二面角的几种方法及例题

合集下载

求二面角的六种方法

求二面角的六种方法

求二面角的六种方法求解二面角是空间几何学中常见的问题,它在多个领域如物理学、化学和工程学中都有广泛的应用。

本文将介绍六种求解二面角的方法,包括向量法、坐标法、三角法、平面几何法、球面几何法和投影法。

一、向量法向量法是一种简便的求解二面角的方法。

它利用向量的夹角来表示二面角。

首先,我们需要确定两个平面的法向量,然后计算它们之间的夹角。

通过向量的点积和模长运算,可以得到二面角的大小。

二、坐标法坐标法是一种常用的求解二面角的方法。

它利用坐标系中的点来表示二面角。

我们可以通过给定的坐标点,计算两个平面的法向量,然后利用向量夹角的公式求解二面角。

三、三角法三角法是一种基于三角函数的求解二面角的方法。

它利用三角函数的性质来计算二面角的大小。

通过已知的边长和角度,可以利用正弦定理、余弦定理等公式求解二面角。

四、平面几何法平面几何法是一种利用平面几何关系求解二面角的方法。

它通过已知的平面形状和角度关系,利用平面几何的知识来求解二面角的大小。

例如,可以利用平行线的性质、垂直线的性质等来计算二面角。

五、球面几何法球面几何法是一种利用球面几何关系求解二面角的方法。

它通过已知的球面形状和角度关系,利用球面几何的知识来求解二面角的大小。

例如,可以利用球面上的弧长、球面上的角度等来计算二面角。

六、投影法投影法是一种利用投影关系求解二面角的方法。

它通过已知的投影长度和角度关系,利用投影几何的知识来求解二面角的大小。

例如,可以利用平面上的投影线段、平面上的角度等来计算二面角。

通过以上六种方法,我们可以灵活地求解二面角的大小。

不同的问题和场景可能适用不同的方法,我们可以根据具体情况选择合适的方法来解决问题。

这些方法在实际应用中具有重要的意义,能够帮助我们更好地理解和解决相关问题。

总结起来,求解二面角的六种方法分别是向量法、坐标法、三角法、平面几何法、球面几何法和投影法。

每种方法都有其特点和适用场景,我们可以根据具体问题选择合适的方法来求解二面角。

(完整版)二面角求解方法

(完整版)二面角求解方法

二面角的作与求求角是每年高考必考内容之一,可以做为选择题,也可作为填空题,时常作为解答题形式出现,重点把握好二面角,它一般出现在解答题中。

下面就对求二面角的方法总结如下:1、定义法:在棱上任取一点,过这点在两个面内分别引棱的垂线,这两条射线所成的角就是二面角的平面角。

2、三垂线定理及逆定理法:自二面角的一个面上的一点向另一个面引垂线,再由垂足向棱作垂线得到棱上的点。

斜足与面上一点连线,和斜足与垂足连线所夹的角即为二面角的平面角。

3、作棱的垂面法:自空间一点作与棱垂直的平面,截二面角的两条射线所成的角就是二面角的平面角。

4、投影法:利用s投影面=s被投影面θcos 这个公式对于斜面三角形,任意多边形都成立,是求二面角的好方法。

尤其对无棱问题5异面直线距离法: EF 2=m 2+n 2+d 2-2mn θcos例1:若p 是ABC ∆所在平面外一点,而PBC ∆和ABC ∆都是边长为2的正三角形,PA=6,求二面角P-BC-A 的大小。

分析:由于这两个三角形是全等的三角形, 故采用定义法解:取BC 的中点E ,连接AE 、PEAC=AB ,PB=PC ∴AE ⊥ BC ,PE ⊥BC∴PEA ∠为二面角P-BC-A 的平面角在PAE ∆中AE=PE=3,PA=6PCBAE∴PEA ∠=900∴二面角P-BC-A 的平面角为900。

例2:已知ABC ∆是正三角形,⊥PA 平面ABC 且PA=AB=a,求二面角A-PC-B 的大小。

[思维]二面角的大小是由二面角的平面角 来度量的,本题可利用三垂线定理(逆)来作 平面角,还可以用射影面积公式或异面直线上两点 间距离公式求二面角的平面角。

解1:(三垂线定理法)取AC 的中点E ,连接BE ,过E 做EF ⊥PC,连接BF ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC由三垂线定理知BF ⊥PC∴BFE ∠为二面角A-PC-B 的平面角设PA=1,E 为AC 的中点,BE=23,EF=42∴tan BFE ∠=6=EFBE∴BFE ∠=arctan 6解2:(三垂线定理法)取BC 的中点E ,连接AE ,PE 过A 做AF ⊥PE, FM ⊥PC,连接FMAB=AC,PB=PC ∴AE ⊥BC,PE ⊥BC∴ BC ⊥平面PAE,BC ⊂平面PBC∴平面PAE ⊥平面PBC, 平面PAE 平面PBC=PE由三垂线定理知AM ⊥PCPC BAEF MEPCBAF图1图2∴FMA ∠为二面角A-PC-B 的平面角设PA=1,AM=22,AF=721.=PE AE AP∴sin FMA ∠=742=AM AF ∴FMA ∠=argsin742解3:(投影法)过B 作BE ⊥AC 于E,连结PE ⊥PA 平面ABC ,PA ⊂平面PAC∴平面PAC ⊥平面ABC, 平面PAC 平面ABC=AC∴BE ⊥平面PAC∴PEC ∆是PBC ∆在平面PAC 上的射影设PA=1,则PB=PC=2,AB=141=∆PEC S ,47=∆PBC S由射影面积公式得,77cosarg ,77=∴==∆∆θθPBC PEC S S COS , 解4:(异面直线距离法)过A 作AD ⊥PC,BE ⊥PC 交PC 分别于D 、E 设PA=1,则AD=22,PB=PC=2 ∴BE=PC S PBC 21∆=414,CE=42,DE=42由异面直线两点间距离公式得 AB 2=AD 2+BE 2+DE 2-2ADBE θCOS ,θCOS =77cos arg ,77=∴θ [点评]本题给出了求平面角的几种方法,应很好掌握。

二面角8种求法

二面角8种求法

二面角求法正方体是研究立体几何概念的一个重要模型,中学立体几何教学中,求平面与平面所成的二面角是转化为平面角来度量的,也可采用一些特殊的方法求二面角,而正方体也是探讨求二面角大小方法的典型几何体。

笔者通过探求正方体中有关二面角,分析求二面角大小的八种方法:(1)平面角定义法;(2)三垂线定理法;(3)线面垂直法;(4)判定垂面法;(5)异面直线上两点间距离公式法;(6)平行移动法;(7)投影面积法;(8)棱锥体积法。

一、平面角定义法此法是根据二面角的平面角定义,直接寻求二面角的大小。

以所求二面角棱上任意一点为端点,在二面角两个平面内分别作垂直于棱的两条射线所成角就是二面角的平面角,如图二面角α-l-β中,在棱l上取一点O,分别在α、β两个平面内作AO⊥l,BO⊥l,∠AOB即是所求二面角的平面角。

例题1:已知正方体ABCD-A1B1C1D1中,O、O1是上下底面正方形的中心,求二面角O1-BC-O的大小。

例题2:已知正方体ABCD-A1B1C1D1中,E、F为A1D1、C1D1的中点,求平面EFCA与底面ABCD所成的二面角。

二、 利用三垂线定理法此方法是在二面角的一个平面内过一点作另一个面的垂线,再由垂足(或仍是该点)作棱的垂线,连接该点和棱上的垂足(或连两垂足)两点线,即可得二面角的平面角。

如图二面角α-l-β中,在平面α内取一点A ,过A 作AB ⊥平面β,B 是垂足, 由B (或A )作BO (或AO )⊥l ,连接AO (或BO )即得AO 是平面β的斜线, BO 是AO 在平面β中的射影,根据三垂线定理(或逆定理)即得AO ⊥l ,BO ⊥l , 即∠AOB 是α-l-β的平面角。

例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。

例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。

三、 线面垂直法此法利用直线垂直平面即该直线垂直平面内任何直线的性质来寻求二面角的平面角。

二面角的几种方法及例题

二面角的几种方法及例题

二面角大小的求法〔例题〕二面角的类型和求法可用框图展现如下:一、定义法:直接在二面角的棱上取一点〔特殊点〕,分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.O OA PA OB PAOB OAAOB AOB=120APB=60OB PB PB βαβ⊥⊥∴⊥⊥⊥∴⊥∴⊥∠∠︒∠︒做交线,交于点,连接平面交线同理交线又交线交线面交线即可得为面的二面角,所以例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

提示:PAB PCD ≅,而且是直角三角形jA BCDPHPOBA二、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的tag 大小。

A AH BC BC H PH ABCDPA AB PA BC PHA PHA H ABH=30AB=a AH=a/2tag PHA 2PA BC AB ⊥⊥∴⊥⊥∴⊥∴∠∠︒∴∴∠=过做,交于,连接面,面为二面角在中,例:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.提示:CO ⊥DE ,而且是长方体!!!ABCDA 1B 1C 1D 1EO例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。

求〔1〕二面角P—BC—A的大小;〔2〕二面角C—PB—A的大小提示:角PAB是二面角,找到每个面的直角!!!射影,那么PM为面ABC的垂线!例、如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小.提示:AA1与BB1互相垂直AF是辅助线且垂直AB,FE平行BB1图4 B1AαβA1B LE F四、射影法:〔面积法〕利用面积射影公式S射=S原cosθ,其中θ为平面角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA =AB=a,求平面PBA与平面PDC所成二面角的大小。

二面角的几种方法及例题

二面角的几种方法及例题

二面角大小的求法(例题)二面角的类型和求法可用框图展现如下:、定义法: 甬片+—*■垂面法化T不见播型直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性;例、如图,已知二面角a - a - B等于120° ,PA丄a ,A €a ,PB丄B ,B .求/ APB的大小.做OB 交线,交于点O,连接OAQ PB 平面PB 交线同理PA 交线又Q OB 交线交线面PAOB交线OA即可得AOB为面的二面角,AOB=120所以APB=60例、在四棱锥P-ABCD中, ABCD是正方形,PA!平面ABCQPA=AB=a求二面角B-PC-D的大小。

提示:VPAB VPCD,而且是直角三角形可见槻型I解法• f三垂线法A、三垂线定理法:已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;例、在四棱锥P-ABCD中,ABCD是平行四边形,P从平面ABCD PA=AB=a / ABC=30,求二面角P-BC-A的tag 大小。

过A做AH BC,交BC于H,连接PH Q PA 面ABCDPA AB, PA BCBC 面PHAPHA为二面角在VABH中ABH=30 , AB=aAH=a/2tag PHA 2例:如图,ABCD-ABGD是长方体,侧棱AA长为1,底面为正方体且边长为2,E是棱BC勺中点,求面CD%面CD所成二面角的正切值.提示:CO DE而且是长方体! !!例、△ ABC 中,/ A=90°, AB=4 AC=3 平面 ABC 外一点 P 在平 面ABC 内的射影是AB 中点M 二面角P-AC — B 的大小为45°。

求(1) 二面角P-BC — A 的大小;(2)二面角C-PB-A 的大小 提示:角PAB 是二面角,找到每个面的直角!射影,那么PM 为面ABC 的垂线!例、如图4,平面丄平面,A =l , A € , B € ,点A 在 直线I 上的射影为A,点B 在I 的射影为B,已知AB=2AA=1,BBp/2, 求:二面角A — AB- B 的大小.提示:AA1与BB1互相垂直AF 是辅助线且垂直AB,FE 平行BB四、射影法:(面积法)利用面积射影公式S 射=S 原cos ,其中 为平面BD i' M图4角的大小,此方法不必在图形中画出平面角;例、在四棱锥P-ABCD中,ABC[为正方形,P从平面ABCD PA =AB= a,求平面PBA与平面PDC所成二面角的大小。

二面角求法及经典题型归纳

二面角求法及经典题型归纳

二面角求法归纳18题,通常是立体几何(12-14分),本题考查空间线面平行、线面垂直、面面垂直的判断与证明,考查二面角的求法以及利用向量知识解决几何问题的能力,同时考查空间想象能力、推理论证能力和运算能力。

以下是求二面角的五种方法总结,及题形归纳。

定义法:从一条直线出发的两个半平面所组成的图形叫做二面角, 这条直线叫做二面角的棱, 这两个半平面叫做二面角的面,在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

本定义为解题提供了添辅助线的一种规律。

如例1中从二面角S —AM —B 中半平面ABM 上的一已知点(B )向棱AM 作垂线,得垂足(F );在另一半平面ASM 内过该垂足(F )作棱AM 的垂线(如GF ),这两条垂线(BF 、GF )便形成该二面角的一个平面角,再在该平面角内建立一个可解三角形,然后借助直角三角函数、正弦定理与余弦定理解题。

例1(2009全国卷Ⅰ理)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD =2DC SD ==,点M 在侧棱SC 上,ABM ∠=60°(I )证明:M 在侧棱SC 的中点 (II )求二面角S AM B --的大小。

证(I )略解(II ):利用二面角的定义。

在等边三角形ABM 中过点B作BF AM ⊥交AM 于点F ,则点F 为AM 的中点,过F 点在平面ASM 内作GF AM ⊥,GF 交AS 于G ,连结AC ,∵△ADC ≌△ADS ,∴AS-AC ,且M 是SC 的中点, ∴AM ⊥SC , GF ⊥AM ,∴GF ∥AS ,又∵F 为AM 的中点,∴GF 是△AMS 的中位线,点G 是AS 的中点。

则GFB ∠即为所求二面角. ∵2=SM ,则22=GF ,又∵6==AC SA ,∴2=AM ∵2==AB AM ,060=∠ABM ∴△ABM 是等边三角形,∴3=BF在△GAB 中,26=AG ,2=AB ,090=∠GAB ,∴211423=+=BG 366232222113212cos 222-=-=⨯⨯-+=⋅-+=∠FB GF BG FB GF BFG FGFG∴二面角S AM B --的大小为)36arccos(-例2. (2010全国I 理,19题,12分)如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB//DC ,AD ⊥DC ,AB=AD=1,DC=SD=2,E 为棱SB 上的一点,平面EDC ⊥平面SBC . (Ⅰ)证明:SE=2EB ;(Ⅱ)求二面角A-DE-C 的大小 . (Ⅱ) 由225,1,2,,SA SD AD AB SE EB AB SA =+===⊥知22121,AD=133AE SA AB ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭又.故ADE ∆为等腰三角形.取ED 中点F,连接AF,则226,3AF DE AF AD DF ⊥=-=. 连接FG ,则//,FG EC FG DE ⊥.所以,AFG ∠是二面角A DE C --的平面角. 连接AG,A G=2,2263FG DG DF =-=, 2221cos 22AF FG AG AFG AF FG +-∠==-,所以,二面角A DE C --的大小为120°.例3(2010浙江省理,20题,15分)如图, 在矩形ABCD 中,点,E F 分别 在线段,AB AD 上,243AE EB AF FD ====.沿直线EF 将 AEF 翻折成'A EF ,使平面'A EF BEF ⊥平面.(Ⅰ)求二面角'A FD C --的余弦值;(Ⅱ)点,M N 分别在线段,FD BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与'A 重合,求线段FM 的长.练习(2008山东)如图,已知四棱锥P-ABCD,底面ABCD为菱形,P A⊥平面ABCD,60ABC∠=︒,E,F分别是BC, PC的中点.(Ⅰ)证明:AE⊥PD;(Ⅱ)若H为PD上的动点,EH与平面P AD所成最大角的正切值为62,求二面角E—AF—C的余弦值.分析:第1题容易发现,可通过证AE⊥AD后推出AE⊥平面APD,使命题获证,而第2题,则首先必须在找到最大角正切值有关的线段计算出各线段的长度之后,考虑到运用在二面角的棱AF上找到可计算二面角的平面角的顶点S,和两边SE与SC,进而计算二面角的余弦值。

正四面体二面角8种求法(教师版)

正四面体二面角8种求法(教师版)

正四⾯体⼆⾯⾓8种求法(教师版)⼆⾯⾓求法例题1:已知正⽅体ABCD-A 1B 1C 1D 1中,O 、O 1是上下底⾯正⽅形的中⼼,求⼆⾯⾓O 1-BC-O 的⼤⼩。

解:取BC 中点E ,连接OE 、O 1E ,易证⊿BOC 、⊿BO 1C 是等腰三⾓形。

∴OE ⊥BC ,O 1E ⊥BC ,∴∠OEO 1是⼆⾯⾓O 1-BC-O 的平⾯⾓,连OO 1,OO 1⊥平⾯ABCD ,∴OO 1⊥OE 在RT ⊿OEO 1中,OO 1=1,DE=21∴tan ∠OEO 1=22111==OE OO∴所求⼆⾯⾓θ=arctan2。

例题2:已知正⽅体ABCD-A 1B 1C 1D 1中,E 、F 为A 1D 1、C 1D 1的中点,求平⾯EFCA 与底⾯ABCD 所成的⼆⾯⾓。

解:连B 1D 1交EF 于G ,连BD 交AC 于O ,作GH ⊥BD ,H 是垂⾜,连GO ,易证GO ⊥AC ,⼜BD ⊥AC∴∠GOH 是所求⼆⾯⾓的平⾯⾓, GH=1,OH=42∴tan ∠GOH=22421==OH GH ∴所求⼆⾯⾓θ=arctan 22。

利⽤平⾯⾓定义法求⼆⾯⾓⼤⼩,在棱上取⼀点常常是取特殊点。

例1中E 点,例2中O 点都是特殊位置的点,所作两垂线也是题中特殊位置的线段。

例题3:已知正⽅体ABCD-A 1B 1C 1D 1中,求⼆⾯⾓B-AC-B 1的⼤⼩。

解:连接BD 交于AC 为O 点,连OB 1,∵BB 1⊥平⾯ABCD ,BO ⊥AC ∴B 1O ⊥AC ,∠BOB 1是⼆⾯⾓B-AC-B 1的平⾯⾓,tan ∠BOB 1=22211==BO BB ∴所求⼆⾯⾓θ=arctan 2. 例题4:已知正⽅体ABCD-A 1B 1C 1D 1中,求平⾯ACD 1与平⾯BDC 1所成的⼆⾯⾓。

解:设AC 与BD 交于E ,CD 1与C 1D 交于F ,连EF 是所求⼆⾯⾓B-EF-C 的棱,连A 1C ,易证A 1C ⊥平⾯BDC 1,垂⾜为H ,取AD 1中点O ,连OC 交EF 于G∵EF ∥AD 1,OC ⊥AD 1 ∴OC ⊥EF 即CG ⊥EF 。

解二面角问题三种方法(习题及答案)

解二面角问题三种方法(习题及答案)

C A B DA A 1B DC C 1 B 1 解二面角问题(一)寻找有棱二面角的平面角的方法和求解。

(1)定义法:利用二面角的平面角的定义,在二面角的棱上取一点,过该点在两个半平面内作垂直于棱的射线,两射线所成的角就是二面角的平面角,这是一种最基本的方法。

要注意用二面角的平面角定义的三个“主要特征”来找出平面角,当然这种找出的角要有利于解决问题。

下面举几个例子来说明。

例1:如图,立体图形V -ABC 的四个面是全等的正三角形,画出二面角V -AB -C 的平面角并求出它的度数。

例2:在三棱锥P-ABC 中,∠APB=∠BPC=∠CPA=600,求二面角A-PB-C 的余弦值。

这样的类型是不少的,如下列几道就是利用定义法找出来的:1、在正方体ABCD -A 1B 1C 1D 1中,找出二面角B -AC -B 1的平面角并求出它的度数。

2、.边长为a 的菱形ABCD ,∠ACB=600,现沿对角线BD 将其折成才600的二面角,则A 、C 之间的距离为 。

(菱形两条对角线互相垂直,对折后的一条对角线成两条线段仍都垂直于另一条对角线,则所成的角是二面角的平面角)3、正三棱柱ABC —A 1B 1C 1的底面边长是4,过BC 的一个平面与AA 1交于D ,若AD =3,求二面角D ―BC ―A 的正切值。

总之,能用定义法来找二面角的平面角的,一般是图形的性质较好,能够较快地找到满足二面角的平面角的三个主要特征。

并且能够很快地利用图形的一些条件来求出所要求的。

在常见的几何体有正四面体,正三棱柱,正方体,以及一些平面图形,正三角形,等腰三角形,正方形,菱形等等,这些有较好的一些性质,可以通过它们的性质来找到二面角的平面角。

至于求角,通常是把这角放在一个三角形中去求解。

由图形及题目的已知条件来求这个三角形的边长或者角,再用解三角形的知识去求解。

(2)三垂线法:是利用三垂线的定理及其逆定理来证明线线垂直,来找到二面角的平面角的方法。

求二面角的方法专题

求二面角的方法专题

二面角二面角的平面角的定义: 以二面角的棱上任意一点为端点, 在两个面内分别作垂直于棱 的两条射线,这两条射线所成的角叫做二面角的平面角二面角的平面角的特点:① 直。

典型例题: 方法一:定义法AC BC AD BD CD a ,则二面角 A CD B 的余弦值是顶点在棱上;② 两条边分别在两个平面内;③与棱都垂.面角的平面角的范围: 0 0 0 ,180四.求二面角的平面角的方法:1. 定义法(或垂面法)2. 三垂线法1.已知 AOB90°,过点O 引 AOB 所在平面的斜线OC 与OA , OB 分别成 45°,60°A OCB 的大小。

ABC 所在平面外接 AD,BD,CD,AB 、• 2a ,角,求二面角3.如图,正方体ABCD A 1B 1C 1D 1中,E 为棱CC 1的中点,那么截面A 1BD 和截面EBD所成的二面角为 ________________4•在 ABC 中,AB BC,SA 平面ABC , DE 垂直平分SC ,且分别交AC,SC 于D,E ,又SA AB, SB BC ,求二面角E BD C 的大小。

5.如图,正方体ABCD A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角A BD 1 P的大小。

6•如图,已知点P 为正方体ABCD AB 1C 1D 1的棱A i B i 的中点,求二面角P AC DiC的余弦值。

方法二:三垂线法:7•如图所示,平面ABC 平面ABD, ACB 90°,CA CB, 面角C BD A的平面角的正切角为ABD是正三角形,则二23)3&如图,矩形ABCD中,AB 6,BC 2 3,沿对角线BD将移至点P,且P在平面BCD的射影0在DC上。

1(1 )求二面角P DB C的平面角的余弦值。

(一)3(2)求直线DC与平面PBD所成角的正弦值。

(亠)ABD向上折起,使点A9 .如图,已知A是BCD所在平面外一点,连接AB, AC,AD后,ADB 900, AD BD .2, ABC 300, AC 平面BDC,求二面角D AB C 的j'3大小。

二面角的基本求法例题及练习

二面角的基本求法例题及练习

C1C1B一、平面与平面的垂直关系1.判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

例1.在空间四边形ABCD 中,AB=CB ,AD=CD ,E 、F 、G 分别是AD 、DC 、CA 的中点。

求证:BEF BDG ^平面平面。

例2.AB BCD BC CD ^=平面,,90BCD °?,E 、F 分别是AC 、AD 的中点。

求证:BEF ABC ^平面平面 。

2.性质定理:若两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面。

例3.在正方体ABCD —A 1B 1C 1D 1中,求A 1B 和平面A 1B 1CD 所成的角.。

二、二面角的基本求法1.定义法:在棱上取点,分别在两面内引两条射线与棱垂直。

例4.在正方体ABCD —A 1B 1C 1D 1中, 求(1)二面角11A B C A --的大小;(2)平面11A DC 与平面11ADD A 所成角的正切值。

练习:过正方形ABCD 的顶点A 作PA ABCD ^平面,设PA=AB=a ,求二面角B PC D --的大小。

2.三垂线法例5.ABCD ABEF ABCD ^平面平面,是正方形,ABEF 是矩AF=12AD=a ,G 是EF 的中点, (1)求证:AGC BGC ^平面平面; (2)求GB 与平面AGC 所成角的正弦值; (3)求二面角B AC G --的大小。

C例6.点P 在平面ABC 外,ABC V 是等腰直角三角形,90ABC°?,PAB V 是正三角形,PA BC ^。

(1)求证:^平面PA B 平面A B C ; (2)求二面角P AC B --的大小。

练习:正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是AD 的中点,求二面角1A BD P --的大小。

B1B3.垂面法例7.SA ABC AB BC SA AB BC ^^==平面,,, (1)求证:SB BC ^;(2)求二面角C SA B --的大小;(3)求异面直线SC 与AB 所成角的余弦值。

求二面角的方法

求二面角的方法

解题宝典空间角主要包括异面直线所成的角、直线与平面所成的角、二面角.二面角是指从一条直线出发的两个半平面所组成的图形.求二面角的大小是一类常见的问题.本文重点介绍求二面角大小的四种方法:定义法、向量法、面积投影法、三垂线定理法.一、定义法过二面角棱上的任一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角.一般地,要求得二面角的大小只需要求出二面角的平面角的大小即可.在求二面角的大小时,我们可以根据二面角的平面角的定义来求解.首先在二面角的棱上选取一点,在两个面内作棱的垂线,则两条垂线的夹角,即为二面角的平面角,求得平面角的大小即可得到二面角的大小.例题:如图1,在长方体ABCD-A1B1C1D1中,底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥EB1C1;(2)若AE=A1E,求二面角B-EC-C1正弦值.图1图2解:(1)略;(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=45°,故AE=AB,AA1=2AB.如图2所示,在平面BCE内过B点作BM⊥CE于点M,取棱CC1的中点N,连结MN,EN.因为EC1=EC,所以EN⊥CC1,所以ΔCEN为直角三角形.因为BC⊥BE,所以ΔCEB为直角三角形.令AB=1,则BC=NC=1,BE=EN=2,CE=3,所以RtΔBEC≌RtΔNEC,所以MN⊥EC,则∠BMN即为二面角B-EC-C1的平面角.在RtΔBEC中,sin∠BCE=BE CE=BM BC,所以BM=,MN.在ΔBMN中,cos∠BMN=BM2+MN2-BN22BM∙MN=-12,则sin∠BMN=,故二面角B-EC-C1正弦值.利用定义法求二面角的大小的关键是作出二面角的平面角.在作图的过程中要充分利用题目条件中隐含的垂直关系,如等腰三角形三线合一的性质、菱形或正方形的对角线相互垂直、直角三角形中勾股定理及其逆定理等.另外在构造二面角的平面角时,常用的方法还有垂面法,即经过两个面的垂线的平面与两个平面的交线所夹的角即为二面角的平面角.二、三垂线法三垂线法是指利用三垂线定理求作二面角的平面角,求得二面角大小的方法.在求作二面角的平面角时,需过其中一个面内的一点作另一个面的垂线,再经过垂足作棱的垂线,连接该点与棱上的垂足,进而构造出与二面角的平面角相关的角,再结合图形中的垂直关系求得二面角的大小.以上述例题为例.解:如图3,连接BD,AC,交点为O,过点O作CE的垂线,垂足为P,连接BP.由三垂线定理可知BP垂直于CE,所以∠BPO即为所求二面角平面角的补角.设AB=1,由(1)可知AE=1,所以BE=2,CE=3.因为BC⊥BE,所以ΔBCE为直角三角形,所以RtΔBCP∽RtΔBCE.陈秀林图342解题宝典所以BP.在Rt△BOP 中,sin ∠BPO =BC BP=,即所求二面角正弦值为.此法与定义法的不同之处是将所求二面角的相关角置于直角三角形中,从而使解题的过程更加简洁.三、向量法向量法是通过空间向量的坐标运算,将所求的二面角转化为两个平面的法向量的夹角的方法.解题的思路是通过建立空间直角坐标系,求出两个平面的法向量,根据向量的数量积公式求出夹角,再利用法向量的夹角与二面角的关系来确定二面角的大小.值得说明的是,二面角的平面角与法向量的夹角的关系是相等或互补.以上述例题为例.解:(2)由(1)知∠BEB 1=90°.由题设知Rt△ABE ≌Rt△A 1B 1E ,所以∠AEB =45°,故AE =AB ,AA 1=2AB .以D 为坐标原点,建立如图4所示的空间直角坐标系D -xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),所以 CB =(1,0,0),CE =(1,-1,1),CC 1=(0,0,2).设平面BCE 的法向量为n =(x ,y ,z ),则ìíî CB ∙n =0,CE ∙n =0,即{x =0,x -y +z =0,令y =-1,得n =(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则ìíî CC 1∙m =0,CE ∙m =0,即{2z =0,x -y +z =0,令x =1得m=(1,1,0).于是cos m,n =m ∙n |m |∙|n |=-12.所以二面角B -EC-C 1平面角正弦值为.向量的引入降低了立体几何问题的难度,但对同学们的运算能力提出了更高的要求.求法向量的原则是先找后求,即如果存在一条已知的直线与二面角的某一个平面垂直,则该直线的方向向量即可视为此平面的法向量.四、投影法投影法,即为构造出二面角的两个平面中的一个平面在另外一个平面内的投影,从而利用此平面与其投影的夹角θ来判断所求二面角的大小的方法.若该平面与其投影的面积分别为S 1,S 2,则cos θ=S 1S 2.θ与所求二面角的关系有两种,即相等或互补.以上述例题为例.解:如图5,连接BD 交AC 于点O ,连接EO .因为四边形ABCD 为正方形,所以BD ⊥AC ,所以点B 在面C 1CE 内的投影,三角形EOC 为ECB 的投影.设棱AB =1,由(1)可知AE =1,则AC =BE =2,EC =3,所以三角形OCE 的面积为S 1=12∙OC ∙AE =12,三角形BCE 的面积为S 2=12BC ∙BE =12×1×2.所以S 2S 1=42=12.所以面BCE 与面ECC 1所成锐二面角的余弦值为12,故二面角的正弦值为.在本题中,三角形ECB 与其在面ECC 1上的投影EOC 的夹角即为所求二面角的补角,而两角互补,则其正弦值相等,所以可直接利用投影法来求解.一般地,求二面角的问题主要有两类,即求有棱二面角的大小和无棱二面角的大小,虽然图形有所不同,但解题的方法基本上一致.同学们在解题的过程中要注意仔细审题,择优而用.(作者单位:江苏省大丰高级中学)图5图443。

求二面角的六种常规方法

求二面角的六种常规方法

求二面角的六种常规方法二面角是指两个平面或两条直线的交角,常见的二面角有以下六种常规方法:1.夹角法:即利用两个平面的夹角来计算二面角。

给定两个平面,可以通过计算它们的法向量之间的夹角来得到二面角。

这个方法常用于计算两个平面的夹角,如计算棱镜的二面角、计算物体的棱角二面角等。

2.夹线法:这种方法主要用于计算两条直线的交角。

给定两条直线,可以通过计算它们的斜率之差来得到交角。

这个方法常用于计算直线的交角,如计算两个平面的交线的二面角、计算两个物体的接触面边缘的二面角等。

3.余角法:这种方法是在夹角法的基础上进行的改进。

给定两个平面或两条直线的夹角,可以通过计算其余角来得到二面角。

余角是指二面角的补角,即与二面角相加等于180度的角。

通过计算余角,可以得到二面角的大小和方向。

4.三角函数法:利用三角函数的性质,可以通过已知的边长或角度来求解二面角。

根据已知的边长和角度,可以使用正弦、余弦或正切函数等来求解二面角。

这个方法在计算复杂的三维图形或角度时非常有效。

5.矢量法:这种方法利用矢量的性质来计算二面角。

给定两个平面或两条直线的法向量,可以通过计算它们的夹角来得到二面角。

矢量法常用于计算立体图形的面角二面角、计算两个物体的平行面边缘的二面角等。

6.投影法:这种方法利用到给定的图形在投影面上的投影来计算二面角。

给定两个平面或两条直线的投影面,可以通过计算它们的投影线之间的夹角来得到二面角。

投影法常用于计算物体的棱角二面角、计算物体在投影面上的映射角等。

以上六种常规方法是计算二面角常用的方法,根据具体情况选择合适的方法进行计算,可以提高计算的准确性和效率。

高中数学正四面体二面角8种求法(教师版)

高中数学正四面体二面角8种求法(教师版)

二面角求法例题1:已知正方体ABCD-A 1B 1C 1D 1中,O 、O 1是上下底面正方形的中心,求二面角O 1-BC-O 的大小。

解:取BC 中点E ,连接OE 、O 1E ,易证⊿BOC 、⊿BO 1C 是等腰三角形。

∴OE ⊥BC ,O 1E ⊥BC ,∴∠OEO 1是二面角O 1-BC-O 的平面角, 连OO 1,OO 1⊥平面ABCD , ∴OO 1⊥OE 在RT ⊿OEO 1中,OO 1=1,DE=21∴tan ∠OEO 1=22111==OEOO∴所求二面角θ=arctan2。

例题2:已知正方体ABCD-A 1B 1C 1D 1中,E 、F 为A 1D 1、C 1D 1的中点,求平面EFCA 与底面ABCD 所成的二面角。

解:连B 1D 1交EF 于G ,连BD 交AC 于O ,作GH ⊥BD ,H 是垂足,连GO ,易证GO ⊥AC ,又BD ⊥AC∴∠GOH 是所求二面角的平面角, GH=1,OH=42∴tan ∠GOH=22421==OH GH ∴所求二面角θ=arctan 22。

利用平面角定义法求二面角大小,在棱上取一点常常是取特殊点。

例1中E 点,例2中O 点都是特殊位置的点,所作两垂线也是题中特殊位置的线段。

例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。

解:连接BD 交于AC 为O 点,连OB 1, ∵BB 1⊥平面ABCD ,BO ⊥AC ∴B 1O ⊥AC , ∠BOB 1是二面角B-AC-B 1的平面角,tan ∠BOB 1=22211==BO BB ∴所求二面角θ=arctan 2. 例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。

解:设AC 与BD 交于E ,CD 1与C 1D 交于F ,连EF 是所求二面角B-EF-C 的棱,连A 1C ,易证A 1C ⊥平面BDC 1,垂足为H ,取AD 1中点O ,连OC 交EF 于G ,连GH 。

二面角四种求法_5个例题解决二面角难题

二面角四种求法_5个例题解决二面角难题

四法求二面角二面角是高考的热点内容之一,求二面角的大小应先作出它的平面角,下面介绍作二面角的平面角四种方法:定义法、垂面法、三垂线定理法、射影面积法。

(1)定义法——在棱上取点,分别在两面内引两条射线与棱垂直,这两条垂线所成的角的大小就是二面角的平面角。

注:o 点在棱上,用定义法。

(2)垂线法(三垂线定理法)——利用三垂线定理作出平面角,通过解直角三角形求角的大小。

注:o 点在一个半平面上,用三垂线定理法。

(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角。

注:点O 在二面角内,用垂面法。

(4)射影面积法——若多边形的面积是S ,它在一个平面上的射影图形面积是S`,则二面角θ的大小为COS θ= S`÷ S A 图3 αβO B l O 图5 β α l CB A例1 如图1-125,PC⊥平面ABC,AB=BC=CA=PC,求二面角B-PA-C的平面角的正切值。

(三垂线定理法)分析由PC⊥平面ABC,知平面ABC⊥平面PAC,从而B在平面PAC上的射影在AC 上,由此可用三垂线定理作出二面角的平面角。

解∵ PC⊥平面ABC∴平面PAC⊥平面ABC,交线为AC作BD⊥AC于D点,据面面垂直性质定理,BD⊥平面PAC,作DE⊥PA于E,连BE,据三垂线定理,则BE⊥PA,从而∠BED是二面角B-PA -C的平面角。

设PC=a,依题意知三角形ABC是边长为a的正三角形,∴ D是∵PC = CA=a,∠PCA=90°,∴∠PAC=45°∴在Rt△DEA评注本题解法使用了三垂线定理来作出二面角的平面角后,再用解三角形的方法来求解。

例2 在60°二面角M-a-N内有一点P,P到平面M、平面N的距离分别为1和2,求点P到直线a的距离。

(图1-126)(垂面法)分析设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.同理,有PB⊥a,∵ PA∩PB=P,∴ a⊥面PAQB于Q又 AQ、BQ平面PAQB∴ AQ⊥a,BQ⊥a.∴∠AQB是二面角M-a-N的平面角。

求二面角的几种有效方法

求二面角的几种有效方法

, D= / ,可 得 = A 、厂 v

又 ・ F V3-,. : . = ・ O . ・
,,) y z: (, 0
。 S点 的坐 标 为 ( y : , 设 ,,)
,) ・ 1 。. . 的 坐标 为 ( s点 ,
角, S为 原 图形 的 面积 , 原 图 形 的 射 影 面 积 ) S为 解 : DF是 △ DF 在 平 面 ADF 内 的 射 影 由 解 法 1在 RA B 中 , S:、 t AS B
解 : 立如上 图的空间直角坐标系 . 建 则
求。
在 RA S tA B中, S A=

, = / A 、
-n t LAS = / ,. a B 、丁 . ・

的 夹 角 为 所
LAS B=6 。 0。
所 以二 面角 A— D 日的 大 小 为 6  ̄ 0
评 析 : 种 方 法 需 要 作 出 二 面 角 的平 面 角 . 且 要 判 断 二 这 并 面角 的平 面 角 是 锐 角 还 是 钝 角 方 法 2 射 影 面 积 法 : cs= 据 o 为 所 求 二 面 角 或 其 补
号‘ o - c
表示 方 法

化 合 价 符号


离 子符 号
所 以 二 面 角 A— D
的大小为 6 ̄ 0

2X 6 2 /
评 析 : 种 方 法 不 需 要 作 出 二 面 角 的 平 面 角 . 不 需 要 判 这 也 断二 面角 的平 面角 是 锐 角 还 是 钝 角
D ( , o) E ( 0, ) F ( 0, 、 o, 1 、 , , )Ⅳ ( 1、 ,

高考数学二面角10种求法及锐钝角的判断

高考数学二面角10种求法及锐钝角的判断

二面角10种求法及判断锐钝角二面角大小的求法中知识的综合性较强,方法的灵活性较大,一般而言,二面角的大小往往转化为其平面角的大小,从而又化归为三角形的内角大小,在其求解过程中,主要是利用平面几何、立体几何、三角函数等重要知识。

求二面角大小的关键是,根据不同问题给出的几何背景,恰在此时当选择方法,作出二面角的平面角,有时亦可直接运用射影面积公式求出二面角的大小。

1.概念法顾名思义,概念法指的是利用概念直接解答问题。

例1:如图所示,在四面体ABCD 中,1AC AB ==,2CD BD ==,3AD =。

求二面角A BC D --的大小。

分析:四面体ABCD 的各个棱长都已经给出来了,这是一个典型的根据长度求角度的问题。

解:设线段BC 的中点是E ,接AE 和DE 。

根据已知的条件1AC AB ==,2CD BD ==,可以知道AE BC ⊥且DE BC ⊥。

又BC 是平面ABC 和平面DBC 的交线。

根据定义,可以得出:AED ∠即为二面角A BC D --的平面角。

可以求出32AE =,3DE =,并且3AD =。

根据余弦定理知:2222223()(3)372cos 243232AE DE ADAED AE DE+-+-∠===-⨯⨯⨯ 即二面角A BC D --的大小为7arccos4π-。

同样,例2也是用概念法直接解决问题的。

例2:如图所示,ABCD 是正方形,PB ABCD ⊥平面,1PB AB ==,求二面角A PD C --的大小。

解:作辅助线CE PD ⊥于点E ,连接AC 、AE 。

由于AD CD =,PA PC =,所以PAD PCD ≅三角形三角形。

即AE PD ⊥。

由于CE PD ⊥,所以AEC ∠即为所求的二面角的大小。

通过计算可以得到:2PC =,3PD =,又1CD =,在三角形PCD 中可以计算得到63CE =。

由此可以得到:63AE CE ==,又2AC =。

求解二面角的四种基本方法

求解二面角的四种基本方法

求解二面角的四种基本方法高中数学学习过程中,求解二面角是高考理科高考的必考题型,多种角度,多种方法处理这类问题是一项重要的基本能力,是落实数学核心素养培养的基本方法,在教学过程中有必要对本类型习题进行详尽的介绍和广泛的探索,提升本类问题的处理方式和方法,是多种知识交汇,处理问题的能力的体现,本文根据近年高考题与模拟题中的常见题型,对常用的处理方法进行探究和总结,希望能够找到本类题型的常见处理方法,帮助学生建立良好的处理策略.一、利用定义求解例1. 如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,23AC =,12A A BD ==,E 为1BD 中点.求二面角E DC A --的余弦值.分析 过O 作OF CD ⊥,垂足为F ,连OF ,则EFO ∠是二面角E OC A --的平面角.解答过O 作OF CD ⊥,垂足为F ,连OF ,∵1DD ⊥面ABCD ,1//OE DD ,∴OE ⊥面ABCD .∴EFO ∠是二面角E OC A --的平面角.∵1112OE DD ==,3OF =,∴7EF =,217cos EFO ∠=. 故二面角E DC A --的余弦值为217. 说明 二面角是规则图形的面与面之间的角是,采用二面角的定义,直接做出角,利用边长的长度关系找到二面角的平面角之间的边长长度关系,进而求解二面角大小.变式训练1 (2019年天津高考题)如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,PA CD ⊥,2CD =,3AD =,D C O A B求直线AD 与平面PAC 所成角的正弦值.二、利用面积面积射影求解例2. 在三棱锥中P ABC -,,D E 分别为PBC ∆、ABC ∆的重心,若DE ABC ⊥∆面,2PBC ABC S ∆∆=S ,则二面角P BC A --的大小为______.分析 易证DE ∥PA ,则PA ABC ⊥面,则PBC ∆的射影为ABC ∆,此时宜采用“面积射影法”. 解答 设二面角为θ,因为,D E 分别为PBC ∆、ABC ∆的重心,则可得=MD ME DP EA,所以DE ∥PA .又因为DE ABC ⊥面,所以PA ABC ⊥面.因为cos ABC PBC S θ∆∆=S 222==45θ=o . 说明 当题目中涉及斜面三角形面积和相应射影三角形面积时,可采用“面积射影法”求二面角的大小.变式训练2 在等腰直角ABC ∆中,1AB BC ==,M 为AC 的中点,沿BM 把ABC ∆折成二面角,折后A 与C 的距离为62,则二面角C —BM —A 的大小为________. 三、利用三正弦定理求解 例3. (2012年全国新课标卷)在直三棱柱ABC A B C '''-中,12AC BC AA '==,D 是棱AA '的中点,DC BD '⊥.(1)证明:DC BC '⊥;(2)求二面角A BD C ''--的大小.分析 考察面BDC '内的直线DC ',易求90BDC '∠=o ,即2sin 1θ=;取A B ''的中点N ,则C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角,且1sin 2C DN '∠=,即11sin 2θ=,最后代入公式即可求出二面角的大小.解答 因为DA C ''∆和DAC ∆均为等腰直角三角形,所以DC DC '⊥.又因为DC BC '⊥,所以DC DBC '⊥面,从而DC DB '⊥,即2sin sin 901θ==o ;取A B ''的ME D CB A P B B'A'C'A DN中点N ,连接DN ,则C N A B '''⊥.又因为AA C N ''⊥,所以C N ABB A '''⊥面,则C DN '∠即为直线DC '与ABB A ''面所成的角.设2AA a '=,则AC BC a ==,因为2C N a'=,2D C a '=,即11sin sin 2C N C DN CD θ''=∠==.由12sin sin sin θθθ=得1sin 2θ=,又据题意知所求二面角为锐二面角,所以30θ=o .说明 当其中一个半平面内的一条直线与另一个半平面、二面角的棱所成的角的正弦值容易求出时,可采用“三正弦定理法”.变式训练3 已知点O 在二面角AB αβ--的棱上,点P 在平面α内,且60∠=︒POB .若直线PO 与平面β所成的角为45°,则二面角AB αβ--的正弦值为______.四、利用空间向量求解例4. 如图,已知三棱柱111ABC A B C -,平面11A AC C ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是11,AC A B 的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面1A BC 所成角的余弦值.分析 建立空间直角坐标系,分别求得直线的方向向量和平面的法向量,然后结合线面角的正弦值和同角三角函数基本关系可得线面角的余弦值.解答 (1) 略.(2)在底面ABC 内作EH ⊥AC ,以点E 为坐标原点,EH ,EC ,1EA 方向分别为x ,y ,z 轴正方向建立空间直角坐标系E xyz -.设1EH =,则3AE EC ==1123AA CA ==3,3BC AB ==, 据此可得:()()()1330,3,0,,,0,0,3,3,022A B A C ⎛⎫- ⎪ ⎪⎝⎭,由11AB A B =u u u r u u u u r 可得点1B 的坐标为1333,322B ⎛⎫ ⎪⎝⎭, 利用中点坐标公式可得:333,344F ⎛⎫ ⎪⎝⎭,由于()0,0,0E , 故直线EF 的方向向量为:333,344EF ⎛⎫= ⎪⎝⎭u u u r 设平面1A BC 的法向量为(),,m x y z =u r ,则:()()13333,,330223333,,,,002222m A B x y z x y z m BC x y z x y u u u v v u u u v v ⎧⎛⎫⋅=⋅-=+-=⎪ ⎪ ⎪⎪⎝⎭⎨⎛⎫⎪⋅=⋅-=-+= ⎪⎪ ⎪⎝⎭⎩, 据此可得平面1A BC 的一个法向量为()3,1m =u r ,333,344EF ⎛⎫= ⎪⎝⎭u u u r 此时4cos ,53552EF m EF m EF m ⋅===⨯⨯u u u r u r u u u r u r u u u r u r , 设直线EF 与平面1A BC 所成角为θ,则43sin cos ,,cos 55EF m θθ===u u u r u r .说明 空间向量方法是处理空间中两平面所成角比较通用的方法,建系也是Dz C 1A 1B 1C B A本节要注意的一个重点,合理建系才能比较容易、准确的找到各点坐标,求解法向量,在求解过程中应该充分重视,准确掌握好求解法向量的基本步骤,进一步提升步骤的严谨性,科学性,另,在求解过程中要注意判断二面角是锐角还是钝角,以方便对余弦值的正负进行判断. 解答本题关键在于能利用直线与直线、直线与平面、平面与平面关系的相互转化,通过严密推理,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.变式训练4 已知四棱锥P —ABCD 中,PA ⊥平面,底面ABCD 为菱形,60ABC ∠=o,AB=PA=2,E .F 分别为BC .PD 的中点.求平面PAE 与平面PCD 所成锐二面角的余弦值.(参考答案:3;2. 23π;6 4. 217)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二面角大小的求法(例题)
二面角的类型和求法可用框图展现如下:
一、定义法:
直接在二面角的棱上取一点(特殊点),分别在两个半平面内作棱的垂线,得出平面角,用定义法时,要认真观察图形的特性; 例、 如图,已知二面角α-а-β等于120°,PA ⊥α,A ∈α,PB ⊥β,B ∈β. 求∠APB 的大小.
O OA PA OB PAOB OA
AOB AOB=120APB=60OB PB PB βαβ⊥⊥∴⊥⊥⊥∴⊥∴⊥∠∠︒∠︒
做交线,交于点,连接平面交线同理交线又交线交线面交线即可得为面的二面角,所以
例、在四棱锥P-ABCD 中,ABCD 是正方形,PA ⊥平面ABCD ,PA=AB=a ,求二面角B-PC-D 的大小。

提示:PAB PCD ≅,而且是直角三角形
j
A D
P
H
P
O
B
A
二、三垂线定理法:
已知二面角其中一个面内一点到一个面的垂线,用三垂线定理或逆定理作出二面角的平面角;
例、在四棱锥P-ABCD 中,ABCD 是平行四边形,PA ⊥平面ABCD ,PA=AB=a ,∠ABC=30°,求二面角P-BC-A 的tag 大小。

A AH BC BC H PH ABCD PA A
B PA B
C PHA PHA H ABH=30AB=a AH=a/2tag PHA 2
PA BC AB ⊥⊥∴⊥⊥∴⊥∴∠∠︒∴∴∠=过做,交于,连接面,面为二面角在中

例:如图,ABCD-A 1B 1C 1D 1是长方体,侧棱AA 1长为1,底面为正方体且边长为2,E 是棱BC 的中点,求面C 1DE 与面CDE 所成二面角的正切值.
提示:CO ⊥DE ,而且是长方体!!!
A
B
C
D
A 1
B 1
C 1
D 1
E
O
例、ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°。

求(1)二面角P—BC—A的大小;(2)二面角C—PB—A的大小
提示:角PAB是二面角,找到每个面的直角!!!
射影,那么PM为面ABC的垂线!
例、如图4,平面α⊥平面β,α∩β=l,A∈α,B∈β,点A在直线l上的射影为A1,点B在l的射影为B1,已知AB=2,AA1=1,BB1=2,求:二面角A1-AB-B1的大小.
提示:AA1与BB1互相垂直
AF是辅助线且垂直AB,FE平行BB1
图4 B1
A
α
β
A1
B L
E F
四、射影法:(面积法)
利用面积射影公式S射=S原cosθ,其中θ为平面角的大小,此
方法不必在图形中画出平面角;
例、在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA =AB=a,求平面PBA与平面PDC所成二面角的大小。

例、如图,设M为正方体ABCD-A1B1C1D1的棱CC1的中点,求平面BMD1与底面ABCD所成的二面角的大小。

五、平移或延长(展)线(面)法
对于一类没有给出棱的二面角,应先延伸两个半平面,使之相交出现棱,然后再选用上述方法(尤其要考虑射影法)。

例、在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,PA=AB=a,求平面PBA与平面PDC所成二面角的大小。

相关文档
最新文档