第12章集成电路的测试与封装教材

合集下载

(完整)半导体集成电路芯片封装技术复习资料_

(完整)半导体集成电路芯片封装技术复习资料_

半导体集成电路封装技术复习大纲第一章集成电路芯片封装技术1.(P1)封装概念:狭义:集成电路芯片封装是利用(膜技术)及(微细加工技术),将芯片及其他要素在框架或基板上布置、粘贴固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定,构成整体结构的工艺.广义:将封装体与基板连接固定,装配成完整的系统或电子设备,并确保整个系统综合性能的工程。

2。

集成电路封装的目的:在于保护芯片不受或者少受外界环境的影响,并为之提供一个良好的工作条件,以使集成电路具有稳定、正常的功能.3.芯片封装所实现的功能:①传递电能,②传递电路信号,③提供散热途径,④结构保护与支持.4.在选择具体的封装形式时主要考虑四种主要设计参数:性能,尺寸,重量,可靠性和成本目标。

5.封装工程的技术的技术层次?第一层次,又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连线与封装保护的工艺,使之成为易于取放输送,并可与下一层次的组装进行连接的模块元件.第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电子卡的工艺。

第三层次,将数个第二层次完成的封装组成的电路卡组合成在一个主电路版上使之成为一个部件或子系统的工艺。

第四层次,将数个子系统组装成为一个完整电子厂品的工艺过程。

6.封装的分类?按照封装中组合集成电路芯片的数目,芯片封装可分为:单芯片封装与多芯片封装两大类,按照密封的材料区分,可分为高分子材料和陶瓷为主的种类,按照器件与电路板互连方式,封装可区分为引脚插入型和表面贴装型两大类。

依据引脚分布形态区分,封装元器件有单边引脚,双边引脚,四边引脚,底部引脚四种。

常见的单边引脚有单列式封装与交叉引脚式封装,双边引脚元器件有双列式封装小型化封装,四边引脚有四边扁平封装,底部引脚有金属罐式与点阵列式封装。

7。

芯片封装所使用的材料有金属陶瓷玻璃高分子8.集成电路的发展主要表现在以下几个方面?1芯片尺寸变得越来越大2工作频率越来越高3发热量日趋增大4引脚越来越多对封装的要求:1小型化2适应高发热3集成度提高,同时适应大芯片要求4高密度化5适应多引脚6适应高温环境7适应高可靠性9。

集成电路芯片封装技术培训课程(ppt-35页)全

集成电路芯片封装技术培训课程(ppt-35页)全

微电子技术发展对封装的要求
四、高密度化和高引脚数
高密度和高I/O数造成单边引脚间距缩短、封装难
度加大:焊接时产生短路、引脚稳定性差
解决途径:
采用BGA技术和TCP(载带)技术
成本高、难以进行外观检查等。
微电子技术发展对封装的要求
五、适应恶劣环境
密封材料分解造成IC芯片键合结合处开裂、断路
解决办法:寻找密封替代材料
Ceramic
Ceramic or
Thin Film on Ceramic
Thin Film on PWB
PWB-D
•Integration to
BEOL
•Integration in
Package level
PWB-Microation at
System level
1、电源分配:传递电能-配给合理、减少电压损耗
2、信号分配:减少信号延迟和串扰、缩短传递线路
3、提供散热途径:散热材料与散热方式选择
4、机械支撑:结构保护与支持
5、环境保护:抵抗外界恶劣环境(例:军工产品)
确定封装要求的影响因素
成本
外形与结构
产品可靠性
性能
类比:人体器官的构成与实现
微电子封装技术的技术层次
芯片,但两类芯片的可靠性和成本不同。
封装材料
芯片封装所采用的材料主要包括金属、陶瓷、
高分子聚合物材料等。
问题:如何进行材料选择?
依据材料的电热性质、热-机械可靠性、技术和
工艺成熟度、材料成本和供应等因素。
表1.2-表1.4
封装材料性能参数
介电系数:表征材料绝缘程度的比例常数,相对值,通常介
电系数大于1的材料通常认为是绝缘材料。

集成电路封装与测试

集成电路封装与测试

集成电路芯片封装:是指利用膜技术及微细加工技术,将芯片及其他要素在框架或基板上布置,粘贴,固定及连接,引出接线端子并通过可塑性绝缘介质灌封固定构成整体立体结构的工艺封装工程:将封装体与基板连接固定装配成完整的系统或电子设备,并确保整个的综合性能的工程(合起来就是广义的封装概念)芯片封装实现的功能:①传递电能,主要是指电源电压的分配和导通②传递电路信号,主要是将电信号的延迟尽可能的减小,在布线时应尽可能使信号线与芯片的互联路径及通过封装的I/O接口引出的路径最短③提供散热途径,主要是指各种芯片封装都要考虑元器件部件长期工作时,如何将聚集的热量散出的问题④结构保护与支持,主要是指芯片封装可为芯片和其他连接部件提供牢固可靠的机械支撑封装工程的技术层次①第一层次,该层次又称为芯片层次的封装,是指把集成电路芯片与封装基板或引脚架之间的粘贴固定电路连线与封装保护的工艺②第二层次,将数个第一层次完成的封装与其他电子元器件组成一个电路卡的工艺③第三层次,将数个第二层次完成的封装,组装成的电路卡组合在一个主电路板上,使之成为一个部件或子系统的工艺④第四层次,将数个子系统组装成一个完整电子产品的工艺过程芯片封装的分类:按照封装中组合集成电路芯片的数目,可以分为单芯片封装与多芯片封装按照密封的材料区分,可分为高分子材料和陶瓷为主的种类按照器件与电路板互连方式,可分为引脚插入型和表面贴装型按照引脚分布形态,可分为单边引脚,双边引脚,四边引脚与底部引脚零级层次,在芯片上的集成电路元件间的连线工艺SCP,单芯片封装MCP,多芯片封装DIP,双列式封装BGA,球栅阵列式封装SIP,单列式封装ZIP,交叉引脚式封装QFP,四边扁平封装MCP,底部引脚有金属罐式PGA,点阵列式封装芯片封装技术的基本工艺流程:硅片减薄,硅片切割,芯片贴装,芯片互连,成型技术,去飞边,毛刺,切筋成型,上焊锡,打码芯片减薄:目前硅片的背面减薄技术主要有磨削,研磨,干式抛光,化学机械平坦工艺,电化学腐蚀,湿法腐蚀,等离子增强化学腐蚀,常压等离子腐蚀等芯片切割:刀片切割,激光切割(激光半切割,激光全切割)激光开槽加工是一种常见的激光半切割方式芯片贴装也称为芯片粘贴,是将IC芯片固定于封装基板或引脚架芯片的承载座上的工艺过程。

集成电路封装与测试(一)

集成电路封装与测试(一)

三人获得了1956年 诺贝尔物理学奖
William B. Shockley
John Bardeen
Walter H. Brattain
1958年9月10日美国的基尔比发明了集成电 路集成电路是美国物理学家基尔比(Jack Kilby)和诺伊斯两人各自独立发明的,都拥有 发明的专利权。 1958年9月10日,基尔比的第一个安置在半 导体锗片上的电路取得了成 功,被称为“相 移振荡器”。 1957年,诺伊斯(Robort Noyce)成立了仙童 半导体公司,成为硅谷的第一家专门研制硅 晶体管的公司。 1959年2月,基尔比申请了专利。不久,得 克萨斯仪器公司宣布,他们已生产出一种比 火柴头还小的半导体固体 电路。诺伊斯虽然 此前已制造出半导体硅片集成电路,但直到 1959年7月才申请专利,比基尔比晚了半年。 法庭后来裁决,集成电路的发明专利属于基 尔比,而 有关集成电路的内部连接技术专利 权属于诺伊斯。两人都因此成为微电子学的 创始人,获得美国的“巴伦坦奖章”。
双边 引脚
SOP (小型化封装 小型化封装) 小型化封装
单边 引脚
SIP 单列引脚式封装) (单列引脚式封装) ZIP 交叉引脚式封装) (交叉引脚式封装)
四边 引脚
QFP PLCC (四侧引脚扁平封装 (无引线塑料封装载体 ) 四侧引脚扁平封装) 四侧引脚扁平封装
双边 引脚
DIP (双列式封装) 双列式封装)
4.2 技术发展趋势
芯片封装工艺: △ 芯片封装工艺: 从逐个管芯封装到出现了圆片级封装, 从逐个管芯封装到出现了圆片级封装,即先将圆片 划片成小管芯。 划片成小管芯。 再逐个封装成器件,到在圆片上完成封装划片后 再逐个封装成器件, 就成器件。 就成器件。 芯片与封装的互连:从引线键合( △ 芯片与封装的互连:从引线键合(WB)向倒装焊 ) (FC)转变。 )转变。 微电子封装和PCB板之间的互连: 板之间的互连: △ 微电子封装和 板之间的互连 已由通孔插装(PTH)为主转为表面贴装(SMT)为主。 为主转为表面贴装( 已由通孔插装 为主转为表面贴装 )为主。

集成电路封装与测试

集成电路封装与测试

集成电路封装与测试一:封装1.集成电路封装的作用大体来说,集成电路封装有如下四个作用:(l)对集成电路起机械支撑和机械保护作用。

集成电路芯片只有依托不同类型的封装才能应用到各个领域的不同场所,以满足整机装配的需要(2)对集成电路起着传输信号和分配电源的作用。

各种输人输出信号和电源地只有通过封装上的引线才能将芯片和外部电子系统相沟通,集成电路的功能才能得到实现和发挥(3)对集成电路起着热耗散的作用。

集成电路加电工作时,会因功耗而发热,特别是功率集成电路,工作时芯片耗散热量大。

这些热量若不散发掉,就会使芯片温升过高,从而影响电路的性能或造成电路失效,因此,必须通过封装来散发芯片热量,以保证集成电路的性能和可靠性(4)对集成电路起着环境保护的作用。

集成电路芯片若无封装保护,将受污染等环境损伤,性能无法实现。

由于集成电路的应用愈来愈广泛,多数集成电路必须能耐各种恶劣环境的影响,因此,封装对集成电路各种性能的正确实现起着重要的保证作用电路的发展受广泛应用前景的驱动、而集成电路的封装又随着集成电路的发展而发展。

没有集成电路封装的发展,集成电路的发展就很难实现。

由此可见,集成电路封装对集成电路有着极其重要的作用2.集成电路封装的内容归纳起来至少有以下几个方面:(1)根据集成电路的应用要求,通过定的结构设计、工艺设计、电设计、热设计和可靠性设计制造出合格的外壳或引线框架等主要零部件,并不断提高设计、工艺技术,以适应集成电路发展的需要;(2)按照整机要求和组装需要,改进封装结构、确定外形尺寸,使之达到通用化、标准化,并向多层次、窄节距、多引线、小外形和高密度方向发展;(3)保证自硅晶圆的减薄、划片和分片开始,直到芯片粘接、引线键合和封盖等-系列封装所需工艺的正确实施,达到一定的规模化和自动化,并不断研制开发新工艺、新设备和新技术,以提高封装工艺水平和质量,同时努力降低封装成本:(4)随着集成电路封装日益发展的需要,在原有的材料基础上,需进一步提供低介电系数、高导热、高机械强度等性能优越的新型有机、无机和金属材料;(5)完善和改进集成电路封装的检验手段,统一检验方法,并加强工艺监测和质量控制,提供准确的检验测试数据,为提高集成电路封装的性能和可靠性提供有力的保证集成电路封装对器件性能的影响越来越大,某些集成电路的性能受封装技术的限制与受集成电路芯片性能的限制几乎相同,甚至更大。

《集成电路封装与测试》芯片互连

《集成电路封装与测试》芯片互连

引线键合技术
11
引线键合键合接点形状主要有楔形和球形,键合接点有两个,两 键合接点形状可以相同或不同。
球形键合
楔形键合
引线键合工艺参数
12
➢键合温度 WB 工艺对温度有较高的控制要求。过高的温度不仅会产生过多的氧化物影响键合质量,并
且由于热应力应变的影响,图像监测精度和器件的可靠性也随之下降。在实际工艺中,温控系 统都会添加预热区、冷却区,提高控制的稳定性,需要安装传感器监控瞬态温度 ➢键合时间
芯片焊区
芯片互连
I/O引线
半导体失效约有1/4-1/3是由芯片互连所引起,因此芯片互连对器件可靠性意义重大!!!
芯片互连技术概述
5
芯片托盘(DIE PAD)
芯片(CHIP)
L/F 内引脚 (INNER LEAD)
热固性环氧树脂 (EMC)
金线(WIRE)
L/F 外引脚 (OUTER LEAD)
IC 封装成品构造图
芯片互连常见方法
6
常见 方法
引线键合(又称打线键合)技术(WB) 载带自动键合技术(TAB)
倒装芯片键合技术(FCB)
这三种连接技术对于不同的封装形式和集成电路芯片集成度的限制各有不同的应用范围。 其中,FCB又称为C4—可控塌陷芯片互连技术。 打线键合适用引脚数为3-257;载带自动键合的适用引脚数为12-600;倒装芯片键合适用的引 脚数为6-16000。可见C4适合于高密度组装。
02 引线键合技术概述
引线键合技术
8
引线键合工程是引线架上的芯片与引线架之间用金线连接的工程。为了 使芯片能与外界传送及接收信号,就必须在芯片的接触电极与引线架的引脚 之间,一个一个对应地用键合线连接起来,这个过程称为引线键合。也称为 打线键合。

集成电路封装与测试技术

集成电路封装与测试技术

集成电路封装与测试技术随着科技的不断发展,电子与电气工程在现代社会中扮演着至关重要的角色。

其中,集成电路封装与测试技术作为电子与电气工程领域的重要组成部分,对于电子产品的研发和生产起着关键性的作用。

本文将对集成电路封装与测试技术进行深入探讨。

一、集成电路封装技术集成电路封装技术是将裸片芯片封装在外壳中,以保护芯片并提供连接引脚的过程。

封装技术的发展不仅关乎芯片的可靠性和稳定性,还与电路性能、功耗和成本等因素密切相关。

在封装技术中,常见的封装形式包括直插式封装、贴片式封装和球栅阵列封装等。

直插式封装通过引脚插入插座或焊接于印刷电路板上,适用于较大尺寸的芯片。

贴片式封装则将芯片直接粘贴在印刷电路板上,适用于小型和轻薄的电子产品。

球栅阵列封装则是一种先进的封装技术,通过微小焊球连接芯片和印刷电路板,具有较高的集成度和可靠性。

除了封装形式,封装材料也是封装技术中的重要因素。

常见的封装材料包括塑料封装、陶瓷封装和金属封装等。

塑料封装成本低、制造工艺简单,适用于大规模生产;陶瓷封装耐高温、抗冲击性好,适用于高性能芯片;金属封装具有良好的散热性能,适用于高功率芯片。

二、集成电路测试技术集成电路测试技术是对封装完成的芯片进行功能、性能和可靠性等方面的测试,以确保芯片的质量和可靠性。

测试过程主要包括芯片测试、封装测试和系统测试等。

芯片测试是对裸片芯片进行测试,以验证其设计和制造是否符合要求。

常见的芯片测试方法包括逻辑功能测试、电气特性测试和可靠性测试等。

逻辑功能测试通过输入不同的信号,验证芯片的逻辑功能是否正确;电气特性测试则测试芯片的电压、电流和功耗等性能参数;可靠性测试则通过长时间的高温、低温和振动等环境测试,验证芯片的可靠性。

封装测试是对封装完成的芯片进行测试,以验证封装过程是否正确,是否存在焊接问题和短路等缺陷。

常见的封装测试方法包括外观检查、焊接可靠性测试和封装参数测试等。

外观检查通过目视或显微镜检查封装是否完整、引脚是否正常;焊接可靠性测试通过模拟实际使用环境下的温度变化和机械振动等,验证封装的可靠性;封装参数测试则测试封装的电气参数,如引脚电阻、电容和电感等。

半导体器件与工艺(12)

半导体器件与工艺(12)

传统装配
■分片
分片使用金刚石刀刃的划片锯把每个芯片从硅片上切下来。在划 片前,将硅片从片架上取出并按正确的方向放到一个固定在刚性框架 的粘膜上。该粘膜保持硅片完整直到所有芯片被划成小块。硅片被传 到带有去离子水喷淋的圆锯,然后用25微米厚的金刚石锯刃(旋转速 率达每分钟20000转),在x和y方向分别划片。用去离子水冲洗硅片 以去除划片过程中产生的硅浆残渣,而每个单独芯片由背面粘膜支撑。 锯通常沿划片线切透硅片的90%-100%。全自动设备具有对准系统、划 片和硅片清洗一体化功能。
传统装配
传统封装
■塑料封装
塑料封装使用环氧树脂聚合物将已完成引线键合的芯片和 模块化工艺的引线框架完全包封。塑料封装受欢迎的重要原因 是管脚成型灵活,或作为插孔式管脚,或作为表面贴封装技术 (SMT)管脚。插孔式管脚穿过电路板,而SMT管脚粘贴到板的 表面。具有SMT管脚的组件受欢迎是因为对集成电路组件和电 路板都有高密度封装(允许更多输入/输出管脚数)。使用塑 料封装的其他益处是材料成本低和重量轻。 一旦包封,从集成电路管壳伸出的仅为第二级装配到电路 板上必需的管脚。模型封装经过去飞边步骤,即从管壳附件去 除多余的材料。典型的去飞边使用类似喷沙的物理磨耗工艺。 再后来使用激光在塑料封面上打印制造和产品信息。
传统装配
传统装配
Ⅲ热超声球键合
热超声球键合是一种结合超声振动、热和压力形成键合的 技术,被称为球键合。基座维持在约150℃的温度。热超声球 键合也有一个毛细管劈刀,通过中心的孔竖直输送细Au丝。伸 出的细丝用火焰或电容放电火花加热,引起线熔化并在针尖形 成一个球。在键合过程中,超声能和压力引起在Au丝球和A1压 点间冶金键合的形成。球键合完成后,键合机移动到基座内端 电极压点并形成热压的楔压键合。将引线拉断,工具继续到下 一个芯片压点。这种球键合/楔压键合顺序在压点和内端电极 压点间的引线连接尺寸有极佳的控制,这对更薄的集成电路很 重要。

集成电路芯片系统封装与测试

集成电路芯片系统封装与测试

2020/11/24
21
•测试仪
测试仪是测试集成电路的仪器。它负责按 照测试向量对集成电路加入激励,同时观 测响应。目前,测试仪一般都是同步的, 按照时钟节拍从存储器中调入测试向量。
2020/11/24
22
• 测试的分类:
– 鉴定测试 – 生产测试 – 用户测试 – 可靠性测试 – 电学性能测试
正确工作。
(2)确定电路失效的原因和所发生的具体部位,以便改 进设计和修正错误。
2020/11/24
16
•测试介绍
• 测试:就是检测出生产过程中的缺陷,并挑 出废品的过程。
• 测试的基本情况:封装前后都需要进行测试。 • 测试与验证的区别:目的、方法和条件。 • 测试的难点:复杂度和约束。 • 可测性设计:有利于测试的设计。
2020/11/24
28
• 完全测试的含义
例如:N个输入端的逻辑,它有2N个状态。 组合逻辑:在静态状态下,需要2N个顺序测试矢量。动
态测试应考虑状态转换时的延迟配合问题,仅仅顺序 测试是不够的。
时序电路:由于记忆单元的存在,电路的状态不但与当 前的输入有关,还与上一时刻的信号有关。它的测试 矢量不仅仅是枚举问题,而是一个排列问题。最坏情 况下它是2N个状态的全排列,它的测试矢量数目是一 个天文数字。
技术创新,变革未来
§1 系统封装
半导体器件复杂性和密度的急剧增加推动了更 加先进的VLSI封装和互连方式的开发。 • 印刷电路板(printed Circuit Board-PCB) • 多芯片模块(Multi-Chip Modules-MCM) • 片上系统(System on a Chip-SOC)
2020/11/24
Hale Waihona Puke 17•简单的测试例子A Z

《集成电路封装技术》PPT课件

《集成电路封装技术》PPT课件
➢PGA封装具有以下特点: 1.插拔操作更方便,可靠性高。 2.可适应更高的频率。
➢Intel系列CPU中,80486和Pentium、Pentium Pro均采用 这种封装形式。
一、微电子封装技术的发展趋势
三次重大变革
直插式
DIP
表面贴装式 SMT
芯片尺寸封装 CSP
封装技术的第一次重大变革
插装技术
➢PFP(Plastic Flat Package) 方 式 封 装 的 芯 片 与 QFP方式基本相同。唯一的区别是QFP一般为正方形, 而PFP既可以是正方形,也可以是长方形。
➢QFP/PFP封装具有以下特点:
1.适用于SMD表面安装技术在PCB电路板上安裝布線。
2.适合高频使用 .
3.操作方便,可靠性高。
PGA
Pin Grid Array
平面栅阵电极封装
背面
集成电路管脚的不断增加,可达3000个管脚, 使得只在四周边设置引脚遇到很大困难
PGA插针网格阵列封装
➢PGA(Pin Grid Array Package)芯片封装形式在芯片 的内外有多个方阵形的插针,每个方阵形插针沿芯片的 四周间隔一定距离排列。根据引脚数目的多少,可以围 成2-5圈。安装时,将芯片插入专门的PGA插座。为使 CPU能够更方便地安装和拆卸,从486芯片开始,出现一 种名为ZIF的CPU插座,专门用来满足PGA封装的CPU在安 装和拆卸上的要求
芯片
封装外壳
单芯片封装电路板 印制板 多芯片封装电路板 可大幅度减小封体积
2、三维封装 封装树脂
IC芯片
绝缘胶
内引线
印制板 焊料微球
(a)
(b)
(c)
(d)
(e) SBGA的横截面结构示意图(局部)

集成电路封装与测试(一)PPT课件

集成电路封装与测试(一)PPT课件

电磁、化学等方面的防护
26
信号传递
主要是将电信号的延迟尽 可能减小,在布线时尽可 能使信号线与芯片的互连 路径以及通过封装的I/O接 口引出的路径达到最短
电能传递
主要是电源电压的分配和导通
27
散热 各种芯片封装都要考虑元 器件、部件长期工作时如 何将聚集的热量散出的问 题
封装保护 芯片封装可为芯片和其他连 接部件提供牢固可靠的机械 支撑,并能适应各种工作环 境和条件的变化
测试、评测
工艺问题
产品
定义问题
11
12
1.1.2 封装的出现 “封装(Packaging)”用于电子工程的历史并不 很久。在真空电子管时代,将电子管等器件安装 在管座上构成电路设备,一般称为“组装或装 配”,当时还没有“Packaging”这一概念。
13
60多年前的三极管,40多年前的IC半导体元件的出现,一方面,这些 半导体元件细小柔嫩;另一方面,其性能又高,而且多功能、多规格。 为了充分发挥其功能,需要补强、密封、扩大,以便实现与外电路可 靠的电气连接并得到有效的机械、绝缘等方面的保护作用。基于这样 的工艺技术要求,“封装”便随之出现。
带引脚的芯片载体
倒装芯片
陶瓷DIP
球栅阵列封装
芯片尺寸封装
35
目前世界上产量较多的几类封装
SOP (小外形封装)
55~57%
PDIP(塑料双列封装)
14%
QFP (PLCC ) (四边引线扁平封装) 12%
BGA (球栅阵列封装)
4~5%
36
1.5. IC封装的发展趋势
16.8~27.4%
2003 2004
“集成电路(IC)“是指微小化的或微电子的器件,它将这样的一些元 件如三极管、电阻、介电体、电容等集成为一个电学上的电路,使致 具有专门的功能。

集成电路封装与测试技术

集成电路封装与测试技术

集成电路封装与测试技术随着信息技术的快速发展和应用的广泛普及,集成电路在现代社会中扮演着重要的角色。

而集成电路封装与测试技术作为集成电路制造的重要环节,对于电子产品的性能、可靠性和稳定性起着至关重要的作用。

本文将介绍集成电路封装与测试技术的基本概念、重要性以及相关的发展趋势。

一、集成电路封装技术1.1 封装技术的定义与作用集成电路封装技术是将裸片芯片进行外包装,以提供对芯片的保护、连接和便于插拔。

其主要目标是保证芯片的电性能、机械可靠性和环境适应性,同时满足产品的体积、功耗和成本要求。

1.2 封装技术的分类根据不同的封装方式和结构,集成电路封装技术可以分为裸片封装、芯片级封装和模块级封装等多种形式。

其中,裸片封装是指将芯片直接粘贴在PCB板上,不进行封装的方式;芯片级封装是将芯片封装成单芯片或多芯片封装;模块级封装是将集成电路芯片与其他元器件进行封装。

1.3 封装技术的发展趋势随着集成电路的功能不断增强和尺寸不断缩小,封装技术也在不断创新与发展。

目前,多芯片封装、三维封装、无线封装等是集成电路封装技术的研究热点与发展方向。

这些新技术的应用将进一步提高集成电路的性能和可靠性。

二、集成电路测试技术2.1 测试技术的定义与作用集成电路测试技术是对封装好的集成电路芯片进行功能、电性能和可靠性等方面的验证和测试。

通过测试可以确保芯片的质量和性能符合设计要求,提高产品的可靠性和稳定性。

2.2 测试技术的分类根据不同的测试目的和方法,集成电路测试技术可以分为芯片测试、模块测试和系统测试等多种形式。

其中,芯片测试是对单个芯片进行测试,模块测试是对芯片封装后的模块进行测试,系统测试是对整个集成电路系统进行测试。

2.3 测试技术的发展趋势随着集成电路的复杂度不断提高,传统的测试技术已经无法满足需求。

因此,新型测试技术如板级测试、全片测试、MEMS测试等正在逐渐发展起来。

这些新技术的应用将提高测试效率、降低测试成本,并能同时满足不同级别的测试需求。

《集成电路封装和测试》

《集成电路封装和测试》

光电子封装 MEMS封装 封装
集成电路芯片封装
集成电路芯片封装技术技术流程
硅片切割 硅片减薄 芯片贴 装
芯片互连
成型技术
切筋成型 上锡焊 打码
去飞边毛刺
微系统封装
微系统相关技术: 微系统相关技术: 微电子技术 射频与无线电技术 光学技术 MEMS技术 技术
微系统封装:微电子封装 微系统封装:
3.封装失效中,约有1/3与封装有关 封装失效中,约有 与封装有关 封装失效中
器件物理性破坏分析( 器件物理性破坏分析(DPA) ) 约有1/2与封装有 测试中不合格品 约有 与封装有 关
第一章
概述
封装概念 封装的目的和要求 封装的技术层次 封装技术的历史和发展 封装涉及的学科 封装的分类 国内封装业的发展
系 统 需 求
设计
掩膜版 芯片制造 过程
芯片检测
封装
测试
封装和制造是独立的
二.封装的目的和要求
封装目的
1.传递电能 主要指电源电压的分配和导通 传递电能:主要指电源电压的分配和导通 传递电能 2.传递电路信号 主要将电信号的延迟尽可 传递电路信号:主要将电信号的延迟尽可 传递电路信号 能减小 3.提供散热途径 主要指各种芯片封装如何 提供散热途径:主要指各种芯片封装如何 提供散热途径 将聚集的热量散出 4.结构保护与支持 封装可为芯片提供机械 结构保护与支持:封装可为芯片提供机械 结构保护与支持 支撑,并能在各种条件下工作 并能在各种条件下工作. 支撑 并能在各种条件下工作
按密封材料分
陶瓷封装(Ceramic Package) 陶瓷封装 塑料封装(Plastic Package) 塑料封装 金属封装
按器件与电路的连接方式分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卷带式自动键合TAB技术
聚合物条带
铜引线
倒装芯片
将芯片的有源面(具有表面键合压点)面向基座的粘贴封
装技术。
倒装技术优点: •寄生电感远小于传统键合技术的寄生值 •焊接盘可遍布芯片,不仅限于芯片周边 •衬底均可被IC覆盖,封装密度高 •可靠性高 •焊接时,连接柱的表面张力会自我校正
倒装芯片封装
连接管座
金属封装
按与PCB板的连接方式划分为:
PTH
SMT
PTH-Pin Through Hole, 通孔式;
SMT-Surface Mount Technology, 表面贴装式。 目前市面上大部分IC均采为SMT式 的
SMT
按封装外型可分为:
SOT 、QFN 、SOIC、TSSOP、QFP、BGA、CSP等;
TOP VIEW
Mold Compound 环氧树脂
SIDE VIEW
Company Logo
集成电路封装工艺流程
材料 工序 部件
晶圆
划片
分类
加工好的焊料 聚合物粘结剂 Al丝 Au丝
管芯键合
引线框架 陶瓷管壳
引线绑定
保形的涂敷材料
密封
加工好的金属 聚合物密封剂
管壳焊封
管帽
第12电路在芯片测试技术 集成电路封装形式与工艺流程
12.3
12.4 12.5 12.6
芯片键合
高速芯片封装 混合集成与微组装技术 数字集成电路测试方法
12.1 集成电路在芯片测试技术
设计错误测试
设计错误测试的主要目的是发现并定位设计 错误,从而达到修改设计,最终消除设计错误 的目的。 设计错误的主要特点是同一设计在制造后的所 有芯片中都存在同样的错误,这是区分设计错 误与制造缺陷的主要依据。
完全测试
对芯片进行全部状态和功能的测试,要考虑集成电路的所有状态 和功能,即使在将来的实际应用中有些并不会出现。完全测试是 完备集。在集成电路研制阶段,为分析电路可能存在的缺陷和隐 含的问题,应对样品进行完全测试。
功能测试
只对集成电路设计之初所要求的运算功能或逻辑功能是否正确进
行测试。功能测试是局部测试。在集成电路的生产阶段,通常采
塑模化合物
型模
测试
12.3 芯片键合
引线键合
引线键合是将芯片表面的铝压点和引线框架上的电 极内端(有时称为柱)进行电连接最常用的方法(见下
图)。引线键合放置精度通常是+5µ m。键合线或是金或
是铝,因为它在芯片压点和引线框架内端压点都形成良 好键合,通常引线直径是25~75µ m之间。
传统装配与封装
电感/nH
35 20 15 1 0.1
12.4 高速芯片封装
12.5 混合集成与微组装技术
MCM技术的发展与进步
由于多芯片模块(MCM)的出现、发展和进步,推动了微组装技 术发展。由于信号传输高频化和高速数字化的要求以及裸芯片 封装的需要,因而要求有比起SMT组装密度更高的基板和母板。
MCM(Mu1ti—Chip Module)基本概念
基座
通孔 金属互连 硅芯片
压点上的焊 料凸点
硅片压点上的C4焊料凸点
压点 氮化硅 Al
Oxide
第三层复合金属 Cu-Sn Cr+Cu Cr 金属淀 积和刻 蚀
(2)
第二层金属淀积 Sn
(1)
Pb
在回流过程 中焊球形成 回流 工艺
(3)
(4)
倒装芯片的环氧树脂填充术
关于倒装芯片可靠性的一个重要问题是硅片和基座之间
• QFN—Quad Flat No-lead Package 四方无引脚扁平封装 • SOIC—Small Outline IC 小外形IC封装 • TSSOP—Thin Small Shrink Outline Package 薄小外形封装 • QFP—Quad Flat Package 四方引脚扁平式封装 • BGA—Ball Grid Array Package 球栅阵列式封装 • CSP—Chip Scale Package 芯片尺寸级封装

Company Logo
常用集成电路封装形式
(1)DIP (Dual In-line Package)双列直插式封装
1.5
8
7
6
5
3.4
3.35
1
0.5 2.54×3=7.62 2.54
2 9.2
3
4
顶视图 正视图 P型8引线封装
6.3
常用集成电路封装形式
(2)SOP(Small Outline Package)小外形封装 SOP实际上是DIP的变形,即将DIP的直插式引脚向 外弯曲成90度,就成了适于表面贴装SMT(Surface Mount Technology)的封装了,只是外形尺寸和重量 比DIP小得多。
SOP封装外形图
常用集成电路封装形式
(3)QFP(Quad Flat Package) 四边引脚扁平封装
QFP封装结构
QFP的分类:
塑(Plastic)封 QFP(PQFP) 薄型QFP(TQFP) 窄(Fine) 节距 QFP(FQFP)
IC Package Structure(IC结构图)
Lead Frame 引线框架 Die Pad 芯片焊盘 Gold Wire 金线 Epoxy 银浆
热膨胀系数(CTE)失配。严重的CTE失配将应力引入C4焊
接点并由于焊接裂缝引起早期失效。通过在芯片和基座之 间用流动环氧树脂填充术使问题得以解决。
焊料凸点
芯片 环氧树脂 基座
倒装芯片面阵焊接凸点与引线键合
因为倒装芯片技术是面阵技术,它促进了对封装中 更多输入/输出管脚的要求。这意味着C4焊料凸点被放在 芯片表面的x-y格点上,对于更多管脚数有效利用了芯片 表面积。
Cap上提,完成一次 动作
从芯片压点到引线框架的引线键合
芯片 键合的引线 压模混合物 引线框架
压点
管脚尖
芯片绑定时,应给出载体型号和芯片焊盘与载体上的引 脚关系示意图,如图所示,芯片方向用向上箭头表示, QFP24载体引脚从左下角第二引脚开始,逆时针方向连
续标号,按图连接明确无误。
集成电路封装示意图
(2)芯片成品测试的联接方法
测试机与被测电路板的联接照片
MT9308分选机
12.2集成电路封装形式与工艺流程
封装的作用
(1)对芯片起到保护作用。封装后使芯片不受外 界因素的影响而损坏,不因外部条件变化而影响 芯片的正常工作; (2)封装后芯片通过外引出线(或称引脚)与外部 系统有方便相可靠的电连接; (3)将芯片在工作中产生的热能通过封装外壳散 播出去,从研保证芯片温度保持在最高额度之下; (4)能使芯片与外部系统实现可靠的信号传输, 保持信号的完整性。
硅片测试和拣选
分片
贴片
引线键合
塑料封装
最终封装与测试
Figure 20.1
引线焊接
EFO打火杆在 磁嘴前烧球
Cap下降到芯片的Pad 上,加Force和Power 形成第一焊点
Cap牵引金 线上升
Cap运动轨迹形成 良好的Wire Loop
Cap下降到Lead Frame形成焊接
Cap侧向划开,将金 线切断,形成鱼尾
多芯片组件,它是在混合集成电路 (HIC) 基础上发展起来的高技
术电子产品,是将多个 LSI 和 VLSI 芯片和其它元器件高密度组装 在多层互连基板上,然后封装在同一封装体内的高密度、高可靠 性的电子产品,可以实现系统功能,达到电子产品的小型化、多 功能、高性能。
单个芯片
MCM 基座
MCM分类
• MCM通常可分为五大类, • 即MCM—L,其基板为多层布线 PWB; • MCM—C,其基板为多层布线厚膜 或多层布线共烧陶瓷; • MCM—D,其为薄膜多层布线基板; • MCM—C/D,其为厚、薄膜混合 多层布线基板; • MCM—Si,其基板为Si。 • 以上这些基板上再安装各类Ic芯 片及其它元器件,使用先进封装, 就制作成各类MCM。
功能测试
测试目的
功能测试是针对制造过程中可能引起电路功能不正 确而进行的测试,与设计错误相比,这种错误的出 现具有随机性,
测试的主要目的不是定位和分析错误.而是判断芯 片上是否存在错误,即区分合格的芯片与不合格的 芯片。
功能测试的困难源于以下两个方面: 一个集成电路具有复杂的功能,含有大量 的晶体管 电路中的内部信号不可能引出到芯片的外 面,而测试信号和测试结果只能从外部的 少数管脚施加并从外部管脚进行观测。
的 规模化和自动化;
(4) 在原有的材料基础上,提供低介电系数、高导热、高机 械强度等性能优越的新型有机、无机和金属材料; (5) 提供准确的检验测试数据,为提高集成电路封装的性能 和可靠性提供有力的保证。
封装的形式
Package--封装体
指芯片(Die)和不同类型的框架(L/F)和塑封料(EMC)形
种信号,通过分析芯片的输出信号,来得到芯片的
功能和性能指标。
芯片与测试系统的联接 分为两种:
•芯片在晶圆测试的联接方法 •芯片成品测试的联接方法
集成电路测试信号联接方法
(1)芯片在晶圆测试的联接方法
两种芯片在晶圆测试用探针:
一种10探针头的实物照片
GSG组合150um间距微波探头照片
集成电路测试信号联接方法
封装形式和工艺逐步高级和复杂
决定封装形式的两个关键因素:
•封装效率。芯片面积/封装面积,尽量接近1:1;
•引脚数。引脚数越多,越高级,但是工艺难度也相应增加;
其中,CSP由于采用了Flip Chip技术和裸片封装,达到了芯片面积/封装面积 =1:1,为目前最高级的技术;
IC Package (IC的封装形式)
相关文档
最新文档