国考行测:十字交叉法在各种题型中的应用
十字交叉在行测资料分析解题中的妙用

在近几年的行测资料分析部分,往往会涉及到部分和整体的增长率,此时,十字交叉就能成功的解答此类问题。
十字交叉的原理我们在这就不详细的讲解了,红麒麟公考专家提醒你,在行测资料分析使用十字交叉,一般应用于求整体(部分)的增长率或者是求比重的试题中,且要活学活用。
一、十字交叉最浅显应用资料分析的试题往往会涉及到三个指标,两个部分、一个整体,我们依据十字交叉可以得到,整体的增长率必然处于部分增长率之间,此时,比较仁慈的考官,就会在设置选项的时候,让我们能够很容易的排除三个选项,直接得到答案,来看个试题。
******************************************************************************* ******【例1】2008年1~8月,公路客运量比上年同期增长()。
A.6.9% B.7.4% C.7.9% D.11.7% 整体:1~9月公路客运量;部分:1~8月公路客运量增长11.4%;9月公路客运量增长7.4%;整体的在7.4%~11.4%之间,选C。
******************************************************************************* ******二、十字交叉稍变态应用虽说,整体的增长率处于部分的增长率之间,但是有的时候,试题往往给出的选项,只允许我们排除其中的两个,剩下的也无法排除,此时就要稍稍分析一下基期各部分占整体的比重的大小,来分析整体的增长率到底是偏向哪个部分,即可以将剩余的两个选项,排除掉一个,剩下的一个就是正确答案。
在这肯定注意到,为什么要分析基期的比重,而不是末期的比重呢?因为在这里面涉及了增长率,这就暗含着增长量这个等式,我们具体来看一下。
******************************************************************************* ******整体:末期增长率:r,基期值:R;部分:末期增长率a、b,基期值:A、B;等量关系:A×a+B×b=R×r,A×a+B×b=(A+B)×r;变形:A:B=(r-b):(a-r)。
行测技巧:浓度问题不用怕,十字交叉好办法

A.32% B.38% C.42% D.45%
【答案】B。
【中公解析】由于所求的位置处于整体比值,无法直接将其计算出来,不妨采取设未知数的方式,将其表示出来,再根据等量关系进行列式计算。
根据所列等式,得到 (50%-x):(x-8% )= 90:60,可以解得x=38%,故将90克的A与60克的B混合后溶液的浓度是38%。
【例1】将20%的盐水与5%的盐水混合,配成15%的盐水600克,需要20%的盐水和5%的盐水各多少克?
A.400,200 B.250,350 C.360,240 D.370,230
【答案】A。
【中公解析】设分别应取20%的食盐水与5%的食盐水质量为x克、y克,则:
由此可得出浓度分别为20%和5%的盐水质量之比为2:1,然后得出x为 600×3÷2=400千克,y为600÷3=200千克,即取含盐20%的盐水400千克,取含盐5%的盐水200千克。
行பைடு நூலகம்技巧:浓度问题不用怕,十字交叉好办法
公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。行政职业能力测验涉及多种题目类型,试题将根据考试目的、报考群体情况,在题型、数量、难度等方面进行组合。了解公务员成绩计算方法,可以让你做到心中有数,认真备考。
从上述例题可以看出,利用十字交叉法进行求解浓度问题,式子可以轻松表示出来,也规避了复杂的计算,将复杂的浓度问题变得简单,各位同学在做题的时候要灵活处理,希望对广大考生有所帮助。
【例2】有浓度为4%的盐水若干克,蒸发了一些水分后浓度变成10%,再加入300克4%的盐水后,浓度变为6.4%,问最初的盐水有多少克?
公务员—行测—十字交叉法的原理

一、十字交叉法的原理〔这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改〕首先通过例题来说明原理。
某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。
方法一:搞笑〔也是高效〕的方法。
男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。
月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。
方法二:假设男生有X,女生有Y。
有〔X×75+Y×85〕/〔X+Y〕=80,整理有X=Y,所以男生和女生的比例是1:1。
月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。
男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。
月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。
总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有〔1-X〕。
AX+B〔1-X〕=CX=〔C-B〕/〔A-B〕1-X=〔A-C〕/A-B因此:X:〔1-X〕=〔C-B〕:〔A-C〕上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。
有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=〔X+Y〕*r整理有X〔x-r〕=Y〔r-y〕;所以有X:Y=〔r-y〕:〔x-r〕上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。
行测资料分析技巧:十字交叉巧解资料分析

行测资料分析技巧:十字交叉巧解资料分析做了许多行测模拟题还是没有有效的提升自己的分数?那是你没有掌握一些技巧和重点,下面为你精心准备了“行测资料分析技巧:十字交叉巧解资料分析”,持续关注本站将可以持续获取的考试资讯!行测资料分析技巧:十字交叉巧解资料分析在行测考试中,资料分析是每年都会考察的内容。
这一部分涉及到的专有名词多,同时数据繁杂,是同学们比较头疼的部分。
资料分析的题目计算量大,如果每道题都去一点一点计算,时间上不允许,这就需要同学们掌握一些特殊题型的巧解方法。
在数学运算中,比值的混合经常会借助十字交叉法求解,除此之外,在资料分析,部分题目也可以借助这种方法实现快速求解,求得整体比值量或者判断部分比值量的取值范围。
结论1:整体比值介于各部分比值之间。
例1:2013年全国社会物流总额197.8万亿元,同比增长9.5%,增幅比上年回落0.3个百分点。
分季度看,一季度增长9.4%,上半年增长9.1%,前三季度增长9.5%。
其中,工业品物流总额181.5万亿元,同比增长9.7%,增幅比上年回落0.3个百分点。
进口货物物流总额12.1万亿元,同比增长6.4%,增幅比上年回落1.3个点。
问题:2013年全国社会物流总额同比增速最高的季度是:( )A. 第一季度B.第二季度C.第三季度D.第四季度【解析】第一季度的同比增速在材料当中已经给出,是9.4%,而第二季度的数据在材料中并未提及,那怎么去求解呢?我们来看材料当中给出了一个是上半年的同比增速,那上半年是由第一季度+第二季度得到的,所以上半年的增速是一个整体比值,第一季度和第二季度是两个部分比值,上半年是由一二季度混合得到的。
上半年增长率是9.1%,一季度的增长率是9.4%,比上半年大,所以第二季度的增长率一定会小于9.1%。
同理,前三季度是由上半年和第三季度混合得到的,可得,第三季度大于9.5%。
2013年全年是由前三季度和第四季度混合得到的,可得,第四季度等于9.5%。
国家公务员考试行测备考:十字交叉法

国家公务员考试行测备考:十字交叉法
国家公务员考试行测备考:十字交叉法
十字交叉法主要解决公务员考试行测数量关系中的混合平均量问题,运用过程中往往涉及到五列数字:第一列:部分的平均量;第二列:总体的平均量;第三列:部分平均量与总体平均量交叉做差的差值;第四列:差值的最简比;第五列:求得部分平均量的分母所对应的实际量。
若题中已知其中四个量,对应其位置,便可以求出五个量中的任意一个量,是解决数量关系问题中非常实用的一种方法,下面中公教育专家为大家进行详细讲解。
一、两者十字交叉
常见题型一:平均分问题
[模板] 已知一个班级,男生人数为x 人,平均分为A,女生人数为 y 人,平均分为 B,求这个班级的总体平均分。
(A>B)
[例题] 某学校对其120 名学生进行随机抽查体能测验,平均分是73 分,其中男生的平均分是 75 分,女生的平均分是 63 分,男生比女生多多少人?
A.70
B.80
C.60
D.85
常见题型二:溶液问题
【模板】已知A瓶溶液的浓度为 A%,B瓶的溶液浓度为 B%,分别取 x 和 y 份进行混合,求得到的溶液浓度为多少。
(A>B) 【例题】已知在浓度为90%的甲瓶中取40g 溶液,在浓度为60%的乙瓶中取 20g 溶液,进行混合,得到的溶液的浓度为多少?
A.75%
B.80%
C.85%
D.90%。
公务员考试十字交叉法

十字交叉法是数学运算及资料分析中经常用到的一种解题方法,熟练运用可以大大提高各位考生在考场上的解题速度。
在平时的复习过程中应作为一个专题加以强化练习,以期达到行测考场上的“秒杀”。
十字交叉法最先是从溶液混合问题衍生而来的。
若有两种质量分别为A与B的溶液,其浓度分别为a与b,混合后浓度为r,则由溶质质量不变可列出下式Aa+Bb=(A+B)r,对上式进行变形可得A/B=r-b/a-r,在解题过程中一般将此式转换成如下形式:注意在交叉相减时始终是大的值减去小的值,以避免发生错误。
十字交叉法不仅仅可用于溶液混合问题,也可以应用于两部分混合增长率问题、平均分数、平均年龄等问题。
只要能符合Aa+Bb=(A+B)r这个式子的问题均可应用十字交叉法,交叉相减后的比值为对应原式中的A和B的比值。
例1 甲容器中有浓度为4%的盐水150克,乙容器中有某种浓度的盐水若干,从乙中取出450克盐水,放入甲中混合成浓度为8.2%的盐水。
问乙容器中盐水的浓度是多少?A.9.6%B.9.8%C.9.9%D.10%【解析】A。
【例2】某市现有70万人口,如果5年后城镇人口增加4%,农村人口增加5.4%,则全市人口将增加4.8%,那么这个市现有城镇人口()。
A.30万B.31.2万C.40万D.41.6万【解析】A。
【例3】(2011国考-76)某单位共有A.B.C.三个部门,三部门人员平均年龄分别为38岁,24岁,42岁,A和B两部门人员平均年龄为30岁,B和C两部门人员平均年龄为34岁,该单位全体人员的平均年龄为多少岁?A.34B.36C.35D.37【解析】C除了在数学运算中可以用到十字交叉法,在一些资料分析的题目中也可以运用十字交叉法,例如:【例4】(2011年917联考)2010年1~6月,全国电信业务收入总量累计完成14860.7亿元,比上年同期增长21.4%;电信主营业务收入累计完成4345.5亿元,比上年同期增长5.9%。
公务员行测资料分析技巧:十字交叉法

公务员行测资料分析技巧:十字交叉法行测资料分析技巧有哪些?正在备考行测考试的朋友可以来看看,下面由小编为你准备了“公务员行测资料分析技巧:十字交叉法”,仅供参考,持续关注本站将可以持续获取更多的内容资讯!公务员行测资料分析技巧:十字交叉法在行测资料分析中应用时,主要有三层结论,前两层结论主要用于定性判断,而第三层结论用于定量计算。
在前两篇文章中,我带着考生们分别探讨了十字交叉法在资料分析中的应用环境以及两层应用技巧,今天带大家一起来学习学习资料分析的最后一层应用,定量计算:结论一:整体平均数处在部分平均数之间,即部分平均数有些比整体平均数大,有些比整体平均数小。
结论二:整体平均数靠近“分母”较大的那个分平均。
结论三:求部分量分母之比今天我们要讨论的结论三,关于它的内容表述方式和前两种有所不同,我们上面的黑字是在说明它的作用,是用来求部分量的分母之比。
而具体怎么求,因为不太好用一句话的文字表述。
所有并没有表述在上面的黑体字中。
具体内容展开详解:1.解决问题:求部分量分母之比我们知道,十字交叉法是用来解决研究整体平均数和部分平均数之间的关系的题目的。
比如进出口总额的增长率和进口与出口的增长率,就分别是整体平均数和部分平均数。
由于任何一个平均数都是除法计算得来,比如出口的增长率=出口的增长率/出口的基期量、进口的增长率=进口的增长率/进口的基期量,则每一个平均数在求解时都有其分母。
当一个整体只分成两个部分,如果题目让我们求这两个部分的平均数,分母的量的比,即为求部分量分母之比,也就是我们结论三的应用环境。
如下题:例题:2018年某市中学生有13.2万人,增长率1.2%,其中女生人数增长了0.8%,男生人数增长了1.5%。
问:2017年该市中学生男生人数与女生人数的比例是?A.4:3B.3:4C.5:5D.5:6解析:题目中的“平均数”概念是增长率,全体中学生人数和女生人数男生人数构成了整体和部分间的关系。
公务员—行测—十字交叉法的原理

一、十字交叉法的原理(这个有的前辈和大侠有比较详细的讲解,简单易懂,在这里就直接用前辈写的东西来说明了,但是为了符合我的一些习惯,还是做了一定的修改)首先通过例题来说明原理。
某班学生的平均成绩是80分,其中男生的平均城市75分,女生的平均城市85分,求该班男生和女生的比例。
方法一:搞笑(也是高效)的方法。
男生一人,女生一人,总分160分,平均分80分,男生和女生的比例是1:1。
月月讲解:这个就是咱常用的特殊值法吧,不过思路稍微特殊一点。
方法二:假设男生有X,女生有Y。
有(X×75+Y×85)/(X+Y)=80,整理有X=Y,所以男生和女生的比例是1:1。
月月讲解:这个就是常用的列方程法方法二:假设男生有X,女生有Y。
男生:X 75 85-80=580女生:Y 85 80-75=5男生:女生=X:Y=1:1。
月月讲解:这一步前辈说的不是很清楚,补充修正了一下,其实说白了,十字交叉的左侧是各部分的量,右侧是混合后的量。
总结一下,一个集合中的个体,只有2个不同的取值,部分个体取值为A,剩余部分取值为B。
平均值为C。
求取值为A的个体与取值为B的个体的比例。
假设A有X,B有(1-X)。
AX+B(1-X)=CX=(C-B)/(A-B)1-X=(A-C)/A-B因此:X:(1-X)=(C-B):(A-C)上面的计算过程可以抽象为:A C-BCB A-C这就是所谓的十字相乘法。
月月讲解:这个是大侠的,不过我个人觉得,十字交叉法用溶液问题来讲解更加浅显易懂,怎么说呢,我们还是通过例题来讲解。
有两种溶度浓度的溶液A、B,其浓度为x、y,现将这些溶液混合到一起得到浓度为r的溶液,那么这两种溶液的浓度之比为多少?假设A溶液的质量为X,B溶液的浓度为Y,则有:X*x+Y*y=(X+Y)*r整理有X(x-r)=Y(r-y);所以有X:Y=(r-y):(x-r)上面的计算过程就抽象为:X x r-yrY y x-r这样就看着清楚多了吧,知道是哪个比哪个等于什么值了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国考行测:十字交叉法在各种题型中的应用
“十字交叉”法做为数学运算中常用的一种解题思想,老师会在基础班型中向学生重点讲述。
一般情况下,我们是在“溶液问题”中引入“十字交叉法”,我们简单把“十字交叉”法的原理重述一遍。
例:重量分别为A和B的溶液,浓度分别为a和b,混合后的浓度为r。
例:A个男生的平均分为a,B个女生的平均分为b,总体平均分为r。
上述两个例子,我们均可以用如下的关系表示:(此处假设a>b)
上述“十字交叉”法的操作过程很简单,但是碰到类似的题目,学生很难把握A到底放哪个量,因此就很难将复杂的计算转化成简单的“十字交叉”法来操作。
如果学生能理解“十字交叉”法到底适合哪类题型,并且记住接下来讲的做题套路,就可以从“战略”层次提升“十字交叉”法的应用。
【例题1】(山西路警2010-12)现有含盐20%的盐水500g,要把它变成含盐15%的盐水,应加入5%的盐水多少克?
A.200
B.250
C.350
D.500
【答案】B
【华图公务员[微博]考试研究中心解析】这是一道非常典型的溶液问题,溶液由两部分混合而成,我们可以用“十字交叉”法来操作,如下:
此题在溶液问题中是一道非常基础的题。
其特点是:难度较低,考察溶液混合过程中各个量的变化,在国考中类似难度的题不太会出现,但确是我们掌握“十字交叉”法的典型例题。
【例题2】(河北选调生-2009-47)一只松鼠采松子,晴天每天采24个,雨天每天采16个,它一连几天共采168个松子,平均每天采21个,这几天当中晴天有几天?
A.3
B.4
C.5
D.6
【答案】C
【华图公务员考试研究中心解析】本题是典型的一个整体由两个部分组成。
根据倍数特性,晴天的天数能被5整除。
选C。
此题符合“十字交叉”法的特征,考生抓住A与a分母的关系,很容易将题目求出来。
本解难度不大,在国考中出现类似题型的可能性还是很大的。
类似的题目是考生得分的题。
【例题3】某地区按以下规定收取燃气费:如果用气量不超过60,按每立方米0.8元收费,如超过60,则超过部分按每立方米1.2元收费。
某用户8月份交费平均每立方米0.88元,则8月份燃气费为多少?
A.66元
B.56元
C.48元
D.61.6元
【答案】A
说明超过60的部分为60÷4=15立方米,则共用75立方米,平均每立方米0.88元,则共需75×0.88=66元。
像类似的分段计算问题,在国考和其他地方省考中出现的频率还是挺高的。
考生熟练掌握“十字交叉”法的套路,就可以快速解决类似的题,从而避免列方程求未知数的复杂运算。
【例题4】大学生进行9天野营拉练,晴天每天走32千米,雨天每天走25千米,一共走了
274千米,则拉练期间雨天的天数是( )
A.1
B.4
C.5
D.2
【答案】D
鸡兔同笼问题,在国考中出现过几次,如果考生对“十字交叉”法熟练,会很快将题目转化操作出来。
碰到类似的题目,是考生必拿分的题。
“十字交叉”法,在操作上考生只要搞清楚A是a的分母,将a用分数的形式表示出来,一般都能熟练掌握做题的套路。
但“十字交叉”法在近年的考查上不仅局限于数学运算,在资料分析中也有考查“十字交叉”思想的题目出现,接下来我们看一下资料分析中“十字交叉”法是如何运用的。
【例题5】2008年,浙江全省第二产业增长9.32%。
其中,工业增长10.11%,建筑业增长3.04%。
请问2008年该省建筑业占第二产业的比重为多少?
A.9.17%
B.10.53%
C.11.19%
D.12.47%
【答案】B
【例题6】(2012-421联考)
2011年对主要国家和地区进出口额及其增长速度(截取部分内容)
国家和地区出口额(亿美元) 比上年增长(%) 进口额(亿美元) 比上年增长(%)
中国台湾351 18.3 1249 7.9
能够从上述资料中推出的是( )。
A。
与上一年相比,2011年我国全年货物出口额占进出口总额的比重上升
B.2006—2011年我国货物进出口总额逐年增加
C.2011年我国对俄罗斯进口增长金额低于我国对韩国进口增长金额
D.2011年大陆对中国台湾贸易总额与上一年相比增长18%
我们只研究D选项。
通过表格我们知道,给出的是出口额和进口额的增长率,D给的是进出口总额的增长率,即整体的增长率。
对于溶液问题我们知道10%和20%的溶液混合后浓度一定介于10%和20%之间,到底离10%近还是20%近,这是权重的问题,要看两种溶液各自占的比重。
比如200克10%和100克20%混合后,浓度一定离10%近,因为10%的溶液占的权重大。
本题的思想跟这个类似。
要看混合后的增长率大小,得知道进出口各自的权重。
由上个题我们知道,本题的权重不是2011年,应该是2010年,由于进口额太大,增长率差别不大,通过现期量和增长率求基期时,不需要去计算,只需通过现期比较即可。
所以进口额权重大。
“混合”后增长率应该离7.9%近,而不是18.3%,所以D项是错误的。
考生在做资料分析时,只要碰到类似的整体部分的问题,就可以通过定性分析做出正确和错误的选择。
总结
在国考和各地省考中,经常遇到一个整体由两个部分构成的题目,只要这种题型存在“混合”的问题,大家就可以考虑用“十字交叉”法来操作。
对于模型中的A,大家只要把a写成分数的形式,通过a的分母,就很容易判定A 到底放哪一个量。
另外,在资料分析中,碰到类似整体由两部分构成的问题,大家都可以通过“权重”的思想进行定性分析。