气动技术简介

合集下载

气动技术基本知识

气动技术基本知识
其它
速度控制阀
C)控制元件速度控制阀d)执行元件
节流阀
摆动缸
回转执行件
逻辑阀
空气马达
管子接头
消音器
e)辅助元件压力计
其它
污染物质的去除能力
污染物质
过滤器
油雾分离器
干燥器
水蒸气
微小水雾
微小油雾
水滴
固体杂质
×
×
×


×






×

×
表1
二、空气处理元件
压缩空气中含有各种污染物质。由于这些污染物质降低了气动元件的使用寿命。并且会经常造成元件的误动作和故障。表1列出了各种空气处理元件对污染物的清除能力。
6.油雾器
气动系统中有很多装置都有滑动部分如:气缸体与活塞,阀体与阀芯等。为了保证滑动部分的正常工作需要润滑,油雾器是提供润滑油的装置
三、控制元件
一、方向控制阀
方向控制阀是气动控制回路中用来控制气体流动方向和气流通断,从而使气路中的执行元件能按要求方向进行动作的元件。在各类元件中,方向控制阀的种类最多。主要有换向阀和单向阀两大类。前者包括电磁阀,气控阀等,后者主要有单向阀,梭阀等,应用都很广泛。
流量控制阀分为节流阀,速度控制阀和排气节流阀数种等。
1.节流阀
可调式节流阀依靠改变的流通面积来调节气流。
2.速度控制阀
速度控制阀由节流阀和单向阀组合而成。故而又叫单向节流阀,通过调节流量达到控制执行元件速度的目的。
三、压力控制阀
压力控制阀是利用阀芯上的气压作用力和弹簧力保持平衡来进行工作的,平衡状态的任何破坏都会使阀芯位置产生变化,其结果不是改变阀口开度的大小(例如溢流阀、减压阀),就是改变阀口的通断(例如安全阀,顺序阀)。

气动系统入门教程

气动系统入门教程
气动系统入门
分享人:林玉泉
课程目标
了解气动技术 理解常见气动元件的工作原理 能够读懂常见的气动回路 能够读懂压力表并能进行常用的气压单位之间的换算 能够正确调整气动元件, 维护气动系统
课程大纲
一、气动技术 二、气动系统的基本组成 三、压力的概念及单位 四、主要气动品牌及公司常用的气动品牌
1.3 压缩空气的消耗
气缸 气囊
点胶针筒 排水系统……
真空发生器原理 气枪
2 气动识图
2.1 气动控制系统 2.2 气动符号 2.3 气动回路
2.1 气动控制系统
气压控制系统
一个系统:气压控制系统 两种符号:字符、图形 三个部分:信号部分
控制部分 动作部分
14
A
X
Y
2
2
42 12
53 1
P:绝对压力 Pa
T:绝对温度 K
V:气体体积
3
m
波义尔定律 查理 定律 盖吕萨克定律
摄氏温度与热力学温度(又称为绝对温度)的换算关系是: T=t+273.15
气体流动的连续性方程
1 *A1 * V1 = 2 * A2 * V2 1 , 2 : 截面1,2 上流体密度 A: 截面积 V: 通过截面的速度
三、压力的概念及ห้องสมุดไป่ตู้位
3.1 常见的一些压力的概念
绝对压力:相对于绝对真空的压力值 表压力:相对于大气压的压力,比大气压高 真空度:相对于大气压的压力,比大气压低 标准大气压:温度为0℃,纬度为45度,海平面的大
气压,现在已规定为1.01325×105Pa
三、压力的概念及单位
绝对压力 4Bar
压缩空气的处理及传输

气动技术相关知识讲解(最全的气动知识讲解159页)

气动技术相关知识讲解(最全的气动知识讲解159页)
破坏密封圈 阀芯黏着
26
压缩空气中的灰尘和油雾
• 大气中的尘埃 压缩机自带的过滤器很难除去大气中2~5μm以下的尘
埃杂质。 随着空气的压缩,空气的体积减小,同一体积的空气
内,尘埃密度增加。
• 压缩机中的润滑油 随着压缩机的运转,其运动部分的润滑油进入到压缩空
气中,同时随着压缩温度的增高,油雾会碳化。
个/l以下
29
厂房配管
AF
带后冷却器的空压机
10bar AT
气罐
排水沟道
自动排水器
30
环状管道配置供气可靠 性高,压力损失小,且 压力较稳定但投资高;
每条支路及两支路间都 设置截至阀,支管末端 安装排水器
31
配管须知
• 管道须保持倾斜度,以便使凝聚的水分能被收集和有排水器 排出系统外。 • 分支管路必须由主管路顶部分分出,以免水分进入分支管路。 • 要适当的配置过滤器,以去除管内的铁锈和油雾。 • 管道须清洁后方可安装。 • 缠绕密封带至管螺纹时,要露出最后2个螺纹,以免密封带 碎片落入管道内。 • 采用环状配管的方式。
从空压机输出的压缩空气中,含有大量的水分、 油分和粉尘等杂质,必须适当清除这些杂质, 以避免他们对气动系统的正常工作造成危害。
•杂质的来源
由系统外部通过空压机等吸入的杂质 由系统内部产生的杂质 系统安装和维修时产生的杂质
20
压缩机
•作用
将电能转化成压缩空气的压力能,供气 动机械使用
•分类
活塞式
往复式
气源处理及辅件
FRL 组合元件
按钮式人力控制
FRL 简化符号 压力表 压力继电器 消声器 气压源
手柄式人力控制 踏板式人力控制 挺杆式机械控制 弹簧控制 滚轮式机械控制

气动技术第一讲气动基础知识 ppt课件

气动技术第一讲气动基础知识 ppt课件
15
记忆回路,双气控二位五通阀
• 由于双气控二位五通阀的 记忆特性,作为发讯元件
的按钮阀,其产生的气信
号可以是短信号或脉冲信
号。一旦驱动按钮阀( 1S1)动作,在双气控二 位五通阀的控制口(14 )上就有气信号,结果使
双气控二位五通阀换向, 气缸(1A1)活塞杆伸出 。
启动按钮时的气动回路见
图。
16
比较驱动按钮阀的顺序 。
18
记忆回路,双气控二位五通阀
• 可调单向节流阀可对气 缸活塞杆伸出或回缩的 速度进行调节,通常采 用排气节流方式。只有 在控制口(14)上有气 信号(该信号由按钮阀 (1S1)产生),气缸活 塞杆才伸出。此时,压 缩空气进入无杆腔,双 气控二位五通阀保持当 前位置,不换向。 讨论同时驱动按钮阀1S1 和1S2动作时,气动回路 的动作情况。
4、辅助元件:保证系统正常工作所需要的辅助装 置,包括气管、管接头、储气罐、过滤器等。
4
气动系统示意图
5
气动系统示意图
气 缸
6
直接控制,已驱动
• 在该回路中,因 只有一个执行元 件—气缸,所以 ,气缸被标识为 1A1。使气缸活 塞杆伸出的控制 元件被标识为 1S1。
7
间接控制,未驱动
• 按下按钮时, 气缸(大缸径 ,单作用)活 塞杆将伸出。 按钮阀可安装 在距气缸较远 的位置上。一 旦松开按钮, 气缸活塞杆将 回缩。
24
气动技术的发展趋势
• 〈2〉、小型化、轻量化:由于气动技术在 电子行业、工业自动化等领域的应用,气 动元件必须小型化和轻量化。各种新技术、 新材料的应用,使气动元件实现了小型化 和轻量化。
19
气动顺序回路
• 气动顺序回路通常具有 下列特征:驱动按钮阀 动作时,气缸(1A1) 活塞杆伸出,需确认动 作顺序中的每一工步。 该气动回路的动作顺序 为A+B+A-B-。

《气动技术概述》PPT课件

《气动技术概述》PPT课件

h
13
第8章 气动技术概述
2)
小型化气动元件,如气缸及阀类正应用于许多工业领 域。微型气动元件不但用于精密机械加工及电子制造业,而 且用于制药业、医疗技术、包装技术等。在这些领域中,已 经出现活塞直径小于2.5 mm的气缸、 宽度为10 mm的气阀 及相关的辅助元件,并正在向微型化和系列化方向发展。
第8章 气动技术概述
第8章
8.1 气动系统 8.2 气动技术的应用 8.3 气动技术的特点和应用准则 8.4 气动技术的发展趋势
h
1
第8章 气动技术概述
8.1 气动系统
气动(气压传动)系统是一种能量转换系统,其工作 原理是将原动机输出的机械能转变为空气的压力能, 利用管路、各种控制阀及辅助元件将压力能传送到执 行元件,再转换成机械能,从而完成直线运动或回转 运动,并对外做功。气动系统的基本构成如图8-1所示。
h
3
第8章 气动技术概述
8.2 气动技术的应用
气动技术用于简单的机械操作中已有相当长的时间了, 最近几年随着气动自动化技术的发展,气动技术起到了重 要的作用。
气动自动化控制技术是利用压缩空气作为传递动力或 信号的工作介质,配合气动控制系统的主要气动元件,与 机械、液压、电气、电子(包括PLC控制器和微机)等部 分或全部综合构成的控制回路,使气动元件按工艺要求的 工作状况,自动按设定的顺序或条件动作的一种自动化技 术。用气动自动化控制技术实现生产过程自动化,是工业 自动化的一种重要技术手段, 也是一种低成本自动化技术。
h
5
第8章 气动技术概述
图8-2 货物自动装卸
h
6
第8章 气动技术概述
图8-3 气动机械手
h
7

气动技术第一讲气动基础知识

气动技术第一讲气动基础知识
15
记忆回路,双气控二位五通阀
• 由于双气控二位五通阀的 记忆特性,作为发讯元件
的按钮阀,其产生的气信
号可以是短信号或脉冲信
号。一旦驱动按钮阀( 1S1)动作,在双气控二 位五通阀的控制口(14 )上就有气信号,结果使
双气控二位五通阀换向, 气缸(1A1)活塞杆伸出 。
启动按钮时的气动回路见
图。
16
8
间接控制,已驱动
• 只要按下按钮,
控制口(12)就
有气信号,这是
一个按钮阀控制
单作用气缸的举
例。若松开按钮
,则在弹簧作用
下,按钮阀复位
,控制口(12)
上的气信号消失

9
“与”逻辑(双压阀)
• 将双压阀输入与按 钮阀和滚轮杠杆阀 的输出相连接,当 按钮阀(1S1)动 作时,双压阀只有 左边输入口(1) 有气信号,由于双 压阀阻断了这个气 信号,所以,其输 出口(2)上没有 气信号输出。
10
“与”逻辑(双压阀)
• 若滚轮杠杆阀( 1S2)也动作, 则双压阀输出口 (2)上就有气信 号输出,从而驱 动换向阀(1V1 )换向,使气缸 活塞杆伸出。
11
“或”逻辑(梭阀)
• 当要求二个按钮阀中任 何一个动作,气缸活塞
杆都伸出时,无经验设
计者也许会将两个按钮 阀(1S1和1S2)的工 作口连接起来。在这种
化 5、气动系统在恶劣工作环境中,安全可靠性优于液压等系
统 6、气动系统可实现过载保护,可压缩性气体便于贮存能量 7、气动设备可以自动降温,长期运行也不会发生过热现象 8、空气取之不尽,节省购买、贮存、运输的费用
21
气压传动
气压传动的缺点: 1、工作压力较低,输出功率较小 2、气信号传递的速度慢,不宜用于高速传递

气动技术第一讲气动基础知识

气动技术第一讲气动基础知识

执行元件的运动速度 较快


速度稳定性
较差
良好
很好
控制精度
较差

一般
防爆性
好 用非可燃油才能防火 好
气动技术的发展趋势
• 〈1〉、电气一体化:微电子技术与气动元 件相结合组成了PC机—接口—小型阀—气 缸的电气一体化的气动系统。同时,与电 子技术相结合的自适应控制气动元件已经 问世,如压力比例阀、流量比例阀等,使 气动技术从以往的开关控制进入到高精度 的反馈控制,使定位精度提高到±0.1~ 0.01. 电气一体化已渗透到工厂本身的加工、 装配、检测等生产领域。
气动与其它传动方式比较
1、气动技术的优缺点
气压传动与其它传动方式的比较:
项目
气压传动 液压传动 机械传动
系统结构
简单
复杂
稍复杂
安装自由度



使用维护
简单 比气动系统复杂 简单
清洁度
清洁
油污染
较清洁
技术要求
较低
较高
较低
寿命

较长

价格
便宜
较贵
一般
传动效率
<30%
<70% 90%左右
驱动力
小~中
中~极大 小~大
气动技术的发展趋势
• 〈2〉、小型化、轻量化:由于气动技术在 电子行业、工业自动化等领域的应用,气 动元件必须小型化和轻量化。各种新技术、 新材料的应用,使气动元件实现了小型化 和轻量化。
• 〈3〉、复合集成化:为节省空间、减少配 管、减化装配、提高效率,多功能复合化 和集成化的元件相继出现,如:将所需数 目的阀配置在集成板上,带阀气缸等。
粘度发生变化时,流量也会跟着改变, 造成速度不稳定。

气动技术基本知识

气动技术基本知识

气动技术基本知识目录1. 气动技术概述 (3)1.1 气动技术的定义与应用 (4)1.2 气动技术的历史与发展 (5)2. 气动力学基础 (7)2.1 流体力学原理 (7)2.2 伯努利原理 (9)2.3 压差与流体动力 (10)3. 气动系统设计 (11)3.1 空口设计 (12)3.2 管道与管件设计 (13)3.3 阀门与调节器选择 (15)4. 气动元件 (16)4.1 气缸与活塞 (17)4.2 电磁阀与继电器 (18)4.3 空气压缩机与真空发生器 (19)5. 气动控制 (20)5.1 原理与方法 (22)5.2 逻辑控制器 (23)5.3 通讯协议与接口 (25)6. 气动应用 (26)6.1 工业自动化 (27)6.2 移动机器与机器人 (29)6.3 医疗设备 (30)7. 气动系统维护与保养 (31)7.1 日常维护 (32)7.2 故障诊断与排除 (33)7.3 更新与升级 (34)8. 安全与法规遵从 (36)8.1 气体类型与分类 (37)8.2 安全标准与规范 (38)8.3 应急措施与培训 (40)9. 节能减排 (41)9.1 气动系统的能效 (43)9.2 气动改造与效能提升 (44)9.3 环境影响与对策 (46)10. 气动技术发展趋势 (47)10.1 智能化与自动化 (48)10.2 信息化与数据管理 (50)10.3 绿色节能技术 (52)1. 气动技术概述又称航空力学,是一门研究气体流动与其周围物体的相互作用的科学,核心在于理解介于固体和流体之间的能量和力转化过程。

它涵盖了气流的本性、流动规律、力和机遇的预测以及如何应用这些原理来设计、优化和控制各种飞行器、机械设备和工程系统。

流体力学:研究流体静力学和流体力学的基本原理,包括压力、流速、粘滞性和伯努利定律等。

气流场分析:通过数值方法和实验方法,分析流体在不同形状结构周围运动的特性。

气动外形设计:根据气动原理,设计出具有良好阻力系数、升力和操控性的飞机、火箭、汽车等外形。

气动技术报告

气动技术报告

气动技术的应用一、气动技术简介和发展气动技术是以空气压缩机为动力源,以压缩空气为工作介质,进行能量传递或信号传递的工程技术,是实现各种生产控制、自动控制的重要手段之一。

气动技术与传统的液压技术相比,有以下优点:(1)结构简单轻便、方便安装维护;(2)输出速度一般在50~500mm/s,速度快于液压和电气方式;(3)对冲击负载和负载过载的适应能力较强;(4)可靠性高、使用寿命长、安全无污染且成本较低。

由于气动技术具有以上的使用优点,气动技术在世界工业企业得到了广泛的应用。

虽然气动技术在各工业部门已经获得了广泛应用,但是,在许多应用之间还是存在着相当大差异的。

就应用气动技术来说,最基本条件就是要有一台空气压缩机,对已有用于其它用途的空气压缩机的地方,应用气动技术就更方便些。

特别是在一些非生产加工部门,如畜牧业、种植业或服装业,情况更是如此。

在机器设备制造领域中,大多数场合都有空气压缩机,且气动技术已有应用,每个应用项目在本质上也有许多相似之处。

当然,气动技术也有一些缺点:气体的压缩性使得气动元件的动作速度,容易受到负载变化的影响。

气动设备的输出力能满足大部分的工业操作需要,但是和液动设备相比,气动设备的输出力还是要小一些。

另外,气缸在低速运动时,受摩擦力影响较大,稳定性稍差。

二、气动技术的主要应用气动技术的应用范围大, 广泛应用于各个领域, 不仅用于生产、工程自动化和机械化中, 还渗透到医疗保健和日常生活中。

气动系统具有防火、防爆等特点, 可应用于矿山、石油、天然气、煤气等设备。

还因其耐高温, 适用于火力发电设备、焊接夹紧装置等。

同时, 它容易净化, 可用于半导体制造、纯水处理、医药、香烟制造等设备。

气动系统的高速工作性能, 在冲床、压机、压铸机械、注塑机等设备中得到了广泛的应用, 还用于工件的装配生产线、包装机械、印刷机械、工程机械、木工机械和金属切削机床和纺织设备等。

下面介绍一些应用实例。

1 .汽车制造行业现代汽车制造工厂的生产线,尤其是主要工艺的焊接生产线,几乎无一例外地采用了气动技术。

气动技术应用及发展相关情况

气动技术应用及发展相关情况

气动技术应用及发展相关情况1、气动技术应用情况及研究和发展的重要性随着科学技术的发展,自动控制技术已被广泛应用于工农业生产和国防建设。

实现自动化的技术手段目前主要有两个:电气(电子)控制和流体动力控制。

流体动力控制有三类:(1)液压控制,工作流体主要是矿物油。

(2)气压控制,工作介质主要是压缩空气,还有燃气和蒸气。

(3)射流技术,工作介质有气体也有液体,该技术在一些多管道的生产流程中得到应用。

气压伺服控制是以气体为工作介质,实现能量传递、转换、分配及控制的一门技术。

气动系统因其节能、无污染、结构简单、价格低廉、高速、高效、工作可靠、寿命长、适应温度范围广、工作介质具有防燃、防爆、防电磁干扰等一系列的优点而得到了迅速的发展。

众多的报道表明,气动技术是实现现代传动和控制的关键技术,它的发展水平和速度直接影响机电产品的数量和水平,采用气动技术的程度已成为衡量一个国家的重要标志。

据英才网调查表明,目前气动控制装置在自动化中占有很重要的地位,已广泛应用于各行业,概括如下:(1)绝大多数具有管道生产流程的各生产部门往往采用气压控制。

如:石油加工、气体加工、化工、肥料、有色金属冶炼和食品工业等。

(2)在轻工业中,电气控制和气动控制装置大体相等。

在我国已广泛用于纺织机械、造纸和制革等轻工业中。

(3)在交通运输中,列车的制动闸、货物的包装与装卸、仓库管理和车辆门窗的开闭等。

(4)在航空工业中也得到广泛的应用。

因电子装置在没有冷却装置下很难在300℃~500℃高温条件下工作,故现代飞机上大量采用气动装置。

同时,火箭和导弹中也广泛采用气动装置。

(5)鱼雷的自动装置大多是气动的,因为以压缩空气作为动力能源,体积小、重量轻,甚至比具有相同能量的电池体积还要小、重量还要轻。

(6)在生物工程、医疗、原子能中也有广泛的应用。

(7)在机械工业领域也得到广泛的应用。

从气动的特点和应用情况可知,研究和发展气动技术具有非常重要的理论价值和实际意义。

气动技术基本知识

气动技术基本知识

⽓动技术基本知识⼀、⽓动技术基本知识1. ⽓动技术中常⽤的单位1个⼤⽓压=760mmHg =1.013bar =101kpa 压⼒单位换算1N/㎡=bar 105-=1002.17-?kgf/m ㎡=1002.15-?kgf/c ㎡ 1kgf/c ㎡=0.1Mpa 2. ⽓动控制装置的特点⑴空⽓廉价且不污染环境,⽤过的⽓体可直接排⼊⼤⽓⑵速度调整容易⑶元件结构紧凑,可靠性⾼⑷受湿度等环境影响⼩⑸使⽤安全便于实现过载保护⑹⽓动系统的稳定性差⑺⼯作压⼒低,功率重量⽐⼩⑻元件在⾏程中途停⽌精度低3. ⽓动系统的组成⽓动系统基本由下列装置和元件组成(1)⽓源装置——⽓动系统的动⼒源提供压缩空⽓ (2)空⽓处理装置——调节压缩空⽓的洁净度及压⼒ (3)控制元件⽅向控制元件——切换空⽓的流向流量控制元件——调节空⽓的流量 (4)逻辑元件——与或⾮(5)执⾏元件——将压⼒能转换为机械功(6)辅助元件——保证⽓动装置正常⼯作的⼀些元件压缩机 a )⽓源装置储⽓罐后冷却器过滤器油雾分离器减压阀 b )空⽓调节油雾器处理装置空⽓净化单元⼲燥器其它电磁阀⽓缸⽓压控制阀带终端开关⽓缸⽅向控制阀机械操作阀带制动器⽓缸⼿动阀⽓缸带锁⽓缸其它带电磁阀⽓缸其它速度控制阀C )控制元件速度控制阀 d )执⾏元件节流阀摆动缸回转执⾏件逻辑阀空⽓马达管⼦接头消⾳器 e )辅助元件压⼒计其它⼆、空⽓处理元件压缩空⽓中含有各种污染物质。

由于这些污染物质降低了⽓动元件的使⽤寿命。

并且会经常造成元件的误动作和故障。

表1列出了各种空⽓处理元件对污染物的清除能⼒。

1.空⽓滤清器空⽓滤清器⼜称为过滤器、分⽔滤清器或油⽔分离器。

它的作⽤在于分离压缩空⽓中的⽔分、油分等杂质,使压缩空⽓得到初步净化。

2.油雾分离器油雾分离器⼜称除油滤清器。

它与空⽓滤清器不同之处仅在于所⽤过滤元件不同。

空⽓滤清器不能分离油泥之类的油雾,原因是当油粒直径⼩于2~3цm 时呈⼲态,很难附着在物体上,分离这些微粒油雾需⽤凝聚式过滤元件,过滤元件的材料有:1)活性炭2)⽤与油有良好亲和能⼒的玻璃纤维、纤维素等制成的多孔滤芯 3.空⽓⼲燥器为了获得⼲燥的空⽓只⽤空⽓滤清器是不够的,空⽓中的湿度还是⼏乎达100%。

气动技术复习资料

气动技术复习资料

第一章1、什么是气动技术?P1气动技术是指以压缩空气为动力源,实现各种生产控制自动化的一门技术。

2、气动系统优缺点?P4①气动系统的工作介质是空气,它是取之不尽用之不竭的,因此只要有压缩机即可比较简单地得到压缩空气。

当今的工厂内压缩空气输送管路像电气配线一样比比皆是,压缩空气的使用是十分方便的。

②使用快速接头可以非常简单地进行配管,因此系统的组装、维修以及元件的更换比较简单。

③可安全、可靠地应用于易燃、易爆场所,因此设置环境和利用元件自由度较大。

④由于空气的粘度只有油的万分之一,所以流动阻力小,管道中空气流动的沿程压力损失小,有利于介质集中供应和远距离输送。

⑤做完功的空气可以直接排向大气中,不需要设置回程管道,即使系统中稍微泄漏也不致于造成环境污染。

⑥动作迅速反应快,可在较短的时间内达到所需的压力和速度。

在一定的超载运行下也能保证系统安全工作,并且不易发生过热现象。

⑦气压具有较高的自保持能力,即使压缩机停止运行,气阀关闭,气动系统仍可维持一个稳定压力。

缺点:⑧由于空气是可压缩的,所以气动系统的稳定性较差,给位置控制和速度控制精度带来较大的影响。

⑨工作压力低(一般小于0.8MPa),因而气动系统输出力小,在相同的输出力的情况下,气动装置比液压装置尺寸大。

⑩噪声大,尤其在超音速排气时,需要加装消声器。

⑩工作介质空气本身没有润滑性,如不是采用无给油气动元件,需另加油雾器等装置进行给油润滑。

3、气动系统的组成?P4气动系统由气压发生器、控制元件、执行元件、辅助元件组成。

4、理想气体状态方程?P7R的物理意义是把1kg的气体在等压下加热,当温度上升1℃时气体膨胀所作的功。

p——压力(Pa)v——比容 T——绝对温度(K) R——气体常数(J/kg·K)T=237+t等压过程②等容过程③等温过程④绝热过程⑤多变过程5、干空气和湿空气 P14干空气:不含有水蒸气的空气湿空气:含有水蒸气的空气(绝对湿度、相对湿度、空气的含湿量、露点)绝对湿度:每一立方米的湿空气中,含有水蒸气的质量。

气动技术简要描述及其在生产中的应用

气动技术简要描述及其在生产中的应用

齿轮式等多种类型,在气压传动中使用最广泛的是叶片式和活塞式马
和控制信号 的工作介质,提供 驱动力和力矩,并 对执行元件的位置 、速达。 Nhomakorabea‘
度、 力和力矩 进行控制 。
5 3 气动 控制 元件
2气动技术在工业中的发展简史及发展趋势
气动控制元件是指在气动系统中控制气流的压力、流量、和流动
气动技术的雏形,大约始于1 776年J ohnWi ki ns on发明能产生
应用科技
气动技 术简要描述及 其在生产中的 应用
田铁铮
( 辽宁鲁尔建筑设计有限公司,辽宁沈阳 1 10000)
r i|
Z,陆,要凸】蝴气]动气技动术技的术发;展发蕊展其简优史钝;最生进产行应简用要描速,气压传动的组成,气动技术在工业中的应用。
1;
.i ….,/1;i ,i
l ’f ㈡j f ?i .}?。。
方向,保证气动执行元件或机构按规定程序正常工作的各类气动元件,
1个大气压左右压 力的空气压缩 机。20世纪30年 代初,气动技术 成功此外,还有 通过控制气流 方向和通断实现 各种逻辑功能的 气动逻辑元件
地应用于自动门的开闭及各种机械的辅助动作上。进入60 年代尤其是
等。气动控制阀按其功能和作用分为压力控制阀、流量控制阀和方向控
1) 气动系统的工作介质是空气, 它是取之不尽用之不竭的。2) 使用快速结构可以非常简单地进行配管。3) 全气动控制装置具有防火、
采用 伺服 、比 例阀 控制阀 等, 以便 对系统 进行 连续 控制 。 5.4气动控制回路
防爆 、耐 潮的 能力 。4) 做 完功 的空 气可 以直 接排向 大气 中, 不需 要设气 压传 动控 制回 路是由 一些 相关 的气 动元 件组成 ,并 且能 够完 成

现代实用气动技术

现代实用气动技术
载力F;根据负载的运动状态预选气缸的负载率;根据气源的供 气条件,确定气缸的使用压力。
2.
预选气缸的行程:根据气缸的操作距离及传动机构的行程比
预选气缸的行程,为便于安装调试,对计算出的行程要留有余 量;应尽量选标准行程,以保证供货迅速,成本降低。
3. 4.
选择气缸的品种:确定是缓冲型、轻型或重型等。 验算缓冲能力:预选了缸径和行程后,必须验算一下气缸的

按尺寸分类:
微型缸 (∮10mm以下),小型缸( ∮10-25mm ),中型缸(∮32-100mm),大 型缸(∮100mm 以上);此外气缸还分标准行程、长行程和最大行程,标准行程不
需向厂家特殊定货,非标行程为特殊行程,要根据特殊订货组织生产。

按安装方式分类:
固定式(基本型、脚座型、法兰型),摆动式(悬耳型,摆轴型)。

气缸理论输出力:
双作用缸:推力F=∏D2P/4,拉力F=∏(D2-d2)P/4
使用压力范围:指气缸的最低使用压力至最高使用压力。 耐压性能:耐压力规定为气缸最高使用压力的1.5倍。 环境温度和介质温度: 泄漏量、耐久性、耗气量等特性。
气 缸 的 选 择
1.
预选气缸的缸径:根据气缸的负载状态,确定气缸的轴向负

QGBQ 轻 型 气 缸

寿命长达一千公里 市场占有率国内第一 缸筒从日本住友进口,内壁
有一层PTFE涂层

日本三菱产品的COP圈,它 具有防回转结构。

卧式节流 浮动缓冲
气动技术的特点
气动传动与电气、液
气压传动 简单 与继电器 控制相当 简单 简单 长 较差 好 好
压、机械等传动比较
项 目 系统结构 系统体积 机械传动 稍复杂 大 电气传动 复杂 电子式最小 液压传动 复杂 大

气动技术的概念

气动技术的概念

气动技术的概念
气动技术是一种基于气体流体力学原理的技术领域,主要研究和应用气体的压缩、传输、控制以及利用等方面的知识和技术。

通过利用气压的能量来实现机械运动和力的传递,气动技术在许多领域中得到了广泛的应用。

在气动技术中,气体被压缩成高压气源,并通过管道系统传输到所需的位置。

然后,
利用气动元件(如气缸、气动阀门等)对气体进行控制和转换,最终实现各种工业自动化
和机械运动。

气动技术具有传动平稳、反应灵敏、调节方便等特点,特别适用于需要大功率、大力矩和高速运动的场合。

气动技术被广泛应用于许多行业和领域,例如制造业、航空航天、汽车工业、石油化工、食品加工等。

在制造业中,气动技术常用于装配线、生产线和机械设备的控制和传动。

在航空航天领域,气动技术被用于飞机和火箭的控制和导航系统。

在汽车工业中,气动技
术常用于汽车制动系统和悬挂系统等。

在石油化工领域,气动技术被用于管道输送和气体
控制等。

在食品加工领域,气动技术被用于输送、包装和灌装等工艺。

气动技术培训资料

气动技术培训资料

机器人关节驱动
气动控制技术可用于机器 人的关节驱动,实现机器 人的灵活运动。
航空航天领域
在航空航天领域,气动控 制技术可用于飞机的起飞 、降落、姿态调整等关键 环节的控制。
气动控制技术的发展趋势
高精度控制
绿色环保
随着科技的发展,气动控制技术将不 断提高控制精度,满足高精度、高速 度的应用需求。
气动控制技术将更加注重环保和节能 ,采用低能耗、低噪音的气动元件和 控制系统,降低对环境的影响。
智能化发展
气动控制技术将与人工智能、物联网 等先进技术相结合,实现智能化控制 和管理。
04
气动技术与其他技术的结合应 用
气动技术与PLC控制技术的结合应用
结合方式
通过PLC控制技术,可以实现气 动设备的自动化控制,提高生产
效率和产品质量。
应用领域
在自动化生产线、机器人、机械手 等领域,气动技术与PLC控制技术 结合应用可以实现精确的位置控制 、速度控制和力控制。
低能耗和排放。
高精度控制
随着自动化技术的不断发展,气 动技术将更加注重高精度控制, 采用更加精确的气动元件和传感
器,提高控制精度和稳定性。
智能化发展
随着人工智能技术的不断发展, 气动技术将更加注重智能化发展 ,采用更加智能化的控制算法和 传感器技术,实现更加智能化的
自动控制。
02
气动元件与系统
气动元件的种类与特点
气动控制技术原理
利用压缩空气作为动力源,通过气动 元件和控制阀门的组合,实现气体的 压力、流量和方向的调节,从而控制 机械设备的运动。
气动控制技术的分类
根据不同的应用需求,气动控制技术 可分为直动式、先导式、比例式和伺 服式等多种类型。

气动技术知识总结

气动技术知识总结

1、气动技术是以压缩空气为介质,以空气压缩机为动力源,实现能量传递或信号传递与控制的工程技术。

2、气动是气动技术或气压传动与控制的简称。

它是流体传动与控制的重要组成技术之一,也是实现工业自动化和机电一体化的重要途径。

3、一个较完善的机电一体化系统包括动力部分、执行部分、机械部分、检测传感部分、控制部分、信息处理部分,各部分之间通过接口相联系。

通过控制系统发送控制信号,由执行部分产生力和运动的输出。

4、气动技术的优点:简单、方便:气动装置结构简单、轻便、安装维护方便。

输出速度大:气缸动作速度一般为50~500mm/s,比液压和电气方式的速度快。

有良好的缓冲性:对冲击负载和负载过载具有较强的适应能力。

可靠性高、使用寿命长:电器元件的有效动作次数约为数百万次,而电磁阀(如SMC公司生产的电磁阀)的寿命大于3000万次,小型阀超过1亿次。

无污染:工作介质是空气,无污染。

安全性:气动压力等级低,具有防火、防爆、耐潮的能力,与液压方式相比可在高温条件下使用,同时,对于振动、腐蚀具有较强的耐受力,因而,具有很高的安全性。

在很多特殊场合具有不可比拟的优越性。

成本低:在自动化系统中,与单纯分别采用机械、电气、液压的传动与控制方式相比,气动方式成本低,经济性好。

5、气动技术的缺点:能量利用率低:电气传动的效率在90%以上,液压传动的的效率为70~80%,气压传动的的效率为30~40%。

实施精确控制的难度较大:气体的压缩性大。

6、气动元件的制造过程:精密压铸、挤压成型、精密加工、表面处理、装配、性能测试7、气源设备气源设备:空气压缩机:产生压缩空气的动力源气源处理设备:过滤器:清除压缩空气中的水分、油污和灰尘;干燥器:进一步清除压缩空气中的水分;自动排水器:自动排除冷凝水8、气动元件的类型及其功能气动执行元件:气缸:推动工件作直线运动。

摆动气缸:推动工件在一定角度范围内作摆动气马达:驱动工件作连续旋转运动。

气爪:抓取工件。

气动技术 基础

气动技术   基础

往复式压缩机
两级活塞式压缩机
在单级压缩机中,若 空气压力超过6巴, 产生的过热将大大地 降低压缩机的效率。 因此,工业中使用的 活塞式压缩机通常是 两级的。 由两个阶段将吸入的 大气压空气压缩到最 终的压力。 如果最终压力为7巴, 第一级通常将它压缩 到若3巴,然后被冷 却,再输送到第二级 气缸中压缩到7巴。
压缩空气的产生
活塞式 膜片式 旋转式 离心式 速度型 轴流式 滑片式 螺杆式
往复式 容积型 压缩机
往复式压缩机
单级活塞式压缩机: 只有一个行程就将吸 入的大气压空气压缩到 所需要的压力。活塞下 移,体积增加,缸内压 力小于大气压,空气便 从进气阀门进入缸内。 在行程末端,活塞向上 运动,进气阀关闭,空 气被压缩,而同时出气 阀被 打开,输出空气进 入储气罐。这种型式的 压缩机通常用于需要3~ 7巴压力范围的系统。
双作用气缸

在气缸轴套前端有 一个防尘环,以防 止灰尘等杂质进入 气缸腔内。前缸盖 上安装的密封圈用 于活塞杆密封,轴 套可为气缸活塞杆 导向,其由烧结金 属或涂塑金属制成。 指出缸体、活塞、 缸盖、活塞密封、 活塞杆、轴套和防 尘环。
双作用气缸

在无负载条 件下,气缸 活塞运动速 度是相当稳 定的。
气缸安装方式

气缸安装方式由气 缸与设备之间连接 形式决定。若在任 何时候都不需要变 换气缸安装方式, 则可将安装方式设 计为固定式,相反, 应将安装方式设计 为非固定式,即按 模块式构造准则, 通过采用安装附件, 可以改变气缸安装 方式。
摆动气缸

摆动气缸结构紧凑,输 出力矩大。在摆动气缸 中,旋转叶片将压力传 递到驱动轴上。摆动角 度范围可由挡块调节, 其为0 ~ 180°。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气动技术简介 Revised by Jack on December 14,2020
气动技术简介
一、气源处理组件
1、气源处理的必要性
从空压机输出的压缩空气,含有大量的水分、油和粉尘等污染物,空气质量不良是气动系统出现故障的主要因素,会使气动系统的可靠性和使用寿命大大降低,由此造成的损失会大大超过起源处理装置的成本和维护费用。

压缩空气中,绝对不许含有化学药品、有机溶剂的合成油、盐分和腐蚀性气体等。

气源处理包括
●空气过滤:主要目的是滤除压缩空气中的水分、油滴以及杂质,以达到启动系统所需要的净化程度,它属于二次过滤器。

●压力调节:调节或控制气压的变化,并保持降压后的压力值固定在需要的值上,确保系统压力的稳定性减小因气源气压突变时对阀门或执行器等硬件的损伤。

●油雾器:气压系统中一种特殊的注油装置,其作用是把润滑油雾化后,经压缩空气携带进入系统各润滑油部位,满足润滑的需要。

2、气动三联件
为得到多种功能,将空气过滤器、减压阀和油雾器等元件进行不同的组合,就构成了空气组合元件。

各元件之间采用模块式组合的方式连接。

图1 气动三联件
有些品牌的电磁阀和气缸能够实现无油润滑(靠润滑脂实现润滑功能),便不需要使用油雾器。

这时只须把空气过滤器和减压阀组合在一起,可以称为气动二联件。

3、YL335B的气源处理组件
使用空气过滤器和减压阀集装在一起的气动二联件结构,组件及其回路原理图分别如图2 (a)和(b)所示。

图2 YL-335B的气源处理组件
二、YL-335B上的气动执行元件
1、单作用和双作用气缸:在气缸运动的两个方向上,按受气压控制的方向个数的不同,分为单作用气缸和双作用气缸。

只有一个方向受气压控制而另一个方向依靠复位弹簧实现复位的气缸称为单作用气缸。

两个方向都受气压控制的气缸称为双作用气缸。

图3 单作用和双作用气缸
2、YL-335B上的气动执行元件
●直线气缸。

●用于抓起工件的气爪。

图4 气动手指实物和工作原理
●摆动气缸:利用压缩空气驱动输出轴在一定角度范围内作往复回转运动的气动执行元件。

用于物体的转位、翻转、分类、夹紧、阀门的开闭以及机器人的手臂动作等。

图5 装配单元使用的摆动气缸
●导杆气缸:具有导向功能的气缸。

一般为标准气缸和导向装置的集合体。

导向气缸具有导向精度高,抗扭转力矩、承载能力强、工作平稳等特点。

装配单元用于驱动装配机械手水平方向移动的导向气缸外型如图6所示。

该气缸由直线运动气缸带双导杆和其它附件组成。

图6 装配单元使用的导杆气缸
●薄型气缸:属于省空间气缸类,即气缸的轴向或径向尺寸比标准气缸有较大减小的气缸。

具有结构紧凑、重量轻、占用空间小等优点。

图7是薄型气缸的一些实例图。

图7 薄型气缸的实例图
薄型气缸的特点是:缸筒与无杆侧端盖压铸成一体,杆盖用弹性挡圈固定,缸体为方形。

这种气缸通常用于固定夹具和搬运中固定工件等。

三、YL-335B上的气动控制元件
1、流量控制阀:控制压缩空气流量的阀称为流量控制阀。

在气动系统中,对气缸运动速度的控制、信号延时时间、油雾器的滴油量,气缓冲气缸的缓冲能力等,都是靠流量控制阀来实现的。

YL-335B上使用的流量控制阀是单向节流阀,由单向阀和节流阀并联而成,用于控制气缸的运动速度,故常称为速度控制阀。

单向阀的功能是靠单向型密封圈来实现的。

图8 排气节流方式的单向节流阀剖面图
安装了带快速接头的限出型气缸节流阀的气缸外观:
图9 安装上节流阀的气缸
2、电磁换向阀
⑴电磁换向阀属于方向控制阀,即能改变气体流动方向或通断的控制阀。

如向气缸一端进气,并从另一端排气,再反过来,从另一端进气,一端排气,这种流动方向
的改变,便要使用方向控制阀。

电磁换向阀则是利用其电磁线圈通电时,静铁芯对动铁芯产生电磁吸力使阀芯切换,达到改变气流方向的目的。

⑵单电控和双电控电磁阀:单电控电磁阀,在无电控信号时,阀芯在弹簧力的作用下会被复位。

图10 单电控电磁换向阀的工作原理
双电控电磁阀,在两端都无电控信号时,阀芯的位置是取决于前一个电控信号。

图11 双电控电磁换向阀的工作原理
⑶电磁换向阀的图形符号:“位”和“通”的概念
图12 部分单电控电磁换向阀的图形符号
YL-335B所有工作单元的执行气缸都是双作用气缸,控制它们工作的电磁阀需要有二个工作口和二个排气口以及一个供气口,故使用的电磁阀均为二位五通电磁阀。

⑷电磁阀的安装和调整
YL-335B各工作单元的电磁阀均集中安装在在汇流板上的。

汇流板中两个排气口末端均连接了消声器,消声器的作用是减少压缩空气在向大气排放时的噪声。

这种将多个阀与消声器、汇流板等集中在一起构成的一组控制阀的集成称为阀组,而每个阀的功能是彼此独立的。

阀组的结构如图13所示。

图13 电磁阀组
四、YL-335B上的气动控制回路
能传输压缩空气的,并使各种气动元件按照一定的规律动作的通道即为气动回路。

例:装配单元的气动回路原理图
图14 装配单元气动控制回路。

相关文档
最新文档