SSD2828参考设计原理图
SD卡内部构造与工作原理(免费分享).doc
SD卡内部构造与工作原理(附加基于Atmega128单片机SD卡读写程序)1、简介:SD卡(Secure Digital Memory Card)是一种为满足安全性、容量、性能和使用环境等各方面的需求而设计的一种新型存储器件,SD卡允许在两种模式下工作,即SD模式和SPI模式,本系统采用SPI模式。
本小节仅简要介绍在SPI模式下,STM32处理器如何读写SD卡,女口果读者如希望详细了解SD卡,可以参考相关资料。
SD卡内部结构及引脚如下图所示:/[ /1 1 1 M N 1 H,I T 1 FDAT2CMD CLK DATOCD/DAT3Inierface driver DAT1OCR£3l:01I 01X127:0]K RCA(15:0]o DSR[15:0]* CSD[12":O]* SCRK551O1*interfacecon^iollerre:eruoipot^Memor,1' core interface re^etSD卡内部图JPG2、SD卡管脚图:1 iMIN门2禹卞I-■■■- -II15 6250 9MRJFy工<D2™5>DD CLL VSS DATJ&ATilock Ros11iOOtn n?D IDw r i- f eSD卡图JPG3、SPI模式下SD各管脚名称为: sd卡:SPI模式下SD各管脚名称为JPG注般SD有两种模式:SD模式和SPI模式,管脚定义如下:(A)、SD MODE 1、CD/DATA3 2、CMD 3、VSS1 4、VDD 5、CLK6、VSS27、DATA08、DATA19、DATA22、DI3、VSS4、VDD5、(B)、SPI MODE 1、CSSCLK 6、VSS2 7、DO 8、RSV 9、RSVSD 卡主要引脚和功能为:CLK :时钟信号,每个时钟周期传输一个命令或数据位,频率可在0〜25MHz之间变化,SD卡的总线管理器可以不受任何限制的自由产生0〜25MHz的频率;CMD :双向命令和回复线,命令是一次主机到从卡操作的开始,命令可以是从主机到单卡寻址,也可以是到所有卡;回复是对之前命令的回答,回复可以来自单卡或所有卡;DAT0〜3:数据线,数据可以从卡传向主机也可以从主机传向卡。
2812DSP-02DSP芯片的结构
计算机信息工程学院
DSP技术及应用
’281x硬件结构
281x系列芯片的结构
串行接口外设
- 串行外设接口(SPI) 两个串行通信接口(SCI),标准的UART 2 - 增强型局域网络控制器(eCAN)
- 多通道缓冲串口(McBSP)
计算机信息工程学院
DSP技术及应用
’281x硬件结构
281x系列芯片的结构
12位ADC,16通道
- 2个8通道的输入多路转换器 - 两个采样保持器
2
- 单个/双路同步采样 - 高速通道转换速率:80ns/12.5MSPS
最多有56个可编程通用输入输出(GPIO)引脚
计算机信息工程学院
F281x 功能框图
DSP技术及应用
’281x硬件结构
2.2 CPU结构与寄存器
第2讲 281x芯片的结构
计算机信息工程学院
DSP技术及应用
’281x硬件结构
内容提要
TMS320X281x芯片是一种特殊结构的微处理器, 为了快速地实现数字信号处理运算,采用了流水 线指令执行结构和相应的并行处理结构,可在一 个周期内对数据进行高速的算术运算和逻辑运算。
2
• 本讲主要介绍TMS320X281x芯片的硬件结构。
计算机信息工程学院
TMS320X281x Block Diagram
Program Bus Boot Boot ROM ROM Event Manager A Event Manager B 12-bit ADC Watchdog
A(18-0)
22 32 32 32
Sectored Sectored Flash Flash
- 四个独立的片选端
计算机信息工程学院
SD卡引脚 电路图及工作原理介绍
SD卡引脚电路图及工作原理介绍SD卡在现在的日常生活与工作中使用非常广泛,时下已经成为最为通用的数据存储卡。
在诸如MP3、数码相机等设备上也都采用SD卡作为其存储设备。
SD卡之所以得到如此广泛的使用,是因为它价格低廉、存储容量大、使用方便、通用性与安全性强等优点。
既然它有着这么多优点,那么如果将它加入到单片机应用开发系统中来,将使系统变得更加出色。
这就要求对SD卡的硬件与读写时序进行研究。
对于SD卡的硬件结构,在官方的文档上有很详细的介绍,如SD卡内的存储器结构、存储单元组织方式等内容。
要实现对它的读写,最核心的是它的时序,笔者在经过了实际的测试后,使用51单片机成功实现了对SD卡的扇区读写,并对其读写速度进行了评估。
下面先来讲解SD卡的读写时序。
(1)SD卡的引脚定义:SD卡引脚功能详述:引脚编号SD模式SPI模式名称类型描述名称类型描述1 CD/DAT3 IO或PP 卡检测/数据线3#CS I 片选2 CMD PP 命令/回应DI I 数据输入3 V SS1S 电源地VSS S 电源地4 V DD S 电源VDD S 电源5 CLK I 时钟SCLK I 时钟6 V SS2S 电源地VSS2 S 电源地7 DAT0 IO或PP 数据线0 DO O或PP 数据输出8 DAT1 IO或PP 数据线1 RSV9 DAT2 IO或PP 数据线2 RSV注:S:电源供给I:输入O:采用推拉驱动的输出PP:采用推拉驱动的输入输出SD卡SPI模式下与单片机的连接图:SD卡支持两种总线方式:SD方式与SPI方式。
其中SD方式采用6线制,使用CLK、CMD、DAT0~DAT3进行数据通信。
而SPI方式采用4线制,使用CS、CLK、DataIn、DataOut进行数据通信。
SD方式时的数据传输速度与SPI方式要快,采用单片机对SD卡进行读写时一般都采用SPI模式。
采用不同的初始化方式可以使SD卡工作于SD方式或SPI方式。
镁光K82脚位原理图
1/4-INCH VGA CMOSACTIVE-PIXEL DIGITALIMAGE SENSOR DIEMT9V111Features•DigitalClarity™ CMOS Imaging Technology•Ultra low-power, low-cost CMOS image sensor•Superior low-light performance•Up to 30 fps progressive scan at 27 MHz for high-quality video at VGA resolution•On-chip Image Flow Processor (IFP) performssophisticated processing: color recovery andcorrection, sharpening, gamma, lens shadingcorrection, on-the-fly defect correction, 2X fixed zoom •Image decimation to arbitrary size with smooth, continuous zoom and pan•Automatic exposure, white balance and black compensation, flicker avoidance, color saturation, and defect identification and correction, auto frame rate, black light compensation•Xenon and LED-type flash support•Two-wire serial programming interface•ITU-R BT.656 (YCbCr), YUV, 565RGB, 555RGB, or 444RGB output data formatsGeneral Physical Specifications•Wafer thickness: 305µm ±12µm (12.0 mil ±0.5 mil) (Consult factory for die thickness other than 305µm)•Backside wafer surface of polished bare silicon •Typical metal 1 thickness: 3.1KÅ•Typical metal 2 thickness: 3.1KÅ•Typical metal 3 thickness: 6.1KÅ•Metallization composition: 99.5 percent Al and 0.5 percent Cu over titanium•Typical topside passivation:2.2KÅ nitride over 6.0KÅ of undoped oxide •Passivation openings (MIN): 75µm x 90µm(2.95 mil x 3.54 mil)NOTE:Please consult die distributor or factory before ordering to verify long-term availability of these die products.Order Information2.8V Power Supply:MT9V111W00STCK82AC1MT9V111D00STCK82AC1Key Performance Parameters •Optical Format: 1/4-inch (4:3)•Active Imager Size: 3.584mm(H) x 2.688mm(V)•Active Pixels: 640H x 480V (VGA)•Pixel Size: 5.6µm x 5.6µm•Color Filter Array: RGB Bayer Pattern•Shutter Type: Electronic Rolling Shutter (ERS)•Data Rate/Master Clock:12 MPS/12 MHz (default)27 MPS/27 MHz (MAX)•Frame Rate:VGA (640H x 480V) 15 fps @ 12 MHz (default), programmable up to 30 fps @ 27 MHzCIF (352H x 288V) programmable up to 60 fpsQVGA (320H x 240V) programmable up to 90 fps •ADC Resolution: 10 bit, on chip •Responsivity: 1.9V/lux-sec (550nm)•Dynamic range: 60 dB•SNR MAX: 45dB•Supply Voltage: 2.8V ±0.25V•Power Comsumption: <80mW at 2.8V, 12MHz,15 fps and VGA resolution•Operating Temperature: -20°C to +60°COption •FormDieWafer – 200mm (8")D W•TestingStandard (Level 1) Probe C1Die Database K82ADie Outline(see page8)Die Size:6,267.00µm x 6,267.00µm246.732 mil x 246.732 milSee Tables 1 and 2, “K82A Bond Pad Location and Identfications,” on pages 4–7K82A, 1/4-INCH IMAGER DIE©2003 Micron Technology, Inc. All rights reserved.General DescriptionThe MT9V111 is a one-fourth inch VGA-format CMOS active-pixel digital image sensor, the result of combining the MT9V011 image sensor core with Micron® Imaging's third-generation digital image flow processor technology. The MT9V111 has an active imaging pixel array of 649 x 489, capturing high-quality color images at VGA resolution. The sensor is a com-plete camera-on-a-chip solution and is designed spe-cifically to meet the demands of battery-powered products such as cellular phones, PDAs, and toys. It incorporates sophisticated camera functions on-chip and is programmable through a simple two-wire serial interface.The MT9V111 is a fully-automatic, single-chip cam-era, requiring only a power supply, lens and clock source for basic operation. Output video is streamed via a parallel eight-bit D OUT port as shown in Figure 1. Output pixel clock is used to latch the data, while FRAME_VALID and LINE_VALID signals indicate the active video. The die can be put in an ultra-low power sleep mode by asserting the STANBY pin. Output pads can also be tri-stated by de-asserting the OE_BAR pad. The MT9V111 internal registers can be configured using a two-wire serial interface.The MT9V111 can be programmed to output pro-gressive scan images up to 30 fps in an 8-bit ITU_R BT.656 (YCbCr) formerly CCIR656, YUV, 565RGB, 555RGB, or 444RGB formats. The FRAME_ and LINE_VALID signals are output on dedicated pads, along with a pixel clock that is synchronous with valid data.Die Testing ProceduresMicron® Imager die products are tested with a Stan-dard Probe (C1) test. Wafer probe is performed at an elevated temperature to test product functionality in Micron’s standard package. Since the package environ-ment is not within Micron’s control, the user must determine the necessary heat sinking requirements to ensure that the die junction temperature remains within specified limits.Image quality is verified through various imaging tests. The probe functional test flow provides test cov-erage for the on-chip A/D converter, logic, serial inte-face bus, and pixel array. Test conditions, margins, limits, and test sequence are determined by individual product yields and reliability data.Micron retains a wafer map of each wafer as part of the probe records, along with a lot summary of wafer yields for each lot probed. Micron reserves the right to change the probe program at any time to improve the reliability, packaged device yield, or performance of the product.Die users may experience differences in perfor-mance relative to Micron’s data sheets. This is due to differences in package capacitance, inductance, resis-tance, and trace length.Functional SpecificationsPlease refer to the packaged product data sheets found on Micron’s Web site () for functional and parametric specifications. The specifi-cations are provided for reference only.Bonding InstructionsThe K82A Imager die has 44 bond pads. Refer to Tables 1 and 2 for a complete list of bond pads and coordinates.The K82A Imager die does not require the user to determine bond option features.The K82A Imager die also has several pads defined as “Do Not Use.” These pads are used for engineering purposes and should not be used. Bonding these pads could result in a nonfunctional die.Figure1 on page3 shows the MT9V111 typical die connections. For low-noise operation the MT9V111 die requires separate supplies for analog and digital power.Wafer SawA standard wafer saw cuts the die 100 percent through. Micron holds die dimensions to a maximum tolerance of +0/-25µm (+0/-1 mil) of each cut, as mea-sured from the vertical cut. For clarification purposes, the die size provided is measured from center of the die street to center of the die street. A finished die is approximately 38µm (1.5 mil) smaller on each side due to the sawing operation. For example, a 5,080µm x 7,620µm (200 mil x 311 mil) die is approximately 5,042µm x 7,582µm (198.5 mil x 309.5 mil) after sawing.Wafer-Level ProcessingCustomers should choose the wafer form when post-processing of die is required. This includes add-ing extra passivation or metal layers or bumping of the bond pads. For these customers, the street widths are provided in the die outline. Also, a reference from the center of bond pad 1 to the center of the intersection of two streets is provided as an easy alignment reference. Storage RequirementsMicron die products are packaged in a cleanroom environment for shipping. Upon receipt, the customer should transfer the die or wafers to a similar environ-ment for storage. Micron recommends the die or wafers be maintained in a filtered nitrogen atmo-sphere until removed for assembly. The moisture con-tent of the storage facility should be maintained at 30%±10% relative humidity. ESD damage precautions are necessary during handling. The die must be in an ESD-protected environment at all times for inspection and assembly.Product Reliability MonitorsReliability of all packaged products is monitored by ongoing reliability evaluations. Micron’s QRA depart-ment continually samples product families for reliabil-ity studies. These samples are subjected to a battery of tests known as the “Accelerated Life” and “Environ-mental Stress” tests. During these tests, devices are stressed for many hours under conditions designed to simulate years of normal field use. A summary of these product family evaluations is published on a regular basis.Figure 1: Typical Configuration (Connection)NOTE:Resistor value 1.5KΩ is recommended, but may be greater for slower two-wire speed.Table 1: K82A Bond Pad Location and IdentificationPAD MT9V111FROM CENTER OF PAD 1“X”1MICRONS“Y”1MICRONS“X”1INCHES“Y”1INCHES1D GND30.000.000.00000000.0000000 2D OUT2466.560.000.01836850.0000000 3D OUT3933.120.000.03673700.0000000 4D OUT41399.680.000.05510550.0000000 5D OUT51866.240.000.07347400.0000000 6D GND42332.800.000.09184250.0000000 7V DD32799.360.000.11021100.0000000 8D OUT63686.720.000.14514650.0000000 9D OUT74153.280.000.16351500.0000000 10V DD44619.840.000.18188350.0000000 11D GND55086.400.000.20025200.0000000 12V DD55502.95-416.550.2166514-0.0163994 13V DD65502.95-883.110.2166514-0.0347679 14D GND5502.95-1349.670.2166514-0.0531364 15D GND65502.95-1816.230.2166514-0.0715049 16V DD75502.95-2282.790.2166514-0.0898734 17D GND75502.95-2749.350.2166514-0.1082419 18OE_BAR5502.95-3215.910.2166514-0.1266104 19STANDBY5502.95-3682.470.2166514-0.1449789 20RESET_BAR5502.95-4149.030.2166514-0.1633474 21VAAPIX5502.95-4655.910.2166514-0.1833033 22ADC_TEST5502.95-5142.630.2166514-0.2024656 23A GND15086.40-5798.210.2002520-0.2282760 24V AA14619.84-5798.210.1818835-0.2282760 25A GND04153.28-5798.210.1635150-0.2282760 26V AA03686.72-5798.210.1451465-0.2282760 27V DD02799.36-5798.210.1102110-0.2282760 28D GND02332.80-5798.210.0918425-0.2282760 29SADDR1866.24-5798.210.0734740-0.2282760 30SDATA1399.68-5798.210.0551055-0.2282760 31SCLK933.12-5798.210.0367370-0.2282760 32CLK_IN466.56-5798.210.0183685-0.2282760 33D GND10.00-5798.210.0000000-0.2282760 34V DD1-295.27-5142.63-0.0116246-0.2024656 35FRAME_VALID-295.27-4655.91-0.0116246-0.1833033NOTE:1.Reference to center of each bond pad from center of bond pad number 1.2.DNU = “Do Not Use.”36LINE_VALID -295.27-4149.03-0.0116246-0.163347437PIXCLK -295.27-3682.47-0.0116246-0.144978938FLASH -295.27-3215.91-0.0116246-0.126610439D GND 2-295.27-2749.35-0.0116246-0.108241940DNU 2-295.27-2282.79-0.0116246-0.089873441DNU -295.27-1816.23-0.0116246-0.071504942D OUT 0-295.27-1349.67-0.0116246-0.053136443D OUT 1-295.27-883.11-0.0116246-0.034767944V DD 2-295.27-416.55-0.0116246-0.0163994Table 1:K82A Bond Pad Location and Identification (continued)PAD MT9V111FROM CENTER OF PAD 1“X”1MICRONS “Y”1MICRONS “X”1INCHES “Y”1INCHESTable 2: K82A Bond Pad Location and IdentificationPAD MT9V111FROM CENTER OF DIE (0, 0)“X”1MICRONS“Y”1MICRONS“X”1INCHES“Y”1INCHES1D GND3-2603.842899.11-0.10251340.1141380 2D OUT2-2137.282899.11-0.08414490.1141380 3D OUT3-1670.722899.11-0.06577640.1141380 4D OUT4-1204.162899.11-0.04740790.1141380 5D OUT5-737.602899.11-0.02903940.1141380 6D GND4-271.042899.11-0.01067090.1141380 7V DD3195.522899.110.00769760.1141380 8D OUT61082.882899.110.04263310.1141380 9D OUT71549.442899.110.06100160.1141380 10V DD42016.002899.110.07937010.1141380 11D GND52482.562899.110.09773860.1141380 12V DD52899.112482.560.11413800.0977386 13V DD62899.112016.000.11413800.0793701 14D GND2899.111549.440.11413800.0610016 15D GND62899.111082.880.11413800.0426331 16V DD72899.11616.320.11413800.0242646 17D GND72899.11149.760.11413800.0058961 18OE_BAR2899.11-316.800.1141380-0.0124724 19STANDBY2899.11-783.360.1141380-0.0308409 20RESET_BAR2899.11-1249.920.1141380-0.0492094 21VAAPIX2899.11-1756.800.1141380-0.0691654 22ADC_TEST2899.11-2243.520.1141380-0.0883276 23A GND12482.56-2899.110.0977386-0.1141380 24V AA12016.00-2899.110.0793701-0.1141380 25A GND01549.44-2899.110.0610016-0.1141380 26V AA01082.88-2899.110.0426331-0.1141380 27V DD0195.52-2899.110.0076976-0.1141380 28D GND0-271.04-2899.11-0.0106709-0.1141380 29SADDR-737.60-2899.11-0.0290394-0.1141380 30SDATA-1204.16-2899.11-0.0474079-0.1141380 31SCLK-1670.72-2899.11-0.0657764-0.1141380 32CLK_IN-2137.28-2899.11-0.0841449-0.1141380 33D GND1-2603.84-2899.11-0.1025134-0.1141380 34V DD1-2899.11-2243.52-0.1141380-0.0883276 35FRAME_VALID-2899.11-1756.80-0.1141380-0.0691654NOTE:1.Reference to center of each bond pad from center of die (0, 0).2.DNU = “Do Not Use.”36LINE_VALID -2899.11-1249.92-0.1141380-0.049209437PIXCLK -2899.11-783.36-0.1141380-0.030840938FLASH -2899.11-316.80-0.1141380-0.012472439D GND 2-2899.11149.76-0.11413800.005896140DNU 2-2899.11616.32-0.11413800.024264641DNU -2899.111082.88-0.11413800.042633142D OUT 0-2899.111549.44-0.11413800.061001643D OUT 1-2899.112016.00-0.11413800.079370144V DD 2-2899.112482.56-0.11413800.0977386Table 2:K82A Bond Pad Location and Identification (continued)PAD MT9V111FROM CENTER OF DIE (0, 0)“X”1MICRONS “Y”1MICRONS “X”1INCHES “Y”1INCHESFigure 2: Die Outline (Top View)NOTE:1.Die street widths are not drawn to scale.2.In die orientation as shown, the image is inverted reverted.Wafer Diameter: 200mm (8")Wafer Thickness: 305µm ± 12µm (12.0 mil ± 0.5 mil) Die Size (stepping interval):6,267.0µm x 6,267.0µm(246.732 mil x 246.732 mil)Street WidthAlong X-Axis (dsw_X): 127.0µm (5.00 mil)Street WidthAlong Y-Axis (dsw_Y): 127.0µm (5.00 mil)Center of Streets (COS)(Relative to Bond Pad 1):X = -529.66µm, Y = 234.395µm(X = -20.853 mil, Y = 9.228 mil)Bond Pad Size (MIN): 85.0µm x100µm(3.35 mil x3.94 mil)Passivation Openings (MIN): 75.0µm x 90.0µm(2.95 mil x 3.54 mil) Minimum Bond Pad Pitch: 466.56µm (18.369 mil) Optical Array (Orientation Inverted Reverted): Optical Center from Chip CenterX = 11µm, Y = 91.3µmFirst Clear Pixel (Col 18, Row 6)From Chip Center:X = 1803.41µm, Y = 1457.47µmFrom Center of Pad 1:X = 4407.34µm, Y = -1441.61µmLast Clear Pixel (Col 666, Row 494)From Chip Center:X = -1825.39µm, Y = -1275.32µmFrom Center of Pad 1:X = 778.44µm, Y = -4174.41µmFigure 3: K82A Die Orientation in Reconstructed WaferData Sheet DesignationNo Mark: Although considered final, these specifications are subject to change.8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900E-mail: prodmktg@, Internet: , Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.MICRON CONFIDENTIAL AND PROPRIETARYRevision HistoryRev F, Pub. 04/04, No Mark.............................................................................................................................................4/04•Added Figure 3Rev E, Pub. 03/04, No Mark............................................................................................................................................3/04•Added information to the Features and Key Performance Parameters paragraphs in page 1•Changed second paragraph under General Despcription•Modified Figure 1 to show how to connect bond pad 22 (ADC_TEST)•Changed bond pad 22 name to better describe its function (ADC_TEST)Rev D, Pub. 02/04, No Mark............................................................................................................................................2/04•Changed YCrCb to YCbCr•Changed Supply Voltage: 2.8V ±0.3V to Supply Voltage: 2.8V ±0.25VRev C, Pub. 02/04, No Mark............................................................................................................................................2/04•Added Key Performance Parameters•Added Figure 1•Modified Features and Bonding Instructions•Changed data sheet designation to No MarkRev B, Pub. 11/03, Preliminary.....................................................................................................................................11/03•Updated part numbersRev A, Pub. 11/03, Preliminary.....................................................................................................................................11/03 K82A, 1/4-INCH IMAGER DIE Micron Technology, Inc., reserves the right to change products or specifications without notice. K82A.fm-Rev. F Pub 4/04 EN11©2003 Micron Technology, Inc. All rights reserved.。
R328硬件设计指南V1.0-20190418
1.6. Flash 电路设计............................................................................................................................................ 14
市研读慧科者技有对限 象
市研慧科技有限
深圳 本文档主要适用于: 深圳
硬件开发工程师
软件开发工程师
技术支持工程师
公司Yanhui 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
公 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
公司Yanhui 市研慧科技有限 深圳
目录.................................................................................................................................................................................3
1.3.3. 上电时序设计................................................................................................................................ 13
1.4. 复位电路设计............................................................................................................................................ 14
th2828s 工作原理
th2828s 工作原理th2828s是一种工作原理先进的设备,其核心原理是基于先进的信号处理技术和数据传输技术。
th2828s的工作原理可以分为以下几个方面。
th2828s的工作原理基于信号处理技术。
它能够接收外部设备发送的信号,并将信号进行处理和解码。
通过对信号的处理,th2828s 能够提取出有用的信息,并将其转化为可理解的数据。
这样,用户就可以通过观察和分析这些数据,来获取所需的信息。
th2828s的工作原理还涉及到数据传输技术。
一旦信号被处理和解码,th2828s会将数据通过特定的传输方式传送给用户。
这种传输方式可以是有线的或无线的,取决于具体的应用场景和需求。
无论采用何种传输方式,th2828s都会确保数据的稳定传输,以保证用户能够准确地获取所需的信息。
th2828s的工作原理还包括与外部设备的交互。
它可以与其他设备进行通信,并实现数据的共享和交换。
这种交互可以通过多种方式实现,例如通过网络连接或其他通信接口。
通过与外部设备的交互,th2828s能够更好地满足用户的需求,并提供更加全面和准确的数据。
th2828s的工作原理还涉及到数据处理和分析技术。
一旦数据被传输到用户端,th2828s会利用先进的数据处理和分析算法对数据进行处理和分析。
这些算法可以帮助用户更好地理解数据,并从中提取出有价值的信息。
通过数据处理和分析,th2828s能够帮助用户做出科学的决策,并提供有效的解决方案。
总体来说,th2828s的工作原理是基于先进的信号处理技术和数据传输技术。
它能够接收、处理、传输和分析数据,以帮助用户获取所需的信息。
通过与外部设备的交互,th2828s还可以实现数据的共享和交换,以满足用户的需求。
th2828s的工作原理的先进性和高效性,使其在各个领域得到广泛的应用和认可。
AD转换应用实例
手把手教你写S12XS128程序(9)--A/D转换模块介绍1时间:2009-11-30 22:10来源:电子设计吧作者:dzsj8 点击: 916次1、A/D转换原理A/D转换的过程是模拟信号依次通过取样、保持和量化、编码几个过程后转换为数字格式。
a)取样与保持一般取样与保持过程是同时完成的,取样-保持电路的原理图如图16所示,由输入放大器A1、输出放大器A2、保持电容CH和电子开关S组成,要求 AV1 * AV2= 1。
原理是:当开关S闭合时,电路处于取样阶段,电容器充电,由于 AV1 * AV2= 1,所以输出等于输入;当开关S断开时,由于A 2输入阻抗较大而且开关理想,可认为CH没有放电回路,输出电压保持不变。
图16 取样-保持电路取样-保持以均匀间隔对模拟信号进行抽样,并且在每个抽样运算后在足够的时间内保持抽样值恒定,以保证输出值可以被A/D 转换器精确转换。
b)量化与编码量化的方法,一般有舍尾取整法和四舍五入法,过程是先取顶量化单位Δ,量化单位取值越小,量化误差的绝对值就越小,具体过程在这里就不做介绍了。
将量化后的结果用二进制码表示叫做编码。
2、A/D转换器的技术指标a)分辨率分辨率说明A/D转换器对输入信号的分辨能力,理论上,n位A/D转换器能区分的输入电压的最小值为满量程的1/2n 。
也就是说,在参考电压一定时,输出位数越多,量化单位就越小,分辨率就越高。
S12的ATD模块中,若输出设置为8位的话,那么转换器能区分的输入信号最小电压为19.53mV。
b)转换时间A/D转换器按其工作原理可以分为并联比较型(转换速度快ns级)、逐次逼近型(转换速度适中us级)、双积分型(速度慢抗干扰能力强)。
不同类型的转化的A/D转换器转换时间不尽相同,S12的ATD模块中,8位数字量转换时间仅有6us,10位数字量转换时间仅有7us。
手把手教你写S12XS128程序(10)--A/D转换模块介绍2时间:2009-12-09 21:32来源:电子设计吧作者:dzsj8 点击: 895次S12内置了2组10位/8位的A/D模块:ATD0和ATD1,共有16个模拟量输入通道,属于逐次逼近型A/D转换器(这个转换过程与用天平称物的原理相似)。
SD卡工作原理介绍和工作原理图
大容量SD卡在海洋数据存储中的应用本设计使用8 GB的SDHC(High Capacity SD Memory Card,大容量SD存储卡),为了方便卡上数据在操作系统上的读取,以及数据的进一步分析和处理,在SDHC卡上建立了FAT32文件系统。
海洋要素测量系统要求数据存储量大、安全性高,采用可插拔式存储卡是一种不错的选择。
目前,可插拔式存储卡有CF 卡、U盘及SD卡。
CF卡不能与计算机直接通信;U盘需要外扩接口芯片才能与单片机通信,增加了外形尺寸及功耗;而SD卡具有耐用、可靠、安全、容量大、体积小、便于携带和兼容性好等优点,非常适合于测量系统长期的数据存储。
1 SD卡接口的硬件设计STM32F103xx增强型系列是意法半导体公司生产的基于Cortex-M3的高性能的32位RISC内核,工作频率为72 MHz,内置高速存储器(128 KB的闪存和20 KB的SRAM),以及丰富的增强I/O端口和连接到2条APB总线的外设。
STM32F103xx系列工作于-40~+105℃的温度范围,供电电压为2.0~3.6 V,与SD卡工作电压兼容,一系列的省电模式可满足低功耗应用的要求。
SD卡支持SD模式和SPI模式两种通信方式。
采用SPI模式时,占用较少的I/O资源。
STM32F103VB包含串行外设SPI接口,可方便地与SD卡进行连接。
通过4条信号线即可完成数据的传输,分别是时钟SCLK、主机输入从机输出MISO、主机输出从机输入MOSI和片选CS。
STM32F103VB与SD卡卡座的接口电路如图1所示。
SD卡的最高数据读写速度为10 MB/s,接口电压为2.7~3.6 V,具有9个引脚。
SD卡使用卡座代替传输电缆,减少了环境干扰,降低了出错率,而且1对1传输没有共享信道的问题。
SD卡在SPI模式下各引脚的定义如表1所列。
2 SD卡接口的软件设计本设计采用STM32F103VB自带的串行外设SPI接口与SD卡进行通信,这里只介绍SPI模式的通信方式。
MC9S12DG128的结构与工作原理
2.1 MC9S12DG128的内部结构
2.1.1 CPU12内核(Star Core)
(2)间址/变址寄存器(Index Register) X、Y ❖ CPU12内部有两个16位地址寄存器IX和IY,称为间接寻址寄存
器,简称间址寄存器或变址寄存器。一般情况下作为指针寄 存器,用于多种寻址方式下的地址计算,也可用于临时存放 数据或参与一些运算,只能按照16位方式访问。 ❖ 在汇编语言中,这两个寄存器进一步简称为寄存器X和寄存 器Y。在数据块传送时,X和Y寄存器都可以自动加、减1~16, X寄存器常作为源地址指针,Y寄存器常作为目的地址指针, 故X和Y寄存器也称作指针寄存器。
❖ 若把一个16位数据存入累加器D中,则高8位在A寄存器中,低8位在B寄 存器中。与此相对应,若把D寄存器中的一个16位数据存入存储器,则 高8位在存储器的低位地址,低8位在存储器的高位地址。
❖ 注意,任何Motorola (Freescale)公司独立设计的16位、32位CPU中,寄 存器与存储器字节的对应关系都是高位数据存放于位地址,低位数据 占用高位地址,这与Intel公司的CPU数据存放格式正好相反。
17
2.1 MC9S12DG128的内部结构
2.1.1 CPU12内核(Star Core)
CCR中各位的主要含义:
❖ C——进位/借位标志(Carry/Borrow Flag) 当加法运算产生进位或减法运算产生借位时,C=1,否则,C=0。
❖ V——溢出标志(Overflow Flag) 算术运算后,若出现2补码(two’s-complement)溢出时,V=1;若无溢出,V=0。
(Program State Word),但不同的是,它还可以参与控制CPU的行为。 ❖ 条件码寄存器中各位的定义: