机械能守恒习题(带答案)..

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功能关系能量守恒定律

考纲解读1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题.

1.[功能关系的理解]用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是()

A.力F做的功和阻力做的功之和等于物体动能的增量

B.重力所做的功等于物体重力势能的增量

C.力F做的功和阻力做的功之和等于物体机械能的增量

D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量

答案 C

2.[能的转化与守恒定律的理解]如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中()

图1

A.X-37B中燃料的化学能转化为X-37B的机械能

B.X-37B的机械能要减少

C.自然界中的总能量要变大

D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变

答案AD

解析在X-37B由较低轨道飞到较高轨道的过程中,必须启动助推器,对X-37B做正功,X-37B的机械能增大,A对,B错.根据能量守恒定律,C错.X-37B在确定轨道上绕地球做圆周运动,其动能和重力势能都不会发生变化,所以机械能不变,D 对.

3.[能量守恒定律的应用]如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为

h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停下来,则停下的位置到B的距离为()

图2

A.0.5 m B.0.25 m C.0.1 m D.0

答案 D

解析由mgh=μmgx,得x=3 m,而x

d

=3 m

0.5 m

=6,即3个来回后,小物块恰停在B点,

选项D正确.

一、几种常见的功能关系

功能量的变化

合外力做正功动能增加

重力做正功重力势能减少

弹簧弹力做正功弹性势能减少

电场力做正功电势能减少

其他力(除重力、弹力外)做正功机械能增加

二、能量守恒定律

1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.2.表达式:ΔE减=ΔE增.

考点一功能关系的应用

例1如图3所示,在升降机内固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中()

图3

A.物块A的重力势能增加量一定等于mgh

B.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和

C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和

D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和

解析由于斜面光滑,物块A静止时弹簧弹力与斜面支持力的合力与重力平衡,当整个装置加速上升时,由牛顿第二定律可知物块A受到的合力应向上,故弹簧伸长量增加,物块A相对斜面下滑一段距离,故选项A错误;根据动能定理可知,物块A动能的增加量应等于重力、支持力及弹簧弹力对其做功的代数和,故选项B错误;物块A 机械能的增加量应等于除重力以外的其他力对其做功的代数和,选项C正确;物块A 和弹簧组成的系统的机械能增加量应等于除重力和弹簧弹力以外的其他力做功的代数和,故选项D正确.

答案CD

突破训练1物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于()

A.物块动能的增加量

B.物块重力势能的减少量

C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和

D.物块动能的增加量与物块克服摩擦力做的功之和

答案BD

考点二摩擦力做功的特点及应用

1.静摩擦力做功的特点

(1)静摩擦力可以做正功,也可以做负功,还可以不做功.

(2)相互作用的一对静摩擦力做功的代数和总等于零.

(3)静摩擦力做功时,只有机械能的相互转移,不会转化为内能.

2.滑动摩擦力做功的特点

(1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

(2)相互间存在滑动摩擦力的系统内,一对滑动摩擦力做功将产生两种可能效果: ①机械能全部转化为内能;

②有一部分机械能在相互摩擦的物体间转移,另外一部分转化为内能.

(3)摩擦生热的计算:Q =F f x 相对.其中x 相对为相互摩擦的两个物体间的相对位移. 深化拓展 从功的角度看,一对滑动摩擦力对系统做的功等于系统内能的增加量;从能量的角度看,其他形式能量的减少量等于系统内能的增加量.

例2 如图4所示,质量为m 的长木块A 静止于光滑水平面上,在其水平的上表面左端放

一质量为m 的滑块B ,已知木块长为L ,它与滑块之间的动摩擦因数为μ.现用水平向右的恒力F 拉滑块B .

图4

(1)当长木块A 的位移为多少时,B 从A 的右端滑出?

(2)求上述过程中滑块与木块之间产生的内能.

审题指导 当把滑块B 拉离A 时,B 的位移为A 的位移与A 的长度之和.注意:审题时要画出它们的位移草图.

解析 (1)设B 从A 的右端滑出时,A 的位移为x ,A 、B 的速度分别为v A 、v B ,由动能定理得

μmgx =12m v 2A

(F -μmg )·(x +L )=12m v 2B

又因为v A =a A t =μgt

v B =a B t =F -μmg m

t 解得x =μmgL F -2μmg

. (2)由功能关系知,拉力F 做的功等于A 、B 动能的增加量和A 、B 间产生的内能,即有

F (x +L )=12m v 2A +12

m v 2B +Q

相关文档
最新文档