电站计算机监控系统
水电站计算机监控系统
水电站计算机监控系统1·引言1·1 目的本文档旨在详细介绍水电站计算机监控系统的设计和功能,以便于了解该系统的工作原理和操作流程。
1·2 背景水电站是利用水流能产生电能的设施。
为了提高水电站的安全性和运营效率,引入计算机监控系统是必要的。
该系统能够实时监测水电站的各项参数,并提供报警、记录和控制等功能。
2·系统概述2·1 系统架构该水电站计算机监控系统采用分布式架构,由若干个子系统组成。
主要分为数据采集子系统、数据处理子系统、数据存储子系统和用户界面子系统。
2·2 系统功能2·2·1 数据采集数据采集子系统负责实时采集水电站的各项参数数据,包括水位、水压、流量等。
采集设备包括传感器、数据采集仪和信号转换器等。
2·2·2 数据处理数据处理子系统负责对采集到的数据进行处理和分析。
它能够识别异常数据并提供报警功能。
数据处理算法包括数据滤波、统计分析等。
2·2·3 数据存储数据存储子系统负责将处理后的数据存储到数据库中。
它能够实现历史数据的查询和分析。
数据库采用关系型数据库。
2·2·4 用户界面用户界面子系统提供了一个直观、友好的界面,用于展示监控数据和操作系统功能。
用户可以通过该界面实时监测水电站运行状况,并进行系统配置和操作。
3·系统详细设计3·1 数据采集子系统设计3·1·1 传感器选型和布置根据水电站的具体情况,选择合适的传感器,并进行布置。
要保证传感器的准确度和可靠性。
3·1·2 采集设备选型和配置选择适合的数据采集仪和信号转换器,并根据实际需求进行配置。
3·2 数据处理子系统设计3·2·1 异常数据检测算法设计设计一套有效的算法,用于检测和识别异常数据,并触发报警。
水电站计算机监控系统
水电站计算机监控系统在当今的电力生产领域,水电站计算机监控系统扮演着至关重要的角色。
它就像是水电站的“智慧大脑”,对整个电站的运行进行全面、精确且高效的管理和控制。
想象一下,一座庞大的水电站,有着复杂的水轮机、发电机、变压器以及众多的辅助设备。
如果没有一个强大而智能的监控系统,要确保这些设备协调运行、稳定发电,并保障安全,那几乎是不可能完成的任务。
水电站计算机监控系统的首要功能是数据采集与监测。
它能够实时收集来自各个设备和传感器的大量数据,包括水位、流量、压力、温度、电压、电流等等。
这些数据就像水电站运行状况的“晴雨表”,反映着每一个环节的工作状态。
通过对这些数据的精准采集和分析,工作人员可以在第一时间了解到电站的运行情况,及时发现潜在的问题或异常。
除了数据采集,该系统还具备强大的控制功能。
它可以根据预设的策略和条件,对水电站的设备进行自动控制。
比如,当水位达到一定高度时,系统会自动开启水轮机进行发电;当电力需求减少时,又能适时调整机组的出力,以实现最优的运行效率。
这种自动控制不仅提高了发电的稳定性和可靠性,还大大减轻了工作人员的劳动强度。
在安全保障方面,水电站计算机监控系统更是发挥着不可或缺的作用。
它能够实时监测设备的运行参数,一旦发现某个参数超出安全范围,比如温度过高、压力过大等,就会立即发出警报,并采取相应的保护措施,如紧急停机,从而避免事故的发生。
同时,系统还具备防火、防爆、防雷等多重安全防护功能,为水电站的安全生产保驾护航。
另外,该系统还具备良好的人机交互界面。
这意味着工作人员可以通过直观、简洁的界面,方便地查看各种数据和信息,进行操作和控制。
而且,系统还能够生成详细的运行报告和历史数据记录,为后续的分析和优化提供有力的支持。
随着技术的不断进步,现代的水电站计算机监控系统也在不断升级和完善。
例如,引入了智能化的算法和模型,能够更加准确地预测设备的故障和维护需求,实现预防性维护,减少停机时间和维修成本。
水电站计算机监控系统的基本技术
,第二篇水电站计算机监控系统的基本技术任务一、水电站计算机监控系统的工作原理子任务一、电站主控层的计算机监控原理电站主控层(主要由上位机组成),介于电网层与现地控制层之间,是操作员监控运行过程的主要窗口,负责对控制过程的“控、监、传”。
其“控”,就是将“人”的操作信息送入控制系统,实现运行状态的转换,其“监”,就是对系统的数据库进行管理,进而实现信息处理和送达,其“传”,就是在电网层与现地控制层之间实现信息的传递。
在水电站主控层安装有水电站计算机监控系统的历史数据库、实时数据库、历史数据库管理系统、实时数据库管理系统、上位机软件系统和人机接口界面等。
现地控制单元层的数据首先采集进入实时数据库,一方面,上位机软件根据设定的时间,通过实时数据库管理系统定时访问实时数据库的数据,并定时刷新人机接口界面,这样便于操作运行人员了解整个电站的运行情况;另一方面,实时数据库的数据定时存储入历史数据库,历史数据库可以由历史数据库管理系统进行管理,操作运行人员可以一次通过人机接口界面、上位机软件和历史数据库管理平台对历史数据进行管理、修改和查询等操作。
此外,实时数据库可以通过上位机中的远程通讯软件与电网层进行数据交换。
主控层原理见(图2-1)。
图2-1 电站主控层的工作原理简图子任务二、现地控制单元层计算机监控原理水电站计算机监控系统的现地控制单元主要包括机组现地控制单元和开关站及公用设备现地控制单元。
其中,机组现地控制单元主要在现场对机组运行实现监视和控制。
它需要直接与水电站的生产过程接口,对发电机生产过程进行监控,运行中要实现数据采集、处理和设备运行监视,同时通过局域网与监控系统其他设备进行通信,以及完成自诊断等。
同时,它要协调功能层设备如调速器、励磁装置、同期装置、备自投装置等与现地控制单元的的联动以完成调速、调压、调频以及事故处理等快速控制的任务。
在上位机系统出现故障或退出运行时,现地LCU应能够正常运行和实现对水轮发电机组发电的基本控制。
水电站计算机监控系统
4)远方通信缺陷 由于变电站均采用无人值班模式,因此保证与远方的通信 畅通,确保信息的正常传输就显得尤为重要。 远方通信缺陷主要由以下两方面组成:其一是远动工作站 自身的设备问题。由于大部分监控系统的远动工作站采用 工控机等设备,因此也存在和后台系统相类似的情况,由 硬件故障造成的信息传输中断屡见不鲜。
此类缺陷严格来讲不属于监控系统自身的问题,处理时涉 及一、二次设备,消缺难度较大,特别是开关柜的小车行 程开关质量等问题结合停电处理等,缺陷延续时间长;在 某些情况下可能会导致信号接点频繁动作,造成监控系统 连续频繁报警,严重影响运行人员的正常监视,必须立即 处理。
3)网络设备缺陷 从统计数据看,目前网络通信设备的故障数量尚不大,但 其一旦发生故障则影响较大,涉及面也广,通常会造成多 个装置通信异常或全站数据采集的中断,后果非常严重, 因此必须立即处理。分析网络设备的故障原因,通常由产 品质量不良引起,尤其是各类交换机、集线器等网络通信 设备的电源问题表现尤为突出。
BACK
ቤተ መጻሕፍቲ ባይዱ
目前,总装机容量为2000kW及以上的水电站多采用分层分 布式监控系统,如某电站有两台机组,采用分层分布式监 控系统,则其网络拓扑结构简图如图4-2所示。
2、计算机监控系统的优点 1)减员增效,改革水电站值班方式。 2)提高水电站的自动化水平。 3)提高水电站的供电质量。 4)提高水电站的安全运行水平。 5)提高水电站的劳动生产率和经济效益
二是总控或前置机等负责全站通信任务的关键设备。这部 分设备在较早的系统多采用工控机等设备,因此也存在和 后台系统相类似的情况,尤其是因硬件问题造成的死机现 象相对更多一些。
总之,站控层缺陷基本由软硬件问题引起,且比例大体相 当,而GPS对时系统、UPS电源等问题相对少一些。
变电站在线监控系统
变电站在线监控系统变电站在线监控系统是现代电力系统的重要组成部分,它通过实时监控变电站内的各种设备状态,确保电力系统的稳定运行和高效管理。
该系统利用先进的传感器技术、通信技术和计算机技术,实现了对变电站内设备的全面监控,包括变压器、断路器、继电保护装置等关键设备的运行状态。
首先,变电站在线监控系统的核心是数据采集。
系统通过安装在设备上的传感器,实时收集设备的运行数据,如温度、压力、电流、电压等。
这些数据通过通信网络传输到监控中心,由监控软件进行处理和分析。
其次,系统的数据处理和分析功能是确保电力系统安全运行的关键。
监控软件能够对收集到的数据进行实时分析,及时发现设备的异常情况,如过载、过热等。
一旦发现异常,系统会自动发出警报,并提供相应的处理建议,以避免设备故障或事故的发生。
此外,变电站在线监控系统还具备远程控制功能。
在紧急情况下,操作人员可以通过系统远程控制变电站内的设备,如断开故障线路、调整变压器的运行参数等,以快速响应和处理突发事件。
系统还具有数据存储和历史分析功能。
所有收集到的数据都会被存储在数据库中,便于进行历史数据分析和趋势预测。
通过对历史数据的分析,可以发现设备的潜在问题,提前进行维护和检修,从而延长设备的使用寿命。
最后,变电站在线监控系统还支持与其他电力系统的集成,如电网调度系统、电力市场交易系统等。
通过与其他系统的集成,可以实现电力资源的优化配置和电力市场的高效运作。
综上所述,变电站在线监控系统通过实时监控、数据处理、远程控制、数据存储和系统集成等功能,为电力系统的安全、稳定和高效运行提供了有力保障。
随着技术的不断发展,未来的变电站在线监控系统将更加智能化和自动化,为电力行业的发展做出更大的贡献。
水电站计算机监控系统
高效的、经济的实现集中控制和远方控制
3
3
特点:
可以模拟各种复杂的控制规律,实现系统高质量的控制效 果,同时可以不改变控制设备而修改控制结构和参数;
具有记忆和判断的能力,能综合生产过程中的各种情况, 作出最佳选择,实现最优控制;
按水电厂控制层次和对象设置电站级(上位机)和现地控制单元 (LCU)级
8
8
计算机监控系统作用 一、监视 信息由下至上, 利用各种传感器、变送器收集设备的运行信息,
这些信息一般可以分为模拟量信息、开关量信息、温度量信息(脉冲 量信息、数码信息)等,通过I/O接口,将数据送入计算机,计算机 进行相应的处理,送到运行人员工作站、现地操作屏供运行人员监视。 二、控制 信息由上至下,运行人员通过工作站、现地监视屏发布操作命令, 命令经过计算机判别,再通过I/O接口,将控制输出传递给出口继电 器,出口继电器驱动现场自动化设备如电磁、电动设备、现地自动装 置等等。
从用途上来说,随着信息化社会的来临,UPS广泛地
应用于从信息采集、传送、处理、储存到应用的各个环节,
其重要性是随着信息应用重要性的日益提高而增加的。
43
43
UPS按工作原理分成后备式、在线式与在线互动式三大类:
后备式UPS:具备了自动稳压、断电保护等UPS最基础也最重要 的功能,有10ms左右的转换时间,逆变输出的交流电是方波而非正 弦波;
17
17
18
18
19
19
20
20
21
21
22
22
23
23
自动发电控制AGC
变电站计算机监控系统培训材料
工作原理和流程
监控中心根据分析结果,发 出控制指令
数据传输至监控中心,进行 数据处理和分析
监控系统通过传感器采集变 电站设备运行数据
控制指令通过通信网络传输 至变电站设备,实现设备控
制和调节
监控系统实时监控设备运行 状态,及时发现和处理异常
情况
监控系统定期生成运行报告, 为设备维护和优化提供依据
03
培训材料审核与修订
审核人员:技 术专家、培训 师、管理人员
等
审核内容:技 术准确性、培 训效果、语言
表达等
修订流程:发 现问题、提出 修改建议、修
改并确认
修订周期:根 据实际情况确 定,一般不超
过一个月
修订结果:形 成新的培训材 料版本,并通
知相关人员
感谢观看
汇报人:
软件故障:检查系统版本、软件更新、病毒防护等,及时 更新或修复
数据丢失:定期备份数据,使用可靠的数据存储设备
网络故障:检查网络连接、防火墙设置、网络带宽等,确 保网络畅通
安全漏洞:定期进行安全检查,及时更新安全补丁,加强 用户权限管理
操作失误:加强员工培训,提高操作技能,避免误操作导 致的故障
性和可靠性
数据备份:定 期进行数据备 份,确保数据
不丢失
备份策略:采 用全量备份、 增量备份和差 异备份相结合
的策略
备份介质:采 用磁盘、磁带、 光盘等多种备 份介质,提高 数据备份的可
靠性
系统可靠性保障措施
定期进行系统维 护和升级
建立完善的备份 和恢复机制
加强网络安全防 护,防止病毒和 恶意软件攻击
报警分级:根据报警的严重程度进行分级,以便于快速响应和处理
报警处理流程:包括报警确认、报警处理、报警记录等环节,确保报警处 理的准确性和有效性
光伏电站监控系统基本架构及构成
光伏电站监控系统基本架构及构成一、光伏电站计算机监控系统架构光伏电站计算机监控系统的主要任务是对电站的运行状态进行监视和控制,向调度机构传送有关数据,并接受、执行其下达的命令。
站控层设备按电站远景规模配置,间隔层设备按工程实际建设规模配置。
各部分设备组成如下:1.站控层设备由主机兼操作员站、远动通信设备、公用接口装置、网络设备、打印机等组成,其中主机兼操作员站、远动通信设备按双套冗余配置,远动通信设备优先采用无硬盘专用装置。
2.间隔层设备包括光伏逆变器、汇流箱、太阳跟踪系统、气象监测系统及辅助系统的通信控制单元,光伏发电单元规约转换器,保护和测控装置等设备。
3.网络层设备包括网络交换机、光/电转换器、接口设备和网络连接线、电缆、光缆及网络安全设备等。
站控层与间隔层通常采用以太网连接,110kV及以上电站采用双重化网络,35kV电站采用单网结构。
站控层、间隔层网络交换机采用具备网络管理能力的交换机,站控层交换机的容量根据电站远景建设规模配置,间隔层交换机的容量根据远景出线规模配置,网络媒介在室内采用五类以上屏蔽双绞线,室外的通信媒介采用光缆。
二、光伏电站计算机监控系统站控层(一)数据采集通信子系统数据采集通信子系统一般由两套前置机及其通信接口装置、网络设备等组成。
其中。
前置机负责与各间隔层设备进行数据通信,完成数据采集与通信功能;通信接口装置负责与直流系统、UPS、电能量采集装置等其他智能设备进行数据通信。
前置机通过站控层网络与主机、工作站。
远动工作站等站控层设备连接,实现站控层内部通信功能。
间隔层设备直接接入站控层网络,站控层网络一般采用快速交换式以太网,以实现站控层与间隔层之间数据的快速交换。
数据采集和通信功能由主机、人机工作站、远动工作站等站控层设备的通信软件模块完成,一般要求站控层和远动工作站直接读取间隔层设备的信息,即信息采集遵循"直采直送"的原则。
光伏电站计算机监控系统一般采用双主机兼操作员站模式,主机是站控层数据收集、处理、存储及发送中心。
变电站计算机监控系统的应用
变电站计算机监控系统的应用随着电力系统的不断发展,变电站计算机监控系统的应用越来越广泛。
计算机监控系统可以实时监控变电站的运行状态,自动检测和诊断故障,提高电力系统的稳定性和可靠性。
本文将介绍变电站计算机监控系统的基本原理、功能和应用。
一、基本原理变电站计算机监控系统是基于计算机技术、网络通信技术、电力电子技术和自动化控制技术的一种智能化监控系统。
它通过采集变电站的各种运行参数,如电压、电流、功率因数、电量等,以及开关状态、保护动作等信号,实现对变电站的实时监控。
二、功能特点1、实时监控:计算机监控系统可以实时采集变电站的运行参数和信号,并在屏幕上显示出来,以便操作人员随时了解变电站的运行状态。
2、故障诊断:计算机监控系统可以通过分析采集到的数据,自动检测和诊断故障,并及时发出报警信号,缩短故障处理时间。
3、自动控制:计算机监控系统可以根据预先设定的控制策略,自动调整变电站的运行参数,确保电力系统的稳定性和可靠性。
4、数据存储:计算机监控系统可以存储大量的历史数据和报警信息,方便操作人员查询和分析。
5、远程管理:计算机监控系统可以通过网络通信技术,实现远程管理和控制,提高管理效率。
三、应用优势1、提高效率:计算机监控系统可以减少人工巡检的次数和时间,提高工作效率。
2、降低成本:计算机监控系统的运行和维护成本较低,可以节省人力物力资源。
3、提高可靠性:计算机监控系统可以实时监控变电站的运行状态,及时发现和解决问题,提高电力系统的稳定性和可靠性。
4、增强安全性:计算机监控系统具有故障诊断和报警功能,可以及时发现和解决故障,减少安全事故的发生。
四、应用范围变电站计算机监控系统广泛应用于电力系统中的变电站、配电所、电力线路等场所,可以实现对电力设备的远程监控和管理。
它也可以应用于石油化工、钢铁冶金等行业的自动化控制和监测领域。
变电站计算机监控系统的应用是电力系统发展的必然趋势。
它不仅可以提高电力系统的稳定性和可靠性,还可以降低成本和提高效率。
浅析水电站计算机监控系统
资 少 是 其 优 点 , 是 由于 控 制 简 单 所 以 目 但
前 仅 在 机 组 台 数 少 的 中 小 型 水 电站 使 用 ;
自我 恢 复 , 自我 保 护功 能 , 用 了交 流 采样 采
装 5 ⑤ () 电站 监 控 指标 通 过 多台 计 算 机 完 的 形式 , 置 的 精 度 大 于 0. 级 ; 系统 应 2水 可 成 , 一 项 任 务 或 一 项 以 上 任 务 都 由 单 独 设 置 可 靠 的 交 直 流 电源 系 统 , 实现 直 流 每 电源 微 机 自动 控 制 , 证 当 电 源 突 然 失 电 保 散 式 监 控 系 统 。 种 监 控 系 统 的 实 质 是 功 时 不 致 丢 失 信 息 及 实 时 时 钟 信 号 等 。 这
点。 程 见 下 表 1 所 示 ,
能 可 以 正 常 运 行 , 是 这 种 系 站 计 算 机 控 制 系统 利用 计 算
某 个 功 能 出 现 故 障 , 么 全 厂 的 这 部 分 功 机 为 主 , 那 常规 控 制为 辅 的 监 控 方 式 , 方面 一 靠性 , 因此 , 目前 这 种 方 式 也 不 常 用 ; 制 层( 般 有 一 台 或 两 台 主 机 , 备 人 机 联 一 配 靠性 , 时 , 同 另一 方 面 , 旦 监控 某 个 环 节 一 彭 水 水 电站 计 算 机 控 制 系 统 采 用 的 是 分 层 分 布 式 结 构 , 置 了 电 站 级 和 现 地 单 设
但 是 价 格 较 高 ; 者 的 功能 集 中 专用 , 术 后 技
不够成熟 , 发展 潜力很大。 但 制 监 控 系 统 , 小 型 或 者 运 行 已久 的 水 电 中 站 则 大 多 数 使 用 常 规 控 制 设 备 。 据 我 国 根 水 电站 的 实 际 情 况 , 专 用 型 ” 算 机 监 控 “ 计 系 统 越 来 越 是 目 前 国 内 应 用 和 研 究 的 重
水电站计算机监控系统介绍PPT课件
监控系统主要组成
主机兼操作员站
2套
主机兼操作员站的功能包括图形显示、定值设定及变更工作方式等。 运行值班人员通过彩色液晶显示器可以对电站设备运行状态做实时监 视,取得所需的各种信息。电厂所有的操作控制都可以通过鼠标器及 键盘实现。主机兼操作员站配置声卡和语音软件,用于当被监控对象 发生事故或故障时,发出语音报警提醒运行人员。
硬件配置说明
通信工作站
1套
机型:采用美国HP公司XW4300型工作站
硬件配置:
CPU:Pentium4 2.8GHz
内存:512MB
硬盘:80GB×2
软驱:3.5英寸1.44MB
光驱:Combo
2串/1并
10/100/1000M以太网接口
声卡
图形显示卡
标准键盘和鼠标
智能八串口板及附属设备
电力Modem
硬件配置说明
1) 主机兼操作员站
2套
机型:采用美国HP公司XW4300型工作站
硬件配置:
CPU:Pentium4 2.8GHz
内存:1024MB
硬盘:80GB×2
软驱:3.5英寸1.44MB
光驱:Combo
2串/1并
双头显卡(支持双显)
声卡及多媒体音箱
10/100/1000M在太网接口
标准键盘和鼠标
2台 美国ViewSonic 21”彩色TFT显示器
硬件配置说明
工程师工作站
1套
机型:采用美国HP公司XW4300型工作站
硬件配置:
CPU:Pentium4 2.8GHz 内存:1024MB 硬盘:80GB×2 软驱:3.5英寸1.44MB 光驱:Combo 2串/1并 双头显卡(支持双显)
水电站计算机监控系统的结构和工作原理
水电站计算机监控系统的结构和工作原理水电站计算机监控系统是指利用计算机技术对水电站运行过程中的各项参数进行监测、控制和管理的系统。
它由硬件设备和软件系统两部分组成。
硬件设备包括各种传感器、执行器、控制器等,用于获取和执行各项工作参数。
而软件系统则包括数据采集、数据处理、用户界面等功能,用于实现对水电站运行状态的监测和控制。
首先是数据采集与传输层,该层主要负责采集水电站各个部位的参数信息,并将其传输至数据处理与分析层。
数据采集包括电流、电压、水位、流量等参数的采集,传统的测量仪器逐渐被数字化的传感器所取代,能够实时采集数据,并将其转换为计算机可读的数字信号。
传输方式一般有有线和无线两种,有线方式可以通过传统的电缆进行传输,而无线方式则可以通过无线通信技术进行传输,如GSM、WiFi、蓝牙等。
这样可实现了对数据的无线传输,提高了数据采集的灵活性和可靠性。
其次是数据处理与分析层,该层主要对采集到的数据进行实时处理和分析。
数据处理包括数据的存储、压缩、加密等操作,以确保数据的安全性和可靠性。
数据分析则是对采集到的数据进行处理和分析,分析水电站的运行状态和参数变化情况,如计算功率变化、水位变化、电流负荷等,以便进行决策和预测。
该层还可以进行故障诊断和预警,一旦发现异常情况,立即向人机交互与控制层发送报警信息。
此外,数据处理与分析层还可以通过数据模型和算法优化水电站的运行效率,节约电能和水资源,提高水电站的综合效益。
最后是人机交互与控制层,该层是操作员与计算机之间的接口,也是系统监测与控制的中心。
人机交互界面一般为图形化界面,以便操作员能够直观地了解水电站的运行状态,并通过控制命令对其进行控制。
此外,该层还包括报警系统、远程监控与控制系统等,可以及时发出警报和进行远程操作。
操作员还可以通过该层进行数据查询和报告生成,以便进行统计分析和决策。
同时,该层也支持与外部系统的数据交互和接口拓展。
水电站计算机监控系统的工作原理是通过各个层之间的数据传输和处理实现的。
110KV变电站计算机监控系统综述
110KV变电站计算机监控系统综述摘要:随着电网的发展进步,无人值守和少人看守变电站成为主要趋势,对变电站综合自动化、智能化要求也越来越高,本论文对110KV变电站计算机监控系统的技术方案及功能进行论述关键词:变电站;计算机监控系统;综合自动化1.引言近年来,随着电网、计算机网络及通信技术的发展进步,计算机监控系统在变电站中得到广泛应用,变电站也朝无人值守和少人看守的方向发展,无论是网内变电站,还是用户变电站都普遍实现了无人值班综合自动化变电站,通过计算机监控系统可对站内所有一、二次设备实现远方操作与监控。
计算机监控系统的实时性、安全性、可靠性直接关系到整个变电站的安全运行,一旦系统发生故障或报警信号,运行维护人员能够及时发现,并采取相应措施消除故障,保证电力系统的安全和可靠运行。
2、计算机监控系统技术方案计算机监控系统采用分层分布式网络,网络拓扑为星型结构,由站控层、间隔层以及网络设备组成。
其抗干扰能力、安全性和可靠性需满足现场实时运行的要求,满足系统对实时数据采集和处理的要求。
计算机监控系统具有遥测、遥信、遥调、遥控、SOE等功能。
110KV变电站计算机监控系统配置图如图2.1所示。
图2.1 110KV变电站计算机监控系统配置图站控层为全站设备监视、测量、控制、管理的中心。
各间隔层设备按电气间隔单元独立设置集中组屏安装在主控制室及继电保护小室内,在站控层及网络失效的情况下,间隔层仍能独立完成各电气间隔的监测和断路器控制功能。
站控层设备按功能划分为若干个相互独立而又共享资源的工作站,它包括主机及操作员工作站、远动工作站、打印机及网络设备等。
间隔层设备按规模配置,它直接采集处理现场的原始数据,通过网络传送给各工作站,同时接收站控层发来的控制操作命令,经过有效性判断、闭锁检测、同步检测等,最后对设备进行操作控制。
间隔层设备由测控单元、通信单元、网络系统和微机保护通信接口单元等构成,测控单元相对独立,通过通信网互联。
水电站计算机监控系统
水电站计算机监控系统[正文]一、项目背景水电站计算机监控系统是为了提高水电站运维管理效率、确保安全稳定运行而开发的。
本系统通过采集、传输和分析关键数据,实现对水电站各项设备和参数的实时监控和远程操作。
二、系统架构⒈硬件架构⑴主控服务器:负责数据采集、存储和分析。
⑵监控终端:安装在各关键设备上,用于监测和控制设备。
⑶数据传输设备:负责将监测数据传输至主控服务器。
⒉软件架构⑴数据采集软件:负责收集各设备的实时数据。
⑵数据传输软件:将采集到的数据传输至主控服务器。
⑶监控控制软件:用于实时监控和远程操作各关键设备。
⑷数据分析软件:对采集到的数据进行分析和报表。
三、系统功能⒈实时监控功能⑴监测设备状态:包括设备运行状态、设备温度、设备压力等。
⑵监测参数变化:包括水位、电流、电压等。
⑶实时报警:当设备状态异常或参数超过阈值时发送报警信息。
⒉远程控制功能⑴远程开关机:通过系统远程操作设备的开关机功能。
⑵远程调节参数:通过系统远程调节设备的工作参数。
⑶远程维护功能:通过系统远程进行设备的维护和故障排除。
⒊数据分析功能⑴数据统计与报表:根据采集到的数据统计报表。
⑵故障诊断与分析:根据历史数据进行故障诊断和分析。
四、附件本文档涉及的附件包括:●监控系统架构图●数据采集软件配置文件●监控终端设备清单五、法律名词及注释⒈水电站:利用水流能产生电力的发电设施。
⒉计算机监控系统:利用计算机技术进行设备状态监测和控制的系统。
六、总结水电站计算机监控系统实现了对水电站设备和参数的实时监控和远程操作,提高了水电站运维管理效率。
该系统具有实时监控、远程控制和数据分析等功能,能够帮助水电站及时发现问题并进行相应的处理。
通过使用该系统,水电站运行人员可以更加方便地进行设备管理与维护,确保水电站的安全稳定运行。
浅析水电站计算机监控系统
浅析水电站计算机监控系统摘要:水电站计算机监控是指通过对电站各种设备信息进行采集、处理,实现自动监测、控制、调节和保护。
作为水电站运行管理的主要组成部分,计算机监控系统在水电站的运用提高了水电站的自动化程度和经济效益。
本文先对国内水电站计算机监控系统的发展进行了简要分析,介绍了水电站计算机监控系统的类型、结构及应用原则,重点讨论了水电站计算机监控系统的意义。
关键词:计算机监控系统发展类型结构应用原则在我国小型水电站自动控制系统基本采用大中型水电站的“集成型”模式;水电站二次设备的组成部分有:以可编程控制器(PLC)为核心的现地控制单元、调速器、励磁装置、同期装置、保护等设备都是按功能划分的微机型产品,加上油、气、水、厂用电等辅助设备的自动控制,因缺乏标准化规条,要实现多种设备的接口、通讯,与大型水电站相比,在系统复杂程度上相当,增加了水电站运行和维护的复杂性和用户的投资。
为克服“集成型”模式存在的结构复杂、运行维护不便利、投资大等问题,“专用型”自动控制系统的研究与开发现已开始在国内进行了。
1 水电站计算机监控系统的类型、结构与应用1.1水电站计算机监控系统的类型水电站计算机监控系统一般按照计算机的作用、系统结构、配置、控制的层次、功能与操作方式进行分类。
其中CCSC方式的两种控制系统可独立运行,结构较复杂,价格较高,优点是两套系统互为备用,可以切换,可靠性高。
而取消常规设备的全计算机控制方式实际上是CBSC的延伸,要求进一步提高计算机系统的冗余度和可靠性,投资较大,应用前景佳。
1.2水电站计算机监控系统的结构模式1.2.1集中式监控系统集中式监控系统是对整个水电站的运行进行集中监视与控制。
目前,该模式已不在大、中型水电站中采用。
但对于在机组容量小、机组数量少、送变电设备较少、主接线简单的小型水电站,该结构模式应作为参考模式,可节省投资。
1.2.2分层分布式监控系统分布式监控系统的主要特征是控制对象分散,以控制对象为单元设置多套相应装置,形成控制单元,完成控制对象的数据采集和处理等。
水电站计算机监控系统运行规程
计算机监控系统运行规程13.1 系统结构组成本水电站采用“无人值班”(少人值守)的运行值班方式,计算机监控系统采用全计算机监控的模式,开放性的分层分布式系统结构。
13.1.1 系统结构配置系统分层结构自下而上,为现地单元监控层和电站中控层。
本水电站上位机系统设置在中控室,对全厂进行计算机监控。
上位机与机组LCU间采用光纤以太网通信,与开关站、全厂公用采用双绞线以太网通信,LCU与现地智能设备采用Modbus RTU现场总线通信。
13.1.2 集中制控层结构1、厂控制室主要设备有:2台操作员工作站,1台工程师工作站,1台套语音报警及短信寻呼装置,2台通信服务器,2台网络交换机,2台激光打印机,1套卫星同步时钟系统,1套电力专用UPS电源,1套中控室计算机控制台等。
13.1.3 现地级控制层结构1、现地级监控层主要包括机组4套LCU、2套开关站LCU和1套公用LCU。
2、LCU屏主要由PLC数据采集控制单元,微机准同期装置组成,多功能电表等组成,配置双以太网口。
3、每套机组现地控制单元配有一套微机自动准同期装置,同期对象为发电机断路器。
开关站有多个同期对象,配置一套微机多点自动准同期装置。
同期装置具备自动识别并网对象类别及并网性质的功能。
13.2 数据采集与报警功能13.2.1电气量采集各LCU将相关的PT、CT接入多功能电表,电量参数(例如功、无功、频率、功率因素、有功电度、无功电度等电量)直接从多功能电表中读取。
直流电量及非电量性模拟量如:转子电流及电压、导叶前压力、机组的工作水头等信号。
这些信号由变送器转换为4~20mA信号供PLC采集。
13.2.2状态量采集各LCU按周期采集全部开入量,进行状态检查,更新数据库,在开关量发生变位时,产生事件记录。
各LCU具有对本身的硬件及各控制单元进行全面的保护性自我检验功能,对各辅助设备的运行状况进行检测,并根据检验结果采取相应的保护性措施。
LCU同时向主机报告诊断的结果,根据自诊断记录,值班维护人员可以了解LCU装置工作是否良好,指导处理异常情况。
计算机监控系统2
(3) 近期的PLC(80年代中、后期至今) 进入80年代中、后期,由 于微处理器硬件制造技术迅速发展,同时市场价格大幅度下降,使得 各PLC生产厂家可以采用更高档次的微处理器。为了进一步提高PLC的 处理速度,很多制造厂商还研制开发了专用逻辑处理芯片。后来PLC 还融入了Ethernet、Web Server等技术,提供了功能丰富的配套软件, 使广大用户使用起来更加得心应手。
SJ-600系列是国电自动化研究院上世纪九十年代末为在恶 劣工业环境下运行而生产的国产智能分布式现地控制单元, 由主控模件、智能I/O 模件、电源模件以及连接各模件与 主控模件的现场总线网组成。已在全国数十个大中型水电 厂可靠地运行。SJ-600具有以下主要特点:
(1) 其中,主控模件采用符合IEEE1996.1的嵌入式模块 标准 PC104 ,具有可靠性高、现场环境适应性强等特点。 使用低功耗嵌入式CPU,可选CPU型号从486至Pentium系列。 (2) 32位智能I/O模件。所有模件采用32位嵌入式CPU, 该CPU专门为嵌入式控制而设计,软件上采用板级实时操 作系统和统一的程序代码,只是按模件的不同而运行相应 的任务。采用了大规模可编程逻辑芯片( EPLD )及 Flash 存储器,简化了系统设计,提高了可靠性。智能化的 I/O 模件除了可独立完成数据采集和预处理,还具备很强的自 诊断功能,提供了可靠的控制安全性和方便的故障定位能 力。
一般布置在电站生产设备附近,就地对被控对象的运行工 况进行实时监视和控制,电站计算机监控系统的较底层控 制部分。 对原始数据进行采集和预处理,对各种控制调 节命令发出和完成闭环控制,对整个监控系统中很重要、 对可靠性要求很高的控制设备。
变电站计算机监控系统培训材料
17
变电站监控系统-遥信回路1
RR
+5v 图中电阻R和电容C组
测
成低通滤波器。
控
QF
C
K
装 置
QF是断路器辅助触点
断路器在断开状态时其辅助
触点使继电器K动作,将低
继电器隔离YX回路
电平“0”信号引入测控装置。
断路器为闭合状态时继电器
K释放,将高电平“1”信号
引入测控装置。
程序设计问题 采用变化上送机制,但是门槛值设置太大。
站控层网络架构问题
通信控制器和测控装置之间采用RS485串口通信,一个串口上并接了 太多的装置;由于问答式机制,同一时刻只有一个装置响应查询,因 此装置数量增加时,每个装置被轮训的周期相应变长,体现出来就是 遥测数据刷新慢。
采用现场总线网络时,装置数量增加时,数据碰撞的机会增加,一定 程序上降低了数据上传效率。
26
变电站监控系统-遥控
遥控
调度控制中心向厂、站发布命令,直接进行断 路器分闸或合闸的操作。为了保证高度可靠, 通常都采用返送校验法,将遥控操作分两步完 成,见下图。
主站端
遥控选择命令
遥控执行命令
厂站端
遥控返校
执行
27
变电站监控系统-遥控过程
遥控执行过程
按遥控选择命令的要求,使指定的遥控对象继电器和遥控性质继电器动 作(此时执行继电器未动,遥控命令不会执行),再将继电器的动作情 况编成代码后返送给调度端。
遥调
调度端给厂站端发布调节命令,实质上是给厂站端设备的自动调 节器设置整定值,因而这种遥调也称设定(或设点set point)命 令。
设定命令中应包括调节对象号及设定数值。 厂站端收到设定命令经检验合格后,将设定数值部分输出锁存。 遥调大多用模拟量输出,因而还要经D/A转换为模拟量的直流电压
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电站计算机监控系统、电能量计量系统、在线监测系统设备1、概述糯扎渡电站计算机监控系统是由南瑞公司生产,主要包括电站监控系统、电站在线监测及故障诊断系统、电站电能量计量系统。
1.1 电站计算机监控系统:电站计算机监控系统监控范围包括水轮发电机组及辅助设备、公用设备、厂用设备和500kV开关站设备及坝区泄洪设备等。
计算机监控系统设有与上级调度计算机监控系统的通信接口,接受集控、省调、南方电网调度指令,实现“四遥”功能。
此外,还设有与厂内消防报警系统、工业电视系统、电站MIS系统、水情测报系统等设备之间的通信接口,以实现与这些系统之间的信息交换。
电站计算机监控系统采用分布式体系结构。
整个系统分电站级和现地控制单元级两层。
控制网络采用冗余交换式快速以太网,传输介质采用光纤,现地控制单元采用现场总线连接远程I/O及现地智能监测设备。
现地控制级设备包括机组现地控制单元LCU1至LCU9、500kV开关站现地控制单元LCU10、公用设备现地控制单元LCU11、厂用设备现地控制单元LCU12、坝区设备现地控制单元LCU13。
每套LCU由主机架、双CPU模块、双网络接口模块、现场总线模块、双电源模块、本地I/O模件、远程I/O模件、电气量测量单元、同期装置(LCU11、LCU12、LCU13除外)等组成。
上述模件中除远程I/O模件组盘布置于所对应被测设备的附近外,其余模件均装于LCU盘内。
公用及辅机控制系统包括对机组辅助设备及电站公用设备的控制。
1.2 电站在线监测系统:在线监测系统自动采集、记录、分析水轮发电机组振动、摆度、轴位移、局放、气隙、变压器油中气体、温度、油中微含水量等主要状态参数。
电站在线监测系统由传感器、监测屏柜及后台机构成,其监测信息除采用直接采样获取外,部分信息量通过与电站监控系统通信方式实现信息共享。
1.3 电能量计量系统电能量计量系统由电子式电度表及电能量采集装置构成,电能量计量系统的设置满足国家及电网相关规定2、主要设备及布置计算机监控系统、电站在线监测及故障诊断系统及电能量计量系统的主要设备见表0。
表一计算机监控、电站在线监测及电能量计量等系统主要设备3、通讯3.1 电站级计算机监控系统将与下列系统进行通讯:1、上级调度中心计算机监控系统;2、电站MIS系统;3、电站消防报警系统;4、电站工业电视系统;5、水情测报系统;6、通风空调监控系统。
7、继电保护及故障信息处理子站。
8、电站在线监测及故障诊断系统。
上述系统通过以太网接口、串行通信接口或视频接口与计算机监控系统连接。
3.2 机组现地控制单元主要与下列系统或现地设备连接:1、发变组继电保护系统;2、机组调速系统;3、机组励磁系统;4、辅机控制系统(包括:机组技术供水控制系统、调速器油压装置控制系统、圆筒阀油压装置控制系统、顶盖排水控制系统等);5、机组进水口闸门控制系统;6、发电机仪表柜、端子柜;7、水轮机仪表柜、端子柜;8、发电机中性点接地装置;9、机组高压油泵控制柜;10、发电机机械制动柜;11、机组制动粉尘收集装置;12、机组在线监测及故障诊断系统设备;13、其他。
3.3 500kV开关站现地控制单元主要与下列系统连接:1、500kV GIS控制系统;2、500kV 开关站保护系统;3、开关站直流电源系统;4、500kV GIS SF6气体密度在线监测系统;5、其他。
3.4 公用设备现地控制单元主要与下列系统连接:1、公用直流电源系统;2、公用设备控制系统(包括:高/低压空压机系统、检修及渗漏排水系统等);3、通风空调监控系统。
4、电能量计量系统。
5、其他。
3.5 厂用设备现地控制单元主要与下列系统连接:1、厂用电备自投装置;2、厂用电力变压器、联络线保护装置;3、柴油发电机设备;4、其他。
3.6 坝区设备现地控制单元主要与下列系统连接:1、溢洪闸门现地控制系统;2、冲沙闸门现地控制单元;3、水位测量系统;4、坝区220V直流电源系统;5、其他。
3.7 电站公用及辅机设备监控系统采用可编程控制器为基础,全厂油、气、水系统按各自单元设置独立的监控设备,公用及辅机设备的自动控制由现地PLC 闭环完成,各现地控制设备间采用总线方式联接,并与电站计算机监控系统实现数据通信,对重要信号量还采用I/O方式与电站计算机监控系统连接。
3.8 机组在线监测系统主要与下列系统通信:与电站计算机监控系统实现数据通信,对重要信号量还采用I/O方式与电站计算机监控系统连接。
3.9 在中控室设置一面DLP拼接大屏幕,大屏幕的显示信息来自计算机监控系统及工业电视系统。
4、主要技术特性4.1 可靠性计算机监控系统设备的平均无故障时间MTBF应满足如下要求:厂站控制级计算机设备(含硬盘)大于30000h;现地控制单元级设备大于40000h。
4.2 可利用率计算机监控系统可利用率指标应达到99.99%。
4.3 实时性1、数据采集周期●开关量:<1s;●电气模拟量:<2s;●非电气模拟量(不包括温度量):<5s;●温度量:1-5s;●事件顺序记录分辨率:≤2ms;●实时数据库刷新周期:<2s;2.控制响应●现地控制单元级接受控制命令到开始执行不超过1秒;●厂站控制级发出命令到现地控制单元级接受命令的时间不超过1秒;●操作员执行命令发出到现地控制单元回答显示的时间不超过2秒;3.人机接口●调出新画面的时间不超过1.5秒;●画面上实时数据刷新时间从数据库刷新后算起不超过1秒;●报警或事件产生到画面刷新和发出音响的时间不超过2秒。
4.时间同步精度●节点间时间同步分辨率1ms。
5.AGC/AVC计算周期●AGC及AVC运算周期不超过5秒。
6.双机切换热备用时保证任务不中断。
5、现场检查、试验和验收在计算机监控系统、电站在线监测系统设备及电能量计量系统设备在厂家的监督、指导下进行系统的硬件安装,配合厂家进行系统的调试。
在完成安装工作后,应根据合同规定、设计人提供的图纸和设备厂家提供的技术资料等进行检查和试验。
现场接收试验应有监理人目击。
任何部件不能满足技术规范要求以及设备厂家的保证性能时,应作好记录并报请发包人进行处置。
计算机监控系统设备的现场试验应满足GB50150《电气装置安装工程电气设备交接试验标准》、DL/T578《水电厂计算机监控系统设备基本技术规范》以及设备供货合同中规定的试验项目,现场检查、试验应至少包括以下项目:1、现地监测、控制单元硬件验收硬件组装和工厂试验记录及技术文件评审;设备外观及接线检查;配置检查;诊断软件可用性检查;安全地检查;信号地检查;接地绝缘检查;通电检查;直流电源输出电压检查;电源功能检测;手动/自动切换操作检查;同期检查;电气表计校验检查;温度表计校验检查;变送器校验检查;模拟量通道校验检查;跳闸输出检查;抗干扰测试;耐压检查;其他检查。
2、厂站硬件验收硬件组装和工厂试验记录评审;设备外观检查;配置检查;诊断软件可用性检查;安全地检查;信号地检查;接地绝缘检查;通电检查;直流电源输出电压检查;电源功能检测;控制台检查;打印设备检验;网络通信设备检验;GPS时钟检验;功能模块检验;抗干扰试验;耐压检查。
3、软件功能及性能验收3.1 显示器显示功能1、显示调用方式;2、显示屏调用;3、单线图调用;4、报表显示。
3.2 管理命令功能1、登录和注销;2、控制安全。
3.3 报警功能1、报警产生与发布(包括电话语音报警);2、报警等级修改;3、报警汇总;4、操作活动登录;5、SOE汇总;6、报警历史记录。
3.4 操作员监控功能1、设标志操作;2、人工设点;3、操作允许/禁止;4、报警允许/禁止;5、改变报警限值;6、异常报警显示;7、数字设备控制;8、开限控制;9、设点值控制;10、机组开/停控制。
3.5 打印功能1、各种报警报表打印;2、操作记录打印;3、报表打印;4、画面和屏幕拷贝。
3.6 高级应用功能1、联合控制功能检验;2、AGC/AVC功能检验;3、单独设点控制检验。
3.7 数据显示功能1、模拟量趋势曲线;2、报告接口;3、历史数据编辑;4、历史数据处理。
3.8 系统服务管理功能1、系统配置;2、计算机时钟;3、应用软件监视管理。
3.9 数据库实用程序1、数据库生成;2、数据库编辑。
3.10 画面编辑功能3.11 报表编辑3.12 梯级调度功能3.13 系统性能测试3.14 LCU软件测试1、数据库编辑;2、记录;3、设点控制;4、单台设备控制;5、顺序控制;6、双CPU切换;7、SOE时钟校正。
6、与其他系统联合调试项目7.1按照监控系统的功能要求完成下列系统联合调试项目:1、与机组调速器系统、励磁系统、保护系统及进水阀控制系统等联调;2、与厂用电各系统等联调;3、与电站直流系统联调;4、与空压机系统、渗漏检修排水、油压装置控制系统、机组技术供水系统等电站公用及辅机设备控制系统联调;5、与GIS控制设备(包括断路器同期等)联调;6、与500kV保护及安全自动装置系统联调;7、与泄洪闸门控制系统联调;8、与电站消防、录波、工业电视、水情测报系统、水位测量系统、上级调度等系统的联合调试。
9、电站计算机监控系统、电站在线监测系统、电站电能量计量系统之间的联调。
在所有现场试验、系统联调完成后,经监理人确认该系统已符合部标和国标以及定货合同的要求,并在技术资料、文件和备品备件齐全时方可验收。
系统设备验收要求应满足设计图纸、随机安装说明书,并应符合GB50150《电气装置安装工程电气设备交接试验标准》、GB50171《电气装置安装工程盘、柜及二次回路结线施工及验收规范》标准和设备厂家相关标准的要求。