上海交通大学船舶原理练习题Exercises_of_Ship_Manoeuvrability

合集下载

船舶结构力学课后题答案(上海交大版)

船舶结构力学课后题答案(上海交大版)

s目录第1章绪论 (2)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (15)第4章力法 (17)第5章位移法 (28)第6章能量法 (41)第7章矩阵法 (56)第9章矩形板的弯曲理论 (69)第10章杆和板的稳定性 (75)第1章绪论1.1题1)承受总纵弯曲构件:连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力舱壁板:主要为横向力如水,货压力也有中面力第2章单跨梁的弯曲理论2.1题设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x)1)图2.1333 2334243()()()424 ()26666l l ll l lp x p x p x M x N xv xEI EI EI EI EI---=++++原点在跨中:3230111104()4()266llp xM x N xv x vEI EI EI-=+++,'11'11()0()022(0)0(0)2l lv vpv N⎧==⎪⎨⎪==⎩2)3323()3 2.2()266llp xN xMxv x xEI EI EIθ-=+++图3)333002()2 2.3()666xx x llp xN x qx dxv x xEI EI EIθ-=++-⎰图2.2题a)33111311131(3)(2)616444641624 pp ppl plv v vEI EI⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512plEI333321911()61929641624pl pl pl V EI EI EI⎡⎤⎛⎫=-++=⎪⎢⎥⎝⎭⎣⎦b)2'292 (0)(1)3366Ml Ml PlvEI EI EI-=+++=2220.157316206327Pl Pl PlEIEI EI-+=⨯2291()(1)3366Ml Ml PllEI EI EIθ-=+-+=2220.1410716206327Pl Pl PlEIEI EI---=⨯()()()2222133311121333363l lp llv m mEIl EI⎛⎫⎛⎫⎪ ⎪⎛⎫⎝⎭⎝⎭⎡⎤=----+⎪⎣⎦⎝⎭=2372430plEIc) ()44475321927682304qlql qllvEI EI EI=-=()23233 '11116(0)962416683612l q lql pl ql ql v EI EI EI EI EI⎡⎤=--=--=⎢⎥⎣⎦d)2.1图、2.2图和2.3图的弯矩图与剪力图如图2.1、图2.2和图2.3图2.1图2.2图2.32.3题1)()32212120624452313120Ml ql l l Mlq q EI EI EI EI q l M θ⎡⎤=---+=⎢⎥⎣⎦∴=右2)32101732418026q l Ml l l Ml lq EI EI EIEI θ⎡⎤=-++-⎢⎥⎣⎦=3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图3000()6N x v x v x EIθ=++,()00v A p N =-300()6x v x Ap x A N EI θ⎛⎫∴=++- ⎪⎝⎭如图2.4, ()()0v l v l '==由得300200200060263l Ap l A N EI l N EI pl Ap l EI pN θθθ⎫⎛⎫++-=⎪⎪⎪⎝⎭⎬⎪+=⎪⎭⎧-==-⎪⎨⎪=⎩解出 3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭图2.42.6图()()()()()()()2300122300012120001221223121212260,42026622M x N x v x x EI EIv l v l M l N l EI EI M l l l EI EIEI M l N l N l EI EI x x v x x l l θθθθθθθθθθθθθθ=++'==⎫⎧=--++=⎪⎪⎪⎪⎬⎨⎪⎪=+++=⎪⎪⎩⎭++∴=++由得解得 2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-= ⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 图2.5 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)341113422244440.052405021005112384240100572933844009600l ql ql v A R EI EI l ql ql v A R EI EIl qlql v EI EI ql ql EI EI==⋅===⋅=⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+=⎪⎝⎭ 图2.6()()3331233312111202424401007511117242440100300v v ql ql ql EI l EI EIv v ql ql qll EI l EI EIθθ-⎛⎫=-=-+=⎪⎝⎭--⎛⎫=--=--+=⎪⎝⎭2.8图(剪力弯矩图如2.7)()2221401112124,,0,11,82411118243212121248243,82864AA Qa b M A K l Q qa a l b A K ql ql M ql qlql R ql v AR EIα⎡⎤⎛⎫=⋅++⎢⎥⎪⎝⎭⎢⎥⎣⎦======++==⨯⨯⨯+==-===由,代入得图2.7442433032355238412816384111(0)246246448192()6488l qlql Ml ql v EI EI EI EI v ql Ml ql EI l EI EI ql EIl ql ql l M EI EI θθα⎛⎫∴=+-=⎪⎝⎭⎛⎫=--=-- ⎪⎝⎭=-=-=-⋅=2.6题. []1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s ssd b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EIqx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=2.7.题先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 321011322162(0)(0)()62()2sii i i j i i j s jjEIax bx v cx d ax GA v d v v c al bl EIv l l al GA al v l bl θθθθθ=+++-=∆∴==∆⎫⎪⎬'=∴=⎪⎭⎫=∆∴+++∆-=∆⎪⎪⎬⎪'=∴+=⎪⎭而由由由()()()2213121i j j i i j a l l b l l l θθθβθθθθβ⎧∆⎡⎤=+-⎪⎣⎦+⎪⎨-⎪∆=-+-⎪+⎩解出 ()()()()()()()()()()()()1121(0)(0)62416642162(0)(0)1()(0)()()4261j i i j i j i j j i j i EI M EIv EIb l l EI l l l EI N EIv EIa l l N l N EI M l EIv l EI b al l l βθβθββθβθβθθββθβθβ∆⎡⎤''∴===+--+⎢⎥+⎣⎦⎡⎤=-∆-∆+++-+⎢⎥+⎣⎦⎧⎡⎤''===+-∆-∆⎪⎢⎥+⎣⎦⎪⎪=⎨⎪∆⎡⎤⎪''==+=++--⎢⎥+⎪⎣⎦⎩令上述结0i j ∆=∆=∆果中,即同书中特例2.8题 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====1025100.7576.875kgq hs cm γ==⨯⨯=面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a38.75 9430.2 2232 ∑119.8 15.6 604.5 9430.22253.9ABC=11662224604.55.04116628610119.8BBe cm I C cm AA===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板形心至球心表面1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维321186105.94433.5219.86t I y e cm w cm y =+=∴===()32206186101449.45.9422510501740.3662221086100.988,()0.980Iw cm y A l u EI x u u σϕ===⨯===⨯⨯== ()()()222212012020176.8752250.988320424.1212176.8752250.980158915)242415891510501416433.53204241050127114503204241050378433.5ql M x u kg cm ql M u kgcm M kg cm w M kg cm w M kg w ϕσσσσσσ==⨯⨯==-=-⨯⨯⨯=-=+=+==+=+==+=+=中中球头中板固端球头端(2max 21416kg cm cm σ⎫⎪⎪⎪⎪∴=⎬⎪⎪⎪⎪⎭若不计轴向力影响,则令u=0重复上述计算:222max 0176.875225241050142424433.5142414160.56%1424ql kg w cm σσσ⨯==+=+=⨯-=球头中相对误差:结论:轴向力对弯曲应力的影响可忽略不及计。

船舶原理练习题3章(航海)有解答

船舶原理练习题3章(航海)有解答

船舶原理练习题3章(航海)有解答《船舶原理》练习题3章【第3章】稳性概念(GM,BM) (2)【第3章】初稳性初步............ 错误!未定义书签。

【第3章】初稳性高GM (5)【第3章】横稳心高KM (5)【第3章】载荷重心高度KP (6)【第3章】自由液面之影响 (7)【第3章】轻货操作之影响 (9)【第3章】大倾角稳性初步 (11)【第3章】复原力臂GZ初步 (12)【第3章】静稳性曲线 (13)【第3章】动稳性曲线 (15)【第3章】稳性衡准数 (17)【第3章】临界初稳性与重心高度 (17)【第3章】横摇周期与GM关系 (18)【第3章】横倾角判断初稳性 (19)【第3章】观察现象判断初稳性 (19)【第3章】稳性的调整原则 (19)【第3章】垂向移动载荷调整稳性 (20)【第3章】增减载荷调整船舶稳性 (20)【第3章】改善稳性之措施 (21)【第3章】初始横倾角的调整 (22)【第3章】稳性概念(GM,BM)·2 按作用于船上外力矩的性质,将船舶稳性划分为。

A. 静稳性和动稳性B. 横稳性和纵稳性C. 大倾角稳性和初稳性D. 破舱稳性和完整稳性·3 按船舶横倾角的大小,将船舶稳性划分为。

A. 横稳性和纵稳性B. 破舱稳性和完整稳性C. 大倾角稳性和初稳性D. 静稳性和动稳性·4 按船舶的倾斜方向,将船舶稳性划分为。

A. 横稳性和纵稳性B. 破舱稳性和完整稳性C. 大倾角稳性和初稳性D. 静稳性和动稳性·6 船舶稳性从不同的角度可分为。

A. 破舱稳性和完整稳性B. 初稳性和大倾角稳性C. 动稳性和静稳性D. A、B、C均是·7 船舶倾斜前后,重力和浮力。

A. 大小不等,浮心位置不变B. 大小不等,浮心位置改变C. 大小相等,浮心位置不变D. 大小相等,浮心位置改变·8 船舶受外力作用发生等容微倾时其会发生较明显变化。

船舶原理练习题1、2章(航海)有解答

船舶原理练习题1、2章(航海)有解答

《船舶原理》练习题第1、2章(航海)【第1章】船型尺度初步(L,B,D,d) (1)【第2章】船舶吃水d初步 (1)【第2章】TPC初步练习 (2)【第2章】水密度对吃水之影响 (3)【第2章】排水量Δ初步 (4)【第2章】静水力曲线常用量 (6)【第2章】干舷与储备浮力 (7)【第1章】船型尺度初步(L,B,D,d)·1 船舶在登记..、丈量时使用的尺度是。

A.最大尺度 B.型尺度C.登记尺度 D.以上均可·2 判断船舶能否停靠某一码头时所使用的尺度是。

A.型尺度 B.理论尺度C.登记尺度D.最大尺度·3 船舶在设计时使用的尺度为。

A.船型尺度 B.理论尺度C.实际尺度 D.最大尺度·4 船舶实际吃水与型吃水两者相比。

A.相差50mm B.相差龙骨板厚度C.相差无定值 D.两者在数值上一致·5 从船舶型线图上量取的尺度为。

A.最大尺度B.型尺度C.登记尺度 D.实际尺度·6型线图中船舶横剖线图上是直线。

A. 水线面和纵剖面B. 水线面和横剖面C. 横剖面和纵剖面D. 仅横剖面·7过船宽中点的纵向垂直称为。

A. 平面,中站面B. 剖面,中纵剖面C. 平面,基平面D. 剖面,中横剖面·8采用近似计算公式的条件之一是曲线下面积的等分数必须为。

A. 辛氏第一法,偶数B. 梯形法,偶数C. 辛氏第一法,奇数D. 梯形法,奇数·9已知某船L bp=78,宽B=16.4m,水线面面积为921m2,则其水线面积系数为C W为______。

A.0.77 B.0.65 C.0.68 D.0.72·10某船L bp=78m,吃水d m=4.80m,船宽B=12.2m,排水体积为2924m3,则其方形系数C b为_______。

(小吨位船试题) A.0.53 B.0.64 C.0.73 D.0.68·11某船方型系数C b=0.63,长宽比L/B=6,宽吃水比B/d=2.4,平均吃水5.17m,则船舶排水体积______ m3。

船舶结构力学课后题答案(上海交大版)

船舶结构力学课后题答案(上海交大版)

s目录之马矢奏春创作第1章绪论 (1)第2章单跨梁的弯曲理论 (2)第3章杆件的扭转理论 (7)第4章力法 (9)第5章位移法 (11)第6章能量法 (21)第7章矩阵法 (36)第9章矩形板的弯曲理论 (49)第10章杆和板的稳定性 (55)第1章绪论1.1题1)接受总纵弯曲构件:连续上甲板, 船底板, 甲板及船底纵骨, 连续纵桁,龙骨等远离中和轴的纵向连续构件(舷侧列板等)2)接受横弯曲构件:甲板强横梁, 船底肋板, 肋骨3)接受局部弯曲构件:甲板板, 平台甲板, 船底板, 纵骨等4)接受局部弯曲和总纵弯曲构件:甲板, 船底板, 纵骨, 递纵桁, 龙骨等1.2题甲板板:纵横力(总纵弯曲应力沿纵向, 横向货物或上浪水压力, 横向作用)舷侧外板:横向水压力等骨架限制力沿中面内底板:主要接受横向力货物重量, 骨架限制力沿中面为纵向力舱壁板:主要为横向力如水, 货压力也有中面力第2章 单跨梁的弯曲理论设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x ) 1)图2.133323034243()()()424()26666llll l l p x p x p x M x N x v x EI EIEIEIEI---=++++原点在跨中:3230111104()4()266ll p x M x N x v x v EI EIEI-=+++,'11'11()0()022(0)0(0)2l l v v p v N ⎧==⎪⎨⎪==⎩ 2)33203()32.2()266ll p x N x Mx v x x EI EIEIθ-=+++图 3)333002()22.3()666x x x ll p x N x qx dx v x x EI EIEI θ-=++-⎰图a) 33111311131(3)(2)616444641624pp p pl pl v v v EIEI ⎡⎤⎡⎤=+=⨯⨯-+⨯-⨯⎢⎥⎢⎥⎣⎦⎣⎦=3512pl EIb) 2'292(0)(1)3366Ml Ml Pl v EI EI EI-=+++ =2220.157316206327Pl Pl Pl EI EI EI-+=⨯=2220.1410716206327Pl Pl Pl EI EI EI---=⨯=2372430pl EIc) ()44475321927682304ql ql qll v EI EI EI=-=d)2.1图、2.2图和2.3图1)2)32101732418026q l Ml l l Mllq EI EI EIEIθ⎡⎤=-++-⎢⎥⎣⎦ =3311117131824360612080q l q l EI EI⎛⎫-++-=-⎪⨯⎝⎭ 2.4 题2.5图 3000()6N x v x v x EIθ=++, ()00v A p N =-如图2.4, ()()0v l v l '==由得3333()1922pl x x v x EI l l ⎛⎫∴=-+ ⎪⎝⎭2.5题2.5图:(剪力弯矩图如2.5)()132023330222002332396522161848144069186pl Mp pR p ll p pl v AR EI EI v l Mlpl pl pl v EI EI EI EI v Ml pl pl pl v l EI EI EI EIθ-∴==-===⋅=⎛⎫=-=-=⎪⎝⎭-'==--=-=-()16A pa b b M A l K l ⎡⎤=++⎢⎥⎣⎦, 111,0,6632A l a l b A K ====+=将代入得:()16312pl pl M ==2.7图:(剪力弯矩图如2.6)图2.62.8图(剪力弯矩图如2.7)图2.7.[]1max 2max 2113212132142.()()62()()62()()242(0)sN EIv s sss s N dv dx dx dx GGA N EI v dx v C GA GA EI ax bx v v v f x cx d f x ax b C GA EI EIax bx f x f x c a x d GA GA qx qx f x f x EI EIv v τγ'''====-''=−−−→-+⎡⎤''∴=+=++++-+++⎢⎥⎣⎦⎛⎫''=-+++-+ ⎪⎝⎭''==''=⎰式中由于11142323432342(0)00()()00242602,224()241222425()23848s s s s s d b v l v l ql EI ql al EI c a l EI GA EIGA qlal EIql ql c EI EI qx qlx qx qx qlv x x EI EI GA EI GA l ql ql v EI GA ===''==⎧⎛⎫-++-=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩=⎛⎫∴=--++⎪⎝⎭∴=+可得出由得方程组:解出:a=先推广到两端有位移,,,i i j j θθ∆∆情形:212,i j s EI GA l β⎛⎫∆=∆-∆=⎪⎝⎭令 已知:20375225, 1.8,751050kgl cm t cm s cm cm σ=⨯====面积2cm 距参考轴cm面积距3cm惯性矩4cm自惯性矩4cm外板1.845⨯ 81 0 0 0 (21.87)略 球扁钢O N 24a2232 ∑ABC=11662224604.55.04116628610119.8BBe cm I C cm AA ===-=-=275 1.838.75174min ,4555A cm l lI be s cm=⨯+=⎧⎫===⎨⎬⎩⎭计算外力时面积计算时,带板1).计算组合剖面要素:形心至球心概况1240.9 5.0419.862t y h e cm =+-=+-=形心至最外板纤维若不计轴向力影响, 则令u=0重复上述计算:解得:图2.1201)先计算剖面参数:图2.8a2422u u P P l δδδ⎛⎫⋅⎛⎫ ⎪⋅+= ⎪⎝⎭ ⎪⎝⎭p M 图2.8b2.13弥补题剪切对弯曲影响弥补题, 求图示结构剪切影响下的v(x)解:可直接利用 2.14. 弥补题试用静力法及破坏机构法求右图示机构的极限载荷 p, 已知梁的极限弯矩为p M (20分) (1983年华中研究生入学试题) 解: 1)用静力法:(如图2.9)由对称性知首先固端和中间支座到达塑性铰, 再加力u p p →, 当p作用点处也形成塑性铰时结构到达极限状态.即: 2)用机动法: 8282p pu M M p p llδδ⋅=∴=求右图所示结构的极限载荷其中,3l p ql EI α==(1985年哈船工研究生入学试题)解:由对称性只需考虑一半, 用机动法.当此连续梁中任意一个跨度的两端及中间发生三个塑性铰时, 梁将到达极限状态.考虑a) 、b)两种可能:(如图2.10)取小者为极限载荷为28pu M q l =即接受集中载荷p 的跨度是破坏.图2.9 图2.10第3章 杆件的扭转理论a) 由狭长矩形组合断面扭转惯性矩公式:b) 3334170 1.235115 1.260.63J cm ⎡⎤==⨯+⨯+⨯=⎣⎦c) 由环流方程对a)示闭室其扭转惯性矩为()()()4230444a t A J t a t ds a t t t -===--⎰对b)开口断面有()331433i i t J h t a t ==-⎡⎤⎣⎦∑.将剪流对内部任一点取矩 由于I 区与II 区, II 区与III 区扭率相等可得两弥补方程第4章力法由于折曲连续梁足够长且多跨在a, b周期重复.可知各支座断面弯矩且为M对2节点列角变形连续方程4.4题4.4图, 21对,节点角连续方程:4.6题已知:受有对称载荷Q的对称弹性固定端单跨梁(EI l), 证明:相应固定系数χ与α关系为:211EI lαχ⎛⎫=+⎪⎝⎭讨论:1)只要载荷与支撑对称, 上述结论总成立2)当载荷与支撑分歧毛病称时, 重复上述推导可得4.8 题1)如图所示刚架提供的2)01由对称性只需对,节点列出方程组求解4.10题写出下列构件的鸿沟条件:(15分) 1) 2)3) 设x=0,b 时两端刚性固定;y=0,a 时两端自由支持4)已知:x=0,b 为刚性固定边;y=0边也为刚性固定边:y=a 为完全自由边q 主向梁与交叉构件两端简支在刚性支座上, 试分析两向梁的尺寸应坚持何种关系, 才华确保交叉构件对主向梁有支持作用? 解:少节点板架两向梁实际接受载荷如图, 为简单起见都取为均布载荷.由对称性:12R R R ==由节点挠度相等: 当5548115224qlL qlL α→∞=⨯=max 时R=R 这时交叉构件对主向梁的作用相当于一个刚性支座 当3511I 1.3011521944iR lα<<<3时即时L 暗示交叉构件的存在不单不支持主向梁, 反而加重其负担, 使主向梁在接受外载荷以外还要受到向下的节点反作用力这是很晦气的. ∴只有那时33I 1.3L il 〉, 主向梁才受到交叉构件的支持.第5章 位移法10012Ql M -=, 15021Ql M =, 02332==M M200'12)4(2θl I E M =, 200'21)4(4θl I E M = 对节点2, 列平衡方程⎩⎨⎧=+=00212332M M M 即: ⎩⎨⎧=+++=+00212321'23'3232'M M M M M M 代入求解方程组, 有⎪⎪⎩⎪⎪⎨⎧-=++=+154)88(0840*******0300200Ql l EI l EI l EI l EI l EI θθθθ, 解得⎪⎪⎩⎪⎪⎨⎧⨯=⨯-=02302021*******EI Ql EI Ql θθ 所以2'00012121200008410.1242221510330EI Ql Ql M M M Ql Ql l EI ⎡⎤-=+=-=-=-⎢⎥⨯⎣⎦ 图04.5. 由对称性知道:23θθθ=-=-1)10012Ql M -=, 15021Ql M =, 02332==M M2) 200'12)4(2θl I E M =, 200'21)4(4θl I E M = 3) 对2节点列平衡方程23210M M +=即0002200166015EI Ql EI l l θθ++=, 解得20202215Ql EI θ=-⨯ 4)求122123,,M M M (其余按对称求得)2321M M =-, 其余4321M M =-, 3421M M =-, 3223M M =-由对称性只要考虑一半, 如左半边1)固端力(查附表A-4)2120001(2)105M Q l q l =-=-, 2210002(2)1515M Q l q l ==2)转角23,θθ对应弯矩(根据公式5-5)'012202(4)2E I M l θ=, '021204(4)2E I M l θ=, '0023230042EI EI M l l θθ=+, 43'0003434300042442EI EI EI M l l l θθθθθ=-=+=3)对节点2, 3列出平衡方程323421252300M M M M M +=⎧⎨++=⎩ 即()''32343234'''252321232125()M M M M M M M M M M ⎧+=-+⎪⎨++=-++⎪⎩ 则有00023300020000002223000024028422215EI EI EI l l l EI EI EI EI q l l l l l θθθθθθθ⎧++=⎪⎪⎨⎪+++=-⎪⎩, 得30020300301210451631045q l EI q l EI θθ⎧-=⎪⎪⎨⎪=⎪⨯⎩4)其余由对称性可知(各差一负号):6512M M =-, 5621M M =-,5225M M =-, 5423M M =-, 4532M M =-, 433432M M M =-=5.3 题(14250M M ==)128M pl =-, 218M pl =, 其余固端弯矩都为0'4112EI M l θ=, '1414EI M l θ=, '5222EI M l θ=, '2524EI M l θ= '6332EI M l θ=, '3634EI M lθ=图5.1 (单位:200q l )'121242EI EI M l l θθ=+, '211224EI EI M l l θθ=+ '232342EI EI M l l θθ=+, '322324EI EI M l lθθ=+ 由1、2、3节点的平衡条件14122125233236000M M M M M M M +=⎧⎪++=⎨⎪+=⎩ 即()()()''14121412'''252321232125''32363236M M M M M M M M M M M M M M ⎧+=-+⎪⎪++=-++⎨⎪+=-+⎪⎩解得:21272264pl EI θ=⨯, 2252216pl EIθ=-⨯, 2352264pl EI θ=⨯已知1203l l m ==, 2302.2 6.6l l m ==, 24039l l m == 4400.310I cm =⨯, 1202I I =, 2303I I =, 2408I I = 0212001122Q q l q l ==, 404q q =,1)求固端弯矩210010M Q l =, 120015M Q l =-, 02332==M M 2)转角弯矩()0'0121200224(2)E I E I M l l θθ=+, '002323004(3)2(3)2(2)2(2)E I E I M l l θθ=+,'024204(8)(3)E I M l θ=, '042202(8)(3)E I M l θ=3)对1、2、3节点列平衡图5.2(单位:ql )图5.3(单位:00Q l )方程1221242332000M M M M M =⎧⎪++=⎨⎪=⎩即:001200000001230000000230084154796301633115306001111EI EI Q l l l EI EI EI Q l l l l EI EI l l θθθθθθθ⎧+=⎪⎪⎪⎪⎛⎫++=--⎨ ⎪⎝⎭⎪⎪+=⎪⎪⎩解得:22000010022340.0339732880Q l q l EI EI θ=-=-,2200002002090.076281370Q l q l EI EI θ==,4)求出节点弯矩弯矩图如图5.3.5.5 题由对称性只考虑一半;所以:0124341330Ql M M =-=-, 0213455Ql M M =-=, 0233255Ql M M =-=-:令10012100120,, 1.5I I I l l l l ====由表格解出令1003I I =, 012I I =,100l l =, 120l l =0q q =, 1000Q q l =, 00122q l Q =由表格解出:2010.0931M ql =-, 210120.0638M M ql =-=, 2210.0228M ql =若将图5.5中的中间支座去失落, 用位移法解之, 可有: 解得:332770.05149652ql ql EI EIθ==⨯,2120.140M ql =-, 210.040N ql =,5.7题计算如表所示1)不计45杆的轴向变形, 由对称性知, 4、5节点可视为刚性固定端2) ()23000013322Q q l q l ==,()3400000.63 1.8Q q l q l == 223230003(3)/1510M Q l q l ==, 232230009(3)/1020M Q l q l =-=- 3) 计算由下表进行: 21812000.0039M M q l =-=,23234000.518M M q l =-=-,243000.4159M q l =-, 223000.1127M q l =252000.0170M q l =-, 其它均可由对称条件得出.创作时间:二零二一年六月三十日创作时间:二零二一年六月三十日.00005 .00059 .00030.00022 .00043 .00085.00043 .00003 .00005 .00011.00006200/ij M q l创作时间:二零二一年六月三十日5.9 题任一点i 的不服衡力矩为01212i is sql qlM M ==-=∑(i=1, 2, …,h,i,j,…n-1. s=i-1,i+1) 所以任一中间节点的分配弯矩ij m 与传导弯矩'ij ji ji m n m =均为0. 任一杆端力矩:'ij ij ij ij M M m m =++()0ij ij is ji ji js ij s s M M n M M i n λλ⎛⎫=-+-=<< ⎪⎝⎭∑∑对两端0,i n =, 由于只吸收传导弯矩'0ij m = 'ij M ij ij ij M M m =+=两端所以对每个节都有杆端力矩ij M ij M =0iM=∑, 也可以看作两端刚固的单跨梁.第6章 能量法1)方法一 虚位移法考虑b),c)所示单位载荷平衡系统, 分别给予a)示的虚变形 :()M x dx d EIδθ= 外力虚功为 i j 11W θδθ⨯⎧⎫=⎨⎬⨯⎩⎭虚应变能为l001V=M()M ()d EI x x x δ⎰()()()()00011=1li i i l i i i R x M R x dx EI R x M R x dx EI⎧++⎪⎪⎨⎪+⎪⎩⎰⎰j i ij j i j i M M 1M M ..........b)EI 363EI 2=M M 1M M ...........c)EI 363EI 2l l l l ⎧⎛⎫⎛⎫-=-⎪ ⎪ ⎪⎝⎭⎪⎝⎭⎨⎛⎫⎛⎫⎪-=- ⎪ ⎪⎪⎝⎭⎝⎭⎩ 由虚功原理:W V δδ= 得:i i j j 11M 2M 13EI 12l θθ⎡⎤-⎢⎥⎧⎫⎧⎫=⎢⎥⎨⎬⎨⎬⎢⎥⎩⎭⎩⎭-⎢⎥⎣⎦2)方法二 虚力法(单位虚力法)梁弯曲应力:{}()M x y σ=I{}()M x y σε==EEI()()ij iM M x M x M l+=-()1(10)x M x lδ=-+给i M 以虚变动1i M ∂= 虚应力为 {}()M x y δδσ=I虚余功:1W δθ*⨯i =虚余能:*V δΩ⎰=(真实应变)⨯(虚应力)d Ω()()M x M x y ydxdydz EI δ=⎰⎰⎰I()()2201lA M x M x dx y dA EI δ=⎰⎰()()01/1/li i j M M M x l x l dx EI ⎡⎤=-+-⎣⎦⎰ ∴ 132i ij l Q M M EI ⎛⎫=- ⎪⎝⎭同理:给j M 以虚变动1j M δ=, ()0i M δ=可得(将i 换为j )32i j j M l M EI θ⎛⎫=-+ ⎪⎝⎭3)方法三 矩阵法(柔度法)设{}{}i i j j M ,p M θθ⎧⎫⎧⎫∆==⎨⎬⎨⎬⎩⎭⎩⎭, 虚{}{}[]{},i j M p M δδσεδ⎧⎫==⎨⎬⎩⎭力p{}()()[]{}/1i i i j j M M x y y xx y M M M x l c p M I I I ll σσ⎧⎫⎡⎤⎡⎤===-+=--=⎨⎬⎢⎥⎣⎦⎣⎦⎩⎭式中[]1,y x x c I l l ⎡⎤⎛⎫⎛⎫=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(无妨称为物理矩阵以便与刚度法中几何矩阵[]B 对应)虚应力{}[]{}[]i j M c p c M δδσδδ⎧⎫==⎨⎬⎩⎭实应变{}[]{}[][]{}11D D C p εσ--==虚余功 {}{}{}{}()*TTi i j j W p p M M δδδθδθδ=∆=∆=+虚余能 {}{}{}{}*TTV d d δεδσεσεΩΩ=Ω=Ω⎰⎰{}[][][]{}{}[][][]{}11T T T T p C D C P d p C D C d p δδ--ΩΩ⎡⎤=Ω=Ω⎢⎥⎣⎦⎰⎰ 于虚力原理:**W V δδ=考虑到虚力{}p δ的任意性.得: {}{}[][][][]{}1A Tp C D C d p -Ω∆=Ω=⎰式中 [][][][]1T A C D C d -Ω=Ω⎰——柔度矩阵(以上推导具有普遍意义)对本题:[]220111111l x x x x l l l y y x x l A d dx x I EI l l EI x x x l l l l Ω⎡⎤⎛⎫⎛⎫⎧⎫---⎢⎥- ⎪ ⎪⎪⎪⎡⎤⎪⎪⎝⎭⎝⎭⎛⎫⎢⎥=--Ω=⎨⎬ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎛⎫⎛⎫⎪⎪-⎢⎥-- ⎪ ⎪⎪⎪⎩⎭⎢⎥⎝⎭⎝⎭⎣⎦⎰⎰ /3/611/21/6/31/213l l ll l EIEI--⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦由{}[]{}A p ∆=展开得:11/21/213i i j j M lM EIθθ-⎧⎫⎧⎫⎡⎤=⎨⎬⎨⎬⎢⎥-⎣⎦⎩⎭⎩⎭方法一 单位位移法()/j i u u l ε=- , ()/j i E E u u l σε==- 设 1i u δ=, 则 /1/i u l l δεδ=-=-()()()()2011/l i j i j i i j E EA EAT u u l d u u dx u u l l l Ω-=--Ω=-=-⎰⎰ 同理, 令1j u δ= 可得()()11/j j i ET u u l d l Ω=-Ω⎰()j i EA u u l =- 即:1111i i j j T u EA T u l -⎧⎫⎧⎫⎡⎤=⎨⎬⎨⎬⎢⎥-⎣⎦⎩⎭⎩⎭可记为 {}[]{}ij ij p K =∆ []K 为刚度矩阵.方法二 矩阵虚位移法 设{}Tij i j p T T ⎡⎤=⎣⎦ {}Tij ij u u ⎡⎤∆=⎣⎦(){}[]1{}/11i j i ij j u u u l B u l ε⎧⎫⎧⎫=-=-∆∆⎨⎬⎨⎬⎩⎭⎩⎭式中 []{}111B l=-——几何矩阵 ∴ {}[]{}[][]{}ij D D B σε==∆ 设虚位移{}Tij i j u u δδδ⎡⎤∆=⎣⎦ , 虚应变 {}[]{}ij B δεδ=∆外力虚功 {}{}{}{}TTij ij ij ij W p p δδδ=∆=∆虚应变能 {}{}{}{}TTV d d δσδεδεσΩΩ=Ω=Ω⎰⎰ {}[][][]{}TTij ij B D B d δΩ=∆∆Ω⎰{}[][][]{}TTij ij B D B d δΩ⎡⎤=∆Ω∆⎢⎥⎣⎦⎰{}[]{}ijijK δ∆∆由 W V δδ= 得: {}[]{}ij ij p K =∆ 式中 [][][][]TK B D B d Ω=Ω⎰——刚度矩阵对拉压杆元 []{}1111111111l EA K EA dx l l l --⎧⎫⎡⎤=-=⎨⎬⎢⎥-⎩⎭⎣⎦⎰ 详细见方法一. 方法三 矩阵虚力法设 {}i ij j T p T ⎧⎫=⎨⎬⎩⎭ , {}i ij j u u ⎧⎫∆=⎨⎬⎩⎭ , {}[]{}D δε={}{}[]{}111i j iij j T T T C p T AA σ-⎧⎫==-⎨⎬⎩⎭式中 [][]111C A=-——物理矩阵(指联系杆端力与应力的系数矩阵) ∴ {}[]{}[][]{}11ij D D C p εσ--== 虚应力 {}[]{}ij C p δσδ=设虚力 {}i ij j T p T δδδ⎧⎫=⎨⎬⎩⎭, 则 {}[][]{}1ij D C p δεδ-=虚余功 {}{}{}{}*TTij ij ij ij W p p δδδ=∆=∆虚余能 {}{}{}{}*T TV d d δεδσδσεΩΩ=Ω=Ω⎰⎰{}[][][]{}1TTij ij p C D C p d δ-Ω=Ω⎰{}[][][]{}1T ij ij p C D C d p δ-Ω⎡⎤=Ω⎢⎥⎣⎦⎰{}[]{}ijijp A p δ式中[][][][]1T A C D C d -Ω=Ω⎰ ——柔度矩阵对拉压杆: []{}1111111111l A l K dx E A A EA --⎧⎫⎡⎤=-=⎨⎬⎢⎥-⎩⎭⎣⎦⎰ ∴ {}[]{}ij ij A p ∆=即 1111i i j j u T l u T EA -⎧⎫⎧⎫⎡⎤=⎨⎬⎨⎬⎢⎥-⎣⎦⎩⎭⎩⎭ 讨论: 比力方法二、三.结论: {}[]{}ij ij p K =∆, {}[]{}ij ij A p ∆=若 []K 与[]A 的逆矩阵存在(遗憾的是其实不是总是存在), 则,[]1K -实际上是一个柔度矩阵, []1A -实际上是一个刚度矩阵如图所示设()121cos n n n x v x a l π∞=⎛⎫=- ⎪⎝⎭∑显然满足0,x x l ==处的 变形约束条件()()()()''0000v v l v v l ====变形能 ''20()2l EI V v dx =⎰220122cos 2l n n EI n n x a dx l l ππ∞=⎡⎤⎛⎫=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑⎰421222nn EIn l a l π∞=⎛⎫=⎪⎝⎭∑ 力函数()()()2pv c pv l c pv c =+-=(对称)1221cos n n n c p a l π∞=⎛⎫=- ⎪⎝⎭∑由()0nV a ∂-=∂ , 所以 nn Va a ∂∂=∂∂ .即 422()21cos 2n EIl n n c a p l l ππ⎛⎫=- ⎪⎝⎭ 所以, 34421cos 4n n c pl l a EI n ππ⎛⎫- ⎪⎝⎭=⋅()34411221cos 1cos 4n pl n c n x v x EInl l πππ∞=⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭∑ 0如图所示设()01sinn n n xv x a x a lπ∞==+∑ ()()2222402011sin 22222ln n n n v l a l EI n n x EI n l V a dx a l l A l A πππ∞∞==⎡⎤⎡⎤⎛⎫⎛⎫⎣⎦=-+=+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦∑∑⎰()01sinn n n cpU c p a a pc lπ∞===+∑ 由()00V a ∂-=∂得 20/a l A pc = , 所以, 20/a Apc l = 由()0nV a ∂-=∂, 得4sin 2n EIl n n ca p l l ππ⎛⎫= ⎪⎝⎭ 所以, ()342sin n pl n c a l EI n ππ= ∴ ()3244121sin sin n Apc pl n c n xv x x l EI n l lπππ∞==+∑如图所示 令()()2v x ax l x =-所以, ''202lEI V v dx =⎰()20232622l EI al ax dx a EIl =-=⎰ ()()/2/22405192l l qU x dx qax l x dx qal ==-=⎰⎰由()0V a∂-=∂ 得 3454192aEIl ql =所以, 5768ql a EI =∴ ()()25768ql v x x l x EI=- 0所示如图,设()2312v x a x a x =+, ()()''1223v x a a x =+''22l EIV v dx =⎰()2120432lEIa a x dx =+⎰()2221122233EIl a a a l a l =++ ()()2312/2/2lll l qv x dx q a xa x dx==+⎰⎰312715838a a l ql ⎛⎫=+ ⎪⎝⎭由()10V a ∂-=∂ 得 ()3122237/24EIla a l ql +=由()20V a ∂-=∂ 得 ()24126215/64EIla l a l ql+=解上述两式得 2216738413192ql a EIql a EI⎧=⎪⎪⎨-⎪=⎪⎩∴ ()2230.17450.0677ql ql v x x x EI EI=-如图所示设 ()1sin xv x a lπ=()/4/2''2''20/42222l l l E I EI V v dx v dx ⎡⎤=+⎢⎥⎣⎦⎰⎰4242/4/222110/4sin 2sin l l l x x EI a dx EI a dx l l l l ππππ⎛⎫⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎰⎰4213142l EIa l ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭()110sin2/l lxqv x dx q a dx qla lππ===⎰⎰由()10V a ∂-=∂ 得 4131222l ql EIa l πππ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭所以, 441540.00718312ql ql a EI EI ππ==⎛⎫+ ⎪⎝⎭()40.00718sin ql x U x EI lπ=如图所示 设 ()()121sin2n n n x v x a lπ∞=-=∑()()222''022l v l EI V v x dx A⎡⎤⎣⎦⎡⎤=+⎣⎦⎰ ()2423112121sin 222n n n n n EI n a a l ππ∞∞==⎡⎤-⎛⎫⎛-⎫⎛⎫⎢⎥=+ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑∑ 其中, 3l A EI=()4331212121sin sin 222n n n n n V EI n EI n a a a l l πππ∞=-⎡⎤∂-⎛-⎫⎛⎫⎛⎫=+⎢⎥ ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭⎣⎦∑ ()()220121sin2ll n n n x qv x dx q a dx lπ∞=-==∑⎰⎰()()11241cos 212121nn n n a l ql q a n n n πππ∞∞==⎛⎫=--=⎡⎤ ⎪⎣⎦ ⎪--⎝⎭∑∑ 所以,()421n ql a n π∂=∂- 取前两项得 ()41123312V EI EI a a a a l l π∂⎛⎫=+- ⎪∂⎝⎭, ()421233232V EI EIa a a a l l π∂⎛⎫=-- ⎪∂⎝⎭由()10V a ∂-=∂ 得 41233412EI EI qlaa l l ππ⎧⎫⎡⎤⎪⎪⎛⎫+-=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭ 由()20V a ∂-=∂ 得 4213334123EI EI qlaa l l ππ⎧⎫⎡⎤⎪⎪⎛⎫+-=⎢⎥⎨⎬ ⎪⎝⎭⎢⎥⎪⎪⎣⎦⎩⎭即: 41241247.0884494.1333ql a a EI ql a a EI ππ⎧-=⎪⎪⎨⎪-=-⎪⎩解得 41420.17980.00118ql a EI ql a EI⎧=⎪⎪⎨⎪=⎪⎩ ∴()430.180sin 0.0012sin 22x x ql v x l l EI ππ⎛⎫=+ ⎪⎝⎭ ∴中点挠度40.17862l ql v EI ⎛⎫= ⎪⎝⎭6.6题 取12()sin,()sin n n n x n xv x a v x b l lππ==∑∑1'221200222004222422222sin cos 22 222244llsl l s n n s n n s n nGA EI V v dx vdxGA EI n n x n n x a dx b dx l l l l GA EIn l n l a b l l GA l EIl n n a b l l ππππππππ=+⎡⎤⎡⎤⎛⎫⎛⎫=-+⎢⎥ ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦⎛⎫⎛⎫=+ ⎪⎪⎝⎭⎝⎭⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎰⎰∑∑⎰⎰∑∑∑∑42(),()22s n n n n GA l V EIl n V n a b a l b lππ∂∂==∂∂ 120011sinsin (1cos )(1cos )l lll n n n n qv dx qv dxn x n xq a dx q b dxl l n n q a n q b n l l ππππππ--=+=+⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰∑∑⎰⎰∑∑∴(1cos ),(1cos )n n l l a q n b q n n n ππππ⎛⎫⎛⎫∂∂=-∂∂=-⎪⎪⎝⎭⎝⎭由4455()2(1cos )40()()n n n V ql n ql a a n EI n EI πππ∂--==∂=为奇数得 由2233()2(1cos )40()()n n n s s V ql n ql b a n GA n GA πππ∂--==∂=为奇数得 ∴()()12()U x U x U x =+4255334141sin sin (1,3,5, )n n S ql n x ql n xEI n l GA nl N ππππ=+=∑∑1)图6.9 对等断面轴向力沿梁长不变时, 复杂弯曲方程为:''0IV EIV TV q --= 取()sinn nn xv x a lπ=∑ 能满足梁段全部鸿沟条件 ''''''''00,0,0,0,0()0l IV x l v v v v EIV TV q qvdx ==≠=≠∴--=⎰处∴有420()sin ()(sin )sin 0l n n n n x n n x n x EI a T a q dx l l l l l πππππ⎡⎤---=⎢⎥⎣⎦∑∑⎰积分:420cos 022ln n n l n l l n x EIa Ta q l l n l ππππ⎛⎫⎛⎫⎛⎫⎡⎤+--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 即:()4425220()1cos 4()()14/()22n l n q n n a ql n EIl n n l EI n u n T l l ππππππ⎛⎫⎧- ⎪⎪⎝⎭==⎨⎛⎫⎛⎫⎪⎡⎤++ ⎪ ⎪⎣⎦⎩⎝⎭⎝⎭为偶数为奇数式中:u =u =1 ∴455222sin4()(1,3,5 )(14/)N n xql l v x n EI n u n πππ==+∑ ∴44522214()0.0093012()(14/)n l ql ql v EI EI n u n ππ===+取一项 准确解为:444055(1)0.7110.0092582384384l ql ql ql v f EI EI EI ⎛⎫⎡⎤==⨯= ⎪⎢⎥⎝⎭⎣⎦误差仅为0.46%结论:1)引进22()cr n EI T lπ=——单跨简支压杆临界力()22554,4384l T u EI π=≈ 2)取一项, 中点挠度表达式可写成如下讨论的形式:445(0)5138423841()()cr cr ql T l ql v EIEI T T T T ⎡⎤⎧⎢⎥=⎪⎛⎫==⎢⎥⎨ ⎪⎝⎭⎢⎥⎪±∞=⎩⎢⎥⎣⎦失稳的压力时 式中:当T 为拉力时取正号(此时相当一缩小系数, 随T ↑而↓)≤1当T 为压力时取负号(此时相当一放年夜系数, 随T ↑而↑)≥1 2)∵弹性基础梁平衡方程为:0IV EIV kv q +-=∴00lIVEIV kv q Vdx δ⎡⎤+-=⎣⎦⎰ 取:()sinn nn xV x a lπ=∑代入上式:40sin sin sin 0ln n n n n n n x n x n x a EI a k a q dx l l l l ππππδ⎡⎤⎛⎫+-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦∑∑⎰由于n a δ的随意性有式中积分为0, 即:()41cos 022n n n l l l EIa ka q n l n πππ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭∴()44541cos 4()()1/()522n l q n ql n a n n EIl n kl EI n k EI l πππππ⎛⎫- ⎪⎝⎭==⎡⎤⎛⎫++⎢⎥ ⎪⎣⎦⎝⎭为奇数 由442442l u k u k EI EI l ⎛⎫== ⎪⎝⎭得代入得()44542()14n ql a u EI n n ππ=⎡⎤+⎢⎥⎣⎦()4554sin4()(1,3,5 )1nn xql l v x n EI kn EI n l πππ⎛⎫== ⎪⎡⎤⎝⎭+⎢⎥⎢⎥⎣⎦∑今取一项, 且令u=1, 求中点挠度()44454()0.0078882214l ql ql EI EIνππ⎡⎤⎢⎥==⎢⎥⎡⎤⎢⎥+⎢⎥⎢⎥⎣⎦⎣⎦准确值:()4404110.448()10.00862524(21)q ql ql u EI k EI νϕ⎡⎤-=-==⎡⎤⎢⎥⎣⎦⨯⎣⎦误差为8.5%误差较年夜, 若多取几项, 如取二项则误差更年夜, ∴交错级数的和小于首项, 即2l ν⎛⎫⎪⎝⎭按级数法只能收敛到略小于精确解的一个值, 此矛盾是由于0ϕ是近似值.220()()2()1 22lM x dx AREIννν=+=+⎰梁支 020343342()2 ()2222 232162111 (1)6166ll MM x dx AR R EIR R qx x ql x dx AR EI R l ql l ql R EI EI l ql EIEI ν∂∂=+∂∂⎡⎤⎛⎫=---+ ⎪⎢⎥⎝⎭⎣⎦⎡⎤⎛⎫-⎛⎫=-++⎢⎥ ⎪ ⎪⨯⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫=-+++ ⎪⎢⎥⎝⎭⎣⎦⎰⎰由最小功原理:0vR∂=∂解出:528qlR =∴43445(2)(2)384485 0.178528q l R l v EIEIqlql EIEI=-=≈中由对称性可知, 对称断面处剪力为零, 转角00θ=, 静不定内力0T 和0M 可最小功原理求出:2102200()()(/2)2sin (1cos )()qs M OA M s M qr qr T r AB θθ⎧+⎪=⎨⎪+++-⎩—段2—段 001 ()0 ()()() 1 ()(1cos ) ()OA OA M s M s M T AB r AB θ⎧⎧∂∂==⎨⎨∂∂-⎩⎩段—段段—段 最小功原理:()()0022221010000()()11/22sin 1cos 20s rV M s M s ds M EI M qs M ds M qr qr T r rd EI EI πθθθ∂∂=∂∂⎛⎫⎡⎤=+++++- ⎪⎣⎦⎝⎭=⎰⎰⎰()22200012sin (1cos )1cos 02V qr M qr T r r rd T EIπθθθθ∂⎡⎤=+++--=⎢⎥∂⎣⎦⎰分别得:()()()()2002001112226413122424M T r qr M T r qr ππππππ⎧⎛⎫++-=-++ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-+-=+ ⎪⎪⎝⎭⎩解得:2000.5388()2.7452M qrM s T qr⎧=-⎪∴⎨=-⎪⎩表达式正确 由10Ms ∂=∂ 得极值点在0t s =点,该处极值为10M M = 由20Ms ∂=∂ 得020.7285,0.6296qr tg T θθ=-=≈极值为()()2222210.53882sin 0.6296 2.74521cos 20.61M qr qr qr qr θ⎡⎤⎛⎫=-+++-- ⎪⎢⎥⎝⎭⎣⎦=区间端点B 处()222210.53882sin 2.745210.7922B M qr qr qr qr π⎡⎤⎛⎫=-++-=- ⎪⎢⎥⎝⎭⎣⎦{}max 012max max ,,0.79()B B B M M M M M M M qr ∴==∴==-发生在支撑处由左右对称,∴对陈断面01上无剪力. 有垂向静力平衡条件:0sin 2P qr d πθθ=⎰解得:/4q P r =任意断面弯矩为:()()()200020000Pr()sin (1cos )1cos 2Pr(1cos )sin sin 21,1cos M s M T r qr d M T r qr M Mr M T θθθθααθθθθθ=++-+-+-⎡⎤⎣⎦=+-++-+∂∂==-∂∂⎰ 有最小功原理确定T 0和M 0200001Pr (1cos )sin (sin )02V M T r qr rd M EIπθθθθθ∂⎡⎤=+-++-+=⎢⎥∂⎣⎦⎰即:2200Pr (2)02M T r qr πππ+++-+=200001Pr (1cos )sin (sin )(1cos )02V M T r qr r rd T EIπθθθθθθ∂⎡⎤=+-++-+-=⎢⎥∂⎣⎦⎰()(1cos )0()cos 0M s d M s d ππθθθθ-=-=⎰⎰即220000Pr ()cos cos sin (sin cos cos )02M T r T r qr d πθθθθθθθθ⎡⎤∴+-++-+=⎢⎥⎣⎦⎰ 得:2000204/()2T r P qr T qr T πππ--=∴=-=-与图中假设方向相反20Pr(4)8M ππ∴=-2Pr Pr Pr Pr()(4)(1cos )sin 844M s πθθθππ∴=---+- 241cos sin Pr 844πθθθπππ⎡⎤-=-++-⎢⎥⎣⎦第7章 矩阵法322122112x lx l x v θθθθθ+++-= 2221211'32)(x l x l x v θθθθθ+++-=, x ll x v 22121''62)(θθθθ+++-= ∵⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+-==j i l x l l x l y yv θθε22''6264∴[][]E D l x l x l y B =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=,13232 [][][][]2222222032433213133323221442212312T el x y x x l K B D B d E d x l l l l x x x l l l l l EI EIEI l ll l x ll ΩΩ⎡⎤-⎢⎥⎡⎤⎛⎫⎛⎫⎡⎤=Ω=--Ω⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎢⎥-⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎡⎤--+⎢⎥⎪ ⎪⎢⎥⎡⎤⎝⎭⎝⎭⎢⎥===⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎛⎫⎢⎥- ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎣⎦⎰⎰⎰对称解:如图示离散为3个节点, 2个单位()[]()()()()()()[]()()()()⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=23323222322221221211121112222124262262621226212226426262122621222K K K K K K K K K l l l l l l l l l l l l l I E K形成[]K ()()[]()()()()[]()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+32123323222322212212111211100δδδK K K K K K K K 将各子块代入得:()()()()()()()()()()()()()()()()()()()()()()⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------⨯-00042/622/62/62/242/62/2422/6122/642/122/62/242/62/362/122/2442/12242/62/122/242/62/242/11332211222222222P M R v v v l l l l l l l l l l l l l l l l l x l l l x l l EI R y z z z θθθ 划去1、2行列, (∵011==z v θ)约束处置后得:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--------000412212124812482121212124812144233222222P v vl l l l ll ll l l ll l EI z z θθ图7.3 离散如图∵杆元尺寸图7.2(以2l 代l ), ∴e K ⎡⎤⎣⎦不变, 离散方式一样, 组装成的整体刚度矩一样[]K{}{}11300T TyR yP R M P R ={}{}112233TTz z z v v v δθθθ=约束条件 1130z v v θ===, 划去1、2、5行列得(注意用上题结果时要以2l 代l )222336166612200624z z l l l v P EI l l l θθ⎡⎤⎢⎥⎧⎫⎧⎫⎢⎥-⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎩⎭⎢⎥⎢⎥⎣⎦图7.4, 由对称计算一半, 注意到230,0z v θ=≠[]22(1)(1)(1)1112(1)(1)212222(2)(2)2l l 4I I(2)2223(2)(2)323312612666421261266624l l l l K K EI l l K l K K l l l l l l K K KK K -⎡⎤⎢⎥⎢⎥-⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥---⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎡⎤⎡⎤−−−−−→=⎢⎥⎣⎦⎣⎦以代,代[][](1)(1)111211(1)(1)(2)(2)2122222322(2)(2)32333300K K P K K K K P K K P δδδ⎡⎤⎧⎫⎧⎫⎢⎥⎪⎪⎪⎪+=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭⎩⎭⎣⎦, 将各子块代入得22121112222222233223126126266421212618660326620124666646648y R z z z R ql l l l l R v ql l l M v ql EI l l l l l k v l ql l l v ql l l l l M ll θθθ-⎡⎤⎢⎥⎧⎫+⎢⎥⎪⎪-⎢⎥⎪⎪⎧⎫⎢⎥⎪⎪+⎪⎪⎢⎥⎪⎪---⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪⎢⎥-+=⎨⎬⎨⎬⎢⎥-⎪⎪⎪⎢⎥⎪⎪⎪⎢⎥⎪⎪⎪⎢⎥---⎪⎪⎪⎩⎭⎢⎥⎪⎢⎥⎪-⎢⎥⎩⎢⎥⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎭ 由约束条件1132222200,z z EIv R k v lθθ====-=-, 划去1、2、6行列, 将2k 代入[]K 得222223223182060260124666z ql l l v EI ql l l vql l ll θ⎧⎫+-⎡⎤⎪⎪⎢⎥⎪⎪⎧⎫⎢⎥-⎪⎪⎪⎪⎢⎥=⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎩⎭--⎪⎪⎢⎥⎪⎪⎢⎥⎣⎦⎩⎭7.3 题a) 写出各杆元对总体坐标之单位刚度矩阵22(1)(3)22000012612600660402E 000012612600660204AA I II I l l l l I I I I l l K K A A l I I I I l l l l I I II l l -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎡⎤⎡⎤==⎣⎦⎣⎦⎢⎥-⎢⎥--⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦(1)(1)(3)(3)(2)(2)(2)222133342l l (2)2223(2)(2)(1)(1)(3)(3)323312114344K K K K K K K K K K K K K K ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤==−−−→==⎢⎥⎣⎦⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦以代[]cos sin 022010sin cos 010022001001t ππππ⎡⎤-⎢⎥-⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦∴[]00t T t ⎡⎤=⎢⎥⎣⎦ [][](1)1(1)(3)K K T K T -⎡⎤⎡⎤⎡⎤==⎣⎦⎣⎦⎢⎥⎣⎦2222000012612600010010100100660402001001010000001010012612610000001001660204AA I II I l l l l I I I I E l l A A l II I I l l l l I I II l l-⎡⎤⎢⎥-⎢⎥-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦22(3)(3)(1)(1)33342221(3)(3)(1)(1)4344121122126126000000660402126126000000660204I I I I l l l l A A I I I I K K K K E l l I I I I l K K K K l l l l A A I I II ll---⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎣⎦b )集成总刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-------+-----+----+---+-----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++=I lI Il I A A l I l I lIl I I l I I lI l I I l I A l I A l I l I lI l I l I lI A l I A I l I I lI l I I l Il I l Il I A l I A A l I A l I l I l I Il I I l I A A l I lI l I l IK K K K K K K K K K K K K 40620600006012601220662362300023460234606012602120022306236206234602346000002602126012206406000060126012222222222222)3(44)3(43)3(34)3(33)2(33)2(32)2(23)2(22)1(22)1(21)1(12)1(11c )写出节点位移及外载荷列阵{}{}{}TT z z z z T v u v u v u v u 4321444333222111δδδδθθθθδ==固端力:{}TT Ql Q Ql Q F ⎭⎬⎫⎩⎨⎧-=12201220)1( 局{}{}{}0)3()2(==T T F F 局局{}[]{}⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧---=⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--==12)1()1(1202120212201220100001010100001010T F F Ql Q Ql Q Ql Q Ql Q F F T 局总{}TR yx R y x M R R Ql Q Ql M T Q R P P P P P ⎭⎬⎫⎩⎨⎧-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧=44411143210001202122总约束处置⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡++3232)3(33)2(33)2(32)2(23)2(22)1(22P P K K K K K K δδ7.4 题由对称性, 计算图示两个单位即可.但2/12A A =2P 取P/2 045,==⎪⎭⎫⎝⎛∧αx x。

交大船舶原理上 习题集

交大船舶原理上 习题集

水线号 水线面面 积 曲线。 2—11
水线间距 δd =1.10m,按梯形法列表计算并绘制: (1)排水量曲线; (2)每厘米吃水吨数 某货船在 A 港内吃水 d=5.35m,要进入 B 港,其吃水不能超过 d1=4.60m,船在
d2=5.50m 时,TPC2=18.60t/cm,在吃水 d3=4.50m 时,TPC3=14.8t/cm,假定每厘米吃水吨数对 于吃水的变化是一直线,求船进入 B 港前必须卸下的货物重量。 2-12 某船船长 L=164m,船宽 B=19.7m,方形系数 CB=0.50,水线面系数 Cwp=0.73,在 海水中平均吃水 d=8.20m,求船进人淡水中的平均吃水。
b=1.5m,l1=2m,l2=1.5m,b1=1.2m,b2=1.5m。求:该水线面面积 Aw 及形心坐标 XB、YB, 。
2-3
某船水线长 L=100m,在正浮状态时,各站号的横剖面面积如下表所列: 6 54.3 7 44.7 8 30.1 9 13.5 10 0
0 1 2 3 4 5 站号 横剖面面 0 13.3 30.4 44.4 53.8 57.3 积 (1)以适当比例画出该船的横剖面面积曲线; 浮心纵向坐标 XB; (3)求纵向棱形系数 Cp。 2-4
100
明. 8. 分别叙述水线面面积曲线 Aw=f(z)和横剖面面积曲线 As=f(x)的特性。 9.排水体积曲线的特性如何? 10. 分别说明型排水体积(量) ,总排水体积(量)和储备浮力的含义是什么? 11.浮心垂向坐标 ZB 和纵向坐标 XB 如何计算? 12.何谓邦戎曲线?如何绘制?它有什么用途? 13.如何应用邦戎曲线计算船舶具有纵倾浮态下的排水体积 ∇ 和浮心位置 B(XB、ZB)? 14.费尔索夫图谱的表达形式如何?有什么用途?试举例说明。 15.叙述符拉索夫曲线的由来及其用途。 如何应用符拉索夫曲线计算船舶同时具有纵倾和横倾浮态下的排水体积?和浮心位置 B (XB、YB、ZB) 。 16.当船舶从淡水驶进海水(或从海水驶进淡水)时,吃水有何变化?其相应的浮心和浮 态又发生了什么变化?

船舶原理考试试题

船舶原理考试试题

船舶原理考试试题船舶原理考试试题一、选择题1、一艘船在平静的水中行驶,当船头指向正东方时,船右舷轮子上的航向器指针是指向哪个方向的? A. 正北方 B. 东南方 C. 正东方 D. 西北方2、下列哪个部件是船上的必需品,可以帮助船员在黑暗中看清仪表和设备? A. 罗盘 B. 航向灯 C. 测深仪 D. 自动舵3、一艘货船在装货过程中,货物突然坍塌,导致船体右侧严重受损。

此时,船长应如何指挥船员进行紧急应对? A. 立即启动应急电源,照亮船舱 B. 立即通知所有船员,进行紧急疏散 C. 立即组织船员进行修补,防止船体漏水 D. 立即停止装货,防止货物继续坍塌二、填空题4、船舶的螺旋桨是用来产生______的,而船锚则是用来产生______的。

41、一般来说,船体的浮力主要来源于______,而船体的稳性则主要来源于______。

411、一艘油轮在海上遇险,油轮的船长应该如何指挥船员进行紧急应对?请列举至少三个具体的应对措施。

三、简答题7、请简述船舶在逆流中行驶时,如何利用推力器和舵来控制船体的方向和速度?71、请说明船舶在锚泊时,如何利用锚和缆绳来保持船体的稳定和位置?711、请阐述船舶在航行过程中遇到大风大浪时,如何利用船体的浮性和稳性来保障船员的安全?四、论述题10、请论述船舶在航行过程中遇到能见度不良的天气时,船长应该如何利用经验和科学知识来判断和决策,以确保船员和船舶的安全?船舶设计原理复习资料船舶设计原理复习资料一、确定主题本文旨在复习船舶设计原理的相关知识,帮助读者了解和掌握船舶设计的基本概念和方法。

本文将按照船体结构、推进系统、动力系统、控制系统等几个方面进行讲解,并通过举例说明船舶设计原理的应用。

二、编写引言船舶设计是海洋工程领域中的重要分支,涉及船体结构、推进系统、动力系统、控制系统等多个方面。

掌握船舶设计原理对于从事船舶设计、海洋工程等领域的工作者至关重要。

本文将通过复习船舶设计原理,帮助读者深入了解船舶设计的相关知识。

船舶原理练习题(考试精华)

船舶原理练习题(考试精华)

第一章货物运输基础知识第一节船体形状及其参数1 A 钢质船的船体型线图所表示的船体形状是()。

A.不包括船壳板厚度在内的船体图形面B.已包括船壳板厚度在内的船体图形C.代表船体的实际外形D.大于船体的实际外形2 A 船舶在设计时使用的尺度为( )。

A.船型尺度 B.理论尺度C.实际尺度 D.最大尺度3 C 船型尺度包括( )。

Ⅰ.最大尺度;Ⅱ.登记尺度;Ⅲ.垂线间长;Ⅳ.型深;Ⅴ.型宽;Ⅵ.型吃水;Ⅶ.干舷。

A.Ⅱ,Ⅲ,Ⅵ,Ⅶ B.Ⅰ,Ⅱ,Ⅲ,ⅤC.Ⅲ,Ⅳ,Ⅴ,Ⅵ D.Ⅳ,Ⅴ,Ⅵ,Ⅶ4 B 从船舶型线图上量取的尺度为( )。

A.最大尺度 B.型尺度C.登记尺度 D.实际尺度5 D 沿船舶的设计水线(或夏季满载水线)由首柱前缘到舵柱后缘或舵杆中心线的水平距离称为船舶的()。

A.型长 B.两柱间长C.垂线间长 D.A、B、C均是6 B 在船舶要素中,船舶的主尺度包括()。

A.型尺度和登记尺度 B.船长、船宽、型深和型吃水C.计算尺度和最大尺度 D.登记尺度和型尺度7 A 根据我国规定,以下()属于船舶船型尺度。

A.型深、型吃水、型长及型宽B.型长、最大宽度及总长C.全长、实际吃水及登记深度D.登记长度、型宽及水线上最大高度8 C 船舶的型长是指沿夏季满载水线,从()的水平距离。

A.首柱后缘量至舵柱前缘B.首柱后缘量至尾柱后缘C.首柱前缘量至舵柱后缘D.首柱前缘量至尾柱前缘9 D 根据我国的规定,船舶型宽是指()。

A.在船长中点处,由一舷的肋骨外缘量至另一舷的肋骨外缘之间的水平距离B.在船长中点处,由一舷的肋骨内缘量至另一舷的肋骨内缘之间的水平距离C.在船舶最大宽度处,由一舷的外板量至另一舷的外板之间的水平距离D.在船舶最大宽度处,由一舷的肋骨外缘量至另一舷的肋骨外缘之间的水平距离10 B 船舶的首垂线是指()。

A.过船体最前端所做的垂线B.过首柱前缘与夏季载重线的交点所做的垂线C.过首柱后缘与夏季载重线的交点所做的垂线D.过上甲板与首柱前缘的交点所做的垂线11 A 根据规范规定,钢质船的“型尺度”是()。

船舶原理-题9

船舶原理-题9
船舶原理基础习题
Principles of Naval Architecture
Shanghai Maritime University
船 舶 原 理 基 础
船舶静力学: 船舶静力学:
第一章 船体形状 第二章 船体计算的近似积分法 第三章 浮性 第四章 稳性 第五章 吃水差 第六章 抗沉性
船 舶 原 理 基 础
Principles of Naval Architecture
Structure Mechanics:
Chap.7 Structure Mechanics
Ship Hydrodynamics:
Chap.8 Ship Resistance Chap.9 Ship Propulsion Chap.10 Ship Sea keeping Chap.11 Ship Manoeuvring
C
通常下列________推进器可在水平面内产生各个方向上的推 力 A. 明轮 B. 直叶推进器 C. 喷水推进器 D. 可调螺距浆
B
船速相同,转速较低时,推力________;转速相同,船速较 低时,推力________ A. 越小,越大 B. 越小,越小 C. 越大,越大 D. 越大,越小
A
B
相同转速时,螺旋桨在________时推力最大。 A. 前航正车时 B. 前航倒车时 C. 稍有后退正车时 D. 系泊正车时
C
空泡的影响不包括________。 A. 降低螺旋桨推力性能 B. 船体噪声 C. 船体阻力增大 D. 螺旋桨材料损坏
C
螺旋桨近水面时推力下降的原因不包括________。 A. 兴波 B. 吸入空气 C. 螺旋桨飞车 D. 螺旋桨出水
船体结构强度: 船体结构强度:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档