第二章 稳态极化曲线的测量和应用

合集下载

极化曲线的测定

极化曲线的测定

实验八 极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。

2、了解极化曲线的意义和应用。

3、掌握恒电势仪的使用方法。

二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。

当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。

这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。

在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。

阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。

超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。

除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。

金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++n e此过程只有在电极电势正于其热力学电势时才能发生。

阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。

图3-8-1为钢在硫酸溶液中的阳极极化曲线。

图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。

B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。

电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。

极化曲线的测定

极化曲线的测定

极化曲线的测定极化曲线的测定⼀、实验⽬的掌握恒电位测定极化曲线的⽅法,测定碳钢(圆型钢筋)在碱性溶液中的恒电位阳极极化曲线及其极化电位。

⼆、实验原理实际的电化学过程并不是在热⼒学可逆条件下进⾏的。

在电流通过电极时,电极电位会偏离其平衡值,这种现象称为极化。

在外电流的作⽤下,阴极电位会偏离其平衡位置向负的⽅向移动,称为阴极极化;⽽阳极电位会偏离其平衡位置向正的⽅向移动,称为阳极极化。

在电化学研究中,常常测定极化曲线,即电极电位与电流密度的关系。

铁在硫酸溶液中典型的阳极极化曲线如图23.1所⽰,该曲线分为四个区域:电流密度i 阳极电位φ+图23.1 阳极极化曲线1.从点a 到点b 的电位范围称⾦属活化区。

此区域内的ab 线段是⾦属的正常阳极溶解,以铁电极为例,此时铁以⼆价形式进⼊溶液,即Fe → Fe 2+ + 2e-。

a 点即为⾦属的⾃然腐蚀电位。

2.从b 点到c 点称为钝化过渡区。

bc 线是由活化态到钝化态的转变过程,b 点所对应的电位称为致钝电位,其对应的电流密度ib 称为致钝电流密度,此时Fe 2+离⼦与溶液中的-24SO 离⼦形成4FeSO 沉淀层,阻碍了阳极反应进⾏,导致电流密度开始下降。

由于+H 不容易到达4FeSO 沉淀层的内部,因此铁表⾯的pH 逐步增⼤。

3.从c 点到d 点的电位范围称为钝化区。

由于⾦属表⾯状态发⽣变化,阳极溶解过程的过电位升⾼,⾦属的溶解速率急剧下降。

在此区域内的电流密度很⼩,基本上不随电位的变化⽽改变。

此时的电流密度称为维持钝化电流密度i m 。

对铁电极⽽⾔,此时32O Fe 在铁表⾯⽣成,形成致密的氧化膜,极⼤地阻碍了铁的溶解,出现钝化现象。

4.de 段的电位范围称为过钝化区。

在此区阳极电流密度⼜重新随电位增⼤⽽增⼤,⾦属的溶解速度⼜开始增⼤,这种在⼀定电位下使钝化了的⾦属⼜重新溶解的现象叫做过钝化。

电流密度增⼤的原因可能是产⽣了⾼价离⼦(如,铁以⾼价转⼊溶液),或者达到了氧的析出电位,析出氧⽓。

极化曲线的测定

极化曲线的测定

实验八 极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。

2、了解极化曲线的意义和应用。

3、掌握恒电势仪的使用方法。

二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。

当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。

这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。

在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。

阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。

超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。

除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。

金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++n e此过程只有在电极电势正于其热力学电势时才能发生。

阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。

图3-8-1为钢在硫酸溶液中的阳极极化曲线。

图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。

B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。

电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。

电化学研究方法

电化学研究方法

2. 循环伏安法

b
a
a
t i
在很低的扫描速度下,当
电极反应可逆时,

Ep
(1)相对应的峰电流相等, 反应电量相等; (2)Ep = 2.3RT/nF
循环伏安法的应用 1. 研究电化学反应的可逆性,尤其是二次电池的 反应可逆性和循环稳定性;
2. 研究多电子反应,求出反应电子数;
3. 与恒电流法配合,研究电极反应的相变化,例 如,金属Sn, 石墨碳的多种含锂化合物(LiC18, LiC12, LiC6)。
3. 交流阻抗法 电池和电解池的等效电路
Cd Rl
Zf
实际的电化学系统中,法拉第阻抗包括反应电阻Rr和 浓差极化引起的Warburg阻抗Zw.
Cd Rl
Rw = -0.5 Cw = -0.5 /
Zf
Rw Cw
= RT/ [n2F2Co(2Do)0.5]
Z''

B
Cd = 1/BRr
Levich通过解稳态条件下的流体力学方程: 在非极限情况下:I = 0.62nFAD2/3-1/61/2(Co-Cs) 在极限条件下: IL = 0.62nFAD2/3-1/61/2Co 其中, 为介质的动力粘度, = 粘度/密度
i

IL 1/2
D,

四、电化学研究方法
1、稳态极化曲线测量:
一般采用三电极体系,采用慢速动电流扫描或慢速动电位扫 描法。若有电流极大值,则必须用动电位扫描。
曲线类型:i ~ E, i ~ , i ~ log 慢扫描近稳态条件下的测试可以防止电流或电位的迟后效应, 也能避免双电层充电电流的影响。
为了提高电位的测试精度,需要消除研究电极与参比电极之 间的欧姆电位降,主要的方法有:

第二章 电化学稳态和准稳态研究方法 2017

第二章 电化学稳态和准稳态研究方法 2017

t i
t
逐点手动扫描法:操作简单、工作量大、时间长、由于测 量者对稳态的标准掌握不同,重现性差。
阶梯波法:利用阶梯波发生器控制恒电流仪或恒电势仪从而自动测定极化曲线。
起始电势(“Init E”或“Initial Potential”) 终止电势(“Final E”或“Final Potential”) 步增电势(“Incr E”或“Step E”)Increment potential of each step 步宽值(“Step Width”或“Step Period”)Potential step period 采样周期(“Sampling Width”或“Sample Period”)Data sampling width for each point 阶梯波阶跃幅值的大小及时间间隔的长短应根据实验要求而定。
3.稳态过程的特点
稳态系统的特点是由达到稳态的条件决定的。
1. 电极界面状态不变 ( 双电层的荷电状态不变 ) ,通过 电极的电流全部用于电化学反应(即整个体系的净电 流全部为法拉第电流),i=ir
改变界面电荷状态的双电层充电电流ic=0;
吸脱附引起的双电层充电电流i吸=0。
2.电极界面区反应物的浓度只与位置有关,与时间无关。
达到稳态后,电极界面区扩散层内反应物和产物粒子的
浓度分布(扩散层厚度恒定),不在随着时间变化,只是 空间位置的函数,此时物质扩散满足Fick第一定律。
扩散电流id为恒定值。
稳态系统具备的条件:电流、电极电势、电极表面状态和电极界面区的浓度等 均基本不变。 电极双电层的充电状态不变
i充 0
全部电流都用于电化 学反应

i i aj j j cj
三、稳态极化曲线

极化参考资料曲线的测定

极化参考资料曲线的测定

实验八极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。

2、了解极化曲线的意义和应用。

3、掌握恒电势仪的使用方法。

二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。

当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。

这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。

在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。

阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。

超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。

除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。

金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++ne此过程只有在电极电势正于其热力学电势时才能发生。

阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。

图3-8-1为钢在硫酸溶液中的阳极极化曲线。

图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。

B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。

电势到达C 点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。

极化曲线的测定

极化曲线的测定

实验九极化曲线的测定【目的要求】1. 掌握稳态恒电位法测定金属极化曲线的基本原理和测试方法。

2. 了解极化曲线的意义和应用。

3. 掌握恒电位仪的使用方法。

【实验原理】1. 极化现象与极化曲线为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一。

我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的。

但当有电流明显地通过电池时,电极的平衡状态被破坏,电极电势偏离平衡值,电极反应处于不可逆状态,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大。

由于电流通过电极而导致电极电势偏离平衡值的现象称为电极的极化,描述电流密度与电极电势之间关系的曲线称作极化曲线,如图2-19-1所示。

图2-19-1 极化曲线A-B:活性溶解区;B:临界钝化点B-C:过渡钝化区;C-D:稳定钝化区D-E:超(过)钝化区金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M→M n++n e此过程只有在电极电势正于其热力学电势时才能发生。

阳极的溶解速度随电位变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。

图2-19-1中曲线表明,从A点开始,随着电位向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。

B点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。

电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE段称为过钝化区。

稳态测试方法

稳态测试方法
19 20
稳态极化曲线的应用
(1) 在电化学基础研究方面的应用
根据极化曲线, 可以判断电极过程的反应机理和控制步骤 可以查明给定体系可能发生的电极反应的最大反应速率 可从极化曲线测动力学参数,如交换电流密度、传递系数、标准 速率常数和扩散系数等 可以测定Tafel斜率,推算反应级数进而研究反应历程 可以利用极化曲线研究多步骤的复杂反应 研究吸附和表面覆盖度
稳态测量数据的处理
b. 非线性拟合法。利用Origin软件,可直接对Bulter-Volmer公式进行非线性拟 合。在Origin中设置自定义方程,直接输入需拟合的参数,可以直接计算相关 动力学参数。
i i0 exp(
取对数:
nF
RT
)[1 exp(
nF )] RT
1
lg i lg i0
13
14
稳态测量数据的处理
稳态测量数据的处理
在实际测量中,利用强极化电势区测量时会遇到不少困难。 只有在从平衡电势到强极化电势区间电极反应的动力学机制始终没有发生改 变的情况下,才可以用强极化区的测量数据解释电极过程。 由于在强极化区,极化电流密度比较大,这会导致靠近电极表面的溶液层的 成分可能不同于平衡电势条件下的情况。在平衡电势附近传质过程(扩散)对 电极反应速率的影响很小,可以忽略。但在强极化区,传质的影响很大,几 乎得不到一段很好的Tafel直线。 在强极化条件下的电极表面的状况可能会与平衡电势下的表面状况有较大区 别,这种情况较易在阳极极化时发生。
17 18

RT 1 i nF i0
因此,在平衡电势附近的极化曲线为直线,由直线斜率可得电荷传递电阻Rct:
Rct (
交换电流密度:

极化曲线的测定

极化曲线的测定

实验八 极化曲线的测定一、实验目的1、掌握稳态恒电势法测定金属极化曲线的基本原理和测试方法。

2、了解极化曲线的意义和应用。

3、掌握恒电势仪的使用方法。

二、实验原理1、极化现象与极化曲线当电极处于平衡状态,电极上无电流通过时,这时的电极电势称为平衡电势。

当有电流明显地通过电极时,电极的平衡状态被破坏,电极电势偏离平衡值,而且随着电极上电流密度的增加,电极反应的不可逆程度也随之增大,电极电势将越来越偏离平衡电势。

这种由于有电流存在而造成电极电势偏离平衡电极电势的现象称为电极的极化。

在某一电流密度下,实际发生电解的电极电势与平衡电极电势之间的差值称为超电势。

阳极上由于超电势使电极电势变大,阴极上由于超电势使电极电势变小。

超电势的大小与流经电极的电流密度有关,电极电势(或超电势)与电流密度的关系曲线称为极化曲线,极化曲线的形状和变化规律反映了电化学过程的动力学特征。

除电流密度外,影响超电势的因素还有很多,如电极材料,电极的表面状态,温度,电解质的性质、浓度及溶液中的杂质等。

金属的阳极过程是指金属作为阳极时在一定的外电势下发生的阳极溶解过程,如下式所示:M →M n++n e此过程只有在电极电势正于其热力学电势时才能发生。

阳极的溶解速度(用电流密度表示)随电势变正而逐渐增大,这是正常的阳极溶出,但当阳极电势正到某一数值时,其溶解速度达到最大值,此后阳极溶解速度随电势变正反而大幅度降低,这种现象称为金属的钝化现象。

图3-8-1为钢在硫酸溶液中的阳极极化曲线。

图中曲线表明,从A 点开始,随着电势向正方向移动,电流密度也随之增加,电势超过B点后,电流密度随电势增加迅速减至最小,这是因为在金属表面生产了一层电阻高,耐腐蚀的钝化膜。

B 点对应的电势称为临界钝化电势,对应的电流称为临界钝化电流。

电势到达C点以后,随着电势的继续增加,电流却保持在一个基本不变的很小的数值上,该电流称为维钝电流,直到电势升到D 点,电流才有随着电势的上升而增大,表示阳极又发生了氧化过程,可能是高价金属离子产生也可能是水分子放电析出氧气,DE 段称为过钝化区。

北航电化学测试技术课件第二章稳态极化曲线的测定

北航电化学测试技术课件第二章稳态极化曲线的测定

§2-1 稳态法的特点??§2-2 控制电流法与控制电位法??§2-3 三电极体系与电流和电位的测定??§2-4 稳态极化曲线的测定??§2-5 旋转圆盘电极及其应用??§2-6 稳态极化曲线的应用本章重点??基本概念:稳态法、控制电流法、控制电位法、阶跃法、慢扫描法等??恒电位仪控制电位的基本原理,恒电位仪性能评定??测量电池设计的基本要求??阶跃法与慢扫描法的测量电路图及其特点??如何选择电位测量仪器??旋转圆盘电极的特点及应用第一节稳态法的特点??一.概念??稳态:在给定的时间间隔内,电化学系统的参量(如电位、电流、浓度分布、电极表面状态等)趋于稳定,即体系的各参数变化甚微时,该体系的状态叫做电化学稳态,简称稳态。

??稳态法:在电化学过程达到稳态后,测定电流密度与电极电位(过电位)之间关系的实验研究方法。

第一节稳态法的特点??二.稳态法的特点??1.稳态法中数据测量间隔时间长为了测定稳态极化曲线,必须等电化学过程达到稳态时才可测量。

而要使电极过程达到稳态,往往需要一段时间,这个时间长短视体系和实验条件而定。

通常取决于:??双电层充电??传质过程??电极表面状态第一节稳态法的特点??2.稳态测量时,通过电极/溶液界面的外电流全部消耗于电极反应i外i反i充0;稳态法中,外电流与双电层充电、吸脱附无关,稳态电流全部由电极反应所产生,所以极化曲线完全反映电极反应过程的规律。

??3.扩散(传质)过程对稳态测量有重要影响。

第一节稳态法的特点??三.稳态测试方法分类:??按自变量的控制方式分:控制电流法与控制电位法??按自变量的给定方式分:手动逐点式、阶跃法与慢扫描法第二节控制电流法与控制电位法一.控制电流法(恒电流法)??控制流过研究电极的电流,使其按指定的规律变化,同时测量相应的电极电位的方法。

??实现稳态恒电流法的关键:对给定的每一电流值应维持恒定,使其不受电解池阻抗变化的影响。

极化曲线的测定及应用

极化曲线的测定及应用

极化曲线的测定及应用一、目的要求1.掌握恒电位法测定电极极化曲线的原理和实验技术。

通过测定金属铁在H2SO4 溶液中的阴极极化和阳极极化曲线求算铁的自腐蚀电位、自腐蚀电流和钝化电位范围、钝化电流等参数。

2.了解不同pH值、Cl-浓度、缓蚀剂等因素对铁电极极化的影响。

3.讨论极化曲线在金属腐蚀与防护中的应用。

二、原理Fe在H2SO 4 溶液中会不断溶解,同时产生H2。

Fe溶解:Fe -2e =Fe 2+。

H2析出:2H+ +2e =H2。

Fe电极和H2电极及溶液构成了腐蚀原电池。

其腐蚀反应为:Fe +2H+ = Fe 2+ + H2。

这是Fe在酸性溶液中腐蚀的原因。

当电极不与外电路接通时,阳极反应速率和阴极反应速率相等,Fe溶解的阳极电流I Fe与H2析出的阴极电流I H在数值上相等但方向相反,此时其净电流为零。

I=I Fe + I H=0。

I corr=I Fe=-I H≠0。

I corr值的大小反映净了Fe在H2SO 4 溶液中的腐蚀速率,所以称I corr为Fe在H2SO 4 溶液中的自腐蚀电流。

其对应的电位称为Fe在H2SO 4 溶液中的自腐蚀电位E corr,此电位不是平衡电位。

虽然,阳极反应放出的电子全部被阴极还原所消耗,在电极与溶液界面上无净电荷存在,电荷是平衡的。

但电极反应不断向一个方向进行,I corr≠0,电极处于极化状态,腐蚀产物不断生成,物质是不平衡的,这种状态称为稳态极化。

它是热力学的不稳定状态。

自腐蚀电流I corr和自腐蚀电位E corr可以通过测定极化曲线获得。

极化曲线是指电极上流过的电流与电位之间的关系曲线,即I=f(E)。

图27-1是用电化学工作站测定的Fe在1.0mol/L H2SO4 溶液中的阴极极化和阳极极化曲线图。

ar为阴极极化曲线,当对电极进行阴极极化时,阳极反应被抑制,阴极反应加速, 电化学过程以H2析出为主。

ab为阳极极化曲线,当对电极进行阳极极化时,阴极反应被抑制,阳极反应加速,电化学过程以Fe溶解为主。

2011-第03讲-极化曲线测量与应用

2011-第03讲-极化曲线测量与应用

ik i id i k
i
第26页,共29页。
2.6.3 旋转电极的应用
⑥ 测定镀液的微观分散能力(选择整平剂)
1) 自然整平(几何整平); 是活化控制的结果,电化学极化时。
电流: I峰 ;I谷 镀层厚度: h峰 。h谷
2) 负整平(浓差极化时); 扩散引起的。
电流: I峰 I;谷
镀层厚度: h峰 h。谷
是一条直线,由
直线的斜率可求极化电阻 ,根据 R
,如R下图i所0 示:
第13页,共29页。
4. 求电化学参数
③弱极化(强极化与线性极化之间)
由于强极化对电极体系扰动太大,而线性极化法由于近似处理 带来的误差较大,弱极化区的测量,可以从极化值正、负几十毫伏范围 内的数据同时求得i0、αn和βn,对被测体系的扰动小且结果精确, 故引起了电化学工作者研究的关注。
lg ik
log
id ik 1 2
2.6.3 旋转电极的应用
④ 研究电极表面的均匀性
1) 电极表面均匀
δ>>d,δ>>r,如图中A所示;
d
r
1
δ id 2
δ<<d,δ<<r,如图中B所示;
d
r
δ
1
id 2
2) 电极表面不均匀
d>>r,d>δ>r,如图中C所示,电极表面 不均匀。
d
r
1
辅助电极尽可能靠近研究电极以减小欧姆压降同时其电极应与研究电极一样,做
成圆盘形状,有利于电流密度分布均与;
5. ω范围合理(10<ω<104)。
第21页,共29页。
2.6.3 旋转电极的应用

第二章稳态极化曲线的测量和应用

第二章稳态极化曲线的测量和应用
强度等。
通过测量磁学 器件在不同磁 场下的稳态极 化曲线,可以 研究其磁滞回 线、磁矫顽力
等特性。
稳态极化曲线 还可以用来研 究磁学器件的 磁畴结构、磁 畴壁运动等微 观磁学现象。
磁学器件的稳 态极化曲线在 磁存储器、磁 传感器等领域 具有重要应用
价值。
在电感器型传感器件中的应 用
稳态极化曲线在电容器型传 感器件中的应用
温度:温度对稳态 极化曲线有显著影 响,温度升高会使 曲线向正电极电位 移动。
电解液浓度:电解 液浓度对稳态极化 曲线有较大影响, 浓度增大会使曲线 向负电极电位移动。
电极材料:不同电 极材料的稳态极化 曲线存在差异,因 为不同材料的电化 学性质不同。
电流密度:电流密 度对稳态极化曲线 有明显影响,电流 密度增大会使曲线 向上移动。
数据可视化:将处理后的数据绘 制成图表,便于观察和分析
误差来源:设备精度、环境因素、人为操作等 误差分析:对实验数据进行统计分析,识别误差来源 精度提高:采用高精度设备、优化实验条件、提高操作技能等 重复实验:对同一组数据进行多次测量,取平均值以减小误差
实验数据的获取 方式
数据处理的方法 和步骤
在电阻型传感器件中的应用
在其他类型传感器件中的应 用
经典理论模型定 义
稳态极化曲线的 数学表达式
稳态极化曲线与 电极电位的关系
经典理论模型的 适用范围和局限 性
简介:量子理论模型是稳态极化曲线理论模型的基础,它描述了电子在电场中的行为。
计算方法:基于量子力学原理,通过求解薛定谔方程来计算电子的能级和波函数,进一步 得到稳态极化曲线。
挑战与机遇:虽然新材料和新效应的探索为稳态极化曲线带来了新的机遇,但同时也面临着实 验技术、理论模型等方面的挑战。

第二章稳态极化曲线的测量和应用

第二章稳态极化曲线的测量和应用

第二章稳态极化曲线的测量和应用1. 引言稳态极化曲线是衡量材料腐蚀行为的重要工具。

它描述了材料在不同电位下的电流密度与电位之间的关系,进而揭示了材料的腐蚀性能和电化学行为。

本章将介绍稳态极化曲线的测量方法和应用。

2. 极化曲线的测量方法2.1 极化曲线的概念极化曲线是通过改变电位来测量材料在不同电位下的电流密度的曲线。

其中,电位是通过在材料表面施加外加电势测量得到的,而电流密度则是通过测量电流得到的。

2.2 极化曲线的测量步骤测量稳态极化曲线的一般步骤如下:1.准备样品:选择要研究的材料样品,并将其表面进行必要的处理,如清洗和抛光,以确保表面的纯净度和光滑度。

2.设定实验条件:根据需要确定实验条件,包括电解质溶液的浓度和类型、温度等。

3.测量开路电位:将电极电位设置为开路状态,并测量其电位随时间的变化,直至电位稳定。

4.测量极化曲线:在开路电位的基础上,以一定速率改变电极电位,并测量其相应的电流密度。

记录电位与电流密度之间的关系,绘制极化曲线。

2.3 极化曲线测量结果的分析通过分析极化曲线可以得到许多有用的信息,包括:1.极化曲线的形状:根据极化曲线的形状,可以判断材料的耐蚀性能。

例如,在良好的腐蚀条件下,极化曲线应当呈现出一个稳定的区域。

2.极化电阻:极化曲线的斜率反映了材料的极化电阻。

极化电阻越大,说明材料对电化学反应的抵抗能力越强。

3.电极反应类型:通过观察极化曲线的形态,可以推测电极反应的类型。

例如,如果极化曲线在阳极和阴极之间出现一个峰值,可能表示材料同时存在氧化和还原反应。

3. 稳态极化曲线的应用3.1 腐蚀性能评估稳态极化曲线可以用于评估材料的腐蚀性能。

根据极化曲线的形状和特点,可以判断材料的腐蚀倾向和稳定性。

如果极化曲线处于一个稳定的区域,且斜率较缓,说明材料对腐蚀具有较高的抵抗能力。

3.2 材料筛选利用稳态极化曲线可以对不同材料的耐蚀性能进行比较,从而对材料进行筛选。

通过比较不同材料的极化电阻,可以选择出具有较高耐蚀性的材料,以满足特定工程需求。

第二章 稳态极化曲线的测量和应用

第二章 稳态极化曲线的测量和应用

二、旋转圆盘电极的应用
1 测电极过程动力学参数
H
45
H
46
H
47
2 判定电极过程控制步骤
H
48
3 测定反应物的扩散系数 4分析镀液的微观分散能力
H
49
H
50
H
51
H
52
三、旋转盘-环电极
H
53
H
54
H
55
H
56
三、RDE、RRDE电极的使用条件
• 控制转速,使电极附近溶液流动满足层流 条件。
H
10
• 电化学极化:由反应速度决定,与电化学反应本质有关。化学反 应的活化能较高,且各种反应的活化能相差比较悬殊,因此反应 速度的差别是以数量级计。影响因素包括温度、催化剂活性、电 极面积、界面电场、表面吸附成相层等。对于i0很小的不可逆电 极,很小的i0值就能引起较大的极化,
• 浓差极化:由扩散速度决定。气相扩散很自由,主要决定于分子 量和分子直径。液相扩散不自由,但扩散自由能很低。各种物质 的扩散系数小,都在同一数量级,例如水溶液中一般为10-5cm2/s ,气相中一般在10-1cm2/s数量级,温度对扩散系数的影响小,但 扩散层厚度能大幅度地改变扩散速度。一般在快速旋转的电极或 溶液流速很快的情况下,扩散层厚度能比自然对流的扩散层厚度 低一两个数量级。如果扩散途中有多孔隔膜,则隔膜的厚度、孔 率和曲折系数决定了扩散速度。浓差极化到达稳态需要的时间较 长,当i接近id时浓差极化过电位上升很快,极化曲线上表现为电 流平阶,必须用控制电位的方式才能得到相应的极化曲线。
• 绝对的稳态不存在
• 稳态与暂态的划分以参量变化是否明显为标准,且此标 准也是相对的,与仪器的灵敏度有关。

极化曲线的运用与分析

极化曲线的运用与分析

线性扫描的大幅度运用
❖ 此时电位范围设置得较宽,对所研究的电化学反应 的电位应包括在所设置的电位范围内。作线性扫描 时,我们在电化学工作站所设置的电位为研究电极 相对于参比的电极电位,即研究电极与参比电极的 电动势。而不是氢标电位。
❖ 根据原电池电动势等于正极的电极电位减去负极的 电极电位:E=Φ+-Φ-
❖ 例如:某电池以中小电流放电,起初电压下降较快,后来达到 比较稳定的状态(也就是平常所说的放电平台),电压变化甚 小。如图,称t1-t2时间内为该电池以中小电流放电的稳定状 态。
❖ 稳态系统的特点(1)全部电流用于电化学反应;(2)在电极 界面区的扩散层内反应物和产物粒子的浓度只是位置的函数, 和时间无关。
暂态的研究方法
❖ 暂态系统比稳态系统复杂,单采用极化曲线 的办法不行,所以在暂态测量中,常结合交 流阻抗,将所得图谱拟合成等效电路来剖析 复杂的暂态过程。
❖ 我们可以通过测量该等效电路的各元件的值, 进一步求得电化学反应的动力学参数。
等效电路描述码的表示
❖ 电路描述码 (Circuit Description Code, 简写 为CDC)。规则如下:
❖ 极化曲线的测量方法可以是“稳态”的,也可是“暂态” 的。前者是先控制恒定的电流(或电压),待响应电压(或电 流)恒定后测量之,可获得稳态极化曲线。后者则控制电 流恒定或按一定的程序变化,测量响应电势的变化;或控 制相应的电势,测量响应电流的变化获得暂态极化曲线。
稳态的定义
❖ 稳态是在指定的时间范围内,电化学系统的参量(如电位、电 流,电极表面的浓度分布,电极表面状态等)变化甚微,基本 上可认为不变,这种状态可称为电化学稳态。
为什么要看-0.2V这个电位?
❖ 1. E=Φ+-Φ-=0.3V (Φ+=0.4V Φ-=0.1V) 2. 氧还原的过电位比较高,一般会

电化学测量技术21实际稳态极化曲...

电化学测量技术21实际稳态极化曲...

电化学测量技术
13
•反应产物可溶时浓差极化方程式与极化曲线
ϕ
= ϕ1/2
+
RT nF
ln(
jd
− j
j

电化学测量技术
14
ϕ
= ϕ1/ 2
+
2.3RT nF
log(
jd
− j
j)
截距
电化学测量技术
15
(2)电化学极化
稳态电化学极化基本方程式:
→←

j=
j净
=
j−
j
O可+得ne: j = j0
⎢⎣⎡KKebf″x″ p(−(1−
jk jd
)

cO0
ηk → 0
电化学测量技术
24
② 当 j0 << jk << jd 时,
ηk
= RT
αnF
ln
jk j0
+ RT
αnF
ln(
jd
jd −
) jk
0
ηk
=
− RT
αnF
ln
j0
+ RT
αnF
ln
jk
电极过程受电子 转移步骤控制, 发生电化学极化。
符合塔菲尔关系
i0→∞
理想不极化 电极 完全“可逆”
电极电势不 会改变
电化学测量技术
20
实际稳态极化曲线与其特征区域划分:
EF—新反应区
DE—扩散控制区
CD—混合控制区 BC—强极化区(Tafel区)
AB—弱极化区 OA—线性区
电化学测量技术
21
• 半对数极化曲线与电化学极化方程式

极化曲线的测定

极化曲线的测定

恒电位法:恒电位法就是将研究电极依次恒定在不同的数值上,然后测量对应于各电位下的电流。

极化曲线的测量应尽可能接近体系稳态。

稳态体系指被研究体系的极化电流、电极电势、电极表面状态等基本上不随时间而改变。

在实际测量中,常用的控制电位测量方法有以下两种:静态法:将电极电势恒定在某一数值,测定相应的稳定电流值,如此逐点地测量一系列各个电极电势下的稳定电流值,以获得完整的极化曲线。

对某些体系,达到稳态可能需要很长时间,为节省时间,提高测量重现性,往往人们自行规定每次电势恒定的时间。

动态法:控制电极电势以较慢的速度连续地改变(扫描),并测量对应电位下的瞬时电流值,以瞬时电流与对应的电极电势作图,获得整个的极化曲线。

一般来说,电极表面建立稳态的速度愈慢,则电位扫描速度也应愈慢。

因此对不同的电极体系,扫描速度也不相同。

为测得稳态极化曲线,人们通常依次减小扫描速度测定若干条极化曲线,当测至极化曲线不再明显变化时,可确定此扫描速度下测得的极化曲线即为稳态极化曲线。

同样,为节省时间,对于那些只是为了比较不同因素对电极过程影响的极化曲线,则选取适当的扫描速度绘制准稳态极化曲线就可以了。

上述两种方法都已经获得了广泛应用,尤其是动态法,由于可以自动测绘,扫描速度可控制一定,因而测量结果重现性好,特别适用于对比实验。

恒电流法:恒电流法就是控制研究电极上的电流密度依次恒定在不同的数值下,同时测定相应的稳定电极电势值。

采用恒电流法测定极化曲线时,由于种种原因,给定电流后,电极电势往往不能立即达到稳态,不同的体系,电势趋于稳态所需要的时间也不相同,因此在实际测量时一般电势接近稳定(如1min~3min内无大的变化)即可读值,或人为自行规定每次电流恒定的时间。

为了探索电极过程机理及影响电极过程的各种因素,必须对电极过程进行研究,其中极化曲线的测定是重要方法之一。

我们知道在研究可逆电池的电动势和电池反应时,电极上几乎没有电流通过,每个电极反应都是在接近于平衡状态下进行的,因此电极反应是可逆的。

稳态极化曲线测量在电镀中的应用

稳态极化曲线测量在电镀中的应用

稳态极化曲线测量在电镀中的应用稳态极化曲线在电镀工艺实验研究及电镀工艺的筛选等方面应用归纳如下:1选择适宜的J K、J A和S K/S A通常在现场不具备测量极化曲线的条件,往往都是采用赫尔槽试验及小槽试验来确定镀液组成及工艺条件。

如果在实验室研究新的电镀工艺,除了进行赫尔槽试验、小槽试验及正交试验外,还应配合阴极极化曲线的测量,从极化曲线上确定电化学极化较大,极化度也较大的阴极电流密度上限和下限的数值,上限值一定要小于极限电流密度。

另外还需测量阳极极化曲线,如果电镀工艺中采用可溶性阳极,在阳极极化曲线的正常溶解阶段(图1阳极极化曲线的a b段)确定阳极电流密度J A的上限值一定要低于b点的电流密度值(b点的J A称做临界钝化电流密度),若E A比b点的数值稍正,则阳极开始进入钝化状态,阳极钝化是电镀过程出现故障的原因之一。

由J K和J A上下限的数值可以做为确定S K与S A的比例的依据之一。

另外,为了保证阴极上电力线分布均匀,阳极面积一定要大于阴极面积。

图1阳极极化曲线2选择各种添加剂1)选择改变控制步骤的添加剂有些金属电沉积过程受浓度极化控制,可通过加入某些添加剂的措施,使之变成电化学极化控制。

以碱性镀Zn为例,[Zn(OH)4]2-离子还原为金属Zn受浓度极化控制,极限电流密度较小,在极限电流密度下析出Zn的同时,伴随着大量氢气的析出,形成海绵状沉积物,常用来制取Zn粉。

为了取代氰化物镀Zn,20世纪60年代通过阴极极化曲线的测量,找到了变浓度极化控制为电化学极化控制的有机合成添加剂,获得了结晶细致有光泽的Zn镀层。

目前我国电镀行业应用的镀锌添加剂是有机胺与环氧氯丙烷的缩合产物、二甲氨基丙胺、乙二胺、盐酸羟胺及四乙烯五胺。

2)选择晶粒细化剂为了获得结晶细小、致密的镀层,可以通过阴极极化曲线的测量,选择能增大电化学极化的添加剂,增加电化学极化,为形成数目众多、尺寸小的晶核创造了条件,使金属晶核形成的速度大于晶核长大的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.3 稳态极化曲线的基本特征
2.1.2 各种类型的稳态极化及其影响因素
电极过程共有三种类型的极化:电化学极化;浓差极化; 欧姆极化。通电时的电位变化=电化学极化+浓差极化+欧姆极 化。
电化学极化 ηa或ηc,由于电荷传递(电子得失)过程迟缓而造 成。 假设电极反应为简单的电荷传递反应,则电化学极化 过电位与电流关系满足Bultler-Volmer方程
第二章 稳态极化曲线的测量
Chapter Ⅱ Measurement of polarization curve at steady state
学习要点major emphasis in learning
稳态法的特点Characteristics of steady state method 稳态极化曲线的形式和特征type and features of polarization
电化学极化:由反应速度决定,与电化学反应本质有关。化学反 应的活化能较高,且各种反应的活化能相差比较悬殊,因此反应 速度的差别是以数量级计。影响因素包括温度、催化剂活性、电 极面积、界面电场、表面吸附成相层等。对于i0很小的不可逆电 极,很小的i0值就能引起较大的极化,
浓差极化:由扩散速度决定。气相扩散很自由,主要决定于分子 量和分子直径。液相扩散不自由,但扩散自由能很低。各种物质 的扩散系数小,都在同一数量级,例如水溶液中一般为10-5cm2/s, 气相中一般在10-1cm2/s数量级,温度对扩散系数的影响小,但扩 散层厚度能大幅度地改变扩散速度。一般在快速旋转的电极或溶 液流速很快的情况下,扩散层厚度能比自然对流的扩散层厚度低 一两个数量级。如果扩散途中有多孔隔膜,则隔膜的厚度、孔率 和曲折系数决定了扩散速度。浓差极化到达稳态需要的时间较长, 当i接近id时浓差极化过电位上升很快,极化曲线上表现为电流平 阶,必须用控制电位的方式才能得到相应的极化曲线。
速度。平衡态是一种特殊的稳态。 绝对的稳态不存在 稳态与暂态的划分以参量变化是否明显为标准,且此标
准也是相对的,与仪器的灵敏度有关。 稳态的全部电流都用于电化学反应
双电层充放电电流为零,电极界面处吸脱附电流为零. 电极界面区的扩散层内反应物和产物粒子的浓度与时间
无关,处于稳态扩散状态。 电极表面处的扩散电流为 id = nFD(dC/dx)x=0 = nFD(Co-Cs)/σ il = nFD Co/σ
旋转圆盘电极及其应用application of rotating disk electrode
本章主要内容
2.1 稳态方法特点 2.2 稳态极化曲线的基本特征 2.3 稳态极化曲线的测量方法 2.4 稳态极化曲线的应用 2.5旋转圆盘电极及其应用
2.1 稳态方法的特点
2.1.1 稳态过程
什么是稳态?
稳态是在指定时间范围内,电化学系统的参量 (如电位、电流、浓度分布、电极表面状态等)变化甚 微,基本上可认为不变时的状态。
如图中锌空电池小电流放电曲线中t1-t2时间段内电 池所处的状态即可以看作为稳态。
V
t1
t2
t
稳态过程的基本特点
稳态不等于平衡态 平衡态时电极反应的净速度为零,稳态时可存在净
10-3cm ,D≈ 10-5cm2/s,故稳态极化曲线不宜于研究
Ks>10-2cm/s的电化学反应。.
cR nF T [ln1(iliR)ln1(iliO)]
不可逆电极(i0/il < < 1, 即Ks < < D/σ) 在不同的过电位范围内表现为不同的极化形式。
当η>RT/αnF,逆反应可略
curve at steady state
稳态极化曲线的正确测量perfect measurement of polarization
curve at steady state
稳态极化曲线在电极过程动力学中的应用
application of polarization curve at steady state to study of electrode process kinetics
电阻极化:与i 成正比;能瞬间跟随i的变化。
2.2 稳态极化曲线的基本特征
2.2.1 极化曲线
以电极电位(或过电位)与电流密度(或电流密度的 对数)之间的关系在平面坐标系内绘图,所得曲线即为极 化曲线。
2.2.2 稳态极化曲线
以电极反应达到稳态时的电极电位(或过电位)与电 流密度(或电流密度的对数)之间的关系在平面坐标系内 绘图,所得曲线即为稳态极化曲线。
i
i0(1
i
nF
)e RT
ilo

RnTFlnii0
RTln ilo
nF iloi
k c
k
RT
nF
c
RT
nF
ln
i i0
(i<<ilo)
ln
i lo i lo
i
(i≈ilo)
在平衡电位附近(η<<RT/nF)
将(1)式按泰勒级数展开,略去η的高次项和η•i 项,得:
i i0[(1ilio)(1RnTFk)(1iliR)(1RnTFk)]
ii0(eR nT F eR nT F )
浓差极化 ηc,由于反应物和产物的扩散过程迟缓造成。~
cR nF T [ln1(iliR)ln1 (iliO)]
欧姆极化 ηΩ,由于电子导体和离子导体的欧姆电阻对电流导通 的阻碍造成,符合欧姆定律。一般情况下,离子导体 即溶液的欧姆电阻Rl远大于电子导体的电阻,故欧姆 极化一般为溶液中的欧姆极化。
Rl •i
电极反应可逆性与极化
电化学极化与浓差极化共存的i-η关系式:
ii0[1 (i)eR nT F(1i)eR nT F)](1)
ilo
ilR
可逆电极(i0/il >>1,即Ks>>D/ δ )
过电位完全由浓差极化引起,要想从稳态极化曲线上
ii10
1 ilo
1) ilR
k i(RrRcORcR)
当三种极化不可忽略时,η~i之间的关系曲线如图所示:
总之,稳态电极极化是一个复杂的过程,存在着多种 矛盾,表现为多种极化,其中占主要地位的极化决定着整 个电极的总极化。为了改变极化状况使之有利于生产,必 须进一步弄清各种极化的特点及其影响因素。
相关文档
最新文档