2012年中国数学奥林匹克(CMO)试题(含答案word)

合集下载

2012年全国高中数学联赛一试及加试试题

2012年全国高中数学联赛一试及加试试题

2012年全国高中数学联赛一试及加试试题 参考答案及详细评分标准(A 卷word 版)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在题中的横线上. 1. 设P 是函数2y x x=+(0x >)的图像上任意一点,过点P 分别向直线y x =和y 轴作垂线,垂足分别为,A B ,则PA PB ⋅的值是 .2. 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且满足3cos cos 5a Bb Ac -=, 则tan tan AB的值是 . 【答案】43.设,,[0,1]x y z ∈,则||||||M x y y z z x ---是 . 21【解析】不妨设01,x y z ≤≤≤≤则.M y x z y z x =---2[()()]2().y x z y y x z y z x ---+-=-所以2()(21)2 1.M z x z x z x --=- 当且仅当1,0,1,2y x z y x z y -=-===时上式等号同时成立.故max 2 1.M =4.抛物线22(0)y px p =>的焦点为F ,准线为l,,A B 是抛物线上的两个动点,且满足3AFB π∠=.设线段AB的中点M 在l上的投影为N ,则||||MN AB 的最大值是 .【答案】1【解析】由抛物线的定义及梯形的中位线定理得.2AF BFMN +=在AFB ∆中,由余弦定理得2222cos 3AB AF BF AF BF π=+-⋅2()3AF BF AF BF =+-⋅22()3()2AF BF AF BF +≥+-22().2AF BF MN +==当且仅当AF BF =时等号成立.故MNAB的最大值为1.5.设同底的两个正三棱锥P ABC -和Q ABC -内接于同一个球.若正三棱锥P ABC -的侧面与底面所成的角为45,则正三棱锥Q ABC -的侧面与底面所成角的正切值是 .6. 设()f x 是定义在R 上的奇函数,且当0x ≥时,()f x x 2=.若对任意的[,2]x a a ∈+,不等式()2()f x a f x +≥恒成立,则实数a 的取值范围是 . 【答案】[2,).+∞7.满足11sin 43n π<<的所有正整数n 的和是 . 【答案】33【解析】由正弦函数的凸性,有当(0,)6x π∈时,3sin ,x x x π<<由此得131sin,sin ,1313412124πππππ<<>⨯=131sin ,sin .10103993πππππ<<>⨯=所以11sin sin sin sin sin .134********πππππ<<<<<< 故满足11sin 43n π<<的正整数n 的所有值分别为10,11,12,它们的和为33.8.某情报站有,,,A B C D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A种密码,那么第7周也使用A种密码的概率是 .(用最简分数表示)二、解答题:本大题共3小题,共56分.解答应写出文字说明、推理过程或演算步骤. 9.(本小题满分16分)已知函数131()sin cos 2,,022f x a x x a a R a a =-+-+∈≠ (1)若对任意x R ∈,都有()0f x ≤,求a 的取值范围; (2)若2a ≥,且存在x R ∈,使得()0f x ≤,求a 的取值范围.10.(本小题满分20分)已知数列{}n a 的各项均为非零实数,且对于任意的正整数n ,都有23331212()n na a a a a a +++=+++ (1)当3n =时,求所有满足条件的三项组成的数列123,,a a a ;(2)是否存在满足条件的无穷数列{}n a ,使得20132012?a =-若存在, 求出这样的无穷数列的一个通项公式;若不存在,说明理由.11.(本小题满分20分)如图5,在平面直角坐标系XOY 中,菱形ABCD 的边长为4,且6OB OD ==. (1)求证:||||OA OC ⋅为定值;(2)当点A 在半圆22(2)4x y -+=(24x ≤≤)上运动时,求点C 的轨迹.【解析】因为,,OB OD AB AD BC CD ====所以,,O A C 三点共线 如图,连结BD ,则BD 垂直平分线段AC ,设垂足为K ,于是有()()OA OC OK AK OK AK ⋅=-+22OK AK =-2222()()OB BK AB BK =---22226420OB AB =-=-= (定值)(2)设(,),(22cos ,2sin ),C x y A αα+其中(),22XMA ππαα=∠-≤≤则2XOC α∠=. 因为2222(22cos )(2sin )8(1cos )16cos,2OA αααα=++=+=所以4cos2OA α=由(1)的结论得cos5,2OC α=所以cos5.2x OC α==从而sin5tan[5,5].22y OC αα==∈-故点C 的轨迹是一条线段,其两个端点的坐标分别为(5,5),(5,5)A B -2011年全国高中数学联合竞赛一试试题(A 卷)一、填空题:本大题共8小题,每小题8分,共64分.把答案填在横线上.1.设集合},,,{4321a a a a A =,若A 中所有三元子集的三个元素之和组成的集合为}8,5,3,1{-=B ,则集合=A .2.函数11)(2-+=x x x f 的值域为 .3.设b a ,为正实数,2211≤+ba ,32)(4)(ab b a =-,则=b a log .4.如果)cos (sin 7sin cos 3355θθθθ-<-,)2,0[πθ∈,那么θ的取值范围是 .5.现安排7名同学去参加5个运动项目,要求甲、乙两同学不能参加同一个项目,每个项目都有人参加,每人只参加一个项目,则满足上述要求的不同安排方案数为.(用数字作答)6.在四面体ABCD中,已知︒==BDADB,3=CD,则BDCAD,2∠60∠=CDA=∠=四面体ABCD的外接球的半径为.7.直线012=--y x 与抛物线x y 42=交于B A ,两点,C 为抛物线上的一点,︒=∠90ACB ,则点C 的坐标为 .8.已知=n a C())95,,2,1(2162003200=⎪⎪⎭⎫⎝⎛⋅⋅-n nnn ,则数列}{n a 中整数项的个数为二、解答题:本大题共3小题,共56分.解答应写出文字说明、证明过程或演算步骤. 9.(本小题满分16分)设函数|)1lg(|)(+=x x f ,实数)(,b a b a <满足)21()(++-=b b f a f ,2lg 4)21610(=++b a f ,求b a ,的值.10.(本小题满分20分)已知数列}{n a 满足:∈-=t t a (321R 且)1±≠t ,121)1(2)32(11-+--+-=++nn n n n n t a t t a t a ∈n (N )*.(1)求数列}{n a 的通项公式;(2)若0>t ,试比较1+n a 与n a 的大小.11.(本小题满分20分)作斜率为31的直线l 与椭圆C :143622=+y x 交于BA ,两点(如图所示),且)2,23(P 在直线l 的左上方.(1)证明:△PAB 的内切圆的圆心在一条定直线上;(2)若︒=∠60APB ,求△PAB 的面积.yOPAB2010年全国高中数学联赛一 试一、填空题(每小题8分,共64分,) 1. 函数x x x f 3245)(---=的值域是 .2. 已知函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是 . 3. 双曲线122=-y x 的右半支与直线100=x 围成的区域内部(不含边界)整点(纵横坐标均为整数的点)的个数是 .4. 已知}{n a 是公差不为0的等差数列,}{n b 是等比数列,其中3522113,,1,3b a b a b a ====,且存在常数βα,使得对每一个正整数n 都有βα+=n n b a log ,则=+βα .5. 函数)1,0(23)(2≠>-+=a a a ax f x x在区间]1,1[-∈x 上的最大值为8,则它在这个区间上的最小值是 .6. 两人轮流投掷骰子,每人每次投掷两颗,第一个使两颗骰子点数和大于6者为胜,否则轮由另一人投掷.先投掷人的获胜概率是 .7. 正三棱柱111C B A ABC -的9条棱长都相等,P 是1CC 的中点,二面角α=--11B P A B ,则=αsin .8. 方程2010=++z y x 满足z y x ≤≤的正整数解(x ,y ,z )的个数是 . 二、解答题(本题满分56分)9. (16分)已知函数)0()(23≠+++=a d cx bx ax x f ,当10≤≤x 时,1)(≤'x f ,试求a 的最大值.10.(20分)已知抛物线x y 62=上的两个动点1122(,)(,)A x y B x y 和,其中21x x ≠且421=+x x .线段AB 的垂直平分线与x 轴交于点C ,求ABC ∆面积的最大值.11.(20分)证明:方程02523=-+x x 恰有一个实数根r ,且存在唯一的严格递增正整数数列}{n a ,使得+++=32152a a a r r r .解 答1. ]3,3[- 提示:易知)(x f 的定义域是[]8,5,且)(x f 在[]8,5上是增函数,从而可知)(x f 的值域为]3,3[-.2. 1223≤≤-a 提示:令t x =sin ,则原函数化为t a at t g )3()(2-+-=,即 t a at t g )3()(3-+-=.由3)3(3-≥-+-t a at ,0)1(3)1(2≥----t t at ,0)3)1()(1(≥-+--t at t 及01≤-t 知03)1(≤-+-t at 即3)(2-≥+t t a . (1)当1,0-=t 时(1)总成立;对20,102≤+<≤<t t t ;对041,012<+≤-<<-t t t .从而可知 1223≤≤-a . 3. 9800 提示:由对称性知,只要先考虑x 轴上方的情况,设)99,,2,1( ==k k y 与双曲线右半支于k A ,交直线100=x 于k B ,则线段k k B A 内部的整点的个数为99k -,从而在x 轴上方区域内部整点的个数为991(99)99494851k k =-=⨯=∑.又x 轴上有98个整点,所以所求整点的个数为98009848512=+⨯.3 提示 :设}{n a 的公差为}{,n b d 的公比为q ,则,3q d =+ (1)2)43(3q d =+, (2)(1)代入(2)得961292++=+d d d ,求得9,6==q d .从而有βα+=-+-19log )1(63n n 对一切正整数n 都成立,即βα+-=-9log )1(36n n 对一切正整数n 都成立.从而βαα+-=-=9log 3,69log ,求得 3,33==βα,333+=+βα.5. 41- 提示:令,y a x =则原函数化为23)(2-+=y y y g ,)(y g 在3(,+)2-∞上是递增的.当10<<a 时,],[1-∈a a y ,211max 1()32822g y a a a a ---=+-=⇒=⇒=, 所以412213)21()(2min -=-⨯+=y g ;当1>a 时,],[1a a y -∈,2823)(2max =⇒=-+=a a a y g ,所以412232)(12min -=-⨯+=--y g .综上)(x f 在]1,1[-∈x 上的最小值为41-.6. 1217 提示:同时投掷两颗骰子点数和大于6的概率为1273621=,从而先投掷人的获胜概率为+⨯+⨯+127)125(127)125(1274217121442511127=-⨯=.提示:解法一:如图,以AB 所在直线为x 轴,线段AB 中点O 为原点,OC 所在直线为y 轴,建立空间直角坐标系.设正三棱柱的棱长为2,则)1,3,0(),2,0,1(),2,0,1(),0,0,1(11P A B B -,从而,)1,3,1(),0,0,2(),1,3,1(),2,0,2(1111--=-=-=-=P B A B BP BA . 设分别与平面P BA 1、平面P A B 11垂直的向量是),,(111z y x m =、),,(222z y x n =,则⎪⎩⎪⎨⎧=++-=⋅=+-=⋅,03,022111111z y x BP m z x BA m ⎪⎩⎪⎨⎧=-+-=⋅=-=⋅,03,022221211z y x P B n x A B n 由此可设 )3,1,0(),1,0,1(==n m ,所以cos m n m n α⋅=⋅,即2cos cos 4αα=⇒=. 所以 410sin =α. 解法二:如图,PB PA PC PC ==11, . 设BA 1与1AB 交于点,O则1111,,OA OB OA OB A B AB ==⊥ .11,,PA PB PO AB =⊥因为 所以 从而⊥1AB 平面B PA 1 .过O 在平面B PA 1上作P A OE 1⊥,垂足为E .连结E B 1,则EO B 1∠为二面角11B P A B --的平面角.设21=AA ,则易求得OEPC 1B 1A 1CBA3,2,5111=====PO O B O A PA PB . 在直角O PA 1∆中,OE P A PO O A ⋅=⋅11,即 56,532=∴⋅=⋅OE OE .又 554562,222111=+=+=∴=OE O B E B O B . 4105542sin sin 111===∠=E B O B EO B α. 8. 336675 提示:首先易知2010=++z y x 的正整数解的个数为1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类:(1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.9. 解法一: ,23)(2c bx ax x f ++='由 ⎪⎪⎩⎪⎪⎨⎧++='++='='cb a fc b a f c f 23)1(,43)21(,)0( 得)21(4)1(2)0(23f f f a '-'+'=.所以)21(4)1(2)0(23f f f a '-'+'=)21(4)1(2)0(2f f f '+'+'≤ 8≤, 所以38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38. 解法二:c bx ax x f ++='23)(2. 设1)()(+'=x f x g ,则当10≤≤x 时,2)(0≤≤x g .设 12-=x z ,则11,21≤≤-+=z z x . 14322343)21()(2++++++=+=c b az b a z a z g z h .容易知道当11≤≤-z 时,2)(0,2)(0≤-≤≤≤z h z h . 从而当11≤≤-z 时,22)()(0≤-+≤z h z h , 即21434302≤++++≤c b a z a , 从而 0143≥+++c b a ,2432≤z a ,由 102≤≤z 知38≤a . 又易知当m x x x x f ++-=23438)((m 为常数)满足题设条件,所以a 最大值为38.10. 解法一:设线段AB 的中点为),(00y x M ,则 2,22210210y y y x x x +==+=, 01221221212123666y y y y y y y x x y y k AB =+=--=--=. 线段AB 的垂直平分线的方程是)2(30--=-x y y y . (1) 易知0,5==y x 是(1)的一个解,所以线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.由(1)知直线AB 的方程为)2(30-=-x y y y ,即2)(300+-=y y y x . (2) (2)代入x y 62=得12)(2002+-=y y y y ,即012222002=-+-y y y y . (3)依题意,21,y y 是方程(3)的两个实根,且21y y ≠,所以22200044(212)4480y y y ∆=--=-+>,32320<<-y .221221)()(y y x x AB -+-=22120))()3(1(y y y -+= ]4))[(91(2122120y y y y y -++=))122(44)(91(202020--+=y y y)12)(9(322020y y -+=. 定点)0,5(C 到线段AB 的距离 202029)0()25(y y CM h +=-+-==.2020209)12)(9(3121y y y h AB S ABC +⋅-+=⋅=∆ )9)(224)(9(2131202020y y y +-+=3202020)392249(2131y y y ++-++≤7314= . 当且仅当2202249y y -=+,即0y =,66((33A B 或66((33A B -时等号成立. 所以,ABC ∆面积的最大值为7314. 解法二:同解法一,线段AB 的垂直平分线与x 轴的交点C 为定点,且点C 坐标为)0,5(.设4,,,222121222211=+>==t t t t t x t x ,则161610521222121t t t t S ABC =∆的绝对值, 2222122112))656665(21(t t t t t t S ABC --+=∆221221)5()(23+-=t t t t )5)(5)(24(23212121++-=t t t t t t3)314(23≤,所以7314≤∆ABC S , 当且仅当5)(21221+=-t t t t 且42221=+t t ,即,6571-=t6572+-=t ,A B 或A B -时等号成立. 所以,ABC ∆面积的最大值是7314. 11.令252)(3-+=x x x f ,则056)(2>+='x x f ,所以)(x f 是严格递增的.又043)21(,02)0(>=<-=f f ,故)(x f 有唯一实数根1(0,)2r ∈.所以 32520r r +-=,3152rr -=4710r r r r =++++.故数列),2,1(23 =-=n n a n 是满足题设要求的数列. 若存在两个不同的正整数数列 <<<<n a a a 21和 <<<<n b b b 21满足52321321=+++=+++ b b b a a a r r r r r r , 去掉上面等式两边相同的项,有+++=+++321321t t t s s s r r r r r r ,这里 <<<<<<321321,t t t s s s ,所有的i s 与j t 都是不同的.不妨设11t s <,则++=++<21211t t s s s r r r r r ,112111111121211=--<--=++≤++<--rr r r r s t s t ,矛盾.故满足题设的数列是唯一的.2009全国高中数学联合竞赛一试试题 (考试时间 10月11日8:00-9:40)本试卷共二个大题,满分100分,不能使用计算器一、填空题(本大题共8小题,每题7分,共56分)1、若函数)]]([[)(,1)()(2x f f f f x f x xx f n n =+=且,则=)1()99(f ; 2、已知直线L :09=-+y x 和圆M :01882222=---+y x y x ,点A 在直线L 上,B 、C 为圆M 上两点,在△ABC 中,∠BAC =45°,AB 过圆心M ,则点A 的横坐标的范围为 ;3、在坐标平面上有两个区域M ,N ,M 为⎪⎩⎪⎨⎧-≤≤≥xy x y y 20,N 是随t 变化的区域,它由不等式1+≤≤t x t 所确定,t 的取值范围是10≤≤t ,设M ,N 的公共面积是)(t f ,则)(t f =4、使不等式312007111111-<+++++a n n n 对一切正整数n 都成立的最小正整数a 的值为5、椭圆)0(12222>>=+b a b y a x 上任意两点P ,Q ,若OP ⊥OQ ,则乘积|OP|·|OQ|的最小值为6、若方程)1lg(2lg +=x kx 仅有一个实根,那么k 的取值范围是7、一个由若干数字组成的数表,从第二行起每一行中的数字均等于其肩上的两个数之和,最后一行仅有一个数,第一行是前100个正整数按从小到大排除的行,则最后一行的数是 (可以用指数表示)。

2012年全国初中数学竞赛试题及答案(正题、副题)2012年全国初中数学竞赛试题及答案(正题、副题)

2012年全国初中数学竞赛试题及答案(正题、副题)2012年全国初中数学竞赛试题及答案(正题、副题)

2012年全国初中数学竞赛试题(正题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式可以化简为().(第1(甲)题)(A)2c-a(B)2a-2b(C)-a(D)a1(乙).如果,那么的值为().(A)(B)(C)2 (D)2(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果为给定的实数,且,那么这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)(C)(D)3(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.,AD = 3,BD = 5,则CD的长为().(第3(乙)题)(A)(B)4 (C)(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().(A)1 (B)2 (C)3 (D)44(乙).如果关于x的方程是正整数)的正根小于3,那么这样的方程的个数是().(A)5 (B)6 (C)7 (D)85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为,则中最大的是().(A)(B)(C)(D)5(乙).黑板上写有共100个数字.每次操作先从黑板上的数中选取2个数,然后删去,并在黑板上写上数,则经过99次操作后,黑板上剩下的数是().(A)2012 (B)101 (C)100 (D)99二、填空题(共5小题,每小题7分,共35分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x的取值范围是.(第6(甲)题)6(乙). 如果a,b,c是正数,且满足,,那么的值为.7(甲).如图,正方形ABCD的边长为2,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则△DMN的面积是 .(第7(甲)题)(第7(乙)题)7(乙).如图,的半径为20,是上一点.以为对角线作矩形,且.延长,与分别交于两点,则的值等于.8(甲).如果关于x的方程x2+kx+k2-3k+= 0的两个实数根分别为,,那么的值为.8(乙).设为整数,且1≤n≤2012. 若能被5整除,则所有的个数为 .9(甲).2位八年级同学和m位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此恰好比赛一场.记分规则是:每场比赛胜者得3分,负者得0分;平局各得1分. 比赛结束后,所有同学的得分总和为130分,而且平局数不超过比赛局数的一半,则m 的值为.风味试卷试题根据语境9(乙).如果正数x,y,z可以是一个三角形的三边长,那么称是三角形数.若和均为三角形数,且a≤b≤c,则的取值范围是.D10(甲).如图,四边形ABCD内接于⊙O,AB是直径,AD = DC. 分别延长BA,CD,交点为E. 作BF⊥EC,并与EC的延长线交于点F. 若AE = AO,BC = 6,则CF的长为.的小伙子化学教案他离开公司后化学教案会去哪(第10(甲)题)10(乙.已知是偶数,且1≤≤100.若有唯一的正整数对使得成立,则这样的的个数为.三、解答题(共4题,每题20分,共80分)11(甲).已知二次函数,当时,恒有;关于x的方程的两个实数根的倒数和小于.求的取值范围.11(乙).如图,在平面直角坐标系xOy中,AO = 8,AB = AC,sin∠ABC=.CD与y轴交于点E,且S△COE = S△ADE. 已知经过B,C,E三点的图象是一条抛物线,求这条抛物线对应的二次函数的解析式.(第11(乙)题)12(甲).如图,的直径为,过点,且与内切于点.为上的点,与交于点,且.点在上,且,BE的延长线与交于点,求证:△BOC∽△.(第12(甲)题)12(乙).如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心. 求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD = 2BD.(第12(乙)题)13(甲).已知整数a,b满足:a-b是素数,且ab是完全平方数. 当a≥2012时,求a的最小值.13(乙).凸边形中最多有多少个内角等于?并说明理由14(甲).求所有正整数n,使得存在正整数,满足,且.14(乙).将(n≥2)任意分成两组,如果总可以在其中一组中找到数(可以相同)使得,求的最小值2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19.6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O 的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4).…………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为.…………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线.…………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD.故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2.…………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m.…………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025.…………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于,.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.…………(20分)2012年全国初中数学竞赛试题(副题)题号一二三总分1~56~101112 1314得分评卷人复查人答题时注意:1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1. 小王在做数学题时,发现下面有趣的结果:由上,我们可知第100行的最后一个数是().(A)10000 (B)10020 (C)10120 (D)102002. 如图,在3×4表格中,左上角的1×1小方格被染成黑色,则在这个表格中包含黑色小方格的矩形个数是().(A)11 (B)12 (C)13 (D)14(第2题)3.如果关于的方程有两个有理根,那么所有满足条件的正整数的个数是().(A)1 (B)2 (C)3 (D)44. 若函数y=(k2-1)x2-(k+1)x+1(k为参数)的图象与x轴没有公共点,则k的取值范围是().(A)k>,或k<-1 (B)-1<k<,且k≠1(C)k>,或k≤-1 (D)k≥,或k≤-15. △ABC中,,分别为上的点,平分,BM=CM,为上一点,且,则与的大小关系为().(A)(B)(C)(D)无法确定二、填空题(共5小题,每小题7分,共35分)6. 如图,正方形ABCD的面积为90.点P在AB上,;X,Y,Z三点在BD上,且,则△PZX的面积为.(第6题)7.甲、乙、丙三辆车都匀速从A地驶往B地.乙车比丙车晚5分钟出发,出发后40分钟追上丙车;甲车比乙车晚20分钟出发,出发后100分钟追上丙车,则甲车出发后分钟追上乙车.8. 设a n=(n为正整数),则a1+a2+…+a2012的值 1.(填“>”,“=”或“<”)9.红、黑、白三种颜色的球各10个.把它们全部放入甲、乙两个袋子中,要求每个袋子里三种颜色的球都有,且甲、乙两个袋子中三种颜色的球数之积相等,那么共有种放法.10. △ABC中,已知,且b=4,则a+c= .②将醚层依次用饱和亚硫酸三、解答题(共4题,每题20分,共80分)11. 已知c≤b≤a,且,求的最小值.12. 求关于a,b,c,d的方程组的所有正整数解.13. 如图,梯形ABCD中,AB∥CD,AC,BD相交于点O.P,Q分别是AD,BC上的点,且,.求证:OP=OQ.(第13题)14.(1)已知三个数中必有两个数的积等于第三个数的平方,求的值.(2)设为非零实数,为正整数,是否存在一列数满足首尾两项的积等于中间项的平方?(3)设为非零实数,若将一列数中的某一项删去后得到又一列数(按原来的顺序),满足首尾两项的积等于中间项的平方. 试求的所有可能的值.2012年全国初中数学竞赛试题(副题)参考答案一、选择题1.D解:第k行的最后一个数是,故第100行的最后一个数是.2. B解:这个表格中的矩形可由对角线的两个端点确定,由于包含黑色小方格,于是,对角线的一个端点确定,另一个端点有3×4=12种选择.3.B解:由于方程的两根均为有理数,所以根的判别式≥0,且为完全平方数.≥0,又2≥,所以,当时,解得;当时,解得.4. C解:当函数为二次函数时,有k2-1≠0,=(k+1)2-4(k2-1)<0.解得k>,或k<-1.当函数为一次函数时,k=1,此时y=-2x+1与x轴有公共点,不符合题意.当函数为常数函数时,k=-1,此时y=1与x轴没有公共点.所以,k的取值范围是k>,或k≤-1.5. B(第5题)解:如图,设,作BKCE,则,于是A,B,E,C四点共圆. 因为是的中点,所以,从而有,即平分.二、填空题6. 30(第6题)解:如图,连接PD,则.7.180解:设甲、乙、丙三车的速度分别为每分钟x,y,z米,由题意知,.消去z,得.设甲车出发后t分钟追上乙车,则,即,解得.8.<解:由a n==,得a1+a2+…+a2012==<1.9.25解:设甲袋中红、黑、白三种颜色的球数分别为,则有1≤≤9,且,(1)即,(2)于是.因此中必有一个取5.不妨设,代入(1)式,得到.此时,y可取1,2,…,8,9(相应地z取9,8,…,2,1),共9种放法.同理可得y=5,或者z=5时,也各有9种放法.但时,两种放法重复.因此共有9×3-2 = 25种放法.10. 6(第10题)解:如图,设△ABC内切圆为⊙I,半径为r,⊙I与BC,CA,AB分别相切于点D,E,F,连接IA,IB,IC,ID,IE,IF.由切线长定理得AF=p-a,BD=p-b,CE=p-c,其中p=(a+b+c).在Rt△AIF中,tan∠IAF=,即tan.同理,tan,tan.代入已知等式,得.因此a+c=.三、解答题11. 解:已知,又,且,所以b,c是关于x的一元二次方程的两个根.故≥0,≥0,即≥0,所以≥20.于是≤-10,≥10,从而≥≥10,故≥30,当时,等号成立.12. 解:将abc=d代入10ab+10bc+10ca=9d得10ab+10bc+10ca=9abc.因为abc≠0,所以,.不妨设a≤b≤c,则≥≥>0.于是,<≤,即<≤,<a≤.从而,a=2,或3.若a=2,则.因为<≤,所以,<≤,<b≤5.从而,b=3,4,5. 相应地,可得c=15,(舍去),5.当a=2,b=3,c=15时,d=90;当a=2,b=5,c=5时,d=50.若a=3,则.因为<≤,所以,<≤,<b≤.从而,b=2(舍去),3.当b=3时,c=(舍去).因此,所有正整数解为(a,b,c,d)=(2,3,15,90),(2,15,3,90),(3,2,15,90),(3,15,2,90),(15,2,3,90),(15,3,2,90),(2,5,5,50),(5,2,5,50),(5,5,2,50).13. 证明:延长DA至,使得,则,于是△DPC∽△,故,所以PO∥.(第13题)又因为△DPO ∽△,所以.同理可得,而AB∥CD,所以,故OP=OQ.14.解:(1)由题设可得,或,或.由,解得;由,解得;由,解得.所以满足题设要求的实数.(2)不存在.由题设(整数≥1)满足首项与末项的积是中间项的平方,则有,解得,这与矛盾.故不存在这样的数列.(3)如果删去的是1,或者是,则由(2)知,或数列均为1,1,1,即,这与题设矛盾.如果删去的是,得到的一列数为,那么,可得.如果删去的是,得到的一列数为,那么,开得.所以符合题设要求的的值为1,或.41。

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联赛试题(含答案)

2012年全国初中数学联合竞赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A .3 B .3C .3D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B ) A .18-. B .0. C .1. D .98.5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( B )A .0.B .34-. C .1-. D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( C )A .36个.B .40个.C .44个.D .48个. 二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a+=+=+=,则t =1±.2.使得521m⨯+是完全平方数的整数m 的个数为 1 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BCAP=. 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++=332.第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则30a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值. 由a b c ≤<及30a b c ++=得303a b c c =++<,所以10c >. 由a b c +>及30a b c ++=得302a b c c =++>,所以15c <. 又因为c 为整数,所以1114c ≤≤.根据勾股定理可得222a b c +=,把30c a b =--代入,化简得30()4500ab a b -++=,所以22(30)(30)450235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是22305,3023,a b ⎧-=⎪⎨-=⨯⎪⎩解得5,12.a b =⎧⎨=⎩ 所以,直角三角形的斜边长13c =,三角形的外接圆的面积为1694π. 二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D .证明:2AD BD CD =⋅.证明:连接OA ,OB ,OC .∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD ,∴PD BD CD OD=,∴2AD PD OD BD CD =⋅=⋅. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM //BC ,求抛物线的解析式.解 易求得点P 23(3,)2b bc +,点C (0,)c .设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b c =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE.因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-. 又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).又因为AM //BC ,所以OA OMOB OC =3||2|6|-=-. 把6c =-代入解得52b =(另一解52b =-舍去). 因此,抛物线的解析式为215662y x x =-+-.第二试 (B )一.(本题满分20分)已知直角三角形的边长均为整数,周长为60,求它的外接圆的面积. 解 设直角三角形的三边长分别为,,a b c (a b c ≤<),则60a b c ++=. 显然,三角形的外接圆的直径即为斜边长c ,下面先求c 的值.由a b c ≤<及60a b c ++=得603a b c c =++<,所以20c >. 由a b c +>及60a b c ++=得602a b c c =++>,所以30c <. 又因为c 为整数,所以2129c ≤≤.根据勾股定理可得222a b c +=,把60c a b =--代入,化简得60()18000ab a b -++=,所以322(60)(60)1800235a b --==⨯⨯,因为,a b 均为整数且a b ≤,所以只可能是326025,6035,a b ⎧-=⨯⎪⎨-=⨯⎪⎩或2226025,6023,a b ⎧-=⨯⎪⎨-=⨯⎪⎩ 解得20,15,a b =⎧⎨=⎩或10,24.a b =⎧⎨=⎩当20,15a b ==时,25c =,三角形的外接圆的面积为6254π; 当10,24a b ==时,26c =,三角形的外接圆的面积为169π.二.(本题满分25分)如图,P A 为⊙O 的切线,PBC 为⊙O 的割线,AD ⊥OP 于点D ,△ADC 的外接圆与BC 的另一个交点为E .证明:∠BAE =∠ACB .证明:连接OA ,OB ,OC ,BD . ∵OA ⊥AP ,AD ⊥OP ,∴由射影定理可得2PA PD PO =⋅,2AD PD OD =⋅.又由切割线定理可得2PA PB PC =⋅,∴P B P C PD PO ⋅=⋅,∴D 、B 、C 、O 四点共圆, ∴∠PDB =∠PCO =∠OBC =∠ODC ,∠PBD =∠COD ,∴△PBD ∽△COD , ∴PD BDCD OD =, ∴2BD CD PD OD AD ⋅=⋅=,∴BD AD AD CD=. 又∠BDA =∠BDP +90°=∠ODC +90°=∠ADC ,∴△BDA ∽△ADC , ∴∠BAD =∠ACD ,∴AB 是△ADC 的外接圆的切线,∴∠BAE =∠ACB . 三.(本题满分25分)题目和解答与(A )卷第三题相同.第二试 (C )一.(本题满分20分)题目和解答与(B )卷第一题相同. 二.(本题满分25分)题目和解答与(B )卷第二题相同. 三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,P A 是△ABC 的外接圆的切线.将抛物线向左平移1)个单位,得到的新抛物线与原抛物线交于点Q ,且∠QBO =∠OBC .求抛物线的解析式.解 抛物线的方程即2213(3)62b y x bc =--++,所以点P 23(3,)2b b c +,点C (0,)c . 设△ABC 的外接圆的圆心为D ,则点P 和点D 都在线段AB 的垂直平分线上,设点D 的坐标为(3,)b m .显然,12,x x 是一元二次方程2106x b x c -++=的两根,所以13x b =,23x b =+AB 的中点E 的坐标为(3,0)b ,所以AE .因为P A 为⊙D 的切线,所以P A ⊥AD ,又AE ⊥PD ,所以由射影定理可得2AE PE DE =⋅,即223)()||2b c m =+⋅,又易知0m <,所以可得6m =-.又由DA =DC 得22DA DC =,即2222(30)()m b m c +=-+-,把6m =-代入后可解得6c =-(另一解0c =舍去).将抛物线2213(3)662b y x b =--+-向左平移1)个单位后,得到的新抛物线为2213(324)662by x b=--++-.易求得两抛物线的交点为Q23(312102)2bb+-+.由∠QBO=∠OBC可得tan∠QBO=tan∠OBC.作QN⊥AB,垂足为N,则N(312b+-,又233(x b b=+=,所以tan∠QBO=QNBN2310212b+=12=22111)]22==⋅.又tan∠OBC=OCOB1(2b==⋅,所以111)](22b⋅=⋅-.解得4b=(另一解45)03b=<,舍去).因此,抛物线的解析式为21466y x x=-+-.。

历届中国数学奥林匹克 全国中学生数学冬令营 试题解答

历届中国数学奥林匹克 全国中学生数学冬令营 试题解答

盾.所以不能按要求排成这样一行. √
6.用任意的方式,给平面上的每一点染上黑色或白色. 求证:一定存在一个边长为1或 3的正三角形,它的
三个顶点是同色的.
证明:(1)若平面上存在距离为2的两个点A, B异色,设O为它们的中点,不妨设A, O同色. 考虑以AO为一 √
边的正三角形AOC, AOD,若C, D中有一个与A, O同色,则该三角形满足题意. 否则BCD为边长 3的

a1x1 + a2x2 + · · · + anxn − a1x21 − a2x22 − · · · − anx2n
= a1(x1 − x21) + a2(x2 − x22) + · · · + an(xn − x2n)
a1(x1 − x21) + (−a1)(x2 − x22) + · · · + (−a1)(xn − x2n)
+
1)ϕ
=
1.显然以−ϕ代ϕ即有(1).所以6|n
+
2.证毕.
2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线, 将这三角形分成若干个
小三角形,这些小三角形的顶点都称为结点, 并且在每一结点上放置了一个实数.已知:
(1)A, B, C三点上放置的数分别为a, b, c.
(2)在每个由有公共边的两个最小三角形组成的菱形之中, 两组相对顶点上放置的数之和相等.
个1986之间夹着1986个数.请证明你的结论.
解:不能.假设可以做出这样的排列,将已排好的数按顺序编号为1,2,. . . ,3972.
当n为奇数时,两个n的编号奇偶性相同;当n为偶数时,两个n的编号奇偶性不同. 而1到1986之间有993个

2012年全国初中数学联赛试题详解

2012年全国初中数学联赛试题详解

2012年全国初中数学联合竞赛试题参考答案第一试一、选择题:(本题满分42分,每小题7分) 1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( C )A. a b c <<B. a c b <<C. b a c <<D.b c a <<解答:1a ===b ==,2c ===1显然:b a c <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( B ) A .3. B .4. C .5. D .6. 解答:222222223232()234x xy y x xy y y x y y ++=+++=++=由0、1、2、3、4、5、6的平分别是0、1、4、9、16、25、36知唯有16+2⨯9=34故5555544444x y x y x y x y x y y y y y y +=-+=+=+=-⎧⎧⎧⎧+=±=±⎨⎨⎨⎨===-=-⎩⎩⎩⎩、,由、、、得 4444=9=1=9=1y y y y x x x x ===-=-⎧⎧⎧⎧⎨⎨⎨⎨--⎩⎩⎩⎩、、、共4组解。

3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( D )A.3 B.3 C.3 D.3EBD解答:如图,做G H ⊥BE 于H ,易证Rt △AB E ∽Rt △GHB ,设GH=a ,则HE=a ,BH=2-a , 由GH BH a 2-a 2==a=AB BE 123得解得,故BG=3。

4.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( B )A .18-. B .0. C .1. D .98. 解答:44222222219=2=21=2()48a ab b a b a b ab a b ab ab +++-+-++--+2() 考查以ab 整体为自变量的函数的图像为抛物线219y=2()48ab --+其对称轴为14ab = 由22222020a b ab a b ab +-≥++≥和知1122ab -≤≤ 又1111()4242-->-,故当12ab =-时,函数取最小值0。

2012年全国高中数学竞赛(四川预赛试题及解答)(1)

2012年全国高中数学竞赛(四川预赛试题及解答)(1)

2012年全国数学竞赛(四川初赛)一、单项选择题(本大题共6个小题,每小题5分,共30分) 1、设集合{}2|560S x xx =--<,{}|2|3T x x =+≤,则S T⋂=( )A 、{|51}x x -≤<-B 、{|55}x x -≤<C 、{|11}x x -<≤D 、{|15}x x ≤<2、正方体1111ABC D A B C D -中1BC 与截面11BB D D 所成的角是( ) A 、6πB 、4π C 、3πD 、2π3、已知2()23f x xx =-+,()1g x kx =-,则“||2k ≤”是“()()f xg x ≥在R 上恒成立”的( )A 、充分但不必要条件B 、必要但不充分条件C 、充要条件D 、既不充分也不必要条件4、设正三角形1∆的面积为1S ,作1∆的内切圆,再作内切圆的内接正三角形,设为2∆,面积为2S ,如此下去作一系列的正三角形34,,∆∆,其面积相应为34,,SS, 设11S=,12n n T S S S =+++ ,则lim n n T →+∞=()A 、65B 、43C 、32D 、25、设抛物线24yx=的焦点为F ,顶点为O ,M 是抛物线上的动点,则||||M O M F 的最大值为( )A 、3B 、3C 、43D6、设倒圆锥形容器的轴截面为一个等边三角形,在此容器内注入水,并放入半径为r 的一个实心球,此时球与容器壁及水面恰好都相切,则取出球后水面高为( )A 、rB 、r 2C 、r312 D 、r315二、填空题(本大题共6个小题,每小题5分,共30分)7、如图,正方形A B C D 的边长为3E为D C的中点,A E 与B D 相交于F ,则FD DE ⋅的值是.8、261()xx x+-的展开式中的常数项是 .(用具体数字作答)9、设等比数列{}na 的前n 项和为nS ,满足2(1)4n na S+=,则20S 的值为 .10、不超过2012的只有三个正因数的正整数个数为 .11、已知锐角,A B满足t a n ()2t a n A B A +=,则t a n B 的最大值是 .12、从1,2,3,4,5组成的数字不重复的五位数中,任取一个五位数abcde ,满足条件“a b c d e<><>”的概率是 .三、解答题(本大题共4个小题,每小题20分,共80分) 13、设函数()sin 1f x x x =++,(I )求函数()f x 在[0,]2π上的最大值与最小值;(II )若实数c b a ,,使得1)()(=-+c x bf x af 对任意R x ∈恒成立,求ac b cos 的值.14、已知,,a b c R +∈,满足()1abc a b c ++=,(I )求()()S a c b c =++的最小值; (II )当S 取最小值时,求c 的最大值.15、直线1y kx =+与双曲线221x y -=的左支交于A、B 两点,直线l经过点(2,0)-和A B的中点,求直线l 在y 轴的截距b 的取值范围.16、设函数2()(1)nnfx x x =-在1[,1]2上的最大值为na (1,2,3,n = ).(I )求数列{}na 的通项公式;(II )求证:对任何正整数(2)n n ≥,都有21(2)nan ≤+成立;(III )设数列{}na 的前n 项和为nS ,求证:对任意正整数n ,都有716nS <成参考解答一、选择题(本大题共6个小题,每小题5分,共30分) 1、C 2、A 3、A 4、B 5、B 6、D二、填空题(本大题共6个小题,每小题5分,共30分) 7、32- 8、5- 9、0 10、14 11、412、215三、解答题(本大题共4个小题,每小题20分,共80分) 13、解:(I )由条件知()2sin()13f x x π=++,(5分)由02x π≤≤知,5336x πππ≤+≤,于是1sin()123x π≤+≤所以2x π=时,()f x 有最小值12122⨯+=; 当6x π=时,()f x 有最大值21⨯+=. (10分)(II )由条件可知2sin()2sin()133a xb xc a b ππ+++-++=对任意的x R ∈恒成立,∴2sin()2sin()cos 2cos()sin (1)0333a xb xc b x c a b πππ+++⋅-+⋅++-=∴2(cos )sin()2sin cos()(1)033a b c x b c x a b ππ+⋅+-⋅+++-=∴cos 0sin 010a b c b c a b +=⎧⎪=⎨⎪+-=⎩,(15分)由sin 0b c =知0b =或sin 0c =。

2012年高中数学竞赛试题及解答

2012年高中数学竞赛试题及解答

2012年高中数学竞赛答案一、填空题(本题满分60分,前4小题每小题7分,后4小题每小题8分) 1.如图,正六边形111111A B C D E F 的边长为1,它的6条对角线又围成一个正六边形222222A B C D E F ,如此继续下去,则所有这些六边形的面积和是 .2.已知正整数1210,,, a a a 满足:3,1102>≤<≤ji a i j a ,则10a 的最小可能值是 .3.若17tan tan tan 6αβγ++=,4cot cot cot 5αβγ++=-,cot cot αβ 17cot cot cot cot 5βγγα++=-,则()tan αβγ++= .4.已知关于x 的方程()()lg 2lg 1=+kx x 仅有一个实数解,则实数k 的取值范围是 .5.如图,∆AEF 是边长为x 的正方形ABCD 的内接三角形,已知90∠=︒AEF ,,,==>AE a EF b a b ,则=x .6.方程1233213+⋅-+=m n n m 的非负整数解(),=m n .7.一个口袋里有5个大小一样的小球,其中两个是红色的,两个是白色的,一个是黑色的,依次从中摸出5个小球,相邻两个小球的颜色均不相同的概率是 .(用数字作答)8.数列{}n a 定义如下:()1221211,2,,1,2,22+++===-=++ n n n n na a a a a n n n .若201122012>+m a ,则正整数m 的最小值为 .E1C D 1A二、解答题9.(本题满分14分)如图,在平行四边形ABCD 中,AB x =,1BC =,对角线AC 与BD 的夹角45BOC ∠=︒,记直线AB 与CD 的距离为()h x .求()h x 的表达式,并写出x 的取值范围.10.(本题满分14分)给定实数1a >,求函数(sin )(4sin )()1sin a x x f x x++=+的最小值.11.(本题满分16分)正实数,,x y z 满足94xyz xy yz zx +++=,求证: (1)43xy yz zx ++≥; (2)2x y z ++≥.ODCBA12.(本题满分16分)给定整数(3)n ≥,记()f n 为集合{}1,2,,21n - 的满足如下两个条件的子集A 的元素个数的最小值:(a ) 1,21n A A ∈-∈;(b ) A 中的元素(除1外)均为A 中的另两个(可以相同)元素的和. (1)求(3)f 的值; (2)求证:(100)108f ≤.参考答案:1 2、92 3、11 4、(){},04-∞ 526、()()3,0,2,27、258、40259.解 由平行四边形对角线平方和等于四条边的平方和得2222211()(1)22OB OC AB BC x +=+=+. ①…………………(2分)在△OBC 中,由余弦定理2222cos BC OB OC OB OC BOC =+-⋅∠,所以 221OB OC OC +⋅=, ②由①,②得 2OB OC ⋅=. ③…………………(5分)所以 144s i n 2A B C D O B C S S O B O C B O C ∆==⋅⋅∠OC =⋅212x -=, 故()AB h x ⋅212x -=,所以 21()2x h x x-=. …………………(10分)由③可得,210x ->,故1x >.因为222OB OC OB OC +≥⋅,结合②,③可得221(1)22x +≥,解得(结合1x >) 11x <+.综上所述,21()2x h x x-=,11x <≤. …………………(14分)10.解 (sin )(4sin )3(1)()1sin 21sin 1sin a x x a f x x a x x++-==++++++.当713a <≤时,02≤,此时3(1)()1sin 221sin a f x x a a x-=++++≥++,且当(]()sin 11,1x =∈-时不等式等号成立,故min ()2f x a =+. …………………(6分)当73a >2>,此时“耐克”函数3(1)a y t t -=+在(0,内是递减,故此时min 3(1)5(1)()(1)2222a a f x f a -+==+++=.综上所述,min 72,1;3()5(1)7,.23a a f x a a ⎧+<≤⎪⎪=⎨+⎪>⎪⎩ …………………(14分)11.证 (1)记t =33223xy yz zx xyz ++⎛⎫=≤ ⎪⎝⎭.…………………(4分) 于是 324993xyz xy yz zx t t =+++≤+,所以 ()()2323320t t t -++≥,而23320t t ++>,所以320t -≥,即23t ≥,从而 43x y y zz x ++≥. …………………(10分) (2)又因为2()3()x y z xy yz zx ++≥++,所以 2()4x y z ++≥,故 2x y z ++≥. …………………(16分)12.解 (1)设集合{}31,2,,21A ⊆- ,且A 满足(a ),(b ).则1,7A A ∈∈.由于{}()1,,72,3,,6m m = 不满足(b ),故3A >.又 {}{}{}{}{}{}{}1,2,3,7,1,2,4,7,1,2,5,7,1,2,6,7,1,3,4,7,1,3,5,7,1,3,6,7, {}{}{}1,4,5,7,1,4,6,7,1,5,6,7都不满足 (b ),故4A >. 而集合{}1,2,4,6,7满足(a ),(b ),所以(3)5f =.…………………(6分) (2)首先证明(1)()2,3,4,f n f n n +≤+= . ①事实上,若{}1,2,,21n A ⊆- ,满足(a ),(b ),且A 的元素个数为()f n . 令{}1122,21n n B A ++=-- ,由于12221n n +->-,故()2B f n =+. 又111222(21),211(22)n n n n +++-=--=+-,所以,集合{}11,2,,21n B +⊆- ,且B 满足(a ),(b ).从而(1)()2f n B f n +≤=+. …………………(10分)其次证明:(2)()1,3,4,f n f n n n ≤++= . ②事实上,设{}1,2,,21n A ⊆- 满足(a ),(b ),且A 的元素个数为()f n .令{}222(21),2(21),,2(21),21n n n n n B A =---- ,由于 222(21)2(21)2(21)21n n n n n -<-<<-<- , 所以{}21,2,,21n B ⊆- ,且()1B f n n =++.而12(21)2(21)2(21),0,1,,1k n k n k n k n +-=-+-=- ,2212(21)(21)n n n n -=-+-,从而B 满足(a ),(b ),于是(2)()1f n B f n n ≤=++. …………………(14分) 由①,②得 (21)()3f n f n n +≤++. ③ 反复利用②,③可得≤++≤+++f f f(100)(50)501(25)25151≤+++≤+++f f(12)12377(6)6192≤+++=.…………………(16分)(3)3199108f。

2012年中国数学奥林匹克(CMO)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题(含答案word)

2012年中国数学奥林匹克(CMO)试题第一天1. 如图1,在圆内接ABC V 中,A ∠为最大角,不含点A 的弧»BC上两点D 、E 分别为弧¼ABC 、¼ACB 的中点。

记过点A 、B 且与AC 相切的圆为1O e ,过点A 、E 且与AD相切的圆为2O e ,1O e 与2O e 交于点A 、P 。

证明:AP 平分ABC ∠。

2. 给定质数p 。

设()ij A a =是一个p p ⨯的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤=L 、。

允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵”。

求好矩阵A 的个数。

3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a L :(1) 对每个正整数i ,有ii a M >;(2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈-L 使得1122m m n b a b a b a =+++L .4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。

对满足121n x x x +++=L 的非负实数12,,,n x x x L ,求1min{(),()}i j i j nF f x f x ≤<≤=∑的最大值。

5.设n 为无平方因子的正偶数,k 为整数,p 为质数,满足|p p <2,|()n p n k +.证明:n 可以表示为ab bc ca ++,其中,,,a b c 为互不相同的正整数。

6.求满足下面条件的最小正整数k :对集合{1,2,,2012}S =L 的任意一个k 元子集A ,都存在S 中的三个互不相同的元素a 、b 、c ,使得a b +、b c +、c a +均在集合A 中。

2012全国小学生奥赛决赛试卷及答案详解(国奥赛)

2012全国小学生奥赛决赛试卷及答案详解(国奥赛)

三角形DBE
三角形DCE
三角形ACE 三角形ABCLeabharlann 三角形CBE 三角形ABD
三角形ACD
何 =12 +12 + 6 +12
= 42

教 4. ab + bc + ca = abc ,用位值原理展开,11a+11b+11c=100a+10b+c,化简得 b+10c=89a,其中 a
数 只能是 1(因为等式左边最大就是 99),所以 b+10c=89,b=9,c=8,所以 abc = 198
伟 何 练 教 数 奥
2012 年小学数学竞赛决赛参考答案
1.
原式 = (5 5 − 3 1 − 4 × 15) × 2 8 8 15 4
3 = ×2
2 =3
2.
原式 =(82 + 83)(- 1 + 2 + 1) 90 90 9 9 2
11 5 = - =1
66
3.图中共有 8 个三角形,
伟 S S S S S S S S + + + + + 三角形ABE
点相距 4 份路程,所以全程=100÷4 ×8=200 公里。 12.情况 1:偶+偶+偶:4×3 ×2÷6=4 种 情况 2:奇+奇+偶:4×4×3÷2=24 种
所以一共有 4+24=28 种。
伟 何 练 教 数 奥
9.x,y 是正整数,满足条件 2012 > x > 2011 ,那么,x+y 的最小值=_______ 2013 y 2012
10.一只蚂蚁从一把长 10 厘米的直尺左端开始在直尺上面爬行,速度为每秒 1 厘米,当蚂蚁爬到 端点时就用 1 秒钟的时间转身,继续向另一端爬行。那么,蚂蚁开始爬行 1400 秒后,它在直尺 上的位置是_______。(例如蚂蚁在直尺上的位置是 4)

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

中国数学奥林匹克(CMO)历届试题及解答(1986-2005)

过P2 作 平 行 于BC 的 直 线
EP2 P3 . ABC .证毕.
DP2 P3 ,也就不大于S
5.能否把1,1,2,2,. . . ,1986,1986这些数排成一行, 使得两个1之间夹着1个数,两个2之间夹着2个数,. . . , 两 个1986之间夹着1986个数.请证明你的结论. 解:不能.假设可以做出这样的排列,将已排好的数按顺序编号为1,2,. . . ,3972. 当n为奇数时,两个n的编号奇偶性相同;当n为偶数时,两个n的编号奇偶性不同. 而1到1986之间有993个 偶数,所以一共有2k + 993个编号为偶数的数.(k ∈ N∗ ) 但是1到3972之间有1986个偶数,k = 496.5.矛 盾.所以不能按要求排成这样一行. √ 6.用任意的方式,给平面上的每一点染上黑色或白色. 求证:一定存在一个边长为1或 3的正三角形,它的
3
第二届中国数学奥林匹克(1987年)
北京 北京大学
1.设n为自然数,求证方程z n+1 − z n − 1 = 0有模为1的复根的充分必要条件是 n + 2可被6整除. 证明:当6|n + 2时,令z = ei 3 = ∴ z n+1 − z n − 1 = e ∴z
n+1 n −i π 3
π
1 2
2 2 a1 x2 1 + a2 x2 + · · · + an xn ; 2 2 a1 x2 1 + a2 x2 + · · · + an xn
0(i = 1, 2, . . . , n),则显然有a1 x1 + a2 x2 + · · · + an xn 0, ai −a1 > 0(i = 2, 3, . . . , n). ∴

2012中国数学奥林匹克

2012中国数学奥林匹克
21 第 3 0 2年 期
2 l
1 .. , . . . . . . , . . . 一
2 1 中 国 数 学 奥 林 匹 克 0 2
中 图分 类 号 : 4 47 G 2 .9 文 献 标识 码 :A 文 章 编 号 :10 6 1 (0 2 0 0 2 —0 05— 4 6 2 1 )3— 0 1 4
p 成立. )
i 、

由于表 中各 数 互不 相 同 , 则 。 , , , …
互不相 同 , Y , , 也 互 不 相 同. 妨 设 Y ,:… Y 不
1 <… < , <2 这是 因为交换 与 的值 f
相 当于交换 第 i 和第 行 , 行 既不 改变 题设也

第 一 天
1 如 图 1 在 圆内接△ A C中 , A为最 . , B
, 、
m 以及 b,2… , 。b, b ∈ {一11 , 得 , }使
n=b 1+b 2+ … +b 1 2

口m .
( 陈永 高 供 题 )
大角 , 不含 点 A的弧B 上 两点 D、 C E分 别为弧

在△ A E与△ B E中, P P 分别运用正弦定 理并 结合 A B 得 E: E, 墨一 一 一 丝 丝
sn i APE —AE —BE —sn i

口 ( =1 2 … , =12, , ) 每 个 子 表 i , , P; , … n,

BPE ‘
格 中的 k 数构成 块. 个
( 朱华伟 供题 )
或 同时减 去 1若 可 以 通 过有 限 多 次 上 述操 . 作将 A中元 素全变 为 0 则 称 是 一个 “ , 好矩 阵 ” 求好 矩阵 A的个数. ( 振 华 . 瞿 供题 ) 3 证 明 : 于任 意 实数 M > 总 存 在 满 . 对 2, 足下 列条 件 的严 格递 增 的正整数 数列 口 , 口 ,

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19. 6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4). …………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为. …………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线. …………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD. 故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2. …………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m. …………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025. …………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案

2012年全国初中数学竞赛试题(正题)参考答案一、选择题1(甲).C解:由实数a,b,c在数轴上的位置可知,且,所以.1(乙).B解:.2(甲).D解:由题设知,,,所以.解方程组得所以另一个交点的坐标为(3,2).注:利用正比例函数与反比例函数的图象及其对称性,可知两个交点关于原点对称,因此另一个交点的坐标为(3,2).2(乙).B解:由题设x2+y2≤2x+2y,得0≤≤2.因为均为整数,所以有解得以上共计9对.3(甲).D解:由题设知,,所以这四个数据的平均数为,中位数为,于是.3(乙).B解:如图,以CD为边作等边△CDE,连接AE.(第3(乙)题)由于AC = BC,CD = CE,∠BCD=∠BCA+∠ACD=∠DCE+∠ACD =∠ACE,所以△BCD≌△ACE,BD = AE.又因为,所以.在Rt△中,于是DE=,所以CD = DE = 4.4(甲).D解:设小倩所有的钱数为x元、小玲所有的钱数为y元,均为非负整数. 由题设可得消去x得(2y-7)n = y+4,2n =.因为为正整数,所以2y-7的值分别为1,3,5,15,所以y的值只能为4,5,6,11.从而n的值分别为8,3,2,1;x的值分别为14,7,6,7.4(乙).C解:由一元二次方程根与系数关系知,两根的乘积为,故方程的根为一正一负.由二次函数的图象知,当时,,所以,即. 由于都是正整数,所以,1≤q≤5;或,1≤q≤2,此时都有. 于是共有7组符合题意.5(甲).D解:掷两次骰子,其朝上的面上的两个数字构成的有序数对共有36个,其和除以4的余数分别是0,1,2,3的有序数对有9个,8个,9个,10个,所以,因此最大.5(乙).C解:因为,所以每次操作前和操作后,黑板上的每个数加1后的乘积不变.设经过99次操作后黑板上剩下的数为,则,解得,.二、填空题6(甲).7<x≤19解:前四次操作的结果分别为3x-2,3(3x-2)-2 = 9x-8,3(9x-8)-2 = 27x-26,3(27x-26)-2 = 81x-80.由已知得27x-26≤487,81x-80>487.解得7<x≤19.容易验证,当7<x≤19时,≤487 ≤487,故x的取值范围是7<x≤19. 6(乙).7解:由已知可得.7(甲).8解:连接DF,记正方形的边长为2. 由题设易知△∽△,所以,由此得,所以.(第7(甲)题)在Rt△ABF中,因为,所以,于是.由题设可知△ADE≌△BAF,所以,.于是,,.又,所以.因为,所以.7(乙).解:如图,设的中点为,连接,则.因为,所以,.(第7(乙)题)所以.8(甲).解:根据题意,关于x的方程有=k2-4≥0,由此得 (k-3)2≤0.又(k-3)2≥0,所以(k-3)2=0,从而k=3. 此时方程为x2+3x+=0,解得x1=x2=.故==.8(乙).1610解:因为==.当被5除余数是1或4时,或能被5整除,则能被5整除;当被5除余数是2或3时,能被5整除,则能被5整除;当被5除余数是0时,不能被5整除.所以符合题设要求的所有的个数为.9(甲).8解:设平局数为,胜(负)局数为,由题设知,由此得0≤b≤43.又,所以. 于是0≤≤43,87≤≤130,由此得,或.当时,;当时,,,不合题设.故.9(乙).≤1解:由题设得所以,即.整理得,由二次函数的图象及其性质,得.又因为≤1,所以≤1.10(甲).解:如图,连接AC,BD,OD.(第10(甲)题)由AB是⊙O的直径知∠BCA =∠BDA = 90°.依题设∠BFC = 90°,四边形ABCD是⊙O的内接四边形,所以∠BCF =∠BAD,所以Rt△BCF∽Rt△BAD,因此.因为OD是⊙O的半径,AD = CD,所以OD垂直平分AC,OD∥BC,于是. 因此.由△∽△,知.因为,所以,BA=AD,故.10(乙). 12解:由已知有,且为偶数,所以同为偶数,于是是4的倍数.设,则1≤≤25.(Ⅰ)若,可得,与b是正整数矛盾.(Ⅱ)若至少有两个不同的素因数,则至少有两个正整数对满足;若恰是一个素数的幂,且这个幂指数不小于3,则至少有两个正整数对满足.(Ⅲ)若是素数,或恰是一个素数的幂,且这个幂指数为2,则有唯一的正整数对满足.因为有唯一正整数对,所以m的可能值为2,3,4,5,7,9,11,13,17,19,23,25,共有12个.三、解答题11(甲).解:因为当时,恒有,所以,即,所以.…………(5分)当时,≤;当时,≤,即≤,且≤,解得≤.…………(10分)设方程的两个实数根分别为,由一元二次方程根与系数的关系得.因为,所以,解得,或.因此.…………(20分)11(乙).解:因为sin∠ABC=,,所以AB = 10.由勾股定理,得BO=.(第11(乙)题)易知△ABO≌△ACO,因此CO = BO = 6.于是A(0,-8),B(6,0),C(-6,0).设点D的坐标为(m,n),由S△COE = S△ADE,得S△CDB = S△AOB. 所以,,解得n=-4.因此D为AB的中点,点D的坐标为(3,-4). …………(10分)因此CD,AO分别为AB,BC的两条中线,点E为△A BC的重心,所以点E的坐标为.设经过B,C,E三点的抛物线对应的二次函数的解析式为y=a(x-6)(x+6). 将点E的坐标代入,解得a =.故经过B,C,E三点的抛物线对应的二次函数的解析式为. …………(20分)12(甲).证明:连接BD,因为为的直径,所以.又因为,所以△CBE是等腰三角形.(第12(甲)题)…………(5分)设与交于点,连接OM,则.又因为,所以.…………(15分)又因为分别是等腰△,等腰△的顶角,所以△BOC∽△.…………(20分)12(乙).证明:(1)如图,根据三角形内心的性质和同弧上圆周角的性质知(第12(乙)题)所以CI = CD.同理,CI = CB.故点C是△IBD的外心.连接OA,OC,因为I是AC的中点,且OA = OC,所以OI⊥AC,即OI⊥CI.故OI是△IBD外接圆的切线. …………(10分)(2)如图,过点I作IE⊥AD于点E,设OC与BD交于点F.由,知OC⊥BD.因为∠CBF =∠IAE,BC = CI = AI,所以Rt△BCF≌Rt△AIE,所以BF = AE.又因为I是△ABD的内心,所以AB+AD-BD = 2AE = BD. 故AB+AD = 2BD.…………(20分)13(甲).解:设a-b = m(m是素数),ab = n2(n是正整数).因为(a+b)2-4ab = (a-b)2,所以 (2a-m)2-4n2 = m2,(2a-m+2n)(2a-m-2n) = m2. …………(5分)因为2a-m+2n与2a-m-2n都是正整数,且2a-m+2n>2a-m-2n(m为素数),所以2a-m+2n m 2,2a-m-2n1.解得a,.于是= a-m. …………(10分)又a≥2012,即≥2012.又因为m是素数,解得m≥89. 此时,a≥=2025.当时,,,.因此,a的最小值为2025. …………(20分)13(乙).解:假设凸边形中有个内角等于,则不等于的内角有个.(1)若,由,得,正十二边形的12个内角都等于;…………(5分)(2)若,且≥13,由,可得,即≤11.当时,存在凸边形,其中的11个内角等于,其余个内角都等于.…………(10分)(3)若,且≤≤.当时,设另一个角等于.存在凸边形,其中的个内角等于,另一个内角.由≤可得;由≥8可得,且.…………(15分)(4)若,且3≤≤7,由(3)可知≤.当时,存在凸边形,其中个内角等于,另两个内角都等于.综上,当时,的最大值为12;当≥13时,的最大值为11;当≤≤时,的最大值为;当3≤≤7时,的最大值为.…………(20分)14(甲).解:由于都是正整数,且,所以≥1,≥2,…,≥2012.于是≤.…………(10分)当时,令,则.…………(15分)当时,其中≤≤,令,则.综上,满足条件的所有正整数n为.…………(20分)14(乙).解:当时,把分成如下两个数组:和.在数组中,由于,所以其中不存在数,使得.在数组中,由于,所以其中不存在数,使得.所以,≥.…………(10分)下面证明当时,满足题设条件.不妨设2在第一组,若也在第一组,则结论已经成立.故不妨设在第二组. 同理可设在第一组,在第二组.此时考虑数8.如果8在第一组,我们取,此时;如果8在第二组,我们取,此时.综上,满足题设条件.所以,的最小值为.。

2012年国际数学奥林匹克竞赛(IMO)试题

2012年国际数学奥林匹克竞赛(IMO)试题

Day:12012年7月10日,星期二1. 设J 为三角形ABC 顶点A 所对旁切圆的圆心. 该旁切圆与边BC 相切于点M ,与直线AB 和AC 分别相切于点K 和L . 直线LM 和BJ 相交于点F ,直线KM 与CJ 相交于点G . 设S 是直线AF 和BC 的交点,T 是直线AG 和BC 的交点.证明:M 是线段ST 的中点.(三角形ABC 的顶点A 所对的旁切圆是指与边BC 相切,并且与边,AB AC 的延长线相切的圆.)2. 设整数3n ≥,正实数23n a ,a ,,a 满足231n a a a = .证明:()()()2323111nn n +a +a +a >n . 3.“欺诈猜数游戏”在两个玩家甲和乙之间进行, 游戏依赖于两个甲和乙都知道的正整数k 和n .游戏开始时甲先选定两个整数x 和N , 1x N ≤≤. 甲如实告诉乙N 的值,但对x 守口如瓶. 乙现在试图通过如下方式的提问来获得关于x 的信息: 每次提问,乙任选一个由若干正整数组成的集合S (可以重复使用之前提问中使用过的集合),问甲“x 是否属于S ?”. 乙可以提任意数量的问题. 在乙每次提问之后,甲必须对乙的提问立刻回答“是”或“否”,甲可以说谎话,并且说谎的次数没有限制,唯一的限制是甲在任意连续1k +次回答中至少有一次回答是真话. 在乙问完所有想问的问题之后,乙必须指出一个至多包含n 个正整数的集合X ,若x 属于X ,则乙获胜;否则甲获胜. 证明:(1)若2k n ≥,则乙可保证获胜;(2)对所有充分大的整数k ,存在整数 1.99k n ≥,使得乙无法保证获胜.Language: Chinese (Simplified ) 考试时间:4小时30分 每题7分Day:22012年7月11日,星期三4. 求所有的函数f ∶ → ,使得对所有满足0a+b+c=的整数a,b,c ,都有()()()222f a +f b +f c =()()()()()()222f a f b +f b f c +f c f a . (这里 表示整数集.)5. 已知三角形ABC 中,90BCA ∠=°,D 是过顶点C 的高的垂足. 设X 是线段CD 内部的一点. K 是线段AX 上一点,使得=BK BC .L 是线段BX 上一点,使得=AL AC . 设M 是AL 与BK 的交点. 证明: MK ML =.6. 求所有的正整数n , 使得存在非负整数12,,,n a a a ,满足1212111121222333n n a a a a a a n +++=+++= .Language: Chinese (Simplified ) 考试时间:4小时30分 每题7分。

中国数学奥林匹克竞赛CMO模拟题13套

中国数学奥林匹克竞赛CMO模拟题13套

2012-2013年中国数学奥林匹克年中国数学奥林匹克(CMO)(CMO)(CMO)模拟试题十三套模拟试题十三套西西汇编(西西汇编(QQ QQ 群:群:148443562148443562148443562))(2012-2013CMO -模拟测试1-1)CH 是△ABC 中边AB 的高,且H 位于A 、B 之间。

P 和Q 分别是△AHC 和△BHC 的内心。

证明:四边形ABQP 是圆内接四边形当且仅当AC =BC 或∠ACB =90°。

(2012-2013CMO -模拟测试1-2)333,,,3,a b c R a b b c c a ∈++=设且求()()4444222222(,,)1000f a b c a b c a b b c a c =+++++的最小值。

(2013CMO-模拟测试1-3)设a,b是整数,k是自然数。

如果方程a k x-b k y=a-b有整数解x,y满足条件|x-y|=1,则|a-b|是一个整数的k 次幂。

(2013CMO-模拟测试1-4)梯形ABCD中AB∥CD,CB延长线上点E,线段AD上点F满足∠DAE=∠CBF,令I表示CD和EF的交点,J表示AB和EF的交点,K是线段EF的中点,且假设K不在直线AB上。

证明:I、A、B、K四点共圆当且仅当K、C、D、J四点共圆。

(2013CMO-模拟测试1-5)令S⊂R是一个实数集。

称两个S到S的函数f,g为S上的一个“好”对,如果它们满足:(1)f和g都是严格递增的;(2)对任意的x∈S,都有f(g(g(x)))<g(f(x))。

在S上是否存在“好”对?(a)S为正整数集;(b)S={a-1b:a,b∈N}。

(2013CMO-模拟测试1-6)令k和l是两个正整数。

M={x1,x2,…,x k+l}是一个由区间[0,1]上k+l个不同的数组成的集合,记集合A中元素和为S(A)。

一个k元子集A⊂M称为“好的”,如果|1kS(A)-1lS(M\A)|≤k+l2kl。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中国数学奥林匹克(CMO)试题
第一天
1. 如图1,在圆内接ABC 中,A ∠为最大角,不含点A 的弧 BC
上两点D 、E 分别为弧 ABC 、 ACB 的中点。

记过点A 、B 且与AC 相切的圆为1O ,过点A 、E 且与AD
相切的圆为2O ,1O 与2O 交于点A 、P 。

证明:AP 平分ABC ∠。

2. 给定质数p 。

设()ij A a =是一个p p ⨯的矩阵,满足2{|1}{1,2,,}ij a i j p p ≤≤= 、。

允许对一个矩阵作如下操作:选取一行或一列,将该行或该列的每个数同时加上1或同时减去1.若可以通过有限多次上述操作将A 中元素全变为0,则称A 是一个“好矩阵”。

求好矩阵A 的个数。

3.证明:对于任意实数2M >,总存在满足下列条件的严格递增的正整数数列12,,a a : (1) 对每个正整数i ,有i
i a M >;
(2) 当且仅当整数0n ≠时,存在正整数m 以及12,,,{1,1}m b b b ∈- 使得
1122m m n b a b a b a =+++ .
第二天
4.设()()()(f x x a x b a b =++、是给定的正实数),2n ≥为给定的正整数。

对满足
121n x x x +++= 的非负实数12,,,n x x x ,求1min{(),()}i j i j n
F f x f x ≤<≤=

的最大值。

参考答案
第一天
1. 如图2,联结EP 、BE 、BP 、CD 。

分别记BAC ∠、ABC ∠、ACB ∠为A ∠、B ∠、C ∠,X 、Y 分别为CA 延长线、DA 延长线上的任意一点。

由已知条件易得,AD DC AE EB ==。

结合A 、B 、D 、
12p x x x <<< ,这是因为交换i x 与j x 的值相当于交换第i 行和第j 行,既不改变题设也
不改变结论。

同样,不妨设12p y y y <<< 。

于是,假设数表的每一行从左到右是递增的,每一列从上到下也是递增的。

由上面的讨论知11121,2a a ==或212a =,不妨设122a =。

否则,将整个数表关于主对
角线作对称,不改变题设也不改变结论。

下面用反证法证明:1,2,,p 全在第一行中。

假设1,2,,(2)k k p ≤< 在第一行中,1k +不在第一行中。

于,211a k =+。

将连续的k 个整数称为一个“块”,只需证明:表格的第一行恰由若干个块构成,即前k 个数为一个块,之后的k 个数又是一个块,等等。

如若不然,设前n 组k 个数均为块,但之后的k 个数不成为块(或之后不足k 个数),由此知对(1)1(1)21,2,,,,,,j k j k jk j n y y y -+-+= 构成块。

从而,表格的前nk 列共可分成pn 个
1k ⨯的子表格,(1)1,(1)2,,,,(1,2,,;1,2,,)i j k i j k i jk a a a i p j n -+-+== ,每个子表格中的k
个数构成块。

现假设2,11,1212111nk nk a a x x a a k ++-=-=-=,故2,1nk a a k +=+。

从而a b +必定在前
nk 列中。

这样a b +含在某个前面所说的1k ⨯的块中,但a 、a k +都不在该块中,矛盾。

于是,第一行恰由若干个块构成。

特别地,有|k p 。

但1k p <<,而p 是质数,这导致矛盾。

于是,数表的第一行恰为1,2,,p ,而第k 行必定为(1)1,(1)2,,.k p k p kp -+-+ 因此,好矩阵A 在交换行,交换列,以及关于主对角线作对称下总可转化为唯一的形式。

所以,好矩阵的个数等于22(!).p
3. 递推地构造正整数序列{}n a 如下:取整数21a M >,以及211a a =+。

对2k ≥,取整
数2221
22121
1
,k k k
k i k i i i a M
a a k a ---==>+=+∑∑。

下面证明这一序列满足条件。

由定义知121
m m m a a a a -->+++ 对1m >均成立,且对任意正整数k 有2221k k k a a M ->>。

于是,这一序列是严格递增的正整数序列且满足条件(1)。

对任意正整数n 有21
21
n i n
i n a a
-==-
+∑及21
21
n i n i n a a
-=-=
-∑。

最后只需说明:0不能表示成1122
m m b a b a b a +++ 的形式,其中,12,,,{1,1}m b b b ∈- 。

当1m =时,110b a >。

当1m >时,1122121||()0m m m m m b a b a b a a a a a --+++≥-+++> 。

这样便验证了所构造的序列满足所有条件。

第二天
4. 解法1 由
对2311n x x x s x ++++=- 用归纳假设有
1111
()(1)()()2s x F nf x n n f g x n
-≤+-=
其中()g x 为关于x 的二次函数,其二次项系数为2
1
12n n -+,一次项系数为
12()2n s
a b a b n n
-+-
++。

因此,对称轴为
2212()2[2(1)2(1)()](1)(21)
12(1)2n s
a b a b
s n n n s n n a b n s n n n n n
-++--≤⇔--+++≤+--++
6. 设a b c <<,令,,.x a b y a c z b c =+=+=+ 则,x y z x y z <<+>,且x y z ++为偶数.① 反之,若存在x 、y 、z A ∈满足性质①,则取,,,222
x y z x z y y z x
a b c +-+-+-=
==有a 、b 、,12012c Z a b c ∈≤<<≤,且,,.x a b y a c z b c =+=+=+
于是,题述条件等价于对任意的k 元子集A ,均有x 、y 、z A ∈,满足性质①。

若{1,2,3,5,7,,2011}A = ,则1007A =,且集合A 中不含有满足性质①的三个元素。

因此1008.k ≥
下面证明:任意一个1008元子集均含有三个元素满足性质①。

接下来证明一个更一般的结论:
{1,2,4,6,,2,21,22}A n n n =++ ,此时,4、6、8A ∈满足性质①。

综上,所求最小的k 为1008.。

相关文档
最新文档