻩ (9-2)综合式9-1和式9-2,令A =1,则2ASK 信号的一般时域表达式为:t nT t g a t S c n s n ASK ωcos )()(2⎥⎦⎤⎢⎣⎡-=∑t t S c ωcos )(= ﻩ(9-3)式中,T s 为码元间隔,()g t 为持续时间 [-T s /2,T s /2] 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而()S t 就是代表二进制信息的随机单极性脉冲序列。

通信141-实验7 PSK DPSK调制解调实验

通信141-实验7 PSK DPSK调制解调实验

信息工程学院实验报告课程名称: 通信原理实验项目名称:时分复用解复用(TDM )实验 实验时间:2016.12.13 班级: 姓名: 学号:一、实验目的1. 掌握PSK DPSK 调制解调的工作原理及性能要求;2. 进行PSK DPSK 调制、解调实验,掌握电路调整测试方法;3. 掌握二相绝对码与相对码的码变换方法。

二、实验仪器1.信道编码与ASK 、FSK 、PSK 、QPSK 调制,位号:A 、B 位 2.PSK/QPSK 解调模块,位号:C 位 3.时钟与基带数据发生模块,位号: G 位 4.复接/解复接、同步技术模块,位号:I 位 5.100M 双踪示波器1台 6.信号连接线6根三、实验步骤1.插入有关实验模块在关闭系统电源的情况下,按照下表放置实验模块:对应位号可见底板右上角的“实验模块位置分布表”,注意模块插头与底板插座的防呆口一致。

2.信号线连接使用专用导线按照下表进行信号线连接:3.加电打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.实验内容设置拨码器“4SW02”(G)设置为“00001”,4P01产生32K的15位m序列输出;按动SW01(AB)按钮,使“L01”指示灯亮,“PSK DPSK”输出为PSK调制;将“PSK QPSK解调模块”两个跳线(38K01和38K02)开关插到左侧,选择PSK解调模式。

(一)PSK调制/解调实验1.PSK调制信号观测用示波器通道1接JD(AB),用示波器通道2接“PSK DPSK”(AB),分别观测32K基带信号数据和PSK调制信号,记录实验结果。

分析PSK调制的相位情况。

2.PSK解调后信号观测:●无噪声PSK解调观测(1)调节3W01(E),使3TP01信号幅度为0,即传输的PSK调制信号不加入噪声。

(2)用示波器分别观测JD(AB)和38P02(C),对比调制前基带数据和解调后基带数据。

华工通信原理实验报告

华工通信原理实验报告

一、实验名称:通信原理实验二、实验目的:1. 理解并掌握通信原理的基本概念和原理;2. 熟悉通信系统的组成及各部分功能;3. 掌握通信系统性能指标及分析方法;4. 提高动手操作能力及实验报告撰写能力。

三、实验内容:1. 通信系统基本组成及功能;2. 信号调制与解调;3. 信道传输特性;4. 通信系统性能分析。

四、实验器材:1. 通信原理实验箱;2. 双踪示波器;3. 函数信号发生器;4. 数据采集器;5. 计算机及仿真软件。

五、实验步骤:(一)通信系统基本组成及功能1. 观察实验箱中各模块的连接情况,了解通信系统的组成;2. 分析各模块的功能,如放大器、滤波器、调制器、解调器等;3. 在实验箱上操作,观察各模块间的信号传输过程。

(二)信号调制与解调1. 设置实验箱中调制器和解调器的参数,如调制指数、载波频率等;2. 输入调制信号,观察调制器输出信号的变化;3. 将调制信号输入解调器,观察解调器输出信号的变化;4. 分析调制与解调过程,验证调制和解调的正确性。

(三)信道传输特性1. 设置实验箱中信道模块的参数,如衰减、相位延迟等;2. 输入信号,观察信道模块输出信号的变化;3. 分析信道传输特性,如衰减、相位延迟等对信号的影响;4. 通过实验验证信道传输特性对通信系统性能的影响。

(四)通信系统性能分析1. 设置实验箱中通信系统参数,如信号功率、信噪比等;2. 分析通信系统性能指标,如误码率、比特误码率等;3. 通过实验验证通信系统性能指标与系统参数的关系。

六、实验结果与分析:(一)通信系统基本组成及功能实验结果表明,通信系统由发送端、信道和接收端组成。

发送端将信号调制后发送,信道对信号进行传输,接收端对接收到的信号进行解调,从而恢复出原始信号。

(二)信号调制与解调实验结果表明,调制器能够将调制信号转换为适合信道传输的信号,解调器能够将接收到的信号恢复为原始信号。

(三)信道传输特性实验结果表明,信道传输特性对信号的影响较大,如衰减、相位延迟等会降低信号质量,影响通信系统性能。

通信原理实验07 VCO锁相环电路实验

通信原理实验07 VCO锁相环电路实验

实验七VCO锁相环电路实验实验内容1.基本锁相环实验2.同步带与捕捉带的带宽测量实验3.锁相式数字频率合成器实验一. 实验目的1.掌握VCO压控振荡器的基本工作原理, 加深对基本锁相环工作原理的理解。

2.熟悉锁相式数字频率合成器的电路组成与工作原理。

二. 实验电路工作原理本单元可做基本锁相环和锁相式数字频率合成器两个实验。

总体框图如图8-1,电路原理图如图8-2所示。

图8-1 基本锁相环与锁相式数字频率合成器电原理框图4046锁相环的功能框图如图8-3所示。

外引线排列管脚功能简要介绍:第1引脚(PD O3):相位比较器2输出的相位差信号,为上升沿控制逻辑。

第2引脚(PD O1):相位比较器1输出的相位差信号,它采用异或门结构,即鉴相特性为PD O1=PD I1 PD I2第3引脚(PD I2):相位比较器输入信号,通常PD为来自VCO的参考信号。

第4引脚(VCO O):压控振荡器的输出信号。

第5引脚(INH):控制信号输入,若INH为低电平,则允许VCO工作和源极跟随器输出:若INH为高电平,则相反,电路将处于功耗状态。

第6引脚(CI):与第7引脚之间接一电容,以控制VCO的振荡频率。

第7引脚(CI):与第6引脚之间接一电容,以控制VCO的振荡频率。

第8引脚(GND):接地。

第9引脚(VCO I):压控振荡器的输入信号。

第10引脚(SF O):源极跟随器输出。

第11引脚(R1):外接电阻至地,分别控制VCO的最高和最低振荡频率。

第12引脚(R2):外接电阻至地,分别控制VCO的最高和最低振荡频率。

第13引脚(PD O2):相位比较器输出的三态相位差信号,它采用PD I1、PD I2上升沿控制逻辑。

第14引脚(PD I1):相位比较器输入信号,PD I1输入允许将0.1V左右的小信号或方波信号在内部放大并再经过整形电路后,输出至相位比较器。

第15引脚(V I ):内部独立的齐纳稳压二极管负极,其稳压值V≈5~8V,若与TTL电路匹配时,可以用来作为辅助电源用。

通信原理基础实验报告

通信原理基础实验报告

一、实验目的1. 理解通信系统的基本组成和工作原理。

2. 掌握信号调制与解调的基本方法。

3. 熟悉MATLAB在通信系统仿真中的应用。

4. 分析通信系统性能,评估信号传输质量。

二、实验原理通信系统通常由信源、信道、信宿和传输介质组成。

信源产生待传输的信息,信道负责传输信号,信宿接收并处理信号,传输介质是信号传输的物理通道。

本实验主要研究以下通信原理:1. 模拟调制与解调:包括调幅(AM)、调频(FM)和调相(PM)。

2. 数字调制与解调:包括幅度键控(ASK)、频率键控(FSK)和相位键控(PSK)。

3. 信号频谱分析:利用傅里叶变换分析信号频谱,了解信号带宽和能量分布。

三、实验内容1. 模拟调制与解调:(1)使用MATLAB生成模拟信号,如正弦波、方波等。

(2)进行调幅、调频和调相调制,观察调制后的信号波形。

(3)对调制信号进行解调,恢复原始信号。

(4)分析调制和解调过程中的信号质量。

2. 数字调制与解调:(1)使用MATLAB生成数字信号,如二进制序列。

(2)进行ASK、FSK和PSK调制,观察调制后的信号波形。

(3)对调制信号进行解调,恢复原始数字信号。

(4)分析调制和解调过程中的信号质量。

3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。

(2)分析信号带宽和能量分布,评估信号传输质量。

四、实验步骤1. 模拟调制与解调:(1)在MATLAB中生成模拟信号,如正弦波、方波等。

(2)进行调幅调制,观察调制后的信号波形。

(3)对调幅信号进行解调,恢复原始信号。

(4)重复步骤2和3,进行调频和调相调制与解调。

2. 数字调制与解调:(1)在MATLAB中生成数字信号,如二进制序列。

(2)进行ASK调制,观察调制后的信号波形。

(3)对ASK信号进行解调,恢复原始数字信号。

(4)重复步骤2和3,进行FSK和PSK调制与解调。

3. 信号频谱分析:(1)对模拟和数字信号进行傅里叶变换,观察信号频谱。

通信原理实验思考题答案

通信原理实验思考题答案

通信原理实验指导书思考题答案实验一思考题P1-4:1、位同步信号和帧同步信号在整个通信原理系统中起什么作用?答:位同步和帧同步是数字通信技术中的核心问题,在整个通信系统中,发送端按照确定的时间顺序,逐个传输数码脉冲序列中的每个码元,在接收端必须有准确的抽样判决时刻(位同步信号)才能正确判决所发送的码元。

位同步的目的是确定数字通信中的各个码元的抽样时刻,即把每个码元加以区分,使接收端得到一连串的码元序列,这一连串的码元序列代表一定的信息。

通常由若干个码元代表一个字母(符号、数字),而由若干个字母组成一个字,若干个字组成一个句。

帧同步的任务是把字、句和码组区分出来。

尤其在时分多路传输系统中,信号是以帧的方式传送的。

克服距离上的障碍,迅速而准确地传递信息,是通信的任务,因此,位同步信号和帧同步信号的稳定性直接影响到整个通信系统的工作性能。

2、自行计算其它波形的数据,利用U006和U005剩下的资源扩展其它波形。

答:在实验前,我们已经将四种波形在不同频段的数据写入了数据存储器U005(2864)并存放在固定的地址中。

当单片机U006(89C51)检测到波形选择开关和频率调节开关送入的信息后,一方面通过预置分频器调整U004(EPM7128)中分频器的分频比(分频后的信号频率由数码管M001~M004显示);另一方面根据分频器输出的频率和所选波形的种类,通过地址选择器选中数据存储器U005中对应地址的区间,输出相应的数字信号。

该数字信号经过D/A转换器U007(TLC7528)和开关电容滤波器U008(TLC14CD)后得到所需模拟信号。

自行扩展其它波形时要求非常熟悉信号源模块的硬件电路,最好先用万用表描出整个硬件电路。

此题建议让学生提供设计思路,在设计不成熟的情况很容易破坏信号源。

提示如下:工作流程同已有的信号源,波形的数据产生举例如下:a=sin(2.0*PI*(float)i/360.0)+1.0;/产生360个正弦波点,表示一个周期波形数据/k=(unsigned char)(a/2.0*255.0);/数字化所有点以便存储/将自己产生的360个点追加到数据存储器U005(2864)并存放在后续的固定的地址中,根据单片机U006(89C51)编程选中对应U005的地址,循环周期显示输出即为我们所设计的波形。

通信原理实验报告七

通信原理实验报告七

通信原理实验报告实验题目:信道模拟实验成绩:_______学生姓名:朱懿学号:20121060077 指导教师:杨老师学院名称:信息学院专业:通信工程(武警国防生)年级:2012 级实验时间:20 14 年 12 月 12 日 16 时 00 分实验室:3301一、实验目的1.观察噪声对信道的影响,比较理想信道与随机信道的区别,加深对随机信道的理解。

2.比较编码信号与未编码信号在随机信道中的传输,加深对纠错编码原理的理解。

3.掌握眼图波形与信号传输畸变的关系。

二、实验内容1.将信号源输出的NRZ 码(未编码)输入信道,调节噪声功率大小,观察信道输出信号。

2.将输出的NRZ 码(未编码)输入本模块,编码后再输入信道,并经过解码,观察通过编解码后信号。

3.观察眼图并作分析记录。

三、实验仪器及器材1.信号源模块2.信道模拟模块3.终端模块(可选)4.60MHz 双踪示波器一台5.误码率测试仪(可选)一台6.连接线若干四、实验电路原理包括实验电路原理图1.信道广义信道按照它包含的功能,可以划分为调制信道与编码信道。

所谓调制信道是指调制器输出端到解调器输入端的部分。

从调制和解调的角度来看,调制器输出端到解调器输入端的所有变换装置及传输媒质,不论其过程如何,只不过是对已调信号进行某种变换。

我们只需要关心变换的最终结果,而无需关心其详细物理过程。

因此,研究调制和解调时,采用这种定义是方便的。

同理,在数字通信系统中,如果我们仅着眼于讨论编码和译码,采用编码信道的概念是十分有益的。

所谓编码信道是指编码器输出端到译码器输入端的部分。

这样定义是因为从编译码的角度看来,编码器的输出是某一数字序列,而译码器的输入同样也是某一数字序列,他们可能是不同的数字序列。

因此,从编码器输出端到译码器输入端,可以用一个对数字序列进行变换的方框来加以概括。

我们这里主用的是编码信道,接下来介绍一下编码信道模型。

编码信道对信号的影响是一种数字序列的变换,即把一种数字序列变成另一种数字序列。

通信原理实验(1-8)

通信原理实验(1-8)

通信原理实验报告学院:信息工程学院专业:通信工程学号:6姓名:李瑞鹏实验一 带通信道模拟及眼图实验一、实验目的1、 了解眼图与信噪比、码间干扰之间的关系及其实际意义;2、 掌握眼图观测的方法并记录研究。

二、实验器材1、 主控&信号源、9号、13号、17号模块 各一块2、 双踪示波器 一台3、 连接线 若干三、实验原理1、实验原理框图带通信道模拟框图2、实验原理框图带通信道是将直接调制的PSK 信号和经过升余弦滤波后调制的PSK 信号送入带通信道,比较两种状况的眼图。

然后,改变带通信道的带宽重复观测。

四、实验步骤概述:该项目是通过分别改变噪声幅度和带通信道频率范围,观测信道的眼图输出变化情况,了解和分析信道输出原因.1、关电,按表格所示进行连线。

2PSK 调制信号加升余弦滤波的带通信道模拟【250KHz~262KHz带通信道】。

3、此时系统初始状态为:PN15为8K。

4、实验操作及波形观测。

(1)以CLK时钟信号为触发源对比观测LPF-BPSK观测点,观察输出眼图波形。

(2)调节17号板W1噪声幅度调节,调节噪声幅度,观察眼图波形变化。

17号模块测试点TP4可以观察添加的白噪声。

(3)在主控菜单中改变带通信道频率范围,观察输出眼图变化,并分析原因。

五、实验报告1、完成实验并思考实验中提出来的问题。

2、分析实验电路工作原理,简述其工作过程。

3、整理信号在传输过程中的各点波形。

实验二 HDB3码型变换实验一、实验目的1、了解几种常用的数字基带信号的特征和作用。

2、掌握HDB3码的编译规则。

3、了解滤波法位同步在的码变换过程中的作用。

二、实验器材1、主控&信号源、2号、8号、13号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、HDB3编译码实验原理框图HDB3编译码实验原理框图2、实验框图说明我们知道AMI编码规则是遇到0输出0,遇到1则交替输出+1和-1。

而HDB3编码由于需要插入破坏位B,因此,在编码时需要缓存3bit的数据。

通信原理实验大全完整版

通信原理实验大全完整版

通信原理实验大全完整版实验一:模拟调制与解调技术实验实验目的:通过实验研究模拟调制与解调技术的基本原理和方法。

实验内容:1.了解调制与解调的基本概念和分类。

2.设计并搭建模拟调制与解调电路。

3.调整调制与解调电路的参数,并观察输出信号的变化。

4.分析调制与解调电路中各部分的功能和作用。

实验二:数字调制与解调技术实验实验目的:通过实验研究数字调制与解调技术的基本原理和方法。

实验内容:1.了解数字调制与解调的基本原理和方法。

2.设计并搭建数字调制与解调电路。

3.分析调制与解调电路的输出信号特征,并与理论结果进行对比。

4.探究数字调制与解调电路的性能和应用。

实验三:信道编码与解码技术实验实验目的:通过实验研究信道编码与解码技术的基本原理和方法。

实验内容:1.了解信道编码与解码的基本原理和方法。

2.设计并搭建信道编码与解码电路。

3.分析信道编码与解码电路的性能指标,并进行优化调整。

4.探究信道编码与解码的应用场景和工程实践。

实验四:多址技术实验实验目的:通过实验研究多址技术的基本原理和方法。

实验内容:1.了解多址技术的基本原理和分类。

2.设计并搭建多址技术的实验电路。

3.分析多址技术的性能指标,并进行性能测试。

4.探究多址技术在通信系统中的应用和发展趋势。

实验五:传输系统性能分析实验实验目的:通过实验研究传输系统的性能分析方法和技术。

实验内容:1.了解传输系统的基本要素和性能指标。

2.设计并搭建传输系统实验电路。

3.测试传输系统的性能指标,并进行结果分析。

4.优化传输系统的性能,并与理论结果进行对比。

实验六:射频通信系统实验实验目的:通过实验研究射频通信系统的基本原理和方法。

实验内容:1.了解射频通信系统的基本要素和原理。

2.设计并搭建射频通信系统实验电路。

3.测试射频通信系统的性能指标,并进行结果分析。

4.优化射频通信系统的性能,并探究其在无线通信领域的应用。

实验七:光纤通信实验实验目的:通过实验研究光纤通信的基本原理和方法。

南理工通信原理实验报告

南理工通信原理实验报告

南理工通信原理实验报告目录实验一抽样定理实验 (3)实验七HDB3码型变换实验 (14)实验十一 BPSK调制与解调实验 (21)实验十九滤波法及数字锁相环法位同步提取实验 (29) 实验一抽样定理实验一、实验目的1.了解抽样定理在通信系统中的重要性。

2.掌握自然抽样与平顶抽样的实现方法。

3.理解低通采样定理的原理。

4.理解实际的采样系统。

5.理解低通滤波器的幅频特性和对抽样信号恢复的影响。

6.理解带通采样定理的原理。

二、实验器材1.主控&信号源、3号模块。

各一块2.双踪示波器一台3.连接线若干三、实验原理1.实验原理框图2.实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样信号经过保持电路得到平顶抽样信号。

平定抽样和自然抽样信号是通过S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4khz的巴特沃斯低通滤波器)或fpga数字滤波器(有FIR、IIR 两种)。

反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。

要注意,这里的数字滤波器是借用的信源编译码部分的端口。

在做本实验室与信源编译码的内容没有联系。

四、实验结果与波形观测实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域与频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

注:通过观测频谱可以看到当抽样脉冲小于2倍被抽样信号频率时,信号会产生混叠。

1.关电,按表格所示进行连线。

源端口目标端口连线说明信号源:MUSIC 模块3:TH1(被抽样信号) 将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲) 提供抽样时钟模块3:TH3(抽样输出) 模块3:TH5(LPF-IN) 送入模拟低通滤波器2. 开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验七抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性。

2、掌握自然抽样及平顶抽样的实现方法。

3、理解低通采样定理的原理。

4、理解实际的抽样系统.5、理解低通滤波器的幅频特性对抽样信号恢复的影响.6、理解低通滤波器的相频特性对抽样信号恢复的影响。

7、理解带通采样定理的原理。

二、实验器材1、主控&信号源、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。

将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。

平顶抽样和自然抽样信号是通过开关S1切换输出的。

抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。

这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种).反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象.要注意,这里的数字滤波器是借用的信源编译码部分的端口。

在做本实验时与信源编译码的内容没有联系。

四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。

1、关电,按表格所示进行连线。

源端口目标端口连线说明信号源:MUSIC模块3:TH1(被抽样信号)将被抽样信号送入抽样单元信号源:A-OUT模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出)模块3:TH5(LPF—IN)送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

调节主控模块的W1使A-out输出峰峰值为3V。

3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。

抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。

4、实验操作及波形观测。

(1)观测并记录自然抽样前后的信号波形:设置开关S13#为“自然抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#.MUSIC主控&信号源抽样输出3#(2)观测并记录平顶抽样前后的信号波形:设置开关S13#为“平顶抽样”档位,用示波器分别观测MUSIC主控&信号源和抽样输出3#。

MUSIC主控&信号源抽样输出3#(3)观测并对比抽样恢复后信号与被抽样信号的波形:设置开关S13#为“自然抽样"档位,用示波器观测MUSIC主控&信号源和LPF-OUT3#,以100Hz的步进减小A—OUT主控&信号源的频率,比较观测并思考在抽样脉冲频率多小的情况下恢复信号有失真。

(4)用频谱的角度验证抽样定理(选做):用示波器频谱功能观测并记录被抽样信号MUSIC和抽样输出频谱。

以100Hz的步进减小抽样脉冲的频率,观测抽样输出以及恢复信号的频谱.(注意:示波器需要用250kSa/s采样率(即每秒采样点为250K),FFT缩放调节为×10)。

注:通过观测频谱可以看到当抽样脉冲小于2倍被抽样信号频率时,信号会产生混叠.实验项目二滤波器幅频特性对抽样信号恢复的影响概述:该项目是通过改变不同抽样时钟频率,分别观测和绘制抗混叠低通滤波和fir 数字滤波的幅频特性曲线,并比较抽样信号经这两种滤波器后的恢复效果,从而了解和探讨不同滤波器幅频特性对抽样信号恢复的影响。

1、测试抗混叠低通滤波器的幅频特性曲线。

(1)关电,按表格所示进行连线。

(2)开电,设置主控模块,选择【信号源】→【输出波形】和【输出频率】,通过调节相应旋钮,使A-OUT主控&信号源输出频率5KHz、峰峰值为3V的正弦波。

(3)此时实验系统初始状态为:抗混叠低通滤波器的输入信号为频率5KHz、幅度3V的正弦波。

(4)实验操作及波形观测.用示波器观测LPF-OUT3#。

以100Hz步进减小A-OUT主控&信号源输出频率,观测并记录LPF—OUT3#的频谱.记入如下表格:由上述表格数据,画出模拟低通滤波器幅频特性曲线。

思考:对于3.4KHz低通滤波器,为了更好的画出幅频特性曲线,我们可以如何调整信号源输入频率的步进值大小?2、测试fir数字滤波器的幅频特性曲线。

(1)关电,按表格所示进行连线。

(2)开电,设置主控菜单:选择【主菜单】→【通信原理】→【抽样定理】→【FIR滤波器】。

调节【信号源】,使A-out输出频率5KHz、峰峰值为3V的正弦波.(3)此时实验系统初始状态为:fir滤波器的输入信号为频率5KHz、幅度3V的正弦波。

(4)实验操作及波形观测.用示波器观测译码输出3#,以100Hz的步进减小A-OUT主控&信号源的频率。

观测并记录译码输出3#的频谱。

记入如下表格:由上述表格数据,画出fir低通滤波器幅频特性曲线。

思考:对于3KHz低通滤波器,为了更好的画出幅频特性曲线,我们可以如何调整信号源输入频率的步进值大小?3、分别利用上述两个滤波器对被抽样信号进行恢复,比较被抽样信号恢复效果.(1)关电,按表格所示进行连线:模块3:TH3(抽样输出)模块3:TH13(编码输入)送入FIR数字低通滤波器(2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】→【FIR 滤波器】。

调节W1主控&信号源使信号A-OUT输出峰峰值为3V左右。

(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波.(4)实验操作及波形观测。

对比观测不同滤波器的信号恢复效果:用示波器分别观测LPF-OUT3#和译码输出3#,以100Hz步进减小抽样时钟A-OUT的输出频率,对比观测模拟(频率步进可以根据实验需求滤波器和FIR数字滤波器在不同抽样频率下信号恢复的效果。

自行设置。

)思考:不同滤波器的幅频特性对抽样恢复有何影响9HZ 8.9HZ8.8HZ 8.5HZ8HZ 7.5HZ7HZ实验项目三滤波器相频特性对抽样信号恢复的影响。

概述:该项目是通过改变不同抽样时钟频率,从时域和频域两方面分别观测抽样信号经fir滤波和iir滤波后的恢复失真情况,从而了解和探讨不同滤波器相频特性对抽样信号恢复的影响。

1、观察被抽样信号经过fir低通滤波器与iir低通滤波器后,所恢复信号的频谱。

(1)关电,按表格所示进行连线。

源端口目标端口连线说明提供被抽样信号信号源:MUSIC模块3:TH1(被抽样信号)信号源:A-OUT模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出)模块3:TH13(编码输入)将信号送入数字滤波器(2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。

调节W1主控&信号源使信号A—OUT输出峰峰值为3V左右。

(3)此时实验系统初始状态为:待抽样信号MUSIC为3K+1K正弦合成波,抽样时钟信号A-OUT为频率9KHz、占空比20%的方波.(4)实验操作及波形观测。

a、观测信号经fir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】→【FIR 滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为7.5KHz;用示波器观测恢复信号译码输出3#的波形和频谱。

b、观测信号经iir滤波后波形恢复效果:设置主控模块菜单,选择【抽样定理】→【II R滤波器】;设置【信号源】使A-OUT输出的抽样时钟频率为7。

5KHz;用示波器观测恢复信号译码输出3#的波形和频谱。

c、探讨被抽样信号经不同滤波器恢复的频谱和时域波形:被抽样信号与经过滤波器后恢复的信号之间的频谱是否一致?如果一致,是否就是说原始信号能够不失真的恢复出来?用示波器分别观测fir滤波恢复和iir滤波恢复情况下,译码输出3#的时域波形是否完全一致,如果波形不一致,是失真呢?还是有相位的平移呢?如果相位有平移,观测并计算相位移动时间。

注:实际系统中,失真的现象不一定是错误的,实际系统中有这样的应用。

2、观测相频特性(1)关电,按表格所示进行连线。

源端口目标端口连线说明信号源:A-OUT模块3:TH13(编码输使源信号进入数字滤波器(2)开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】→【FIR 滤波器】。

(3)此时系统初始实验状态为: A—OUT为频率9KHz、占空比20%的方波。

(4)实验操作及波形观测。

对比观测信号经fir滤波后的相频特性:设置【信号源】使A-OUT输出频率为5KHz、峰峰值为3V的正弦波;以100Hz步进减小A—OUT输出频率,用示波器对比观测A-OUT 主控&信号源和译码输出3#的时域波形。

相频特性测量就是改变信号的频率,测输出信号的延时(时域上观测)。

记入如下表格:五、实验报告1、分析电路的工作原理,叙述其工作过程。

2、绘出所做实验的电路、仪表连接调测图。

并列出所测各点的波形、频率、电压等有关数据,对所测数据做简要分析说明。

必要时借助于计算公式及推导。

3、分析以下问题:滤波器的幅频特性是如何影响抽样恢复信号的?简述平顶抽样和自然抽样的原理及实现方法。

4、思考一下,实验步骤中采用3K+1K正弦合成波作为被抽样信号,而不是单一频率的正弦波,在实验过程中波形变化的观测上有什么区别?对抽样定理理论和实际的研究有什么意义?。

相关文档
最新文档