不饱和度在高级中学化学中的妙用
中学常见含氮有机物的不饱和度及其应用
中学常见含氮有机物的不饱和度及其应用不饱和度是指物质两个重要特性之一,它张力的大小决定了物质的结构和性质,也是物质的反应性的强弱的指示物。
含氮的有机物的不饱和度的掌握与利用在生物化学中具有重要的意义。
首先,让我们来了解一下什么是含氮的有机物。
含氮的有机物是指含有氮元素的有机化合物。
含氮的有机物由多种分子组成,表现为氨基、酰胺、羧酸和亲氨酸等。
它们之所以有着丰富多样的特性,是因为其中氮原子拥有丰富的键种,可与氧、磷、硫等元素结合,形成确定结构和反应性的成分,起着调控有机体动态过程的关键作用。
其次,让我来介绍什么是不饱和度。
不饱和度是指某物质中有机物的可变性,特别指可以进行变性反应的物质的可变性。
当物质的不饱和度(非共价双键)高于一定水平时,它就会发生变性反应,形成新的有机物。
这种变性反应有助于物质结构的改变,从而改变其性质和功能,起到调控作用。
最后,让我们来谈谈中学常见含氮有机物的不饱和度及其应用。
中学常见的含氮有机物有氨基酸、肽、多肽、抗原、合成抗体、多肽聚酯、多糖、共价核酸、核酸引物、抗菌肽等。
它们的不饱和度的高低可以通过化学反应或物理反应来改变,这些反应也有助于它们的应用。
例如,氨基酸的不饱和度可以通过脱氢反应、乙酰反应、活性位点氨基酸反应等来改变,其高水平的不饱和度保证它在细胞内的反应性,有助于蛋白质的修饰,满足细胞内具体的需求。
肽和多肽的不饱和度可以通过纳米技术、共价固定、亲和结合等方式改变,这些技术有助于精准分离、检测、精准合成,满足不同的实验需要。
含氮的有机物的不饱和度改变的研究,也在抗菌肽等药物的研发中发挥重要作用,在药物的研发和诊疗过程中,不饱和度的变化可以改变药物的结构,从而改变其抗菌性、抗病毒性和抗炎性。
综上所述,含氮的有机物的不饱和度的改变,可以丰富物质的结构和性质,这种物质的不饱和度的高低变化有助于改变物质的结构和性质,从而为药物、抗原等的研发提供技术支持,使其更起着调控有机体动态过程的关键作用。
不饱和度在有机化学中的应用
近年来高考化学试卷中对这一理念有充分体现,出现了与日化产品、药物、环境等的相关试题,如青蒿素、多巴胺、具有显著抗癌活性的10-羟基喜树碱、治疗高血压的药物多沙唑嗪盐酸盐,制作“香水”的天然化合物a-damascone等,其结构均较复杂,用常规思维来解决这类问题,十分繁琐,而且难免会出现遗漏、差错。
不饱和度揭示了有机物组成与结构的隐性关系和各类有机物间的内在联系,是推断有机物可能结构的一种新思维,其优点是推理严谨,可防遗漏。
不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。
【计算公式:】【分子的不饱和度(Ω)与分子结构的关系:】①若Ω=0,说明分子是饱和链状结构②若Ω=1,说明分子中有一个双键或一个环;③若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;余类推;④若Ω≥4,说明分子中很可能有苯环。
(一般情况必有苯环)【计算下列结构的分子式】C C【推断分子结构】(1)C 7H 8O 的结构推断(2)某有机化合物A 的相对分子质量大于150且小于200。
经分析得知,化合物中碳、氢、氧的质量比为:7.5:1.125:3。
A 具有酸性,是蜂王浆中的有效成分,物质的量为0.0002mol 的A 需用20.0mL 0.0100mol/L 氢氧化钠水溶液来滴定达到滴定终点。
①有机化合物A 的相对分子质量是 ,该化合物的化学式(分子式)是 。
②已知A 能使溴的四氯化碳溶液褪色,A 发生臭氧化还原水解反应生成B 和C ,B 能发生银镜反应,且能与金属钠或氢氧化钠溶液反应。
信息提示:在一定条件下,烯烃可发生臭氧化还原水解反应,生成羰基化合物,该反应可表示为:以上反应和B 的进一步反应如下图所示。
1molD 与适量的碳酸氢钠溶液反应可放出二氧化碳44.8L (标准状况)。
不饱和度在高中化学中的妙用
不饱和度在高中化学中的妙用一、不饱和度的概念不饱和度 (英文名称:Degree of unsaturation),又称缺氢指数或者环加双键指数(index of hydrogen deficiency (IHD) or rings plus double bonds ),是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。
二、不饱和度的计算方法(1)、从有机物的分子式计算不饱和度的方法第一种方法若有机物中只含碳、氢元素,Ω=222HC -+(其中C 和H 分别代表碳原子和氢原子的数目)例如:CH 2=CH 2的不饱和度Ω=24222-+⨯=1第二种方法:若有机物中只含碳、氢、氧、氮和单价卤族元素, Ω=21HN C -++(其中C 代表碳原子数目,H 代表氢原子和卤素原子的总数,N 代表氮原子的数目)例如:C 3H 7O 2N 的不饱和度Ω=27113-++=1补充理解说明:①有机物分子中含有卤素等一价元素时,可视为氢原子计算不饱和度,例如:C2H3Cl的不饱和度Ω为1。
②有机物分子中含有氧、硫等二价元素时,因为“C=O”与“C=C”等效,故计算不饱和度时可忽略氧原子,例如:CH2=CH2(乙烯)、CH3CHO (乙醛)、CH3COOH(乙酸)的不饱和度Ω均为1。
③有机物分子中含有氮、磷等三价元素时,每增加一个三价原子,则等效为减少一个氢原子,例如:CH3NH2(氨基甲烷)的不饱和度Ω为0。
④碳的同素异形体,可将其视作氢原子数为0的烃,例如C60(足球烯,或者富勒烯,Buckminster fullerene)的不饱和度Ω为61。
⑤对于烃的含氧衍生物(C n H m O z),由于氢原子的最大值是2n+2(如饱和一元醇C n H2n+2O),所以其不饱和度为零,依此类推,饱和一元醛(C n H2n O),饱和一元羧酸(C n H2n O2),由于含有一个碳氧双键而比同碳数的饱和一元醇减少了2个氢原子,也可视为其不饱和度Ω=1。
不饱和度在高中化学中的妙用
不饱和度在高中化学中的妙用work Information Technology Company.2020YEAR不饱和度在高中化学中的妙用一、不饱和度的概念不饱和度 (英文名称:Degree of unsaturation),又称缺氢指数或者环加双键指数(index of hydrogen deficiency (IHD) or rings plus double bonds ),是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。
二、不饱和度的计算方法(1)、从有机物的分子式计算不饱和度的方法第一种方法若有机物中只含碳、氢元素,Ω=222HC -+(其中C 和H 分别代表碳原子和氢原子的数目)例如:CH 2=CH 2的不饱和度Ω=24222-+⨯=1第二种方法:若有机物中只含碳、氢、氧、氮和单价卤族元素, Ω=21HN C -++(其中C 代表碳原子数目,H 代表氢原子和卤素原子的总数,N 代表氮原子的数目)例如:C 3H 7O 2N 的不饱和度Ω=27113-++=1补充理解说明:①有机物分子中含有卤素等一价元素时,可视为氢原子计算不饱和度,例如:C2H3Cl的不饱和度Ω为1。
②有机物分子中含有氧、硫等二价元素时,因为“C=O”与“C=C”等效,故计算不饱和度时可忽略氧原子,例如:CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω均为1。
③有机物分子中含有氮、磷等三价元素时,每增加一个三价原子,则等效为减少一个氢原子,例如:CH3NH2(氨基甲烷)的不饱和度Ω为0。
④碳的同素异形体,可将其视作氢原子数为0的烃,例如C60(足球烯,或者富勒烯,Buckminster fullerene)的不饱和度Ω为61。
⑤对于烃的含氧衍生物(C n H m O z),由于氢原子的最大值是2n+2(如饱和一元醇C n H2n+2O),所以其不饱和度为零,依此类推,饱和一元醛(C n H2n O),饱和一元羧酸(C n H2n O2),由于含有一个碳氧双键而比同碳数的饱和一元醇减少了2个氢原子,也可视为其不饱和度Ω=1。
不饱和度的计算 高二下学期化学人教版(2019)选择性必修3
C17H12O6
C24H12
C14H10
不饱和度的计算
计算下列物质的不饱和度
C5H8O2 C5H4Cl2 C8H13O2N3
Ω=5+1-8/2=2 Ω=5+1-6/2=3 Ω=8+1-10/2=4
不饱和度的计算
立体结构的有机物不饱和度计算
C8H8 Ω=5
方法:剪断法 剪环成链(不剪断),需要 剪几次,便有几个环不饱 和度。 规律: Ω=环数或者面数剪
有机化学中不饱和度的 巧妙应用
不饱和度的概念
1、不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和 程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比 较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表 示。
2、常见结构的不饱和度(Ω):
结构
双键
不饱和度(Ω)
1
三键 2
成环 1
X的分子式是:( D )A、C5H10O4 B.C4H8O4 C.C3H6O4
D.C2H2O4
不饱和度的应用
预测官能团及数量——确定结构
例2:有一环状化合物C8H8,它不能使溴的CCl4溶液褪色;它的 分子中碳环上的1个氢原子被氯取代后有机生成物只有一种。这种
环状化合物可能是( C )
不饱和度的应用
苯环 4
不饱和度的计算
3、根据有机物的结构式计算
Ω=双键数+叁键数×2+环数
Ω=4+0×2+2=6。
Ω=6+1×2+2=10。 Ω=4+3+1=8
不饱和度ห้องสมุดไป่ตู้计算
4、根据有机物的化学式计算
不饱和度在高中化学中的妙用
不饱和度在高中化学中的妙用一、不饱和度的概念不饱和度 (英文名称:Degree of unsaturation),又称缺氢指数或者环加双键指数(index of hydrogen deficiency (IHD) or rings plus double bonds ),是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。
二、不饱和度的计算方法(1)、从有机物的分子式计算不饱和度的方法第一种方法若有机物中只含碳、氢元素,Ω=222HC -+(其中C 和H 分别代表碳原子和氢原子的数目)例如:CH 2=CH 2的不饱和度Ω=24222-+⨯=1第二种方法:若有机物中只含碳、氢、氧、氮和单价卤族元素, Ω=21HN C -++(其中C 代表碳原子数目,H 代表氢原子和卤素原子的总数,N 代表氮原子的数目)例如:C 3H 7O 2N 的不饱和度Ω=27113-++=1补充理解说明:①有机物分子中含有卤素等一价元素时,可视为氢原子计算不饱和度,例如:C2H3Cl的不饱和度Ω为1。
②有机物分子中含有氧、硫等二价元素时,因为“C=O”与“C=C”等效,故计算不饱和度时可忽略氧原子,例如:CH2=CH2(乙烯)、CH3CHO (乙醛)、CH3COOH(乙酸)的不饱和度Ω均为1。
③有机物分子中含有氮、磷等三价元素时,每增加一个三价原子,则等效为减少一个氢原子,例如:CH3NH2(氨基甲烷)的不饱和度Ω为0。
④碳的同素异形体,可将其视作氢原子数为0的烃,例如C60(足球烯,或者富勒烯,Buckminster fullerene)的不饱和度Ω为61。
⑤对于烃的含氧衍生物(C n H m O z),由于氢原子的最大值是2n+2(如饱和一元醇C n H2n+2O),所以其不饱和度为零,依此类推,饱和一元醛(C n H2n O),饱和一元羧酸(C n H2n O2),由于含有一个碳氧双键而比同碳数的饱和一元醇减少了2个氢原子,也可视为其不饱和度Ω=1。
有机物分子的不饱和度计算方法与应用
有机物分子的不饱和度计算方法与应用计算方法:1.化学式计算法:对于简单的有机物,可以通过分子的化学式来计算不饱和度。
对于含有一个环烯的化合物,不饱和度等于环中碳原子的个数;对于含有一个双键的化合物,不饱和度等于双键的个数;对于含有一个三键的化合物,不饱和度等于三键的个数乘以22.增量法:对于复杂的有机物,可以通过增量法来计算不饱和度。
不饱和度等于环状结构中碳原子的个数加上不属于环状结构的双键和三键的个数。
3.能量法:通过计算分子的能量(如电离能、亲和能等)可以推断出分子的不饱和度。
不饱和度越高,分子的能量越低。
应用:1.反应活性预测:不饱和度可以反映有机物的化学反应活性。
一般来说,不饱和度越高,有机物的化学反应活性越强。
例如,含有双键或三键的有机物容易发生加成反应、氧化反应、还原反应等。
2.配位能力:不饱和度也可以影响有机物的配位能力。
双键和三键可以与金属离子形成配合物,因此,含有双键或三键的有机物可以具有良好的配位性质,用于催化剂、溶剂和药物等领域。
3.光学性质:不饱和度可以影响有机物的光学性质。
具有共轭结构的有机分子可以吸收可见光并发生共轭系统内的电子跃迁,导致分子呈现颜色。
因此,含有双键或共轭双键的有机物常常表现出色彩鲜艳的性质。
4.生物活性:不饱和度还可以影响有机物的生物活性。
许多生物活性物质,如激素、天然产物等都具有多重双键或共轭结构,因此不饱和度可以影响这些化合物的药理活性和生物功能。
总结起来,不饱和度计算方法与应用广泛,可以用于预测有机物的反应活性、配位能力、光学性质和生物活性等。
不饱和度在有机化学中的妙用
不饱和度在有机化学中的妙用张伟安【期刊名称】《高中数理化》【年(卷),期】2017(000)001【总页数】1页(P52)【作者】张伟安【作者单位】山东省济南第三职业中等专业学校【正文语种】中文不饱和度指的是在有机物分子结构中,其缺少的氢的个数.通过不饱和度概念的介入,对我们判断有机物分子式、有机物结构和性质、有机物的同分异构体及对应的结构单元作用显著.本文将结合例题,对不饱和度在有机计算中的妙用进行探究.在高考题中,常有给出有机物结构式,求其分子式的例题.对于此类题型,大多数学生采取数数的做法,依次数出对应元素的原子个数.但常出现多数或漏数的情况.利用不饱和度的定义和性质,便可以得到对应原子的个数.对有机化合物分子式与不饱和度的关系式总结如下.烃类物质CxHy,不饱和度卤代烃含氧衍生物例1 (2016年上海卷) 异戊二烯是重要的有机化工原料,其结构简式为已知化合物X 与异戊二烯具有相同的分子式,与Br2/CCl4反应后得到3-甲基-1,1,2,2-四溴丁烷.X的结构简式为________.由X与异戊二烯的分子式相同,可知化合物X的分子式为C5H8,不饱和度为2.由不饱和度的性质可知,化合物X中存在2个碳碳双键或者1个碳碳三键.再由它与Br2/CCl4反应后得到3-甲基-1,1,2,2-四溴丁烷,可以判断出X分子中存在的是碳碳三键.并可以判断出碳碳三键所处的位置.在标注出三键位置后,可写出化合物X的结构简式为已知分子式,要求推断有机物的结构和性质,是有机化学另一类常见题型.对于此类题型,需要学生能够对不饱和度的概念与性质进行逆向操作,将分子式代入对应的计算关系式中,得到有机分子的不饱和度.此时,可以结合已知信息,对官能团的类型及数量进行判断,从而确定出有机物的结构.最后,利用有机化学的基本性质实现求解.此类题型的顺利求解是建立在学生扎实的有机化学基础上,同时还需要对各官能团及其对应性质充分认识,才能实现高效求解.同分异构体、同系物的概念学生常常容易混淆.同分异构体,其分子式相同、不饱和度相同,但其结构式不同,完全属于2种不同类型的物质.对于同系物,其结构组成相似,但分子组成相差若干个“CH2”原子团,且不饱和度相同.利用上述性质,欲判断2个有机分子是同分异构体还是同系物,首要做法是计算对应的不饱和度.例2 为了弄清棉籽象鼻虫的信息素结构,科学家对其本体和粪便进行了长达30多年的研究,最终得到其4种信息素的组成结构如图1所示.试问,以上信息素属于同分异构体的是( ).A ①、②;B ①、③;C ③、④;D ②、④对于同分异构体,其分子式相同,故首先要写出上述4种信息素的分子式.结合各类信息素对应的不饱和度计算关系式,得到:①的不饱和度为3,分子式为C11H18O; ②的不饱和度为3,分子式C10H16O; ③的不饱和度为2,分子式为C11H20O; ④的不饱和度为2,分子式为C11H20O.故可知本题中的同分异构体为③和④,答案为C.总之,不饱和度的使用对有机化学分子式判断、结构单元性质及数量判断、同分异构判断等均有显著作用.通过对不饱和度的创新式使用,我们成功将不饱和度的概念与其他化学知识相联系,实现高中化学的串联式教学.纵观近年的化学高考,不饱和度在有机化学中越发关键和频繁,因此必须保持足够的重视.链接练习已知芳香化合物M的分子式是C8H8Cl2,M的苯环上的一溴取代物只有1种,则其所有可能的结构简式有( ).A 2种;B 3种;C 5种D 6种链接练习参考答案D.。
最新高中化学非常详细关于不饱和度
计算方法1)从有机物分子结构计算不饱和度的方法根据有机物分子结构计算,Ω=双键数+三键数×2+环数如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。
补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。
一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。
一个三键(炔烃、腈等)贡献2个不饱和度。
一个环(如环烷烃)贡献1个不饱和度。
环烯烃贡献2个不饱和度。
一个苯环贡献4个不饱和度。
一个碳氧双键贡献1个不饱和度。
一个-NO2贡献1个不饱和度。
例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。
2)从分子式计算不饱和度的方法第一种方法为通用公式:Ω=1+1/2∑Ni(Vi-2)其中,Vi 代表某元素的化合价,Ni 代表该种元素原子的数目,∑ 代表总和。
这种方法适用于复杂的化合物。
第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式:Ω=C+1-(H-N)/2其中,C 代表碳原子的数目,H 代表氢和卤素原子的总数,N 代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。
这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。
第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式:Ω =(2C+2-H)/2其中 C 和H 分别是碳原子和氢原子的数目。
这种方法适用于只含碳和氢或者氧的化合物。
补充理解说明:(1)若有机物为含氧化合物,因为氧为二价,C=O与CH2“等效”,如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω为1。
(2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。
如:C2H3Cl的Ω为1,其他基团如-NH2、-SO3H等都视为氢原子。
(3)碳的同素异形体,可将其视作氢原子数为0的烃。
如C60(足球烯,或者富勒烯,Buckminster fullerene)(4)烷烃和烷基的不饱和度Ω=0如CH4(甲烷)(5)有机物分子中含有N、P等三价原子时,每增加1个三价原子,则等效为减少1个氢原子。
有机化学中不饱和度的巧妙应用
有机化学中不饱和度的巧妙应用海黄和紫檀哪个更有价值怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网北京十里河古玩市场,美不胜收的各类手串让记者美不胜收。
“黄花梨和紫檀是数一数二的好料,市场认可度又高,所以我们这里专注做这两种木料的手串。
”端木轩的尚女士向记者引见说。
海黄紫檀领风骚手串是源于串珠与手镯的串饰品,今天曾经演化为集装饰、把玩、鉴赏于一体的特征珍藏品。
怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网“目前珍藏、把玩木质手串的人越来越多,特别是海黄和印度小叶檀最受藏家追捧,有人把黄花梨材质的手串叫做腕中黄金。
”纵观海南黄花梨近十年的价钱行情,不难置信尚女士所言非虚。
一位从事黄花梨买卖多年的店主夏先生通知记者,在他的记忆中,2000年左右黄花梨上等老料的价钱仅为60元/公斤,2002年大量收购时,价格也仅为2万元/吨左右,而往常,普通价钱坚持在7000-8000元/公斤,好点的1公斤料就能过万。
“你看这10年间海南黄花梨价钱涨了百余倍,都说水涨船高,这海黄手串的价钱自然也是一路飙升。
”“这串最低卖8000元,能够说是我们这里海黄、小叶檀里的一级品了,普通这种带鬼脸的海黄就是这个价位。
”檀梨总汇的李女士说着取出手串让记者感受一下,托盘里一串直径2.5mm的海南黄花梨手串熠熠生辉,亦真亦幻的自然纹路令人入迷。
当问到这里最贵的海黄手串的价钱时,李女士和记者打起了“太极”,几经追问才通知记者,“有10万左右的,普通不拿出来”。
同海南黄花梨并排摆放的是印度小叶檀手串,价位从一串三四百元到几千元不等。
李女士引见说,目前市场上印度小叶檀原料售价在1700元/公斤左右,带金星的老料售价更高,固然印度小叶檀手串的整体售价不如海黄手串高,但近年来有的也翻了数十倍,随着老料越来越少,未来印度小叶檀的升值空间很大。
“和海黄手串比起来,印度小叶檀的价钱相对低一些,普通买家能消费得起。
”正说着店里迎来一位老顾客,这位顾客通知记者,受经济条件所限,他是先从1000元以内的小叶檀手串玩起,再一步一步升级的。
[优选】高考不饱和度在有机推断中的应用
练习、某链烃的化学式为C5H8,其分子中
含有的不饱和碳原子数目:( B )
A、一定为2个
B、2个或4个
C、一定为4个
D、2个或3个或4个
例题(2002年春季理综27题)
2子个2子个77组,.⑴组,.⑴成试由成试由的 写2的 写2个共 出个共 出C价 其C价 其原化 中原化 中子合 一子合一、物例、物例1,的1个,的个结HOH结O的原构的原构原子简原子简子、式子、式数1数1个目个目N最N最原原多多子子为为和和若若干。干。个个HH原原 且原且原以子以子⑵数n⑵n数(若目(若目C某最C某)最共)多共和多价和等价n等化n(于化(于合N合N物)物)分分分分别子别子只表只表含示含示有C有。C和。C和C、N、N的N的N、原、原H子H子三数三数种目种目元,元,素则素则,H,H 素O素O的,的,⑶原且⑶原且若子以若子以某数n某数n(共目(共目C价,C价,)化)则化则、合、H合Hn原物n原(物(子分子N分N数子)数子)目只和目只和最含n最含n(多有(多有O等CO等)C、)于、于分N分N别、别、表H表H、示、示OCOC四、四、种N种N和。元和。元 双双键键⑷,⑷,若则若则有分有分机子机子物含物含C有Cx有Hx的H的yOy双O双zN键zN键m数m分数分为子为子中中没没有有环环状状结结。构。构,,只只有有
例题2:写出C3H4O2的所有链状稳定的同 分异构体。
解析:由不饱和度计算公式得:
Ω=(2X+2-Y)/2=2
说明分子中可能有一个三键,也可能有两个双键 (可以是C=C,C=O)。因此,可以这样书写同分异 构体: ⑴一个C=C ,一个C=O ,则有 CH2=CHCOOH CH2=CHOOCH 。
⑵两个C=O ,则有OHCCH2CHO和 CH3-CO-CHO。
高中有机化学“不饱和度”的概念及其应用
高中有机化学“不饱和度”的概念及其应用知识归纳一、什么是不饱和度不饱和度又称缺氢指数或者环加双键指数,是有机物分子不饱和程度的量化标志,即有机物分子中与碳原子数相等的开链烷烃相比较,每减少2个氢原子,则有机物的不饱和度增加1,用希腊字母Ω表示。
二、不饱和度计算1. 根据有机物的化学式计算不饱和度的计算公式是:CxHyOm(NH)n,则Ω=x+1-y/2(注:氧:不考虑,卤素:当作H,氮:划去NH)。
例:C5H8O2,则Ω=5+1-8/2=2C5H4Cl2可转化为C5H6,则Ω=5+1-6/2=3C8H13O2N3可转化为C8H10O2(NH)3,则Ω=8+1-10/2=42.根据有机物的结构式计算Ω=双键数+叁键数×2+环数在计算不饱和度时,可以看做是有3个双键和1个环,所以Ω=3+1=4例:请计算出两种物质的不饱和度三、不饱和度的应用1.根据有机物的分子式推断其结构式①若Ω=0,说明分子是饱和链状结构②若Ω=1,说明分子中有一个双键或一个环③若Ω=2,说明分子中有两个双键或一个三键;或一个双键和一个环;或两个环;其余类推④若Ω≥4,说明分子中很可能有苯环。
2.根据结构简式推导化学式:结构简式——计算不饱和度——计算H原子数——确定分子式例1:1mol X能与足量碳酸氢钠溶液反应放出44.8L CO2(标准状况),则X的分子式是:( )A、C5H10O4B.C4H8O4C.C3H6O4D.C2H2O4解题方法:能与碳酸氢钠反应的有机物一般为羧基,1mol X放出CO2为2mol,说明含2个羧基,其不饱和度至少为2,A、B、C的不饱和度均为1,D为2,可快速求解选项为D。
例2:一种从植物中提取的天然化合物a-damascone,可用于制作“香水”,其结构如下图,有关该化合物的下列说法不正确的是( )A.分子式为B. 该化合物可发生聚合反应C.1mol 该化合物完全燃烧消耗19molD.与溴的溶液反应生成的产物经水解、稀硝酸化后可用溶液检验解题方法:A项,可快速判断出该分子为C13HyO,该分子含3个双键一个环,Ω=3+1=4,也即Ω=13+1-y/2=4,y=20,正确;B项,由于分子可存在碳碳双键,故可以发生加聚反应,正确;C项,根据A项可转化为C13H18(H2O),13个碳应消耗13个O2,18个H消耗4.5个O2,共为17.5,故错;D项,碳碳双键可以与Br2发生加成发生,然后水解酸化,即可得Br-,再用AgNO3可以检验,正确。
有机物不饱和度在解题中的应用(2018)
有机物不饱和度在解题中的应用陕西省扶风县法门高级中学 陆平烷烃,又称饱和链烃,在烷烃的结构中,碳原子的四个价键全部被利用,就分子中的碳原子而言,结合的氢原子已达饱和,即氢原子数达到上限。
其通式表示为CnH2n+2,所以,有机分子中H 、C 原子个数比若大于(2n+2)/n ,则有机物的分子组成是肯定错误的。
推而广之,以烷烃的组成为分析的基础,若将一个C-C 改变为C=C ,或增加一个C=O ,分子中就减少2个氢原子;若碳原子间连接成一个环,分子中也减少2个氢原子;若将一个C-C 改变为C ≡C ,分子中就减少4个氢原子。
像分子中含有C=C 、C=O 、C ≡C 或环状结构,有机分子中的氢原子相对于碳原子来说就不饱和,其不饱和的程度即不饱和度,可以用含同碳原子数的烷烃中的氢原子数与该有机物分子中的氢原子数差的一半来表示。
结合前边的分析可知,分子中有一个C=C 、C=O 或者一个环,其不饱和度为1;分子中有一个C ≡C ,则不饱和度为2;分子中有一个苯环,则不饱和度为4。
了解了有机物分子结构中的不饱和度有那些方便呢?下边我们就分类讨论。
一. 根据有机物的键线式结构确定其分子式。
例1 有机环状化合物的结构简式可进一步简化,如:A 可写成B ,B 称作键线式。
C 是1990年公开报道的第10种有机化合物,试确定其分子式。
A B C[解析]法一:结合题给信息(结构简式A 可表示为键线式B,即为结构简式省略C 、H 原子,线段表示价键,拐点表示C 原子),可将C 所给的键线式还原成结构简式,如图:然后数出此结构中的C 、H 、O 原子个数,即可确定分子式为C 14H 20O 。
法二:C 为有机物结构的键线式表示, 每个顶点表示一个碳原子。
C 的分子中有14个碳原子,可设其分子式为C 14HxO ,结合结构,在C 的分子中有 3个环,两个C=C ,即该分子有5个不饱和度。
参考同数碳原子的烷烃C 14H 30中的氢原子数,因不饱和度为5,氢原子数比烷烃少10,分子式为C 14H 20O 。
不饱和度及其应用
实践3
由于苯的含碳量与乙炔相同,人们认为它是一种不饱和烃,写出C6H6的一种含三键且无支链链烃的结构简式____________。
实践题答案
实践1
指点迷津:直接用公式计算啦!
实践略解:Ω=(2×4+2-8)/2=1
答案:C4H8O2的不饱和度为1。
实践2
指点迷津:已知结构式,求算不饱和度,确定氢原子数,分子式就出来啦
实践略解:该物质中有3个苯环、3个C≡C键,且相互间连成一个大环(其Ω=1),分子总不饱和度Ω=3×4+3×2+1=19,C原子数为24,H原子数=2×24+2-2×19=12,所以其分子式为:C24H12。
答案:C24H12
实践3
体验2
已知有机物结构,确定其分子式
已知维生素A的结构简式如下图,式中以线示键,线的交点与端点处代表碳原子,并用氢原子数补足四价,但C、H原子未标记出来。则维生素A的分子式为__________。(1998年上海高考题,内容有所删减)
体验思路:
体验过程:维生素A的键线式显示其结构中有1个碳环、5个C=C键,不饱和度Ω=6,C原子数为20。所以维生素A应比C原子数为20的饱和烃少2×6个H原子,则维生素A的H原子数=2×20+2-2×6=30。分子式为C20H30O。
体验过程:根据原子数目:ΩFra bibliotek(2×2+2-3-1)/2 = 1
根据官能团:含有一个碳碳双键。
所以:Ω= 1
答案:氯乙烯的不饱和度为1。
小结:对比利用原子数目计算不饱和度的前三个公式,不难发现,将卤代烃中的卤原子换为氢原子,再用烃的公式计算,结果是一样的;含氧衍生物的不饱和度计算公式和相应的含相同碳氢原子数目的烃的计算公式是一样的。结合相关的结构式想一想,这是为什么?
不饱和度的计算和应用
不饱和度的计算和应用不饱和度(unsaturation)是有机化学中的一个重要概念,用于描述化合物中不带氢的双键数量。
计算不饱和度有助于确定化合物的化学性质和做出结构推导。
同时,不饱和度的应用广泛,例如用于鉴定不同化合物的特征和做出定性分析。
本文将详细介绍不饱和度的计算和应用。
一、不饱和度的计算1.不饱和度(U)=2n+2-m其中n是碳的数量,m是氢的数量。
这个公式在计算不含其他原子的化合物的不饱和度时很有用。
2.不饱和度指数(UI)=2C+2-H其中C是碳的数量,H是氢的数量。
这个公式在计算带有其他原子的化合物的不饱和度时很有用,因为不考虑其他原子可能引入的新的不饱和度。
举例来说,对于分子式为C6H14的化合物,使用第一种公式计算:U=2(6)+2-14=0代表该化合物是饱和的,没有双键。
同样的,使用第二种公式计算:UI=2(6)+2-14=-4得到相同的结果。
对于分子式为C6H6的苯的计算,使用第一种公式计算:U=2(6)+2-6=6代表苯具有6个不饱和度,即6个双键。
UI=2(6)+2-6=8得到相同的结果。
二、不饱和度的应用1.分析化合物结构:通过计算不饱和度可以判断一个分子中是否有不饱和键,从而推断出分子结构。
例如,通过计算不饱和度可以确定一个烃是烷烃(完全饱和)还是烯烃(单一双键)或炔烃(一个或多个三键)。
2.识别功能团:不饱和度可以帮助识别化合物中的特定功能团。
根据不饱和度和其他结构信息,可以确定含有芳香环的化合物、含有酮基、醛基、酸基等官能团的化合物。
3.定性分析和质谱结构鉴定:计算不饱和度可以帮助进行定性分析。
通过与碳谱和质谱数据的对比,可以确定分子的不同部分和官能团。
4.其他物理性质的预测:不饱和度与化合物的一些物理性质,如沸点、熔点和溶解度等密切相关。
根据不饱和度能够预测一些化合物的理化性质。
总结:不饱和度是描述化合物中不带氢的双键数量的重要性质。
通过计算不饱和度,可以推断出化合物的结构和性质。
高二化学不饱和度及其应用
高二化学:不饱和度及其应用不饱和度又称为“缺氢指数”,用希腊字母Ω来表示,顾名思义,它是反映有机物分子不饱和程度的量化标志。
烷烃分子中饱和程度最大,规定其Ω=0,其它有机物分子和同碳原子数的开链烷烃相比,每少2个H,则不饱和度增加1;计算有机物的不饱和度有二种方式:一、根据化学式计算:烃的分子式为C x H y,则如果有机物为含氧衍生物,因氧为2价,C=O与C=C“等效”,所以在进行不饱和度的计算时可不考虑氧原子,如CH2=CH2、C2H4O、C2H4O2的Ω为1,氧原子“视而不见”。
有机物分子中卤原子—X以及—NO2、—NH2等都视为相当于H原子(如:C2H3Cl的不饱和度为1)。
对于碳的同素异形体,可以把它看成y等于0的烃来计算,即:例如:C70的=71二、根据结构计算:Ω=双键数+ 叁键数×2 +环数(注意环数等于将环状分子剪成开链分子时,剪开碳碳键的次数...........................,双键包括碳氧双键等)如:1、单烯烃和环烷烃的:Ω=1(二烯烃:Ω=2);2、CH3—C≡CH:Ω=2(:Ω=2)3、:Ω=4(可以看成一个环与三个双键构成):Ω=7*4、立体封闭多面体型分子:Ω=面数-1:Ω=5 :Ω=2不饱和度的应用:(1)已知结构式较复杂有机物的化学式;(2)已知分子式判断其中可能含有的官能团及其数量(Ω大于4的应先考虑可能含苯环)。
(3)辅助分析同分异构体(同分异构体间不饱和度相同)如:例题1:导学P11第10题求降冰片烯的分子式例题2:右图是一种驱蛔虫药--山道年的结构简式,试确定其分子式为____________。
解析:从结构图中可见,分子中有14个碳原子,3个氧原子,又有3个环和4个双键。
Ω=7氢原子数为2n+2-2Ω=2×14+2-2×7=16∴化学式为C14H16O3例题3:分子式为C8H8的烃能使溴水褪色,是合成某橡胶单体之一的材料,试确定其结构与名称。
谈中学有机化学中不饱和度的教学
谈中学有机化学中不饱和度的教学不饱和度在高中有机化学教学中什么时候引入比较恰当?在教学过程中如何深化?本文从上述二方面介绍不饱和度在中学有机化学中的教学。
标签:化学教学不饱和度不饱和度是中学有机化学教学的重要内容,学生不饱和度掌握程度直接关系到有机化学掌握程度,所以在有机化学教学中必须十分重视不饱和度的教学。
不饱和度在高中有机化学教学中什么时候引入比较恰当?在教学过程中如何深化?本文从上述二方面介绍不饱和度在中学有机化学中的教学。
虽然高中化学教材中不涉及不饱和度的内容,但此概念能够帮助学生更好地理解有机物的通式、结构,在有些问题的解决上更加便捷,所以不饱和度的教学应贯穿整个有机化学教学的始终。
那么,在教学中什么时机介入比较恰当?以人教版为例,笔者认为,在学生学习了选修5第二章烃和卤代烃中的脂肪烃和芳香烃后专门用一课时介绍较为适宜。
通过前面内容的学习,学生已经掌握了烷烃、烯烃、二烯烃、炔烃和苯的同系物的通式,在教学过程中教师应强调烯烃、二烯烃、炔烃、芳香烃通式和烷烃通式的关系,即每增加一个双键(或环)比烷烃少二个氢原子,每增加一个叁键比烷烃少四个氢原子,而苯环相当于三个叁键和一个环故比烷烃少八个氢原子。
烷烃通式为CnH2n+2,所以烯烃(或环)的通式CnH2n+2-2即CnH2n,二烯烃或炔烃的通式为CnH2n+2-4即CnH2n-2,苯和同系物的通式为CnH2n+2-8即CnH2n-6。
在此基础上引入不饱和度的概念,即比烷烃每少二个氢原子定义不饱和度(Ω)为1,在计算烷烃、烯烃(环烷烃)、二烯烃(炔烃)、苯的同系物的不饱和度的基础上,引入计算不饱和度度的通式,即CnHm的不饱和度Ω=(2n+2-m)/2。
至此,不饱和度介绍和引入基本完成。
为了使学生认识不饱和度的重要性,也为了使学生熟练掌握不饱和度的概念,可编制一些练习加以应用,例如:1、鲨鱼是世界是唯一一种不患癌症的动物,科学研究表明鲨鱼体内含有一种角鲨烯,具有抗癌性。
高中化学非常详细关于不饱和度之欧阳法创编
计算方法1)从有机物分子结构计算不饱和度的方法根据有机物分子结构计算,Ω=双键数+三键数×2+环数如苯:Ω=3+0×2+1=4 即苯可看成三个双键和一个环的结构形式。
补充理解说明:单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。
一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。
一个三键(炔烃、腈等)贡献2个不饱和度。
一个环(如环烷烃)贡献1个不饱和度。
环烯烃贡献2个不饱和度。
一个苯环贡献4个不饱和度。
一个碳氧双键贡献1个不饱和度。
一个-NO2贡献1个不饱和度。
例子:丙烯的不饱和度为1,乙炔的不饱和度为2,环己酮的不饱和度也为2。
2)从分子式计算不饱和度的方法第一种方法为通用公式:Ω=1+1/2∑Ni(Vi-2)其中,Vi 代表某元素的化合价,Ni 代表该种元素原子的数目,∑ 代表总和。
这种方法适用于复杂的化合物。
第二种方法为只含碳、氢、氧、氮以及单价卤素的计算公式:Ω=C+1-(H-N)/2其中,C 代表碳原子的数目,H 代表氢和卤素原子的总数,N 代表氮原子的数目,氧和其他二价原子对不饱和度计算没有贡献,故不需要考虑氧原子数。
这种方法只适用于含碳、氢、单价卤素、氮和氧的化合物。
第三种方法简化为只含有碳C和氢H或者氧的化合物的计算公式:Ω =(2C+2-H)/2其中C 和H 分别是碳原子和氢原子的数目。
这种方法适用于只含碳和氢或者氧的化合物。
补充理解说明:(1)若有机物为含氧化合物,因为氧为二价,C=O 与CH2“等效”,如CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH (乙酸)的不饱和度Ω为1。
(2)有机物分子中的卤素原子取代基,可视作氢原子计算不饱和度Ω。
如:C2H3Cl的Ω为1,其他基团如-NH2、-SO3H 等都视为氢原子。
(3)碳的同素异形体,可将其视作氢原子数为0的烃。
如C60(足球烯,或者富勒烯,Buckminster fullerene)(4)烷烃和烷基的不饱和度Ω=0如CH4(甲烷)(5)有机物分子中含有N、P等三价原子时,每增加1个三价原子,则等效为减少1个氢原子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不饱和度在高中化学中的妙用
一、不饱和度的概念
不饱和度 (英文名称:Degree of unsaturation),又称缺氢指数或者环加双键指数(index of hydrogen deficiency (IHD) or rings plus double bonds ),是有机物分子不饱和程度的量化标志,通常用希腊字母Ω表示。
二、不饱和度的计算方法
(1)、从有机物的分子式计算不饱和度的方法
第一种方法
若有机物中只含碳、氢元素,
Ω=2
22H C -+ (其中C 和H 分别代表碳原子和氢原子的数目)
例如:CH 2=CH 2的不饱和度Ω=2
4222-+⨯=1
第二种方法:
若有机物中只含碳、氢、氧、氮和单价卤族元素,
Ω=21H N C -++
(其中C 代表碳原子数目,H 代表氢原子和卤素原子的总数,N 代表氮原子的数目)
例如:C 3H 7O 2N 的不饱和度Ω=27113-++=1
补充理解说明:
①有机物分子中含有卤素等一价元素时,可视为氢原子计算不饱和度,例如:C2H3Cl的不饱和度Ω为1。
②有机物分子中含有氧、硫等二价元素时,因为“C=O”与“C=C”等效,故计算不饱和度时可忽略氧原子,例如:CH2=CH2(乙烯)、CH3CHO(乙醛)、CH3COOH(乙酸)的不饱和度Ω均为1。
③有机物分子中含有氮、磷等三价元素时,每增加一个三价原子,则等效为减少一个氢原子,例如:CH3NH2(氨基甲烷)的不饱和度Ω为0。
④碳的同素异形体,可将其视作氢原子数为0的烃,例如C60(足球烯,或者富勒烯,Buckminster fullerene)的不饱和度Ω为61。
⑤对于烃的含氧衍生物(C n H m O z),由于氢原子的最大值是2n+2(如饱和一元醇C n H2n+2O),所以其不饱和度为零,依此类推,饱和一元醛(C n H2n O),饱和一元羧酸(C n H2n O2),由于含有一个碳氧双键而比同碳数的饱和一元醇减少了2个氢原子,也可视为其不饱和度Ω=1。
这样,对于一个有机物分子——烃或烃的含氢衍生物,只要知道了其不饱和度,就能推断出其可能的结构。
即有下列关系:
若Ω=0,说明有机分子呈饱和链状,分子中的碳氢原子以C n H2n+2(此为饱和烃分子式通式)关系存在。
若Ω=1,说明有机分子中含有一个双键或一个环。
若Ω=2,说明有机分子中含有两个双键或一个三键或一个双键一个环或两个环。
若Ω≥4,说明有机分子中可能含有苯环(C6H6)。
第三种方法:
通用公式
(其中代表某元素的化合价,代表该种元素原子的数目,代表总和。
)
(2)、从有机物的分子结构计算不饱和度的方法
Ω=双键数+三键数×2+环数
例如:乙烯苯的不饱和度Ω=4+1=5
补充理解说明:
①单键对不饱和度不产生影响,因此烷烃的不饱和度是0(所有原子均已饱和)。
②一个双键(烯烃、亚胺、羰基化合物等)贡献1个不饱和度。
③一个三键(炔烃、腈等)贡献2个不饱和度。
④一个环(如环烷烃)贡献1个不饱和度。
⑤一个苯环贡献4个不饱和度(可以看成一个环和三个双键)。
⑥一个-NO2贡献1个不饱和度。
⑦立体封闭有机化合物分子(多面体或笼状结
构),其不饱和度比面数少1。
例如:
立方烷的面数为6,不饱和度为5。
棱晶烷的面数为5,不饱和度为4。
盆烯的面数为4,不饱和度为3。
金刚烷的面数为4,不饱和度为3。
三、不饱和度的应用
(1)用不饱和度判断有机化合物的分子式是否成立
有机化合物的不饱和度只能是0和正整数,不可能是分数或负数,否则,该分子式不成立。
例1、判断下列有机物的分子式能否成立?成立的说出一种化合物。
A.C2H3O B.C7H5Br3
C. C6H4FNO2
D.C4H8NO
解析:
A.Ω=3/2,因此,该分子式不能成立。
B.Ω=4,因此,该分子式能成立。
如三溴甲苯。
C.Ω=5,因此,该分子式能成立。
如对硝基氯苯。
D.Ω=3/2,因此,该分子式不能成立。
(2)、用不饱和度书写有机化合物的分子式
判断结构复杂的有机物分子式时,通过不饱和度可在仅知道碳原子数的前提下,迅速地求出氢原子从而确定有机物的分子式。
例2、(2003上海高考化学)自20世纪90年代以来,芳炔类大环化合物的研究发展十分迅速,具有不同分子结构和几何形状的这一类物质在高科技领域有着十分广泛的应用前景。
合成芳炔类大环的一种方法是以苯乙炔()经过反应得到一系列的芳块类大环化合物,其结构为:
则上述系列中第1种物质的分子式为。
解析:
第1种物质中含有3个苯环、3个C≡C键,且相互间连成一个大环(不饱和度为1),所以其不饱和度为:3×4+3×2+1=19。
C原子个数为24,所以H原子个数为:2×24+2-2×19=12 所以分子式为C24H12
(3)、用不饱和度推断有机化合物的同分异构体
互为同分异构体的有机化合物的分子式相同,则其不饱和度也相同,因此,通过不饱和度可以帮助判断和书写同分异构体。
例3、人们使用四百万只象鼻虫和它们的215磅粪便物,历经30多年时间弄清了棉子象鼻虫的四种信息素的组成,它们的结构可表示如下(括号内表示④的结构简式)以上四种信息素中,互为同分异构体的是()
A、①和②B、①和④C、③和④D、②和④
解析:观察可知1,2,3,4的碳原子数分别为11,10,11,11。
①
Ω=2+1=3,②Ω=1+1=2,③Ω=2=1=3,④Ω=1+1=2,因碳原子数和不饱和度均需相同,故答案为D。
(4)、用不饱和度推断有机化合物的结构和性质
通过有机物的分子式确定其不饱和度,由不饱和度可推测该有机化合物具有的结构和性质。
例4、某芳香族有机物的分子式为C8H6O2,它的分子(除苯环外不含其他环)中不可能有()
A.两个羟基 B.一个醛基 C.两个醛基 D.一个羧基
解析:该分子不饱和度是6除去苯环4个不饱和度外,还有两个不饱和度,则推测结构中有1个C≡C或两个C=O。
但若该分子中含有一个羧基(Ω=1),余下的一个碳原子不可能再与其他原子形成不饱和键,无法是不饱和度达到6。
故该分子中不可能含有一个羧基。
答案为D。
(5)、用不饱和度来计算笼状化合物的面数
笼状化合物的面数=Ω+1,不过,这里的Ω仅仅指由环产生的Ω,而没有包括双键及三键产生的Ω。
因此,我们可用不饱和度来计算笼状化合物的面数等其他几何元素。
例5、1996年诺贝尔化学奖授予对发现C60有重要贡献的3位科学家,C60分子是形如球状的多面体,该结构的建立基于以下考虑:①C60分子中每个碳原子只跟相邻的三个碳原子形成共价键;⑦C60
中含有五边形和六边形;③多面体的顶点数、面数和棱边数的关系,遵循欧拉公式:
顶点数+面数-棱边数=2.
试求C60分子中的双键数,单键数,面数,五边形和六边形的个数?
解析:
Ω=1
2(2n+2-m)=
1
2(60×2+2—0)=61
Ω2=60/2=30,
因Ω=Ωn+Ω2
故Ωn=61-30=31
因C60顶点数=60,
面数=n+1=31+1=32
故棱边数:顶点数+面数-2=60+32-2=90
因Ω2=30,棱边数=90,
故单键数=90-30=60
设五边形的个数为X,六边形的个数为Y,则有X+Y=32,(5X+6Y)/3=60,
解得X=12,Y=20。
即有12个五边形,20个六边形。