二次函数专题训练(菱形的存在性)含解答

合集下载

二次函数中的菱形存在性问题-含答案

二次函数中的菱形存在性问题-含答案

二次函数中的菱形存在性问题
(1)求线段AB的长度;
(2)点P是第四象限内抛物线上的一动点,连接BC,点M
CP、MP求BPM
△面积的最大值及此时点P的坐标;
(3)将原抛物线沿射线CA方向平移,使平移后的抛物线图象恰好与
点(点A在点D左侧),点E为直线CD上一点,过点E作
称轴于点F,G为平面内任意一点,当以C,E,F,G为顶点的四边形是菱形时,请直
(1)求抛物线的解析式;
(2)过点A 作AF AD ⊥交对称轴于点F ,在直线AF 下方对称轴右侧的抛物线上有一动点P ,过点P 作PQ y ∥轴交直线AF 于点Q ,过点P 作PE DF ^交于点E ,求大值及此时点P 的坐标;
(3)将原抛物线沿着x 轴正方向平移,使得新抛物线经过原点,点M 是新抛物线上一点,点N 是平面直角坐标系内一点,是否存在以B 、C 、M 、N 为顶点的四边形是以角线的菱形,若存在,求所有符合条件的点N 的坐标.
(1)求该抛物线的解析式;
(2)点P 为直线BC 下方抛物线上的一动点,过P 作PE BC ⊥于点E ,过于点F ,交直线BC 于点G ,求PE PG +的最大值,以及此时点P 的坐标;
(3)将抛物线212
y x bx c =++沿射线CB 方向平移,平移后的图象经过点H
(1)求A,B两点坐标;
∥交抛物线于D,点E为直线AD上一动点,连接
(2)过点A作AD BC
BE,求四边形BPCE面积的最大值及此时点P的坐标;
(3)将抛物线沿射线CB方向平移5
个单位,M为平移后的抛物线的对称轴上一动点,
2
在平面直角坐标系中是否存在点N,使以点B,C,M,N为顶点的四边形为菱形?若存在,请直接写出所有符合条件的点N的坐标,若不存在,请说明理由.。

二次函数的存在性问题之菱形(含答案)

二次函数的存在性问题之菱形(含答案)

二次函数的存在性问题之菱形1. 如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M 为直线BC 上一点,点N 为平面直角坐标系内一点,是否存在这样的点M 和点N ,使得以点B ,D ,M,N为顶点的四边形是菱形?若存在上,直接写出点N的坐标;若不存在,请说明理由.2. 如图,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,连接.(1)求抛物线的解析式及点的坐标;(2)点在抛物线上,连接,当时,求点的坐标;(3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动,、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面内是否存在点,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由.第1页共30页3. 如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y= (k >0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.4. 综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx +c(a≠0)的顶点坐标为(﹣,)第2页共30页5. 如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.6. 如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP 为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.第3页共30页7. 如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.8. 如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.第4页共30页9. 如图,抛物线y=x2﹣x﹣2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标;(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形?若存在,求出此时点M的坐标;若不存在,说明理由;10. 抛物线y= x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y轴的右侧.(1)求D点坐标;(2)若∠PBA= ∠OBC,求点P的坐标;(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.第5页共30页11. 如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别交于A(﹣1,0)、B (3,0)、C(0,3)三点.(1)试求抛物线的解析式;(2)设点M是x轴上的动点,在平面直角坐标系中,是否存在点N,使得以点A、C、M、N为顶点的四边形是菱形?若存在,求出所有符合条件的点N 坐标;若不存在,说明理由.12. 如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与X轴交于点A、B两点B处的坐标为(3,0),与y轴交于c(0,﹣3),点P是直线BC下方抛物线上的动点.(1)求出二次函数的解析式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形?若存在,求出点P的坐标,若存在,请说明理由;第6页共30页13. 如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M 四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.14. 如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B 两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.第7页共30页15. 如图1,在平面直角坐标系中,抛物线y= 与x 轴交于A 、B两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为点D ,过点B作BC 的垂线,交对称轴于点E.(1)求证:点E与点D关于x轴对称;(2)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D′,点A的对应点A′,设抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F落在点F′处,在平面内找一点G,若以F′、G、D′、A′为顶点的四边形为菱形,求平移的距离.16. 如图,在平面直角坐标系中,点在抛物线上,且横坐标为1,点与点关于抛物线的对称轴对称,直线与轴交于点,点为抛物线的顶点,点的坐标为(1)求线段的长;(2)点为线段上方抛物线上的任意一点,过点作的垂线交于点,点为轴上一点,当的面积最大时,求的最小值;(3)在(2)中,取得最小值时,将绕点顺时针旋转后得到,过点作的垂线与直线交于点,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使得点为顶点的四边形为菱形,若存在,请直接写出点的坐标,若不存在,请说明理由.第8页共30页17. 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.18. 已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.第9页共30页第10页共30页中考数学狙击重难点系列专题第 11 页 共 30 页答案解析部分一、综合题1.【答案】(1)解:∵抛物线y=ax 2+bx ﹣2的对称轴是直线x=1,A (﹣2,0)在抛物线上,∴ ,解得:,抛物线解析式为y=x 2﹣x ﹣2;(2)解:令y=x 2﹣x ﹣2=0,解得:x 1=﹣2,x 2=4,当x=0时,y=﹣2,∴B (4,0),C (0,﹣2),设BC 的解析式为y=kx+b ,则 ,解得:,∴y=x ﹣2,设D (m ,0), ∵DP ∥y 轴, ∴E (m , m ﹣2),P (m ,m 2﹣m ﹣2),∵OD=4PE , ∴m=4(m 2﹣m ﹣2﹣m+2),∴m=5,m=0(舍去), ∴D (5,0),P (5,),E (5,), ∴四边形POBE 的面积=S △OPD ﹣S △EBD = ×5×﹣1×=;(3)解:存在,设M (n , n ﹣2),①以BD 为对角线,如图1,∵四边形BNDM 是菱形, ∴MN 垂直平分BD , ∴n=4+ , ∴M ( , ), ∵M ,N 关于x 轴对称,∴N (,﹣);②以BD 为边,如图2,∵四边形BNDM 是菱形, ∴MN ∥BD ,MN=BD=MD=1, 过M 作MH ⊥x 轴于H , ∴MH 2+DH 2=DM 2 ,即(n﹣2)2+(n﹣5)2=12,∴n1=4(不合题意),n2=5.6,∴N(4.6,),同理(n﹣2)2+(4﹣n)2=1,∴n1=4+ (不合题意,舍去),n2=4﹣,∴N(5﹣,),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(n﹣2)2+(n﹣4)2=12,∴n1=4+ ,n2=4﹣(不合题意,舍去),∴N(5+ ,),综上所述,当N(,﹣)或(4.6,)或(5﹣,)或(5+ ,),以点B,D,M,N为顶点的四边形是菱形.【解析】【分析】(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y= x﹣2,设D(m,0),得到E (m,m﹣2),P(m,m2﹣m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,),E(5,),根据三角形的面积公式即可得到结论;(3)设M(n,n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+ ,于是得到N(,﹣);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,过M 作MH⊥x轴于H,根据勾股定理列方程即可得到结论.2.【答案】(1)解:直线解析式,令,得;令,得.∴、.∵点、在抛物线上,∴,解得,∴抛物线解析式为:.令,解得:或,∴.(2)解:,设,①当时,如答图所示.第12页共30页∵,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与,得:,解得:,,∴,,∴;②当与关于轴对称时,如答图所示.∵,,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与得:,解得:,,∴,,∴.综上所述,满足条件的点的坐标为:或(3)解:设,则,,.假设存在满足条件的点,设菱形的对角线交于点,设运动时间为.第13页共30页①若以为菱形对角线,如答图.此时,菱形边长.∴.在中,,解得.∴.过点作轴于点,则,,∴.∴.∵点与点横坐标相差个单位,∴;②若以为菱形对角线,如答图.此时,菱形边长.∵,∴,点为中点,∴.∵点与点横坐标相差个单位,∴;③若以为菱形对角线,如答图.此时,菱形边长.在中,,解得.∴,.第14页共30页∴.综上所述,存在满足条件的点,点坐标为:或或.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B两点的坐标,将A,B两点的坐标分别代入抛物线y=x2+bx+c得出关于b,c的方程组,求解得出b,c的值,从而得出抛物线的解析式,再根据抛物线与x轴交点的纵坐标是0,将y=0代入抛物线的解析式,楸树对应的自变量的值,从而求出C 点的坐标;(2)设M ( x , y )①当BM⊥BC 时,如答图2 − 1 所示.根据等腰直角三角形的性质及垂直的定义得出∠MBA+∠CBO=45∘,故点M 满足条件,过点M1作M1E⊥y轴于点E ,则M1E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M1BE=tan∠BCO=,根据正切函数的定义得出关于x,y的方程,变形即可得出直线BM1的解析式,解联立直线BM 1的解析式与抛物线的解析式组成的方程组,即可求出M1的坐标;②当BM与BC关于y轴对称时,如答图 2 − 2 所示.根据根据角的和差及对称的性质得出∠ABO=∠MBA+∠MBO=45∘,∠MBO=∠CBO ,故∠MBA+∠CBO=45∘,故点M 满足条件过点M2 作M2E⊥y 轴于点E ,则M2E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M2BE=tan∠CBO=,根据正切函数的定义得出关于x,y 的方程,变形即可得出直线BM2的解析式,解联立直线BM2的解析式与抛物线的解析式组成的方程组,即可求出M2的坐标,综上所述即可得出M点的坐标;(3)设∠BCO=θ ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D ,设菱形的对角线交于点E ,设运动时间为t .①若以CQ为菱形对角线,如答图3 − 1 .此时BQ=t ,菱形边长=t ,根据菱形的对角线互相平分得出CE=CQ=(5−t) ,根据余弦函数的定义,由cosθ=,即可列出方程,求解得出t的值,进而得出CQ的值,过点Q作QF⊥x 轴于点F,则QF=CQ ⋅ sinθ,CF=CQ ⋅ cosθ,分别计算出QF,CF的长,进而得出OF的长,从而得出Q点的坐标,根据点D1与点Q横坐标相差t 个单位即可得出D1的坐标;②若以PQ为菱形对角线,如答图3 − 2 .此时BQ=t ,菱形边长=t,根据线段中点坐标公式,由点Q为BC中点得出Q点的坐标,根据点D2与点Q 横坐标相差t 个单位即可得出D1的坐标;③若以CP为菱形对角线,如答图3 − 3 .此时BQ=t ,菱形边长=5−t.根据cosθ =列出方程,求解得出t的值,进而求出OE, 由D3E=QE=CQ ⋅ sinθ,从而得出D3的坐标,综上所述即可得出答案。

菱形的存在性(讲义及答案).

菱形的存在性(讲义及答案).

(-2, 10 ). 3
4. (-2, 3 14 ),(4, 17 )或(2,2)
5. 5 , 25 或 30 2 11 11
6. 存在,点 P 的坐标为(-2, 9 )或( 7 , 25 ).
2
36
7. 3 2 2 或 2
8
3. 菱形存在性问题通常转化为等腰三角形存在性处理.
2
精讲精练
1. 如图,二次函数 y=x2-4x+3 的图象交 x 轴于 A,B 两点,交 y 轴于点 C,顶点为点 P.M 是该抛物线的对称轴上的一点, 若以点 C,P,M 为顶点的三角形是等腰三角形,则点 M 的 坐标为______________.
1
知识点睛
1. 存在性问题的处理思路 ①分析不变特征 分析背景图形中的定点、定线,定角等不变特征. ②分类、画图 结合图形形成因素(判定,定义等)考虑分类,画出符合题 意的图形. 通常先尝试画出其中一种情形,分析解决后,再类比解决其 他情形. ③求解、验证 围绕不变特征、画图依据来设计方案进行求解;验证时,要 回归点的运动范围,画图或推理,判断是否符合题意. 注:复杂背景下的存在性问题往往需要研究背景图形,几何 背景往往研究点,线,角;函数背景研究点坐标,表达式等.
5. 如图,抛物线 y 1 x2 1 x 4 与 x 轴交于 A,B 两点,与 y 33
轴交于点 C,连接 BC.点 P 从点 B 出发,沿线段 BA 由 B 向 A 运动,同时点 Q 从点 C 出发,沿线段 CB 由 C 向 B 运动, P,Q 的运动速度都是每秒 1 个单位长度,当 Q 点到达 B 点 时,P,Q 同时停止运动.点 D 是坐标平面内一点,在 P,Q 运动过程中,若以 B,D,P,Q 为顶点的四边形为菱形,则 t 的值为___________________.

菱形的存在性问题(含答案)

菱形的存在性问题(含答案)

菱形的存在性1.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.2.如图,直线y=﹣x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M在x轴的上方时,求四边形COAM周长的最小值;(3)在平面直角坐标系内是否存在点N,使以C,P,M,N为顶点的四边形为菱形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.3.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.4.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.菱形的存在性1.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,解得,∴y=x2+2x﹣3.(2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b.得,解得,∴y=﹣x﹣3,∵点P(m,0)是x轴上的一动点,且PM⊥x轴.∴M(m,﹣m﹣3),N(m,m2+2m﹣3),∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,∵a=﹣1<0,∴此函数有最大值.又∵点P在线段OA上运动,且﹣3<﹣<0,∴当m=﹣时,MN有最大值.②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.∵MN=﹣m2﹣3m,MC=﹣m,∴﹣m2﹣3m=﹣m,解得m=﹣3+或0(舍弃)∴MN=3﹣2,∴CQ=MN=3﹣2,∴OQ=3+1,∴Q(0,﹣3﹣1).如图2﹣2中,当MC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,﹣1).如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,则有,m2+3m=﹣m,解得m=﹣3﹣或0(舍弃),∴MN=CQ=3+2,∴OQ=CQ﹣OC=3﹣1,∴Q(0,3﹣1).2.如图,直线y=﹣x+3与x轴、y轴分别交于点B,点C,经过B,C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P,点M为抛物线的对称轴上的一个动点.(1)求该抛物线的解析式;(2)当点M在x轴的上方时,求四边形COAM周长的最小值;(3)在平面直角坐标系内是否存在点N,使以C,P,M,N为顶点的四边形为菱形?若存在,请写出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B,点C,∴点B(3,0),点C(0,3),∵抛物线y=x2+bx+c经过B,C两点,∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,连接AM,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2,∵点A与点B关于对称轴对称,∴AM=BM,点A(1,0),∵点C(0,3),点A(1,0),点B(3,0),∴OA=1,OC=3,OB=3,∵四边形COAM周长=OC+OA+AM+CM,∴四边形COAM周长=4+BM+CM,∴当点B,点M,点C三点共线时,BM+CM有最小值为BC的长,∴四边形COAM周长的最小值=4+BC,∵BC===3,∴四边形COAM周长的最小值=4+3;(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点P(2,﹣1),又∵点C(0,3),∴PC==2,设点M(2,t),∴MC==,MP=|t+1|,∵以C,P,M,N为顶点的四边形为菱形,∴△CPM是等腰三角形,若MC=MP,则=|t+1|,∴t=,∴点M(2,);若MP=PC,则2=|t+1|,∴t1=﹣1+2,t2=﹣1﹣2,∴点M(2,﹣1+2)或(2,﹣1﹣2);若MC=PC,则=2,综上所述:点M的坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2).3.如图,已知抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点P是直线BC下方的抛物线上一动点(不点B,C重合),过点P作y轴的平行线交直线BC于点D,设点P的横坐标为m.①用含m的代数式表示线段PD的长.②连接PB,PC,求△PBC的面积最大时点P的坐标.(3)设抛物线的对称轴与BC交于点E,点M是抛物线的对称轴上一点,N为y轴上一点,是否存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形?如果存在,请直接写出点M的坐标;如果不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)经过点A(1,0)和点B(3,0),与y轴交于点C,∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)如图:①设P(m,m2﹣4m+3),将点B(3,0)、C(0,3)代入得直线BC解析式为y BC=﹣x+3.∵过点P作y轴的平行线交直线BC于点D,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=OB•PD=﹣m2+m=﹣(m﹣)2+.∴当m=时,S有最大值.当m=时,m2﹣4m+3=﹣.∴P(,﹣).答:△PBC的面积最大时点P的坐标为(,﹣).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴ME=EC=2,∴M(2,1﹣2)或(2,1+2)4.如图,抛物线y=ax2+bx﹣1(a≠0)交x轴于A,B(1,0)两点,交y轴于点C,一次函数y=x+3的图象交坐标轴于A,D两点,E为直线AD上一点,作EF⊥x轴,交抛物线于点F(1)求抛物线的解析式;(2)若点F位于直线AD的下方,请问线段EF是否有最大值?若有,求出最大值并求出点E的坐标;若没有,请说明理由;(3)在平面直角坐标系内存在点G,使得G,E,D,C为顶点的四边形为菱形,请直接写出点G的坐标.【解答】解:(1)将y=0代入y=x+3,得x=﹣3.∴点A的坐标为(﹣3,0).设抛物线的解析式为y=a(x﹣x1)(x﹣x2),点A的坐标为(﹣3,0),点B的坐标为(1,0),∴y=a(x+3)(x﹣1).∵点C的坐标为(0,﹣1),∴﹣3a=﹣1,得a=,∴抛物线的解析式为y=x2+x﹣1;(2)设点E的坐标为(m,m+3),线段EF的长度为y,则点F的坐标为(m,m2+m﹣1)∴y=(m+3)﹣(m2+m﹣1)=﹣m2+m+4即y=(m﹣)2+,此时点E的坐标为(,);(3)点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).理由:①如图1,当四边形CGDE为菱形时.∴EG垂直平分CD∴点E的纵坐标y==1,将y=1代入y=x+3,得x=﹣2.∵EG关于y轴对称,∴点G的坐标为(2,1);②如图2,当四边形CDEG为菱形时,以点D为圆心,DC的长为半径作圆,交AD于点E,可得DC=DE,构造菱形CDEG点D的坐标为(0,3)∴DE==∵DE=DC=4,∴=4,解得n1=﹣2,n2=2.∴点E的坐标为(﹣2,﹣2+3)或(2,2+3)将点E向下平移4个单位长度可得点G,点G的坐标为(﹣2,﹣2﹣1)(如图2)或(2,2﹣1)(如图3)③如图4,“四边形CDGE为菱形时,以点C为圆心,以CD的长为半径作圆,交直线AD于点E,设点E的坐标为(k,k+3),点C的坐标为(0,﹣1).∴EC==.∵EC=CD=4,∴2k2+8k+16=16,解得k1=0(舍去),k2=﹣4.∴点E的坐标为(﹣4,﹣1)将点E上移1个单位长度得点G.∴点G的坐标为(﹣4,3).综上所述,点G的坐标为(2,1),(﹣2,﹣2﹣1),(2,2﹣1),(﹣4,3).。

二次函数压轴题之菱形存在性问题

二次函数压轴题之菱形存在性问题

菱形存在性问题作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形: (1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD 是菱形,则其4个点坐标需满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等. 即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:(1)2个定点+1个半动点+1个全动点 (2)1个定点+3个半动点解决问题的方法也可有如下两种: 思路1:先平四,再菱形设点坐标,根据平四存在性要求列出“A +C =B +D ”(AC 、BD 为对角线),再结合一组邻边相等,得到方程组.思路2:先等腰,再菱形在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.1.看个例子:如图,在坐标系中,A 点坐标(1,1),B 点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D 点坐标,使得以A 、B 、C 、D 为顶点的四边形是菱形.思路1:先平四,再菱形设C 点坐标为(m ,0),D 点坐标为(p ,q ).(1)当AB 为对角线时,由题意得:(AB 和CD 互相平分及AC =BC ) ()()()()222215*********m p q m m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:398985m p q ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(2)当AC 为对角线时,由题意得:(AC 和BD 互相平分及BA =BC ) ()()()()2222151041514504m p qm ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:223m p q =⎧⎪=-⎨⎪=-⎩或843m p q =⎧⎪=⎨⎪=-⎩ (3)当AD 为对角线时,由题意得:()()()()2222151401514110p mq m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:153m p q ⎧=+⎪⎪=+⎨⎪=⎪⎩153m p q ⎧=-⎪⎪=-⎨⎪=⎪⎩思路2:先等腰,再菱形先求点C,点C满足由A、B、C构成的三角形一定是等腰三角形,用等腰存在性问题的方法先确定C,再确定D点.(1)当AB=AC时,C点坐标为()1+,对应D点坐标为()5+;C点坐标为()1-,对应D点坐标为()5-.(2)当BA=BC时,C点坐标为(8,0),对应D点坐标为(4,-3);C点坐标为(2,0),对应D点坐标为(-2,-3).(3)AC=BC时,C点坐标为39,08⎛⎫⎪⎝⎭,D点坐标为9,58⎛⎫⎪⎝⎭.以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法.【两定两动:坐标轴+平面】(2019·齐齐哈尔中考删减)综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.备用图【分析】(1)抛物线:26y x x=--;(2)先考虑M点位置,即由A、C、M三点构成的三角形是等腰三角形:①当CA=CM时,即CM=CA=M点坐标为(0,6--、(0,6-+,对应N点坐标为(2,--、(-.②当AC=AM时,即AM=AC=M点坐标为(0,6),对应N点坐标为(2,0).③当MA=MC时,勾股定理可求得M点坐标为8 0,3⎛⎫-⎪⎝⎭,对应N点坐标为10 2,3⎛⎫--⎪⎝⎭.综上,N点坐标为(2,--、(-、(2,0)、102,3⎛⎫--⎪⎝⎭.如下图依次从左到右.【两定两动:对称轴+平面】(2019·辽阳中考)如图,在平面直角坐标系中,Rt △ABC 的边BC 在x 轴上,∠ABC =90°,以A 为顶点的抛物线2y x bx c =-++经过点C (3,0),交y 轴于点E (0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,说明理由.【分析】(1)抛物线:223y x x =-++;(2)先考虑P 点位置,由P 、E 、C 三点构成的三角形是等腰三角形.①当EC =EP 时,由EC =,得EP =P 在对称轴x =1上, 勾股定理解得P点坐标为(、(1,3(舍), 根据点的平移推得M点坐标为(. ②当CE =CP 时,即CP =CE=P点坐标为(、(1,(舍), 根据点的平移推得M点坐标为(2,3-. ③当PE =PC 时, 设P 点坐标为(1,m ),解得:m =1,故P 点坐标为(1,1), 对应的点M 坐标为(2,2).综上所述,M 点坐标为(、(2,3-、(2,2).【两定两动:斜线+平面】 (2018·齐齐哈尔)综合与探究如图1所示,直线y =x +c 与x 轴交于点A (-4,0),与y 轴交于点C ,抛物线2y x bx c =-++经过点A ,C .(1)求抛物线的解析式(2)如图2所示,M 是线段OA 的上一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P 、N .若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.图2【分析】(1)抛物线解析式:234y x x =--+; (2)设M 点坐标为(m ,0)(-4<m <0),则N 点坐标为()2,34m m m --+,P 点坐标为(m ,m +4), 若P 是MN 中点,则()23424m m m --+=+, 解得:11m =-,24m =-(舍) 故P (-1,3)、M (-1,0)考虑到F 点在直线AC 上,故可先确定F 点位置,再求得D 点坐标.当PM =PF 时,PF =3,可得11F ⎛-+ ⎝⎭、21F ⎛-- ⎝⎭, 对应D点坐标分别为11D ⎛-+ ⎝⎭、21D ⎛- ⎝⎭. 当MP =MF 时,MP =MF ,可得()34,0F -,对应D 点坐标为()34,3D -. 当FP =FM 时,FP =FM ,F 点在PM 垂直平分线上,可得453,22F ⎛⎫- ⎪⎝⎭,对应D 点坐标为413,22D ⎛⎫⎪⎝⎭.综上所述,D点坐标有11D ⎛-+ ⎝⎭、21D ⎛-- ⎝⎭、()34,3D -、413,22D ⎛⎫⎪⎝⎭.【两定两动:斜线+抛物线】(2018•衡阳)如图,已知直线24y x =-+分别交x 轴、y 轴于点A 、B ,抛物线过A 、B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D . (1)若抛物线的解析式为2224y x x =-++,设其顶点为M ,其对称轴交AB 于点N .①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由.【分析】(1)①M 点坐标为19,22⎛⎫ ⎪⎝⎭,N 点坐标为1,32⎛⎫⎪⎝⎭.②由题意可知MN ∥PD ,故四边形MNPD 若是菱形,首先MN =PD 考虑到M 、N 是定点,可先求得32MN =, 设(),24P m m -+,则()2,224D m m m -++, ()222242424PD m m m m m =-++--+=-+,令32PD =,即23242m m -+=, 解得:112m =,232m =. 故P 点坐标为3,12⎛⎫ ⎪⎝⎭,D 点坐标为35,22⎛⎫⎪⎝⎭.但此时仅仅满足四边形MNPD 是平行四边形,本题要求的是菱形,故还需加邻边相等. 但此时P 、D 已定,因此接下来要做的只是验证邻边是否相等.由两点间距离公式得:32PN ==≠,PN ≠MN ,故不存在点P 使四边形MNPD 是菱形.【小结】为什么此题会不存在,表面上看是不满足邻边相等,究其原因,是因为M 、N 是定点,P 、D 虽为动点但仅仅是半动点,且P 、D 横坐标相同,故本题只需一个字母便可表示出4个点的坐标,对于菱形四个点满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=若只有1个未知数或2个未知数,便出现方程个数>未知量个数的情况,就有可能会无解. 方程个数<未知数个量,可能无法确定有限组解; 方程个数>未知数个量,可能会无解.特殊图形的存在性,其动点是在线上还是在平面上,是有1个动点还是有2个动点,都是由其图形本身决定,矩形和菱形相比起平行四边形,均多一个等式,故对动点位置的要求可以有3个半动点或者1个全动点+1个半动点,若减少未知量的个数,反而可能会产生无解的情况.不难想象,对于正方形来说,可以有4个未知量,比如在坐标系中已知两定点,若要作正方形,只能在平面中再取另外两动点,即2个全动点,当然,也有可能是1全动+2半动,甚至是4个半动点.练习:如图,抛物线2y x bx c=++与x轴相交于A、B两点,与y轴相交于点C,已知抛物线的对称轴所在的直线是94x=,点B的坐标为(4,0).(1)求抛物线解析式;(2)若M为x轴上一动点,在抛物线上是否存在点N,使得点B、C、M、N构成的四边形是菱形,若存在,求出点N坐标,若不存在,请说明理由.【分析】(1)抛物线:2922y x x =-+;(2)本题是“两定两动”,但两个动点一个在x 轴上,一个在抛物线上,均为半动点,故只需两个字母即可表示,未知量个数少于方程个数,结果可能会无解.设M 点坐标为(m ,0),N 点坐标为29,22n n n ⎛⎫-+ ⎪⎝⎭,又B (4,0)、C (0,2).当CB 为对角线时,取对角线互相平分及MB =MC ,可得: ()()()()2222240902022400002m nn n m m ⎧+=+⎪⎪+=+-+⎨⎪⎪-+-=-+-⎩方程组无解,故这种情况不存在;当CM 为对角线时,取对角线互相平分及BC =BM ,可得: ()()()()22222049022024002400m n n n m ⎧+=+⎪⎪+=-++⎨⎪⎪-+-=-+-⎩方程组依然无解;这种情况也不存在;当CN 为对角线时,取对角线互相平分及CB =CM ,可得: ()()()()22222049220020420020n m n n m ⎧+=+⎪⎪+-+=+⎨⎪⎪-+-=-+-⎩方程组还是无解.综上,不存在这样的M 、N .【小结】问题本身源于对动点位置的选取导致点坐标中未知量的个数与方程个数不一致,以致出现不存在的情况.【一定三动】讲真在翻了一些中考题,并没有看到类似的题型,举些数据编一个吧:如图,抛物线过A (-1,0)、B (3,0)、C (0,3),点C 关于抛物线对称轴的对称点为D 点,连接AD .点P 在抛物线上,点M 在直线AD 上,点N 在抛物线对称轴上,四边形OPMN 能否为菱形,若能,求出P 点坐标,若不能,说明理由.【分析】抛物线解析式为:223y x x =-++,直线AD 解析式为y =x -1.设P 点坐标为()2,23p p p -++,M 点坐标为(),1m m -,N 点坐标为()1,n , 考虑到在四边形OPMN 中,OM 为对角线,可得: ()()()()222220+1012310011m p m p p nn m n m ⎧=+⎪⎪+-=-+++⎨⎪-+-=-+-+⎪⎩显然这个计算很麻烦,经化简可得点P 满足32610p p --=,剩下的就不解了呵呵呵. 可能是数据不太凑巧,但显然,这样的问题并不像“两定两动”问题那样普遍易解,方法其实是同样的方法,因为就题目构造而言,其实“3个半动点”与“1全动+1半动”并无本质区别.了解题目的构造,当再去看一些题目的时候,是否一目了然?。

2020年中考数学压轴解答题08 二次函数与菱形存在型问题 (学生版)

2020年中考数学压轴解答题08 二次函数与菱形存在型问题 (学生版)

备战2020中考数学之解密压轴解答题命题规律 专题08 二次函数与菱形存在型问题【典例分析】【例1】如图,已知抛物线23)0(y a bx a =++≠经过点()1,0A 和点()3,0B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长;②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标;(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【例2】如图,在平面直角坐标系内,抛物线2y x 2x 3=-++与x 轴交于点A,C (点A 在点C 的左侧),与y 轴交于点B,顶点为D .点Q 为线段BC 的三等分点(靠近点C ).(1)点M 为抛物线对称轴上一点,点E 为对称轴右侧抛物线上的点且位于第一象限,当MQC △的周长最小时,求CME △面积的最大值;(2)在(1)的条件下,当CME △的面积最大时,过点E 作EN x ⊥轴,垂足为N,将线段CN 绕点C 顺时针旋转90°得到点N,再将点N 向上平移16个单位长度.得到点P,点G 在抛物线的对称轴上,请问在平面直角坐标系内是否存在一点H,使点D,P,G ,H 构成菱形.若存在,请直接写出点H 的坐标,若不存在,请说明理由.【例3】如图,直线4y x =-+交x 轴于点A ,交y 轴于点C ,抛物线212y x bx c =++经过点A ,交y 轴于点()0,2B -.点D 为抛物线上一动点,过点D 作x 轴的垂线,交直线AC 于点P ,设点D 的横坐标为m .(1)求抛物线的解析式;(2)当点D 在直线AC 下方的抛物线上运动时,求线段PD 长度的最大值;(3)若点E 是平面内任意一点,是否存在点D ,使以B ,C ,P ,E 为顶点的四边形为菱形?若存在,请直接出m 的值;若不存在,请说明理由.【例4】如图,在平面直角坐标系中,抛物线y 23233x 轴交于A,B 两点,与y 轴交于点C,点D 为抛物线的顶点,抛物线的对称轴与直线AC 交于点E .(1)若点P 为直线AC 上方抛物线上的动点,连接PC,PE,当△PCE 的面积S △PCE 最大时,点P 关于抛物线对称轴的对称点为点Q,此时点T 从点Q 开始出发,沿适当的路径运动至y 轴上的点F 处,再沿适当的路径运动至x 轴上的点G 处,最后沿适当的路径运动至直线AC 上的点H 处,求满足条件的点P 的坐标及QF+FG+33AH的最小值.(2)将△BOC绕点B顺时针旋转120°,边BO所在直线与直线AC交于点M,将抛物线沿射线CA方向平移233个单位后,顶点D的对应点为D′,点R在y轴上,点N在坐标平面内,当以点D′,R,M,N为顶点的四边形是菱形时,请直接写出N点坐标.【例5】二次函数y=﹣54x2+bx+c的图象与直线y=﹣12x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为C(﹣3,0).(1)填空:b=_____,c=_____.(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【例6】如图1,在平面直角坐标系中,抛物线y=﹣12x2﹣72x﹣3交x轴于A,B两点(点A在点B的左侧),交y轴于点C(1)求直线AC的解析式;(2)点P是直线AC上方抛物线上的一动点(不与点A,点C重合),过点P作PD⊥x轴交AC于点D,求PD的最大值;(3)将△BOC沿直线BC平移,点B平移后的对应点为点B′,点O平移后的对应点为点O′,点C平移后的对应点为点C′,点S是坐标平面内一点,若以A,C,O′,S为顶点的四边形是菱形,求出所有符合条件的点S的坐标.【变式训练】1.如图,直线y=12x+2与y轴交于点A,与直线y=﹣12x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(x﹣h)2+k的顶点在直线y=﹣12x上移动.若抛物线与菱形的边AB、BC都有公共点,则h的取值范围是()A.﹣2≤h≤12B.﹣2≤h≤1C.﹣1≤h≤32D.﹣1≤h≤122.如图,在平面直角坐标系xOy中,抛物线C1:y1=12(x+3)2﹣92,将抛物线C1 向右平移3个单位、再向上平移4.5个单位得抛物线C2,则图中阴影部分的面积为________.3.如图,在平面直角坐标系中,菱形OABC 的顶点 A 在 x 轴正半轴上,顶点 C 的坐标为(4,3),D 是抛物线 y =﹣x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为__________4.如图,在平面直角坐标系中,菱形ABCD 的顶点A 的坐标为(3,0),顶点B 在y 轴正半轴上,顶点D 在x 轴负半轴上.若抛物线y=-x 2-5x+c 经过点B 、C,则菱形ABCD 的面积为_______.5.二次函数y =23x 2的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在函数图象上,四边形OBAC 为菱形,且∠OBA =120°,则点C 的坐标为______.6.如图,菱形OABC 的顶点O 、A 、C 在抛物线213y x 上,其中点O 为坐标原点,对角线OB 在y 轴上,且OB =2.则菱形OABC 的面积是_______.7.如图,已知二次函数y=ax 2+2x+c 的图象经过点C (0,3),与x 轴分别交于点A,点B (3,0).点P 是直线BC 上方的抛物线上一动点.(1)求二次函数y=ax 2+2x+c 的表达式;(2)连接PO,PC,并把△POC 沿y 轴翻折,得到四边形POP′C .若四边形POP′C 为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积.8.如图1,抛物线1C :22y ax bx =+-与直线l :1122y x =--交于x 轴上的一点A ,和另一点()3,B n()1求抛物线1C 的解析式;()2点P 是抛物线1C 上的一个动点(点P 在A ,B 两点之间,但不包括A ,B 两点)PM AB ⊥于点M ,//PN y 轴交AB 于点N ,求MN 的最大值;()3如图2,将抛物线1C 绕顶点旋转180︒后,再作适当平移得到抛物线2C ,已知抛物线2C 的顶点E 在第一象限的抛物线1C 上,且抛持线2C 与抛物线1C 交于点D ,过点D 作//DF x 轴交抛物线2C 于点F ,过点E 作//EG x 轴交抛物线1C 于点G ,是否存在这样的抛物线2C ,使得四边形DFEG 为菱形?若存在,请求E 点的横坐标;若不存在,请说明理由.9.如图,在平面直角坐标系中,抛物线y =﹣235333x x ++与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C .(1)求出△ABC 的周长.(2)在直线BC 上方有一点Q ,连接QC 、QB ,当△QBC 面积最大时,一动点P 从Q 出发,沿适当路径到达y 轴上的M 点,再沿与对称轴垂直的方向到达对称轴上的N 点,连接BN ,求QM +MN +BN 的最小值.(3)在直线BC 上找点G ,K 是平面内一点,在平面内是否存在点G ,使以O 、C 、G 、K 为顶点的四边形是菱形?若存在,求出K 的坐标;若不存在,请说明理由.10.定义:对于抛物线y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),若b 2=ac ,则称该抛物线为黄金抛物线.例如:y =x 2﹣x +1是黄金抛物线(1)请再写出一个与上例不同的黄金抛物线的解析式; (2)将黄金抛物线y =x 2﹣x +1沿对称轴向下平移3个单位 ①直接写出平移后的新抛物线的解析式;②新抛物线如图所示,与x 轴交于A 、B (A 在B 的左侧),与y 轴交于C ,点P 是直线BC 下方的抛物线上一动点,连结PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.③当直线BC 下方的抛物线上动点P 运动到什么位置时,四边形 OBPC 的面积最大并求出此时P 点的坐标和四边形OBPC 的最大面积.11.如图,抛物线与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C (3,0).(1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N . 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由12.如图,已知抛物线2y x bx c =++与x 轴交于点A,B,AB=2,与y 轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为.13.如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣1,0)、B(4,0)两点,与y轴交于点C,且OC=3OA.点P是抛物线上的一个动点,过点P作PE⊥x轴于点E,交直线BC于点D,连接PC.(1)求抛物线的解析式;(2)如图2,当动点P只在第一象限的抛物线上运动时,求过点P作PF⊥BC于点F,试问△PDF的周长是否有最大值?如果有,请求出其最大值,如果没有,请说明理由.(3)当点P在抛物线上运动时,将△CPD沿直线CP翻折,点D的对应点为点Q,试问,四边形CDPQ是否成为菱形?如果能,请求出此时点P的坐标,如果不能,请说明理由.14.如图,二次函数y=﹣16x2+32x+6与x轴相交A,B两点,与y轴相交于点C.(1)若点E为线段BC上一动点,过点E作x轴的垂线与抛物线交于点P,垂足为F,当PE﹣2EF取得最大值时,在抛物线y的对称轴上找点M,在x轴上找点N,使得PM+MN+22NB的和最小,若存在,求出该最小值及点N的坐标;若不存在,请说明理由.(2)在(1)的条件下,若点P′为点P关于x轴的对称点,将抛物线y沿射线BP′的方向平移得到新的抛物线y′,当y′经过点A时停止平移,将△BCN沿CN边翻折,点B的对应点为点B′,B′C与x轴交于点K,若抛物线y′的对称轴上有点R,在平画内有点S,是否存在点R、S使得以K、B′、R、S为顶点的四边形是菱形,若存在,直接写出点S的坐标;若不存在,请说明理由.15.在平面直角坐标系中,抛物线y =﹣23984x x+6与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)如图1,点P 为直线BC 上方抛物线上一动点,过点P 作PH ∥y 轴,交直线BC 于点H,过点P 作PQ ⊥BC于点Q,当PQ ﹣12PH 最大时,点C 关于x 轴的对称点为点D,点M 为直线BC 上一动点,点N 为y 轴上一动点,连接PM 、MN,求PM+MN+45ND 的最小值;(2)如图2,连接AC,将△OAC 绕着点O 顺时针旋转,记旋转过程中的△OAC 为△OA'C',点A 的对应点为点A',点C 的对应点为点C'.当点A'刚好落在线段AC 上时,将△OA'C'沿着直线BC 平移,在平移过程中,直线OC'与抛物线对称轴交于点E,与x 轴交于点F,设点R 是平面内任意一点,是否存在点R,使得以B 、E 、F 、R 为顶点的四边形是菱形?若存在,请直接写出点R 的坐标;若不存在,请说明理由.16.已知菱形OABC 的边长为5,且tan ∠AOC =43,点E 是线段BC 的中点,过点A 、E 的抛物线y =ax 2+bx +c 与边AB 交于点D .压轴解答题·直面高考精品资源·战胜高考(1)求点A 和点E 的坐标;(2)连结DE ,将△BDE 沿着DE 翻折.①当点B 的对应点B '恰好落在线段AC 上时,求点D 的坐标;②连接OB 、BB ',请直接写出此时该抛物线二次项系数a =.17.如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点A (-3,4)、B (-3,0)、C (-1,0) .以D 为顶点的抛物线y = ax 2+bx +c 过点B . 动点P 从点D 出发,沿DC 边向点C 运动,同时动点Q 从点B 出发,沿BA 边向点A 运动,点P 、Q 运动的速度均为每秒1个单位,运动的时间为t 秒. 过点P 作PE ⊥CD 交BD 于点E ,过点E 作EF ⊥AD 于点F ,交抛物线于点G .(1)求抛物线的解析式;(2)当t 为何值时,四边形BDGQ 的面积最大?最大值为多少?(3)动点P 、Q 运动过程中,在矩形ABCD 内(包括其边界)是否存在点H ,使以B ,Q ,E ,H 为顶点的四边形是菱形,若存在,请直接写出此时菱形的周长;若不存在,请说明理由.。

专题 二次函数压轴训练题(四)---菱形、正方形存在性问题(解析版)

专题   二次函数压轴训练题(四)---菱形、正方形存在性问题(解析版)

(苏科版)九年级下册数学《第5章二次函数》专题二次函数压轴训练题(四)------菱形、正方形存在性问题★★★方法指引:◎菱形的存在性问题(常为含60”角的菱形)通常有两大类:1、已知三人定点探究菱形时,分别以三个定点中的任意两人定点确定线段为要探究的券形的对角线画出所有菱形,结合题干要求找出满足条件的菱形:2、已知两个定点去探究菱形时,以两个定点连线所成的线段作为要探究菱形的对角线或边长画出符合题意的菱形,结合题干要求找出满足条件的菱形:3、计算:建立类似平行四边形的存在性问题来解◎正方形存在性问题正方形是菱形和矩形特征的集结,因此同时采取菱形或矩形存在性问题解决的方法去求点的坐标.【典例1】(2022春•盱眙县期中)如图,在平面直角坐标系中,抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0),与y 轴交于点C ,作直线BC ,点P 是抛物线在第四象限上一个动点(点P 不与点B ,C 重合),连结PB ,PC ,以PB ,PC 为边作▱CPBD ,点P 的横坐标为m .(1)求抛物线对应的函数表达式;(2)当▱CPBD 有两个顶点在x 轴上时,点P 的坐标为 ;(3)当▱CPBD 是菱形时,求m 的值.【分析】(1)利用交点式求抛物线的解析式;(2)先确定点D 在x 轴上,再利用平行四边形的性质可判断PC ∥x 轴,然后根据抛物线的对称性确定点P 的坐标;(3)根据菱形的性质得PB =PC ,利用勾股定理即可求解.【解答】解:(1)∵抛物线y =x 2+bx +c 与x 轴交于点A (﹣1,0),B (3,0),∴抛物线的解析式为y =(x +1)(x ﹣3),即y =x 2﹣2x ﹣3;(2)∵抛物线的解析式为y =x 2﹣2x ﹣3,令x =0,则y =﹣3,∴C (0,﹣3),∵▱CPBD 有两个顶点在x 轴上,∴点D 在x 轴上,而BD ∥PC ,∴点P 和点C 为抛物线上的对称点,而抛物线的对称轴为直线x =−−22×1=1,∴点P 的坐标为(2,﹣3),故答案为:(2,﹣3);(3)∵抛物线的解析式为y =x 2﹣2x ﹣3,点P 的横坐标为m .∴P (m ,m 2﹣2m ﹣3),∵▱CPBD 是菱形,∴PB =PC ,∴m 2+(m 2﹣2m ﹣3+3)2=(3﹣m )2+(m 2﹣2m ﹣3)2,整理得m 2﹣m ﹣3=0,解得m =∵点P 是抛物线在第四象限上一个动点,∴m >0,∴m 【点评】本题是二次函数的综合题,考查了二次函数图象上点的坐标特征,二次函数的性质和平行四边形的性质,勾股定理,菱形的性质,会利用待定系数法求二次函数的解析式、理解坐标与图形的性质是解题的关键.【变式1-1】如图,已知抛物线y =x 2﹣2x ﹣3与x 轴交于A ,D 两点,与y 轴交于点C ,点B 为抛物线的顶点.(1)求抛物线的对称轴及点B 的坐标;(2)若抛物线上存在一点E ,使得S △EAB =S △CAD ,求点E 的坐标;(3)若平面直角坐标系内存在动点P ,抛物线上是否存在点Q ,使得以A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请求出点Q 的坐标;若不存在,请说明理由.【分析】(1)把抛物线y =x 2﹣2x ﹣3化为顶点式求解即可;(2)由题意知,△EAD 与△CAD 有公共底AD ,若想使两三角形面积相等,则高相等即可,设出点E 的坐标,由高相等,列方程求解即可;(3)根据AC 为菱形的对角线,由菱形对角线互相垂直且平分的性质,可知菱形对角线过点O ,可求出菱形另一条对角线所在的直线解析式,将其与抛物线解析式联立求解即可.【解答】解:(1)∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴抛物线的对称轴为直线x =1,点B 的坐标(1,﹣4);(2)如图,设E (x ,x 2﹣2x ﹣3),∵点C 为抛物线与y 轴的交点,∴C (0,﹣3),∵△EAD 与△CAD 有共同的底边AD ,且S △EAB =S △CAD ,∴点E 到x 轴的距离等于点C 到x 轴的距离,∴|x 2﹣2x ﹣3|=3,∴x 2﹣2x ﹣3=3或x 2﹣2x ﹣3=﹣3,解得x 1=2,x 2=0,x 3=1,x 4=+1,∴E 1(2,﹣3),E 2(0,﹣3),E 3+1,3),E 4(1,3),∴点E 的坐标为(2,﹣3)或(0,﹣3+1,3)或(1,3);(3)存在,理由:如图,∵四边形是以AC 为对角线的菱形,由菱形对角线互相垂直平分的性质,作AC 的垂直平分线交抛物线于点Q 1,Q 2,令x 2﹣2x ﹣3=0,解得:x 1=﹣1,x 2=3,∴A (3,0),∴OA =OC =3,∴AC 的垂直平分线过点O ,设AC 的中点为点F ,由C (0,﹣3),∴032=32,−302=−32,∴F (32,−32),∴直线Q 1Q 2的解析式为y =﹣x ,联立y =x 2−2x−3y =−x,解得:x =y =−x =y =,∴点Q【点评】本题考查了二次函数的性质,一次函数的性质,三角形的面积及菱形的判定与性质,正确作出辅助线是解题的关键.【变式1-2】(2022秋•代县月考)如图,抛物线y =12x 2−32x ﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,对称轴为直线l .(1)求点A ,B ,C 的坐标;(2)试探究抛物线上是否存在点E ,使OE =EC ,若存在,请求出点E 的坐标;若不存在,请说明理由;(3)设点F 在直线l 上运动,点G 在平面内运动,若以点B ,C ,F ,G 为顶点的四边形是菱形,且BC 为边,直接写出点F 的坐标.【分析】(1)令y =0,解方程即可求得点A 和点B 的坐标;令x =0,求得y 值,即可求得点C 的坐标;(2)由OE =EC 可得点E 在OC 的垂直平分线上,则点E 的纵坐标为﹣1,将y =﹣1代入抛物线y =12x 2−32x ﹣2,求出x 的值,即可求解;(3)分两种情况:①当BC 为边,BF 为对角线时;②当BC 为边,BF 为对角线时,根据菱形的性质即可求解.【解答】解:(1)当y =12x 2−32x ﹣2=0时,解得:x 1=﹣1,x 2=4,∴A (﹣1,0),B (4,0);当x =0时,y =12x 2−32x ﹣2=﹣2,∴C (0,﹣2);(2)∵OE =EC ,∴点E 在OC 的垂直平分线上,∵C (0,﹣2),∴点E 的纵坐标为﹣1,将y =﹣1代入抛物线y =12x 2−32x ﹣2得,12x 2−32x ﹣2=﹣1,解得x =∴点E 11);(3)∵y =12x 2−32x ﹣2与x 轴交于A (﹣1,0),B (4,0),∴y =12x 2−32x ﹣2的对称轴为直线x =−142=32,设点F 的坐标的坐标为(32,m ),①当BC 为边,BF 为对角线时,BC =CF ,∴BC 2=CF 2,∴42+22=(32)2+(m +2)2,解得m ,∴点F 的坐标为(32,2)或(32,2);②当BC 为边,CF 为对角线时,BC =BF ,∴BC 2=BF 2,∴42+22=(4−32)2+m 2,解得m∴点F 的坐标为(32,)或(32,综上所述,点F 的坐标为(32,2)或(32,2)或(32,)或(32,【点评】本题是二次函数综合题,考查了待定系数法求一次函数的解析式、二次函数与坐标轴的交点、线段垂直平分线的性质,勾股定理,菱形的性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.【变式1-3】(2022•抚顺县二模)如图,抛物线y =ax 2+bx +6(a ≠0)与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式;(2)若在线段BC 上存在一点M ,使得∠BMO =45°,过点O 作OH ⊥OM 交BC 的延长线于点H ,求点M 的坐标;(3)点P 是y 轴上一动点,点Q 是在对称轴上一动点,是否存在点P ,Q ,使得以点P ,Q ,C ,D 为顶点的四边形是菱形?若存在,求出点Q 的坐标;若不存在,请说明理由.【分析】(1)把点A(﹣1,0),B(3,0)代入抛物线解析式得a−b+6=09a+3b+6=0,解得a=−2b=4,即可得出结论;(2)由待定系数法得直线BC的解析式为y=﹣2x+6,设点M的坐标为(m,﹣2m+6)(0<m<3),过点M作MN⊥y轴于点N,过点H作HK⊥y轴于点K,证△OMN≌△HOK(AAS),得MN=OK,ON =HK.则H(﹣2m+6,﹣m),再由点H(﹣2m+6,﹣m)在直线y=﹣2x+6上,得﹣2(﹣2m+6)+6=﹣m,解得m=65,即可解决问题;(3)分两种情况讨论,①当CD为菱形的边时,②当CD为菱形的对角线时,分别求出点Q的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+6经过点A(﹣1,0),B(3,0)两点,∴a−b+6=09a+3b+6=0,解得:a=−2 b=4,∴抛物线的解析式为y=﹣2x2+4x+6;(2)由(1)得,点C(0,6),设直线BC的解析式为y=kx+c,∵直线BC经过点B(3,0),C(0,6),∴3k+c=0 c=6,解得:k=−2 c=6∴直线BC的解析式为y=﹣2x+6,设点M的坐标为(m,﹣2m+6)(0<m<3),如图1,过点M作MN⊥y轴于点N,过点H作HK⊥y轴于点K,则∠MNO=∠OKH=90°,∵OH⊥OM,∴∠MOH=90°,∵∠OMB=45°,∴△MOH是等腰直角三角形,∴OM=OH.∵∠MON+∠KOH=90°,∠OHK+∠KOH=90°,∴∠MON=∠OHK,∴△OMN≌△HOK(AAS),∴MN=OK,ON=HK.∴H(﹣2m+6,﹣m),∵点H(﹣2m+6,﹣m)在直线y=﹣2x+6上,∴﹣2(﹣2m+6)+6=﹣m,解得:m=6 5,把m=65代入y=﹣2x+6得:y=185,∴当∠OMB=45°时,点M的坐标为(65,185);(3)存在,理由如下:∵抛物线的解析式为y=﹣2x2+4x+6=﹣2(x﹣1)2+8,顶点为D,∴点D的坐标为(1,8),分两种情况讨论:①当CD为菱形的边时,如图2,过C作CE⊥DQ于E∵C(0,6),D(1,8),∴CD=∴DQ=CD=∴Q点的坐标为(1,81,8②当CD为菱形的对角线时,如图3,设点Q(1,m),P(0,n),∵C(0,6),D(1,8),∴m+n=6+8=14,∴n=14﹣m,∴P(0,14﹣m),∴PC=14﹣m﹣6=8﹣m,∵CQ PC=CQ,∴8﹣m解得:m=27 4,∴点Q的坐标为(1,274);综上所述,点Q的坐标为(1,81,8+1,274).【点评】本题是二次函数综合题目,考查了待定系数法求抛物线和直线的解析式、坐标与图形性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、菱形的性质、两点间的距离、二次函数的图象、一次函数的性质等知识,本题综合性强,熟练掌握待定系数法菱形的性质,证明三角形全等和进行分类讨论是解题的关键,属于中考常考题型.【变式1-4】已知,如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4.(1)求经过A、B、C三点的抛物线的解析式及顶点坐标;(2)在抛物线上是否存在一点P,使△ACP的面积等于△ACB的面积?若存在,请求出点P的坐标;若不存在,请说明理由;(3)在平面直角坐标系xOy中是否存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形?若存在,请求出点Q的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式,根据配方法,可得答案;(2)根据等底等高的三角形面积相等,可得P点的纵坐标,根据自变量与函数值的对应关系,可得答案;(3)根据菱形的四边相等,可得QB的长,根据菱形的对边平行,可得Q点的纵坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵OA=1,OB=3,OC=4.∴A(1,0)、B(0,3)、C(﹣4,0),将A,B,C代入函数解析式,得∴a+b+c=0c=316a−4b+c=0解得:a=−34,b=−94,c=3,∴经过A、B、C三点的抛物线的解析式为y=−34x2−94x+3;∵y=−34x2−94x+3=−34(x+32)2+7516∴抛物线的顶点坐标是(−32,7516),(2)在抛物线上存在一点P,使△ACP的面积等于△ACB的面积,理由为:设点P的坐标为P(m,n),∵S△ACB =12×5×3=152,S△ACP=12×5×|n|∴12×5×|n|=152,n=±3∴当n=3时,−34m2−94m+3=3,解得m1=0,x2=﹣3即P(﹣3,3)或(0,3)当n=﹣3时,−34m2−94m+3=﹣3,解得m1m2=P23),P33)综上所述:P的坐标为(﹣3,3)或(0,333)(3)在平面直角坐标系xOy中存在一点Q,使得以点A、B、C、Q为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BQ平行且等于AC时,四边形ACBP为菱形,∴BQ=AC=BC=5,∵BQ∥AC,∴点Q到x轴的距离等于OB=3,∴点Q的坐标为(5,3),当点Q在第二、三象限时,以点A、B、C、Q为顶点的四边形只能是平行四边形,不是菱形,则当点Q的坐标为(5,3)时,以点A、B、C、Q为顶点的四边形为菱形.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用等底等高的三角形面积相等得出P点的纵坐标,有利用自变量与函数值的对应关系;解(3)的关键是利用菱形的四边相等得出QB的长.【变式1-5】(2023•鹤山市模拟)如图,抛物线y=ax2+bx+c与x轴交于A,B(﹣1,0)两点,与y轴交于点C,直线AC的解析式为y=23x﹣2.(1)求抛物线的解析式;(2)已知k为正数,当0<x≤1+k时,y的最大值和最小值分别为m,n,且m+n=163,求k的值;(3)点P是平面内任意一点,在抛物线对称轴上是否存在点Q,使得以点A,C,P,Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)求出点A 和点C 坐标,从点A 和点B 坐标将抛物线的解析式设为交点式,将点C 坐标代入,进一步求得结果;(2)箱求出n 的值,进而求得m 的值,进而求得点k 的值;(3)只需满足三角形ACQ 为等腰三角形即可.设点Q 的坐标,进而表示出AQ ,CQ 及AC ,进而根据AQ =CQ ,AQ =AC 及CQ =AC ,进一步求得结果.【解答】解:(1)当x =0时,y =﹣2,∴点C (0,﹣2),当y =0时,23x−2=0,∴x =3,∴点A (3,0),∴设y =a (x +1)•(x ﹣3),将点C (0,﹣2)代入得,﹣3a =﹣2,∴a =23,∴y =23(x +1)•(x ﹣3)=23x 2−43x−2;(2)∵抛物线的对称轴为直线:x =1,∵k >0,∴k +1>1,∴当0<x <1+k 时,∴当x =1时,n =23(1+1)×(1﹣3)=−83,∵m +n =163,∴m =8,当m =8时,23x 2−43x ﹣2=8,∴x 1=5,x 2=﹣3(舍去),∴1+k =5,∴k =4;(3)设点Q (1,a ),∵A (3,0),C (0,﹣2),∴AQ 2=(3﹣1)2+a 2=a 2+4,AC 2=32+22=13,CQ 2=1+(a +2)2=a 2+4a +5,①当AQ =AC 时,a 2+4=13,∴a =±3,∴Q 1(1,3),Q 2(1,﹣3),当AQ =CQ 时,a 2+4a +5=a 2+4,∴a =−14,∴Q 3(1,−14),当AC =CQ 时,a 2+4a +5=13,∴a =﹣2±∴Q 4(1,﹣Q 5(1,﹣2﹣综上所述:Q (1,3)或(1.﹣3)或(1.−14)或(1,﹣1,﹣2﹣【点评】本题考查了二次函数及其图象性质,等腰三角形的判定和性质,点的坐标平移特征等知识,解决问题的关键是正确分类,准确计算.【变式1-6】(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,﹣3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.【分析】(1)将A,C两点坐标代入抛物线的解析式求得a,c的值,进而得出解析式,当y=0时,求出方程的解,进而求得B点坐标;(2)由B,C两点求出BC的解析式,进而设出点P和点Q坐标,表示出PQ的长,进一步得出结果;(3)要使以点P,M,B,N为顶点的四边形是菱形,只需△PMB是等腰三角形,所以分为PM=BM,PM=PB和BP=BM,结合图象,进一步得出结果.【解答】解:(1)由题意得,c=−3a+2×1+c=0,∴c=−3 a=1,∴y=x2+2x﹣3,当y=0时,x2+2x﹣3=0,∴x1=1,x2=﹣3,∴B(﹣3,0);(2)设直线BC的解析式为:y=kx+b,∴b=−3−3k+b=0,∴k=−1 b=−3,∴y=﹣x﹣3,设点P(m,﹣m﹣3),Q(m,m2+2m﹣3),∴PQ=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+32)2+94,∴当m=−32时,PQ最大=94;(3)如图1,∵B(﹣3,0),C(0,﹣3),∴OB=OC=3,∴∠OCB=∠OBC=45°,作PD⊥y轴于D,∴CD=PD==t,当BM=PM时,∴∠MPB=∠OBC=45°,∵∠PMO=∠PDO=∠MOD=90°,∴四边形OMPD是矩形,∴OM=PD=t,由BM+OM=OB得,∴2t=3,∴t=3 2,∴P(−32,−32),∴N(﹣3,−32),如图2,当PM =PB 时,作PD ⊥y 轴于D ,作PE ⊥x 轴于E ,∴BM =2BE ,可得四边形PDOE 是矩形,∴OE =PD =t ,∴BE =3﹣t ,∴t =2(3﹣t ),∴t =2,∴P (﹣2,﹣1),∴N (﹣2,1),如图3,当PB =MB 时,=t ,∴t =6﹣∴P (,3﹣∴N (0,3﹣综上所述:N (﹣3,−32)或(﹣2,1)或(0,3﹣【点评】本题考查了二次函数及其图象的性质,用待定系数法求一次函数的解析式,等腰三角形的分类和等腰三角形的性质,菱形的性质等知识,解决问题的关键是正确分类,画出符合条件的图形.【变式1-7】如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于A、C两点,与y轴交于点B,且OA=1,OC=4.(1)求抛物线解析式;(2)在该抛物线上是否存在一点P,使得以点A、B、C、P为顶点的四边形为菱形?若存在,请求出P 点坐标;若不存在,请说明理由;(3)已知点Q(5,3)和该抛物线上一动点M,试求当|QM﹣AM|的值最大时点M的坐标,并直接写出|QM﹣AM|的最大值.【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;(3)利用待定系数法确定出直线QA解析式,当点M与点Q、A不在同一直线上时,根据三角形的三边关系|QM﹣AM|<QA,当点M与点Q、A在同一直线上时,|QM﹣AM|=QA,当点M与点Q、A在同一直线上时,|QM﹣AM|的值最大,即点M为直线QA与抛物线的交点,联立直线QP与抛物线解析式,求出当|QM﹣AM|的最大值时M坐标,确定出|QM﹣AM|的最大值即可.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴a+b+c=0c=316a−4b+c=0,解得:a=−34,b=−94,c=3,∴经过A、B、C三点的抛物线的解析式为y=−34x2−94x+3;(2)在该抛物线上是不存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到x轴的距离等于OB,∴点P的坐标为(5,3),∵(5,3)不在抛物线上;当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,在该抛物线上是不存在一点P,使得以点A、B、C、P为顶点的四边形为菱形;(3)如图,设直线QA的解析式为y=kx+b(k≠0),∵A(1,0),Q(5,3),∴5k+b=3 k+b=0,解得:k=34,b=−34,∴直线QA的解析式为y=34x−34,当点M与点Q、A不在同一直线上时,根据三角形的三边关系|QM﹣AM|<QA,当点M与点Q、A在同一直线上时,|QM﹣AM|=QA,∴当点M与点Q、A在同一直线上时,|QM﹣AM|的值最大,即点M为直线QA与抛物线的交点,解方程组y=34x−34y=−34x2−94x+3,得x1=1y1=0或x2=−5y2=−92,∴点M的坐标为(1,0)或(﹣5,−92)时,|QM﹣AM|的值最大,此时|QM﹣AM|的最大值为5.【点评】此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.【变式1-8】如图,已知抛物线y=16x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点C,已知点B坐标为(6,0),点C坐标为(0,﹣2).(1)求抛物线的解析式;(2)如图1,点P是直线BC下方抛物线上一点,连接PB,PC,求△PBC面积的最大值;(3)如图2,将抛物线向右平移6个单位,向上平移2个单位,得到新的抛物线y',新抛物线y'的顶点为D,是否在新抛物线y'的对称轴上存在点M,在坐标平面内存在点N,使得以B,D,M,N为顶点的四边形是菱形?若存在,请直接写出点N的坐标,若不存在,请说明理由.【分析】(1)将点A、B两点的坐标代入,进而求得结果;(2)作PE⊥AB于E,交BC于F,求BC的关系式,进而设和表示出点P和点F的坐标,求出PF的表达式,进而求得PF的最大值,进一步求得三角形PBC的最大值;(3)先求出点B、点D的坐标,求出BD的长,分为BD是边和对角线两种情形,当BD是边时,点M 可在D的上方和下方,利用平移或中点坐标公式求得结果.【解答】解:(1)由题意得,−2×62+6b+c=0,∴c =−2b =−23,∴y =16x 2−23x−2;(2)如图1,作PE ⊥AB 于E ,交BC 于F ,可得BC 的关系式是:y =13x−2,设点P (m ,16m 2−23m−2),F (m ,13m−2),∴PF =(13m−2)﹣(16m 2−23m−2)=−16m 2+m =−16(m ﹣3)2+32,∴当m =3时,PF 最大=32,∵S △PBC =12PF •(x B ﹣x C )=12×6⋅PF =3PF ,∴△PBC 的面积最大值是92;(3)∵原抛物线可化为y =16(x ﹣2)2−23,∴其顶点是(2,−23),∵2+6=8,−23+2=43,∴新抛物线的顶点是D ′(8,43),对称轴是直线x =8,∴BD 如图2,当BD为边时,点M在D的上方,∵M(8∴N(6如图3,点M在D点下方,N(6,如图4N(10,0),如图5,BD 为对角线时,设M (8,a ),由MB =MD 得,22+a 2=(43−a )2,∴a =−1518,∴M (8,−1518),∴N (6,8718),综上所述:N (66,8718)或(6,10,0).【点评】本题考查二次函数及其图象性质,菱形性质,菱形的分类(等腰三角形分类),平移与坐标之间的关系等知识,解决问题的关键是正确分类.【变式1-9】(2023•西藏)在平面直角坐标系中,抛物线y =﹣x 2+bx +c 与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)如图甲,在y 轴上找一点D ,使△ACD 为等腰三角形,请直接写出点D 的坐标;(3)如图乙,点P 为抛物线对称轴上一点,是否存在P 、Q 两点使以点A ,C ,P ,Q 为顶点的四边形是菱形?若存在,求出P 、Q 两点的坐标,若不存在,请说明理由.【分析】(1)将A(﹣3,0),B(1,0)代入y=﹣x2+bx+c,求出b、c,即可得出答案;(2)分别以点D为顶点、以点A为顶点、当以点C为顶点,计算即可;(3)抛物线y=﹣x2﹣2x+3的对称轴为x=﹣1,设P(﹣1,t),Q(m,n),求出AC2=18,AP2=t2+4,PC2=t2﹣6t+10,分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,【解答】解:(1)∵A(﹣3,0),B(1,0)两点在抛物线上,∴0=−(−3)2−3b+c 0=−12+b+c,解得:b=−2 c=3,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴C(0,3),等腰△ACD,如图甲,当以点D为顶点时,DA=DC,点D与原点O重合,∴D(0,0);当以点A为顶点时,AC=AD,AO是等腰△ACD中线,∴OC=OD,∴D(0,﹣3);当以点C为顶点时,AC=CD==∴点D的纵坐标为3﹣+3,∴D(0,3﹣0,+3);综上所述,点D的坐标为(0,0)或(0,﹣3)或(0,3﹣0,+3);(3)存在,理由如下:抛物线y=﹣x2﹣2x+3的对称轴为:x=﹣1,设P(﹣1,t),Q(m,n),∵A(﹣3,0),C(0,3),则AC2=(﹣3)2+32=18,AP2=(﹣1+3)2+t2=t2+4,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,∵四边形ACPQ是菱形,∴分三种情况:以AP为对角线或以AC为对角线或以CP为对角线,①当以AP为对角线时,则CP=CA,如图1,∴t2﹣6t+10=18,解得:t =3∴P 1(﹣1,3P 2(﹣1,3+∵四边形ACPQ 是菱形,∴AP 与CQ 互相垂直平分,即AP 与CQ 的中点重合,当P 1(﹣1,3∴m 02=−3−12,n 32解得:m =﹣4,n =∴Q 1(﹣4,当P 2(﹣1,3+∴m 02=−3−12,n 32解得:m =﹣4,n∴Q 2(﹣4②以AC 为对角线时,则PC =AP ,如图2,∴t 2﹣6t +10=t 2+4,解得:t =1,∴P 3(﹣1,1),∵四边形APCQ 是菱形,∴AC 与PQ 互相垂直平分,即AC 与CQ 中点重合,∴m−12=−302,n−12=032,解得:m =﹣2,n =2,∴Q 3(﹣2,2);③当以CP 为对角线时,则AP =AC ,如图3,∴t 2+4=18,解得:t∴P 4(﹣1P 5(﹣1,∵四边形ACQP 是菱形,∴AQ 与CP 互相垂直平分,即AQ 与CP 的中点重合,∴−3m 2=0−12,n 02解得:m =2,n =3∴Q 4(2,3+Q 5(2,3综上所述,符合条件的点P 、Q 的坐标为:P (﹣1,3Q (﹣4,P (﹣1,3+Q (﹣4P (﹣1,1),Q (﹣2,2)或P (﹣1Q (2,3P (﹣1,Q (2,3【点评】本题是二次函数综合题,考查了解析式的求法、等腰三角形的判定、菱形的性质、坐标与图形的性质、分类讨论等知识,熟练掌握菱形的性质和坐标与图形的性质是解题的关键.【变式1-10】如图,已知抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),抛物线与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),连接DB、DC,作直线BC.(1)求抛物线的解析式;(2)P是x轴上的一点,过点P作x轴的垂线,与CD交于H,与CB交于G,若线段HG把△CBD的面积分成相等的两部分,求P点的坐标;(3)若点M在直线CB上,点N在平面上,直线CB上是否存在点M,使以点C、点D、点M、点N 为顶点的四边形为菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),可设y=a(x+2)2+9,再将点B(0,5)代入,解得a的值,则可得抛物线的解析式;(2)求得直线BC与直线CD的解析式,设点P的坐标为(x,0),则G(x,x+5),H(x,3x+15)根据S△CGH =12HG×CP,将S△CGH=用含x的式子表示出来,再由S△BCD=S△DKC+S△DKB,求得S△BCD;根据线段HG把△CBD的面积分成相等的两部分,得出关于x的方程,解方程并作出取舍,则可得P 点的坐标;(3)设点M的坐标为(m,m+5),求得CD的值,再分情况讨论:当CD与DM是菱形的两边时,则CD=DM;当DM'与CM'是菱形的两边时,则CM'=DM';当DM'与CM'是菱形的两边时,则CM'=DM'.分别得出关于m的等式,解得m的值,则可得点M的坐标.【解答】解:(1)∵抛物线y=ax2+bx+c的顶点D的坐标为(﹣2,9),∴可设y=a(x+2)2+9,又∵抛物线过点B(0,5),代入得:5=4a+9,∴a=﹣1,∴y=﹣(x+2)2+9=﹣x2﹣4x+5,∴抛物线的解析式为y=﹣x2﹣4x+5;(2)∵抛物线y=﹣x2﹣4x+5与坐标轴分别交于A、B、C三点,且B的坐标为(0,5),∴当y=0时,﹣x2﹣4x+5=0,解得x1=﹣5,x2=1,∴A(1,0),C(﹣5,0),又∵D(﹣2,9),∴直线BC的解析式为y=x+5;设直线CD的解析式为y=kx+b,将C(﹣5,0),D(﹣2,9)代入,得:0=−5k+b9=−2k+b,解得:k=3b=15,∴直线CD的解析式为y=3x+15.设点P的坐标为(x,0),则G(x,x+5),H(x,3x+15).∴S△CGH =12HG×CP=12(5+x)(3x+15﹣x﹣5)=12(5+x)(2x+10)=(5+x)(x+5)=(x+5)2,设抛物线的对称轴交直线BC于点K,如图:∵顶点D的坐标为(﹣2,9),∴对称轴为直线x=﹣2,∴K(﹣2,3),∴DK=9﹣3=6,∴S△BCD =S△DKC+S△DKB=12×6×3+12×6×2=15,∴若线段HG把△CBD的面积分成相等的两部分,则(x+5)2=12×15,解得:x1=x2=∴P0);(3)如图,设点M的坐标为(m,m+5),∵C(﹣5,0),D(﹣2,9),∴CD当CD与DM是菱形的两边时,则CD=DM,∴=解得m1=﹣5(不合题意,舍去),m2=7,∴点M(7,12);当CD与CM''是菱形的两边时,则CD=CM'',∴=解得m=±5,∴点M(5,M(﹣5,﹣当DM'与CM'是菱形的两边时,则CM'=DM',解得m=−5 4,∴点M(−54,154).综上所述,点M的坐标为(7,12)或(5,5,﹣−54,154).【点评】本题属于二次函数综合题,考查了待定系数法求一次函数和二次函数的解析式、一次函数和二次函数图象上的点的坐标特点、三角形的面积计算、一元二次方程及菱形的性质等知识点,数形结合、熟练掌握相关性质及定理是解题的关键.【典例2】如图,抛物线y =x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,其中点A 在y 轴的左侧,点C 在x 轴的下方,且OA =OC =5.(1)求抛物线对应的函数解析式;(2)点P 为抛物线对称轴上的一动点,当PB +PC 的值最小时,求点P 的坐标;(3)在(2)条件下,点E 为抛物线的对称轴上的动点,点F 为抛物线上的动点,以点P 、E 、F 为顶点作四边形PEFM ,当四边形PEFM 为正方形时,请直接写出坐标为整数的点M 的坐标.【分析】(1)由题意,可得A (﹣5,0),C (0,﹣5).把点A ,C 的坐标代入y =x 2+bx +c ,得到关于b 、c 的二元一次方程组,解方程组即可求出抛物线的函数解析式;(2)利用配方法求出抛物线的对称轴是直线x =﹣2.由抛物线y =x 2+4x ﹣5与x 轴交于点A ,B ,得出点A ,B 关于直线x =﹣2对称.连接AC ,交对称轴于点P ,根据两点之间线段最短可知此时PB +PC 的值最小.利用待定系数法求出直线AC 的解析式为y =﹣x ﹣5,把x =﹣2代入,求出y =﹣3,进而得出点P 的坐标;(3)在(2)条件下,点P 的坐标为(﹣2,﹣3).设F (x ,x 2+4x ﹣5),根据正方形的性质可得E (﹣2,x 2+4x ﹣5),M (x ,﹣3),PM =PE ,根据两点间的距离公式列出方程|x +2|=|x 2+4x ﹣5+3|,解方程即可求解.【解答】解:(1)由题意,可得A (﹣5,0),C (0,﹣5).∵抛物线y =x 2+bx +c 过点A ,点C ,∴25−5b +c =0c =−5,解得b =4c =−5,∴抛物线对应的函数解析式为y =x 2+4x ﹣5;(2)∵y=x2+4x﹣5=(x+2)2﹣9,∴对称轴是直线x=﹣2.∵抛物线y=x2+4x﹣5与x轴交于点A,B,∴点A,B关于直线x=﹣2对称.连接AC,交对称轴于点P,此时PB+PC的值最小.设直线AC的解析式为y=mx+n,则−5m+n=0n=−5,解得m=−1n=−5,∴直线AC的解析式为y=﹣x﹣5,当x=﹣2时,y=﹣3,∴点P的坐标为(﹣2,﹣3);(3)在(2)条件下,点P的坐标为(﹣2,﹣3).设F(x,x2+4x﹣5),∵四边形PEFM为正方形,∴E(﹣2,x2+4x﹣5),M(x,﹣3),PM=PE,∴|x+2|=|x2+4x﹣5+3|,∴x2+4x﹣2=x+2,或x2+4x﹣2=﹣x﹣2,整理得x2+3x﹣4=0,或x2+5x=0,解得x1=﹣4,x2=1,x3=0,x4=﹣5,∴M(﹣4,﹣3)或M(1,﹣3)或M(0,﹣3)或M(﹣5,﹣3).【点评】本题是二次函数综合题,其中涉及到利用待定系数法求抛物线与直线的解析式,二次函数的性质,轴对称的性质,正方形的性质,综合性较强,难度适中.利用数形结合与方程思想是解题的关键.【变式2-1】已知在平面直角坐标系xOy 中,二次函数y =x 2﹣2nx ﹣3n 2(n >0)与x 轴交于A 、B ,与y 轴交于点C .(1)求A 、B 及顶点的坐标(用含n 的代数式表示);(2)如图所示,当AB =4时,D 为(4,﹣1),在抛物线上是否存在点P 使得以线段PD 为直径的圆经过坐标原点O 若点P 存在,求出满足条件的点P 的坐标;若不存在,说明理由;已知E 在x 轴上,F 在抛物线上,G 为平面内一点,若以B 、E 、F ,G 为顶点的四边形是正方形,请直接写出E 点所有可能的坐标.【分析】(1)y =x 2﹣2nx ﹣3n 2=(x ﹣3n )(x +n ),即可求解;(2)设点P (x ,x 2﹣2x ﹣3),由中点公式得:点O ′(x 42,x 2−2x−42),则O ′O =O ′D ,即可得到关于x 的方程,解方程即可;分BE 为正方形的边、BE 为正方形的对角线两种情况,分别求解即可.【解答】解:(1)y =x 2﹣2nx ﹣3n 2=(x ﹣3n )(x +n ),当y =0时,x 1=﹣n ,x 2=3n ,故点A 、B 的坐标分别为:(﹣n ,0)、(3n ,0),顶点的坐标为(n ,﹣4n 2);(2)存在,理由:AB =4时,则4m =4,解得:m =1,故点A 、B 、C 的坐标分别为:(﹣1,0)、(3,0)、(0,﹣3),抛物线的表达式为:y =x 2﹣2x ﹣3,设点P (x ,x 2﹣2x ﹣3),由中点公式得:点O ′(x 42,x 2−2x−42),则O ′O =O ′D ,即(x 42)2+(x 2−2x−42)2=(x 42−4)2+(x 2−2x−42+1)2,整理得:x 2﹣6x ﹣3=0,解得:x =3±故点P 的坐标为:(3﹣12﹣设点E 的坐标为:(a ,0),①当BE 为正方形的边时,则点F (a ,a 2﹣2a ﹣3),则BE =FE ,即|a ﹣3|=|a 2﹣2a ﹣3|,解得:a =3或0或﹣2(舍去3),故点E 的坐标为:(0,0)或(﹣2,0);②当BE 为正方形的对角线时,则BE 和GF 相互垂直平分,即点F 在BE 的中垂线上,△FBE 为等腰直角三角形,即点F 到BE 的距离等于12BE ,而BE =a ﹣3,故F (a−32,|a−32|),将点F 的坐标代入抛物线表达式得:|a−32|=(a−32)2−2×a−32−3 解得:a =﹣3或3或﹣7(舍去3),故点E 的坐标为:(﹣3,0)或(﹣7,0);综上点E 的坐标为:(0,0)或(﹣2,0)或(﹣3,0)或(﹣7,0).【点评】本题是二次函数的综合运用,考查了待定系数法求二次函数的解析式,中点坐标公式,两点间的距离公式,正方形的性质等知识,熟练掌握坐标与图形的性质是解题的关键.【变2-2】(2022秋•越城区期中)如图,抛物线y =﹣x 2+bx +c 经过A (﹣1,0),B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连接BD .(1)求经过A ,B ,C 三点的抛物线的函数表达式;(2)点Q 在该抛物线的对称轴上,若△BCQ 是以BC 为直角边的直角三角形,求点Q 的坐标;(3)若P 为BD 的中点,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.【分析】(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)如图1,连接BC,CD.首先证明△OBC是等腰直角三角形,分两种情形分别求出点Q的坐标即可.(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴−1−b+c=0−9+3b+c=0,解得,b=2 c=3,∴经过A,B,C三点的抛物线的函数表达式为y=﹣x2+2x+3.(2)如图1,连接BC,CD.由题意,C(0,3),B(3,0),∴OB=OC=3,∵∠BOC=90°,∴∠OBC=∠OCB=45°∵y=﹣(x﹣1)2+4,∴抛物线顶点D的坐标为(1,4),∵△BCQ是以BC为直角边的直角三角形,当∠Q′BC=90′时,∠ABQ′=45°,∴EB=EQ′=2,∴Q′(1,﹣2),当∠QCB=90°时,此时点Q与点D重合,Q(1,4),综上所述,满足条件的点Q的坐标为(1,4)或(1,﹣2).(3)如图2中,设点M的坐标为(a,0),则点G的坐标为(a,﹣a2+2a+3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2﹣a|=|﹣a2+2a+3|,当2﹣a=﹣a2+2a+3时,整理得,a2﹣3a﹣1=0,解得,a=当2﹣a=﹣(﹣a2+2a+3)时,整理得,a2﹣a﹣5=0,解得,a=∴当以F、M、N、G为顶点的四边形是正方形时,点M00),00).。

二次函数的存在性问题之菱形(含答案)

二次函数的存在性问题之菱形(含答案)

二次函数的存在性问题之菱形1. 如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形若存在上,直接写出点N的坐标;若不存在,请说明理由.2. 如图,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,连接.(1)求抛物线的解析式及点的坐标;(2)点在抛物线上,连接,当时,求点的坐标;(3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动,、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面内是否存在点,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形若存在,直接写出点的坐标;若不存在,说明理由.3. 如图所示,顶点为(,﹣)的抛物线y=ax2+bx+c过点M(2,0).(1)求抛物线的解析式;(2)点A是抛物线与x轴的交点(不与点M重合),点B是抛物线与y轴的交点,点C是直线y=x+1上一点(处于x轴下方),点D是反比例函数y= (k >0)图象上一点,若以点A,B,C,D为顶点的四边形是菱形,求k的值.4. 综合与探究如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2+bx+c经过点A,C.(1)求抛物线的解析式(2)如图2所示,M是线段OA的上一个动点,过点M垂直于x轴的直线与直线AC和抛物线分别交于点P、N若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形若存在,请直接写出点D的坐标;若不存在,请说明理由.注:二次函数y=ax2+bx +c(a≠0)的顶点坐标为(﹣,)5. 如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形若存在,直接写出F点的坐标,若不存在,请说明理由.6. 如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B 两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP 为对角线的四边形DMPN能否为菱形若能,求出点N的坐标;若不能,请说明理由.7. 如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)M是直线AB上一动点,在平面直角坐标系内是否存在点N,使以O、B、M、N为顶点的四边形是菱形若存在,请求出点N的坐标;若不存在,请说明理由.8. 如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.9. 如图,抛物线y=x2﹣x﹣2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,M是直线BC下方的抛物线上一动点.(1)求A、B、C三点的坐标;(2)连接MO、MC,并把△MOC沿CO翻折,得到四边形MO M′C,那么是否存在点M,使四边形MO M′C为菱形若存在,求出此时点M的坐标;若不存在,说明理由;10. 抛物线y= x2+bx+c经过点A(﹣4,0)、B(2,0)两点,与y轴交于点C,顶点为D,对称轴与x轴交于点H,过点H的直线m交抛物线于P、Q两点,其中点P位于第二象限,点Q在y轴的右侧.(1)求D点坐标;(2)若∠PBA= ∠OBC,求点P的坐标;(3)设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形若能,求出点N的坐标;若不能,请说明理由.11. 如图,抛物线y=ax2+bx+c(a≠0)与x轴、y轴分别交于A(﹣1,0)、B (3,0)、C(0,3)三点.(1)试求抛物线的解析式;(2)设点M是x轴上的动点,在平面直角坐标系中,是否存在点N,使得以点A、C、M、N为顶点的四边形是菱形若存在,求出所有符合条件的点N坐标;若不存在,说明理由.12. 如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与X轴交于点A、B两点B处的坐标为(3,0),与y轴交于c(0,﹣3),点P是直线BC下方抛物线上的动点.(1)求出二次函数的解析式;(2)连接PO、PC,并将△POC沿y轴对折,得到四边形POP′C,那么是否存在点P,使得四边形POP′C为菱形若存在,求出点P的坐标,若存在,请说明理由;13. 如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M 四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.14. 如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与x轴交于A、B 两点,与y轴交于C(0,3),A点在原点的左侧,B点的坐标为(3,0).点P是抛物线上一个动点,且在直线BC的上方.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形若存在,请求出此时点P的坐标;若不存在,请说明理由.15. 如图1,在平面直角坐标系中,抛物线y= 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为点D,过点B作BC的垂线,交对称轴于点E.(1)求证:点E与点D关于x轴对称;(2)如图2,平移抛物线,使抛物线的顶点D在射线AD上移动,点D平移后的对应点为D′,点A的对应点A′,设抛物线的对称轴与x轴交于点F,将△FBC沿BC翻折,使点F落在点F′处,在平面内找一点G,若以F′、G、D′、A′为顶点的四边形为菱形,求平移的距离.16. 如图,在平面直角坐标系中,点在抛物线上,且横坐标为1,点与点关于抛物线的对称轴对称,直线与轴交于点,点为抛物线的顶点,点的坐标为(1)求线段的长;(2)点为线段上方抛物线上的任意一点,过点作的垂线交于点,点为轴上一点,当的面积最大时,求的最小值;(3)在(2)中,取得最小值时,将绕点顺时针旋转后得到,过点作的垂线与直线交于点,点为抛物线对称轴上的一点,在平面直角坐标系中是否存在点,使得点为顶点的四边形为菱形,若存在,请直接写出点的坐标,若不存在,请说明理由.17. 如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形请直接写出t的值.18. 已知,抛物线y=ax²+bx+4与x轴交于点A(-3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形若存在,请求出点F的坐标;若不存在,请说明理由.答案解析部分一、综合题1.【答案】(1)解:∵抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,∴,解得:,抛物线解析式为y= x2﹣x﹣2;(2)解:令y= x2﹣x﹣2=0,解得:x1=﹣2,x2=4,当x=0时,y=﹣2,∴B(4,0),C(0,﹣2),设BC的解析式为y=kx+b,则,解得:,∴y= x﹣2,设D(m,0),∵DP∥y轴,∴E(m,m﹣2),P(m,m2﹣m﹣2),∵OD=4PE,∴m=4(m2﹣m﹣2﹣m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,),E(5,),∴四边形POBE的面积=S△OPD﹣S△EBD= ×5× ﹣1× = ;(3)解:存在,设M(n,n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+ ,∴M(,),∵M,N关于x轴对称,∴N(,﹣);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH2+DH2=DM2,即(n﹣2)2+(n﹣5)2=12,∴n1=4(不合题意),n2=,∴N(,),同理(n﹣2)2+(4﹣n)2=1,∴n1=4+ (不合题意,舍去),n2=4﹣,∴N(5﹣,),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(n﹣2)2+(n﹣4)2=12,∴n1=4+ ,n2=4﹣(不合题意,舍去),∴N(5+ ,),综上所述,当N(,﹣)或(,)或(5﹣,)或(5+ ,),以点B,D,M,N为顶点的四边形是菱形.【解析】【分析】(1)由抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,于是列方程即可得到结论;(2)根据函数解析式得到B(4,0),C(0,﹣2),求得BC的解析式为y= x﹣2,设D(m,0),得到E (m,m﹣2),P(m,m2﹣m﹣2),根据已知条件列方程得到m=5,m=0(舍去),求得D(5,0),P(5,),E(5,),根据三角形的面积公式即可得到结论;(3)设M(n,n﹣2),①以BD为对角线,根据菱形的性质得到MN垂直平分BD,求得n=4+ ,于是得到N(,﹣);②以BD为边,根据菱形的性质得到MN∥BD,MN=BD=MD=1,过M 作MH⊥x轴于H,根据勾股定理列方程即可得到结论.2.【答案】(1)解:直线解析式,令,得;令,得.∴、.∵点、在抛物线上,∴,解得,∴抛物线解析式为:.令,解得:或,∴.(2)解:,设,①当时,如答图所示.∵,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与,得:,解得:,,∴,,∴;②当与关于轴对称时,如答图所示.∵,,∴,故点满足条件.过点作轴于点,则,,∴.∵,∴,∴直线的解析式为:.联立与得:,解得:,,∴,,∴.综上所述,满足条件的点的坐标为:或(3)解:设,则,,.假设存在满足条件的点,设菱形的对角线交于点,设运动时间为.①若以为菱形对角线,如答图.此时,菱形边长.∴.在中,,解得.∴.过点作轴于点,则,,∴.∴.∵点与点横坐标相差个单位,∴;②若以为菱形对角线,如答图.此时,菱形边长.∵,∴,点为中点,∴.∵点与点横坐标相差个单位,∴;③若以为菱形对角线,如答图.此时,菱形边长.在中,,解得.∴,.∴.综上所述,存在满足条件的点,点坐标为:或或.【解析】【分析】(1)根据直线与坐标轴交点的坐标特点求出A,B两点的坐标,将A,B两点的坐标分别代入抛物线y=x2+bx+c得出关于b,c的方程组,求解得出b,c的值,从而得出抛物线的解析式,再根据抛物线与x轴交点的纵坐标是0,将y=0代入抛物线的解析式,楸树对应的自变量的值,从而求出C 点的坐标;(2)设M ( x , y )①当BM⊥BC 时,如答图2 − 1 所示.根据等腰直角三角形的性质及垂直的定义得出∠MBA+∠CBO=45∘,故点M 满足条件,过点M1作M1E⊥y轴于点E ,则M1E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M1BE=tan∠BCO=,根据正切函数的定义得出关于x,y的方程,变形即可得出直线BM1的解析式,解联立直线BM 1的解析式与抛物线的解析式组成的方程组,即可求出M1的坐标;②当BM与BC关于y轴对称时,如答图 2 − 2 所示.根据根据角的和差及对称的性质得出∠ABO=∠MBA+∠MBO=45∘,∠MBO=∠CBO ,故∠MBA+∠CBO=45∘,故点M 满足条件过点M2 作M2E⊥y 轴于点E ,则M2E=x ,OE=−y 进而表示出BE,根据同角的余角相等及等角的同名三角函数值相等得出tan∠M2BE=tan∠CBO=,根据正切函数的定义得出关于x,y 的方程,变形即可得出直线BM2的解析式,解联立直线BM2的解析式与抛物线的解析式组成的方程组,即可求出M2的坐标,综上所述即可得出M点的坐标;(3)设∠BCO=θ ,则tanθ=,sinθ=,cosθ=.假设存在满足条件的点D ,设菱形的对角线交于点E ,设运动时间为t .①若以CQ为菱形对角线,如答图3 − 1 .此时BQ=t ,菱形边长=t,根据菱形的对角线互相平分得出CE=CQ=(5−t) ,根据余弦函数的定义,由cosθ=,即可列出方程,求解得出t的值,进而得出CQ的值,过点Q作QF⊥x 轴于点F,则QF=CQ ⋅ sinθ,CF=CQ ⋅cosθ,分别计算出QF,CF的长,进而得出OF的长,从而得出Q点的坐标,根据点D1与点Q横坐标相差t 个单位即可得出D1的坐标;②若以PQ为菱形对角线,如答图3 − 2 .此时BQ=t ,菱形边长=t,根据线段中点坐标公式,由点Q为BC中点得出Q点的坐标,根据点D2与点Q 横坐标相差t 个单位即可得出D1的坐标;③若以CP为菱形对角线,如答图3 − 3 .此时BQ=t ,菱形边长=5−t.根据cosθ =列出方程,求解得出t的值,进而求出OE, 由D3E=QE=CQ ⋅ sinθ,从而得出D3的坐标,综上所述即可得出答案。

二次函数和菱形存在性问题通用解法

二次函数和菱形存在性问题通用解法

我们已经知道菱形是特殊的平行四边形,它的判定方法一共有五种,分别是①四边都相等的四边形是菱形;②两条对角线互相垂直的平行四边形是菱形;③邻边相等的平行四边形是菱形;④对角线互相垂直平分的四边形是菱形;⑤一条对角线平分一个顶角的平行四边形是菱形.在做几何证明题的时候我们常用的判定方法主要是前三种.二次函数和菱形存在性问题作为压轴题目,结合了“分类讨论思想”,“方程思想”“菱形的判定方法”,势必要比单纯的菱形判定思考难度要大的多,因此我在研究了近些年中考真题之后尝试性的总结一下菱形存在性问题的通用解法,以供大家参考.纵观历年中考真题,菱形存在性问题主要是以“两定两动”为设问方式,其中两定指的是四边形四个顶点其中有两个顶点的坐标是确定的或者是可求解的;两动指的是其中一个动点在一条直线或者抛物线上,另外一个动点是平面内任意一点或者该动点也在一条直线或者抛物线上.一解题模型铺垫1:等腰三角形的构造方法点A和点B为平面内的两个定点,点C为水平直线上的一个动点,要使△ABC为等腰三角形,请利用尺规作图的方法作出点C的位置.图1是以AB为底边(AC和BC为腰),作出线段AB的垂直平分线交直线于点C1;图2是以AB为腰,以点A为圆心,以AB长度为半径作圆,交直线于点C2;图3是以AB为腰,以点B为圆心,以AB长度为半径作圆,交直线于点C3、C4;我们把上述作图方法简称为“两圆一中垂”.铺垫2:平行四边形顶点坐标公式根据平行四边形的性质对角线互相平分,可以知道点O为线段AC 和线段BD的中点。

①两定点确定的线段为边作菱形如图所示,点A和点B为平面内两个定点,点C是直线l上一个动点,点D是平面内的一个动点.以AB为菱形的边,请作出符合题意的菱形.作图方法:由于点D是平面内的任意一个动点,意味着该点需要借助其它的点才能确定下来,因此,我们第一步先确定动点C的位置.要想使以AB为边的四边形是菱形,根据菱形的判定方法3我们可以确定△ABC是以AB为腰的等腰三角形,因此我们可以借助等腰三角形存在性知识,来确定点C的位置.确定方法具体如下:以点A为圆心,以AB长度为半径画圆,交直线l于点C1和C2.接下来需要确定点D的位置.以BC为对称轴作点A关于BC的对称点D,由于点C有两个点,确定下来的点D有两个.再以点B为圆心,BA长度为半径画圆,交直线l于点C3和C4,利用同样的方法作出点D3和D4.解题策略:第一步:确定点C的坐标设出点C坐标,利用两点间距离坐标公式,表示出AB、AC、BC 的长度.当AB=AC时,列出方程,求出点C的坐标;当BA=BC时,列出方程,求出点C的坐标.第二步:确定点D的坐标根据平行四边形顶点坐标公式可求出点D的坐标.②两定点确定的线段为对角线作菱形如图所示,点A和点B为平面内两个定点,点C是抛物线上一个动点,点D是平面内的一个动点.点C关于AB的对称点为点D,请作出所有符合题意的图形.作图方法:第一步:作出AB的垂直平分线;第二步:作点C关于AB 对称点D.解题策略:第一步:求出AB的中点坐标和AB的斜率k,利用两直线垂直,斜率乘积为﹣1这个结论,设直线CD的解析式为y=﹣1/k+b,再把AB中点坐标代入上式,解出b的值.求出CD解析式.第二步:联立直线CD和抛物线,可以解得点C的坐标;第三步:确定点D的坐标根据平行四边形顶点坐标公式可求出点D的坐标.二例题精讲题型一确定对角线【例1】(难度等级☆)如图,在平面直角坐标系中,O为原点,直线AB解析式为y=﹣2x﹣1,与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.且过A,B,C三点的抛物线的解析式为y=x2﹣x﹣1,P为抛物线上一点,它关于原点的对称点为Q,当四边形PBQC为菱形时,求点P的坐标.【例2】(2016•陕西一模)如图,在平面直角坐标系中,二次函数y=x2﹣3x﹣4的图象与x轴交于A、B两点,A点在原点左侧,B点的坐标为(4,0),与y轴交于C (0,﹣4)点,点P是直线BC下方的抛物线上一动点.连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.【例3】(2016•黔西南州)如图,二次函数y=﹣x2+3x+4的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C(0,4),P为抛物线上一点,它关于直线BC的对称点为Q,当四边形PBQC为菱形时,求点P的坐标;题型三边和对角线均不确定【例5】(2018•齐齐哈尔)如图1所示,直线y=x+c与x轴交于点A(﹣4,0),与y轴交于点C,抛物线y=﹣x2﹣3x+4经过点A,C.如图2所示,M是线段OA的上一个动点,过点M垂直于x 轴的直线与直线AC和抛物线分别交于点P、N.若点P恰好是线段MN的中点,点F是直线AC上一个动点,在坐标平面内是否存在点D,使以点D,F,P,M为顶点的四边形是菱形?若存在,请直接写出点D的坐标;若不存在,请说明理由.关注公众号【初中小窝】,每日发布学习资料,找资料问小窝!。

二次函数存在性问题(菱形、平行四边形、矩形)

二次函数存在性问题(菱形、平行四边形、矩形)

今天讲解二次函数背景下的四边形存在性问题.这里的四边形存在性问题,一般是以几种特殊的四边形为主,常考察的有平行四边形、菱形、 矩形、正方形.当然,三角形的存在性问题和四边形的存在性问题是一样, 如等腰三角形实际上和 菱形是一致的, 直角三角形和矩形是一样的, 等腰直角三角形和正方形是一致的.本文我们将重点讲解这类问题的求解逻辑以及注意事项,同时给大家理出一个比较通用的解题 模板.1如图,抛物线y = ax 2 + bx + 3 交x 轴于点A (−1, 0) 和点B (3, 0) ,与 y 轴交于点C ,连接BC , 交对称轴于点D .(1) 求抛物线的解析式;(2)点 P 是直线BC 上方的抛物线上点,连接PC ,PD .求 △PCD 的面积的最大值以及此时 点P 的坐标;(3)将抛物线y = ax 2 + bx + 3 向右平移 1 个单位得到新抛物线,新抛物线与原抛物线交于点E , 点F 是新抛物线的对称轴上的一点,点 G 是坐标平面内一点.当以D 、E 、F 、 G 四点为顶点的 四边形是菱形时,直接写出点F 的坐标,并写出求解其中一个点F 的坐标的过程.前两小问就不详说了,直接上结论, 抛物线解析式为y = −x 2 + 2x + 3 ;点 P | , | .( 3 15 )\2 4 )第 3 小问为菱形存在性问题, 以D 、E 、F 、 G 四点为顶点的四边形是菱形.四个点中, D , E 是定点,F 是平移后新抛物线对称轴上的动点,由于点F 的横坐标是确定的,只有纵坐标在变化, 我们可以称其为“G 如果只需要点F 的坐标,那么没有必要求解平移后抛物线的解析式.根据平移的性质,将原抛物线 向右平移 1 个单位长度, 那么原抛物线的对称轴也向右平移 1 个单位长度, 因此新抛物线的对称轴 为x = 2 ,几 F (2, m ) .但由于此时E 为量抛物线的交点,因此还是要把平移后的抛物线解析式求出 来,根据“左加右减”,平移后的抛物线解析式为y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立两抛物(|y = −x 2 + 2x + 3 ( 3 15 ) 线〈|ly = −x 2 + 4x ,解得E |\2 , 4 )| .菱形的探究相对是比较简单的,对于这类探究性问题,一般都是先从确定的信息入手.菱形是 以D 、E 、F 、 G 为顶点, 其中DE 为定线段,那么存在的可能有DE 是一条边,也可能是一条对 对角线.前面提到,等腰三角形和菱形的分析是一致的,这里我们结合等腰三角形的存在性问题一 起分析.由于 G 是“自由点”,可以随机应变,因此讨论以D 、E 、F 为顶点的三角形是等腰三角 形.同样, 由于定线段DE 可能是等腰三角形的一条腰,也可能是底边.当DE 为一条腰时,第一种情形是点D 为顶点,即DE = DF ,也即半动点F 到D 的距离和E 到D 的距离相等,因此点F 在以点D 为圆心, DE 为半径的圆上,作出该圆,如图 1 所示,可知此时圆与新抛物线的对称轴有两个交点F 1 ,F 2 ,结合图象可以判断,此时两个点应该都是满足的.那么 再加上对应的“自由点” G ,就是以DE 为边菱形了.当DE 为一条腰时, 另一种情形是点E 为顶点, 即ED = EF ,也即半动点F 到E 的距离和D 到E 的距离相等,因此点F 在以点E 为圆心, ED 为半径的圆上,作出该圆,如图 2 所示,可知此时 圆与新抛物线的对称轴同样有两个交点F 1 ,F 2 ,结合图象, 此时的F 3 存在和DE 共线的风险,因此后续需要检验一下.根据坐标可以知道,x E =,通常像这类圆心可能为两个点中点的,一般都要留个心眼, 检验一下.此时再加上对应的“自由点” G ,也是以DE 为边菱形.当DE 为底边时,则F 为顶点, 即FD = FE ,即 F 到线段DE 的两端点的距离相等,可知此时F 在线段DE 的垂直平分线上,作出线段DE 的垂直平分线,如图 3 所示,可知此时有一个交点F 5 .加 上对应的“自由点” G ,此时便是以DE 为对角线的菱形.对于等腰三角形和菱形的存在性问题,如上图情形,我们称其为“两圆一线”法.由于这类题一般不需要书写完整过程,因此在解题过程中,把准备工作做好, 即对应的点坐标, 解析式等先求出来, 动点坐标假设好, 再把定线段DE ,半定线段DF 、EF 长度表示出来. 根据上 述分析,结合“两圆一线”分别使得三条线段两两相等建立方程,即DE = DF ,DE = EF ,DF = EF , 求解出动点坐标即可.(实际解题过程中, 一般使用线段平方的形式.此外, 只需关注下方解析中公 式计算部分即可,文字叙述部分可忽略)此题还是比较友善的,只需求出F 坐标.如果需要求解点G 的坐标,则还要加一个步骤.这里 以DEG 1F 1 为例,若要求 G 1 坐标,一般有两种比较常用的思路.一是利用菱形的对边平行且相等,即F 1G 1 可以看成是DE 平移得来的, 那么点D → F 1 的平移变化也即点E → G 1 的平移变化. 二是利用菱形的对角线相互平分,因此EF 1 的中点也即DG 1 的中点,利用中点坐标求解出 G 1 坐标.这两种处理 在平行四边形存在性问题中也是有力手段.(|y = −x 2 + 2x + 3 ( 3 15 ) 149 ( 149 )由题, y = −x 2 + 2x + 3 向右平移 1 个单位得到新抛物线y = − (x −1)2+ 2(x −1) + 3 = −x 2 + 4x ,联立〈|ly = −x 2 + 4x ,解得 E |\2 , 4 )| , 新抛物线的对称轴为x = 2 ,设 F (2, m ) ,由于 D (1, 2) ,则DE 2 =,EF 2 = + m −2= m 2 − m +,DF 2 = 1+ (m − 2)2= m 2 − 4m + 5 ,①当DE 、DF 为一组邻边时,则 DE 2 = DF 2 ,即 = m 2 − 4m + 5 ,37 ( ) ( )②当ED 、EF 为一组邻边时,则 ED 2 = EF 2 ,即 = m 2 − m + ,16 8 16 11 ( 11)③当EF 为对角线时,则FD = FE ,即 m 2 − m + = m 2 − 4m + 5 , 2 16解得m = ,此时 F 的坐标为|2, | ;( ) ( ) ( 149 )( 11) 当F |2, |时, y F + y D = 2y E ,x D + x F = 2x E ,即 E 为D 、F 中点, 不合题意, 舍去; 15 229 \ 2 )综上, F 点的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| 或(2, 2) 或|\2, 56 )| . 56 \ 56 )解得m = 2 或m = ,此时F 的坐标为(2, 2) 或|2, | ,2 \ 2 )解得m = 2 土 4 ,此时 F 的坐标为||\2, 2 + 4 )|| 或||\2, 2 − 4 )|| ;53 15 2291 .已知二次函数y = ax2 + bx − 2(a 丰 0)与x 轴交于A ( −, 0) ,B (4, 0) ,与 y 轴交于点C .(1) 求抛物线的解析式;(2) 连接AC ,BC ,点 P 是直线BC 下方抛物线上一点,过 P 作PD ∥AC 交直线BC 于点D ,PE ∥x 轴交直线BC 于点, E ,求△PDE 面积的最大值及此时点, P 的坐标;(3) 在(2)的条件下, 将原抛物线沿x 轴向左平移3个单位得到新抛物线,点 M 是新抛物线对称轴上一点, 点 N 是平面直角坐标系内一点, 当以点M 、 N 、P 、B 为顶点的四边形为菱形 时,请直接写出所有符合条件的N 点的坐标;并任选其中一个N 点,写出求解过程.立〈y= − 2 x 2 + 4x − 2 ,解得D 7 , 11 .1-1如图 1,抛物线y = ax 2 + bx + 4 交x 轴于A (−2, 0) ,B (4, 0) 两点,与y 轴交于点C ,连接 AC , BC .(1) 求抛物线的解析式;(2) P 是拋物线上位于直线BC 上方的一个动点,过点P 作PQ ∥y 轴交BC 于点Q , 过点P 作PE ⊥ BC 于点E ,过点 E 作EF ⊥ y 轴于点F ,求出2PQ + EF 的最大值及此时点P 的坐标;(3)如图 2,将抛物线y = ax 2 + bx + 4 沿着射线CB 的方向平移,使得新抛物线y ,过点(3,1) , 点D 为原抛物线y 与新抛物线y ,的交点,若点 G 为原抛物线的对称轴上一动点,点H 为新抛物线y , 上一动点,直接写出所有使得以 A ,D , G ,H 为顶点的四边形为平行四边形的点H 的坐标,并 把求其中一个点H 的坐标的过程写出来.抛物线解析式为y = − x 2 + x + 4 ;点 P | , | .相当于是沿着射线BC 方向平移,故舍去, 因此可得平移后抛物线的解析式为y = − x 2 + 4x − .联2 2 ( 1 13 y = − x 2 + x +4 \2 8 )这类平行四边的探究也并不难, 同样先从确定的信息入手.平行四边形是以A ,D ,G ,H 为 顶点,其中AD 是定线段, G 是半动点,H 在新的抛物线上.和菱形的讨论一样,我们要考虑AD 是 一条边的情形, 也要考虑AD 是对角线的情形.当 AD 是一条边时, 实际上此时也右两种情形,一是是平行四边形为ADHG ,也即AH ,DG 为 对角线;另一种则是平行四边形为ADGH ,也即 AG ,DH 为对角线.当然,不管是那种情形,由 于 AD 是一条边,根据平行四边形对边平行且相等的性质, GH 这条边可以看作是将AD 平移后得到1 (8 28 )2 \3 9 )第 3 小问中, 抛物线沿着射线CB 方向平移, 由于后续的点在新抛物线上, 因此还是要求出平移 后抛物线的解析式.这类沿着射线平移的,一般采用正交分解的形式平移,由点 C (0, 4) ,B (4, 0) 可 知,沿着射线 CB 平移,即向右平移t 个单位,则向下也平移t 个单位,因此假设平移后新抛物线的 解析式为y = − (x − t )2+ (x − t ) + 4 − t ,因为平移后经过点(3,1) ,代入可解得t = − 1 或t = 3 ,当 t = − 1 , 1 13的,由于半动点 G 在原抛物线对称轴x = 1 上,那么点 G 有可能是点 A 平移后得到的, 此时点H 就 是点D 平移后得到的,如图 1 所示;同理,当点 G 是点D 平移后得到的,那么此时点H 就是点A 平 移后得到的,如图 2 所示.设点 G (1, m ),根据平移的性质,结合点坐标的变化规律,当 A → G 时, 即(−2, 0) —(1, m ) ,则有D|2 , 8 )| —H | 2 , 8 + m )| ,由于点H 在新抛物线上, 且横坐标已知了,代入新抛物线即可 11 1 (13 213 13 13 (13 13 此外, 除了用平移性质得到H 点的坐标外,此时 AH 是一条对角线,也利用对角线相互平分, 则 A 、 H 的 中 点 和 D 、 G 的 中 点 是 同 一 个 , 利 用 中 点 坐 标 则 有 x A + x H = x D + x G ,故 13 13 13 (13 13 x H = x D + x G − x A = 2 ,将x = 2 代入新抛物线解析式,可求得H 点纵坐标y = − 8 ,故H | 2 , − 8 )|.当 AG 是一条对角线时, 则有x A + x G = x D + x H ,故 x H = x A + x G − x D = − ,代入新抛物线解析 277 ( 9 277式,可求得此时H 的纵坐标为 − ,故H |− , − | .8 2 8 ) 当 AD 是一条对角线时,则有x A + x D = x H + x G ,故 x H = x A + x D − x G = ,代入新抛物线解析式, 37 ( 1 37 可求得此时H 的纵坐标为 − ,故 H | , − | .8 2 8 )同样地,在解题过程中, 把准备工作做好,即对应的点坐标,解析式等先求出来,动点坐标假设好, 将点坐标表示列出来(通常都是横坐标),选定一个定点,如这里我们选定 x A ,将其与剩下 三点横坐标x D 、x G 、x H 两两组合,建立中点坐标关系式, 即x A + x D = x H + x G ,x A + x G = x D + x H 以 及x A + x H = x D + x G ,求解出点H 横坐标,再代入解析式中求出点H 纵坐标即可.求得纵坐标 8 + m = − 2 | 2 )| + 4 2 − 2 = − 8 ,此时H | 2 , − 8 )| . ( 7 11 (13 1113 (13 13)由题, 设平移后的抛物线解析式为y = − (x − t )2+ (x − t ) + 4− t ,因为平移后经过点(3,1),代入可解得t = − 1 (舍) 或t = 3 ,2 2联立〈y = − 2 x 2 + 4x − 2 ,解得 D 7 , 11 , y = − x 2 + x + 4 \2 8 )则x A =−2 ,x D = ,x G = 1,设 H 点横坐标为x H ,①当AH 为一条对角线时,x A + x H = x D + x G ,则 x H = ,代入可求得此时H | , − | ; 9 ( 9 277 )1 (1 37 )综上, H 的坐标为| , − |或|− , − |或| , − | .( 1 13 ③当AD 为一条对角线时,x A + x D = x H + x G ,则x H = ,代入可求得此时H | , − | ;(13 13) ( 9 277 ) (1 37 )2 \2 8 )\ 2 8 ) \ 2 8 ) \2 8 )②当AG 为一条对角线时,x A + x G = x D + x H ,则x H = − ,代入可求得此时H |− , − | ;2 \ 2 8 ) 2 \ 2 8 )故平移后抛物线的解析式为y = − x 2 + 4x − ,1 131.如图,在平面直角坐标系中,抛物线y= ax2 + bx+ 3(a 0) 与y轴交于点C,与x轴交于A,B两点(点A在点B的右侧),且点A的坐标为( 3, 0) ,连接BC,过点A作AD∥BC交y轴于点D,OB= 3OA.(1) 求抛物线的解析式;(2) 如图1,点E为射线AD上一点,点P为第二象限内抛物线上一点,求四边形PBEC面积的最大值及此时点P的坐标;(3) 如图2,将原抛物线沿x轴正方向平移得到新抛物线y,y经过点C,平移后点A的对应点为点A,点N为线段AD的中点,点Q为新抛物线y的对称轴上一点,在新抛物线y上存在一点M,使以点M,Q,A,N为顶点的四边形为平行四边形,请直接写出点M的坐标,并选择一个你喜欢的点写出求解过程.2.如图,抛物线y= x2 + bx+ c与x轴相交于点A(−1, 0) 和点B,交y轴于点C,tan 三ACO= .(1) 求抛物线的解析式;(2) 如图1 ,P点为一象限内抛物线上的一个动点,点D是BC中点,连接PD,BD,PB.求△BDP面积的最大值以及此时P点坐标;,M为新抛物线对称轴上(3) 如图2,将抛物线向左平移 1 个单位长度,得到新的抛物线y1一点,N为直线AC上一动点,在(2) 的条件下,是否存在点M,使得以点P、B、M、N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.| 4 21如图,已知抛物线y = ax 2 + bx − 4 与x 轴交于A ,B 两点, 与y 轴交于点C ,且点A 的坐标 为(−2, 0) ,直线BC 的解析式为y = x − 4 .(1) 求抛物线的解析式;(2)如图 1,过点 A 作 AD ∥BC 交抛物线于点D (异于点 A ), P 是直线BC 下方抛物线上一 点,过点P 作PQ ∥y 轴, 交AD 于点Q ,过点 Q 作QR ⊥ BC 于点R ,连接PR .求△PQR 面积的最 大值及此时点P 的坐标;(3) 如图 2,点 C 关于x 轴的对称点为点C ,将抛物线沿射线 C A 的方向平移2个单位长度得到新的抛物线y ,新抛物线y 与原抛物线交于点M ,原抛物线的对称轴上有一动点 N ,平面直 角坐标系内是否存在一点K ,使得以 D ,M ,N ,K 为顶点的四边形是矩形?若存在,请直接写 出点K 的坐标;若不存在, 请说明理由.抛物线解析式为y = x 2 − x − 4 ;S △PQR 的最大值为 9,点P (4, −6) .第 3 小问中,抛物线沿着射线C A 方向平移, 由于点M 为两抛物线交点, 因此需求出平移后抛 物线的解析式.根据A (−2, 0) ,C (0, 4) ,可知Rt △AOC 中AO : OC : AC = 1: 2 : ,因此将抛物线沿着射线C A 方向平移2个单位长度,则相当于向下平移 4 个单位长度,向左平移 2 个单位长度,因此平移后的抛物线为y = 1 (x + 2)2− 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 ,联立〈y = x 2 − x −10,解4 2 4 2y = x 2 − x − 4( 1得M (6, −4) .又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) .2 2 |y = 1 x 2 − 3x − 4因为以D ,M ,N ,K 为顶点的四边形是矩形,此时定线段是DM ,半动点为N ,自由点为K .和 前面讨论菱形、平行四边形时的流程基本大同小异,定线段DM 可能是矩形的边,也可能是矩形的 对角线,因此要分两种情形讨论.矩形的存在性问题和直角三角形的存在性问题是一致的,如本题 中,探究以D ,M ,N 为顶点的三角形是直角三角形. 同样地,先以直角三角形为例,那么D ,M ,1 3 4 2在实际解题中设 K (x , y ) 即可), 利用中点关系〈 M K D N ,则〈 K,整理得N 均有可能为直角顶点.当M 为直角顶点时,过M 作DM 垂线与对称轴交点即为点N 所在位置,如图 1 所示.对于N 点 坐标的求解,一方面,由于MN ⊥ DM ,则 k MN . k DM = − 1,结合点M 坐标,由此可求得直线MN 解 析式,将其与对称轴方程联立即可求得点N 坐标.另一方面,可以构造如图所示的K 型相似,即构DH MH1 腰直角三角形, 或者四边形中的正方形, 那么可以构造此类的K 型全等求解.在此直角三角形的基础上,加上自由点K ,就变成矩形问题了.对于矩形问题,同样可以求出点N 坐标后,利用平移关系或者对角线的中点关系,求相应的点K 的坐标.当然,如果是探究矩形 的存在性问题,也可以直接利用中点关系求得点K 的坐标.由点N (3, n ),设K (x K , y K ) (熟练后,(x + x = x + x (6 + x = 10 + 3 l y M + y K = y D + y N l−4 + y K = 6 + n 〈,再由对角线相等,即MK = DN ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y =,( 36 )同样适用.当D 为直角顶点时,三角形如图2 所示.同样, 加上自由点K ,就变成矩形问题了. 这里我们5 2 2 ( 44 )l y M + y N = y D + y K |y K = − \ 5 )对于直角三角形或矩形问题, 如上图情形,我们可以称其为“两线一圆”.若只求点N 坐标,一 般利用斜率关系,求出解析式后进一步求解.如果是矩形问题要求自由点的坐标,可以用对角线平 分且相等, 建立方程求解.当然, 先求点N ,利用点N 作为台阶进一步求解也是没问题的, 大家选 用自己顺手的方法即可.造 △MN 1G ∽△DMH ,利用 = ,可求出长度,进而得到点 N 坐标.更特殊地,如果是等以垂线方式求解.由于k DM = 2 ,则 k DN = − 5 ,故此时DN : y = − 5 x + 10 ,令x = 3 ,可解得N |\3, 5 )| , 由中点可知,〈(x M + x N = x D + x K ,可解得〈(|x K = − 16 ,此时 K −1,− 6 .l 5当N 为直角顶点时,则有NM ⊥ ND ,因此点N 在以DM 为直径的圆上.此种情形若只是求点N 坐标,策略比较多, 一方面,可以利用斜率, 由k ND . k NM= − 1求出点N 坐标;另一方面,可以利用线段长度求解,设DM 中点为为R ,则此时圆心为R ,因此NR = RD = DM ,由此也可求得点N 坐 标, 此外, 还可以利用勾股定理ND 2 + NM 2 = DM 2 .当加入自由点K ,变成矩形问题后,除了先求 出点N 坐标, 利用平移或中点求解点K 坐标外,也可以利用前面的对角线平分且相等来求解. 故此时K |7, | .此法借助的是矩形的对角线平分且相等的性质,该处理对于DM 是对角线的情形 \ 5 ) GM N G式和长度关系式子,即〈 M K D N 且MK 2 = DN 2 ,〈 M N D K 且MN 2 = DK 2 以及(x M + x D = x N + x K 4 2 4 2|l 4 2(x M + x K = x D + x N (6 + x = 10 + 3 (x = 7由MK 2 = DN 2 ,代入即有1+ (y + 4)2= 49 + (16 − y )2,解得 y = 36,故此时K 7,36;由MN 2 = DK 2 ,代入即有9 + (y +14)2 = 121+ (y − 6)2,解得 y = − 6 ,故此时K −1,− 6 ;(x M + x D = x N + x K (6 + 10 = 3 + x (x = 13 同样地,在解题过程中, 把准备工作做好,即对应的点坐标安排到位,动点坐标假设好,选定 一个定点, 如这里我们选定M ,将其与剩下三点横坐标D 、 N 、K 两两组合, 建立中点坐标关系 (x + x = x + x (x + x = x + xl y M + y K = y D + y N l y M + y N = y D + y K〈 且MD 2 = NK 2,利用方程组求解出对应的点K 的坐标. l y M + y D = y N + y K附:坐标平面内点A (x 1 , y 1 ) ,B (x 2 , y 2 ) ,其中x 1 丰 x 2 ,则过A 、B 两点的直线的斜率k =由题, 将抛物线沿着射线 C ,A 方向平移2个单位长度, 即将其向下平移 4 个单位长度, 向左平移 2 个单位长度, 因此平移后的抛物线为y =1(x + 2)2 − 3 (x + 2) − 4 − 4 = 1 x 2 − 1 x −10 , 联立〈y = x 2− x −10,解得M (6, −4) ,y = x 2 − x − 4( 1又 BC : y = 1 x − 4 ,可知 AD : y = 1 x + 1,联立〈 y = 2 x + 1,解得D (10, 6) ,2 2 |y = 1 x 2 − 3x − 4由M (6, −4) ,D (10, 6) ,设 N (3, n ) ,K (x , y ) ,①当MK 为一条对角线时,〈,即〈 ,整理得〈 , l y M + y K = y D + y N l −4 + y = 6 + n l n = y −105 \ 5 )②当MN 为一条对角线时,〈(x M + x N = x D + x K,即〈(6 + 3 = 10 + x,整理得〈(x = − 1l y M + y N = y D + y K l −4 + n = 6 + y l n = 10 + y5 \ 5 )③当MD 为一条对角线时,〈 ,即〈 ,整理得〈l y M + y D = y N + y K l−4 + 6 = n + y l n = 2 − y由MD 2 = NK 2 ,代入即有116 = 100 + (2 − 2y )2,解得y =− 1 或y = 3 ,故此时K (13, −1) 或(13,3) ; ( 36 ) ( 6 )综上, 点K 的坐标为|7, |或|−1,− |或(13, −1) 或(13,3) .\ 5 ) \ 5 ) y 1 − y 2. x 1 − x 21.如图1,二次函数y= ax2 + bx+ c(a丰0)与x轴交于点A(−2, 0) 、点B(点A在点B左侧),与y轴交于点C(0,3) ,tan 三CBO= .(1) 求二次函数解析式;(2)如图2,点P是直线BC上方抛物线上一点,PD∥y轴交BC于D,PE∥BC交x轴于点E,求PD+ BE的最大值及此时点P的坐标;(3) 在(2) 的条件下,当PD+ BE取最大值时,连接PC,将△PCD绕原点O顺时针旋转90。

中考数学总复习《二次函数与菱形存在性问题》专题训练-附答案

中考数学总复习《二次函数与菱形存在性问题》专题训练-附答案

中考数学总复习《二次函数与菱形存在性问题》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.综合与探究:如图,在平面直角坐标系中,二次函数228y x x =--的图像与x 轴交于A ,B 两点,点A 在点B 的左侧,与y 轴交于点C ,点P 是直线BC 下方抛物线上的一个动点.(1)求点A ,B ,C 的坐标;(2)连接PO ,PC ,并将POC △沿y 轴对折,得到四边形POP C '.是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时点P 的坐标和四边形ABPC 的最大面积. 2.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为()3,0,与y 轴交于()0,3C -点,点P 是直线BC 下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO 、PC ,并把POC △沿CO 翻折,得到四边形POP C ',那么是否存在点P ,使四边形POP C '为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积. 3.如图,一次函数3y x =-+的图像与x 轴和y 轴分别交于点B 和点C ,二次函数2y x bx c =-++的图像经过B ,C 两点,并与x 轴交于点A .点()m 0M ,是线段OB 上一个动点(不与点O 、B 重合),过点M 作x 轴的垂线,分别与二次函数图像和直线BC 相交于点D 和点E ,连接CD .(1)求这个二次函数的解析式;(2)点F 是平面内一点,是否存在以C ,D ,E ,F 为顶点的四边形为菱形?若存在,请求出点M 的坐标;若不存在,请说明理由.4.如图,已知二次函数2y ax 2x c =++的图象经过点(03)C ,,与x 轴分别交于点A ,点(30)B ,.点P 是直线BC 上方的抛物线上一动点.(1)求二次函数2y ax 2x c =++的表达式;(2)连接PO PC ,,并把POC △沿y 轴翻折,得到四边形POP C '.若四边形POP C '为菱形,请求出此时点P 的坐标;(3)当点P 运动到什么位置时,四边形ACPB 的面积最大?求出此时P 点的坐标和四边形ACPB 的最大面积. 5.如图,在平面直角坐标系中,二次函数2y x bx c =++的图像与x 轴交于A B 、两点,B 点的坐标为()3,0,与y 轴交于点()0,3C -,点P 是直线BC 下方抛物线上的任意一点.(1)求这个二次函数2y x bx c =++的解析式;(2)如果点P 在运动过程中,能使得以P C B 、、为顶点的三角形面积最大,请求出此时点P 的坐标; (3)连接,PO PC ,并将POC △沿y 轴对折,得到四边形POP C ',如果四边形POP C '为菱形,求点P 的坐标. 6.二次函数2(0)y ax bx c a =++≠经过点(0,2)A ,(1,0)B -和(4,0)C .(1)求该二次函数的解析式; (2)设点D 的横坐标为302m m ⎛⎫<<⎪⎝⎭,过点D 作DE y ∥轴交直线AC 于点E ,DG x ∥轴交对称轴于点G ,以DG 、DE 为边构造矩形DEFG ,当矩形DEFG 的周长最大时,求点D 的坐标;(3)将抛物线向右平移1个单位,向上平移2个单位后得到新抛物线y ',y '与直线2x =交于点M ,点N 为平移后抛物线y '对称轴上一点,点Q 为平面内任意一点.在第(2)问条件下,当点D 、M 、N 、Q 构成的四边形为菱形时,直接写出点Q 的坐标.7.在平面直角坐标系中,已知点A 在y 轴正半轴上,如果四个点()0,0、()0,2和()1,1、()1,1-中恰有三个点在二次函数2y ax =(a 为常数且0a ≠)的图象上.(1)直接写出a 的值;(2)如图1,点P 、Q 在二次函数图象上,且在y 轴异侧,连接PQ 交y 轴于点()0,4A ,46POQ S =△设点P 、Q 的横坐标1x ,2x (12x x <)为一元二次方程220x mx m -+=的两个根,求m 的值;(3)如图2,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长.8.综合与探究如图,已知二次函数()220y ax bx a =++≠的图像与x 轴交于1,0A ,B 两点,与y 轴交于点C ,直线122y x =-+经过B ,C 两点 (1)求二次函数的解析式;(2)点P 是线段 BC 上一个动点,过点P 作x 轴的垂线于点Q ,交抛物线于点D ,当点Q 是线段PD 的中点时,求点P 的坐标;(3)在(2)的条件下,若点M 是直线BC 上一点,N 是平面内一点,当以P ,D ,M ,N 为顶点的四边形是菱形时,请直接写出点N 的坐标.9.综合与探究如图,二次函数23y ax bx =++与x 轴相交于点(2,0)A -和点(4,0)B ,与y 轴相交于点C ;连接BC ,点P 为BC 上方抛物线上的一个动点,过点P 作PE BC ⊥于点E .(1)求抛物线的表达式(2)设点P 的横坐标为m (04)m <<,试用含m 的代数式表示线段PE 的长;并求出PE 长度的最大值. (3)连接AC ,点M 是x 轴上的一个动点,点N 是平面内任意一点;是否存在这样的点M 、N ,使得以A 、C 、M 、N 为顶点的四边形为菱形.若存在,请直接写出点N 的坐标;若不存在,请说明理由.10.如图,在平面直角坐标系中,二次函数y =x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),与y 轴交于C (0,﹣3)点,点P 是直线BC 下方的抛物线上一动点. (1)分别求出图中直线和抛物线的函数表达式;(2)连接PO 、PC ,并把△POC 沿C O 翻折,得到四边形POP ′C ,那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请求出此时点P 的坐标;若不存在,请说明理由.11.在平面直角坐标系中,二次函数223432333y x x =--的图像与x 轴交于,A B 两点,与y 轴交于点C ,连接,AC BC .(1)求,A B 两点坐标及直线BC 的解析式;(2)点P 是直线BC 下方抛物线上一点,当BPC ∆面积最大时,在x 轴下方找一点Q ,使得2AQ BQ PQ ++最小,记这个最小值是d ,请直接写出此时点P 的坐标及2d .(3)在(2)的条件下,连接AP 交y 轴于点R ,将抛物线沿射线PA 平移,平移后的抛物线记为'y , 当'y 经过点A 时,将抛物线'y 位于x 轴下方部分沿x 轴翻折,翻折后所得的曲线记为N ,点'D 为曲 线N 的顶点,将AOP ∆沿直线AP 平移,得到'''A O P ∆,在平面内是否存在点T ,使以点',,',T D R O 为顶点的四边形为菱形?若存在,请直接写出'O 的横坐标;若不存在,请说明理由.12.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边)(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明); (3)抛物线1L ,2L 均会分别经过某些定点; △求所有定点的坐标;△若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?13.在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()0,00,21,11,1-、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上. △=a ________;△如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长; △如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式. 14.综合与探究如图,二次函数24y ax bx =++的图像经过x 轴上的点()6,0A 和y 轴上的点B ,且对称轴为直线72x =.(1)求二次函数的解析式.(2)点E 位于抛物线第四象限内的图像上,以OE ,AE 为边作平行四边形OEAF .当平行四边形OEAF 为菱形时,求点F 的坐标与菱形OEAF 的面积.(3)连接AB ,在直线AB 上是否存在一点P ,使得AOP 与AOB 相似,若存在,请直接写出点P 坐标,若不存在,请说明理由.15.如图,在平面直角坐标系中,O 为坐标原点,一次函数21y x =--与y 轴交于点A ,若点A 关于x 轴的对称点D 在一次函数12y x b =+的图象上.(1)求b 的值;(2)若一次函数21y x =--与一次函数y x =-交于B ,且点B 关于原点的对称点为点C .求过A ,B ,C 三点对应的二次函数表达式;(3)P 为抛物线上一点,它关于原点的对称点为点Q . △当四边形PBQC 为菱形时,求点P 的坐标;△若点P 的横坐标为()11t t -<<,当t 为何值时,四边形PBQC 的面积最大?请说明理由.参考答案:1.(1)(2,0)- (4,0) (0,8)- (2)存在,(15,4)+- (3)(2,8)-,322.(1)2=23y x x -- (2)存在 2103,22⎛⎫+- ⎪ ⎪⎝⎭(3)P 点的坐标为315,24⎛⎫- ⎪⎝⎭,四边形ABPC 的面积的最大值为7583.(1)223y x x =-++;(2)存在,点M 的坐标为()1,0或()2,0或()32,0-.4.(1)223y x x =-++ (2)点P 的坐标为53122, (3)点P 的坐标315,24⎛⎫ ⎪⎝⎭,四边形ACPB 面积的最大值为7585.(1)2=23y x x --;(2)BPC △的面积最大时,P 点的坐标为31524⎛⎫- ⎪⎝⎭,;(3)P 点的坐标为210322⎛⎫+- ⎪ ⎪⎝⎭,.6.(1)213222y x x =-++;(2)()1,3;(3)点Q 的坐标为19,22⎛⎫ ⎪⎝⎭或3619,22⎛⎫+ ⎪ ⎪⎝⎭或3619,22⎛⎫- ⎪ ⎪⎝⎭7.(1)1a =; (2)2m =- (3)2338.(1)215222y x x =-+;(2)P (2,1);(3)4225,1555N ⎛⎫--+ ⎪⎝⎭422+5,1555N ⎛⎫-- ⎪⎝⎭ ()0,0N 1811,55N ⎛⎫⎪⎝⎭9.(1)233384y x x =-++;(2)236 105PE m m =-+,最大值为65;(3)存在点M 、N ,使得以A 、C 、M 、N 为顶点的四边形为菱形.点N 的坐标有4个,分别为:()13,3- ()13,3 (0,3)- 13,34⎛⎫- ⎪⎝⎭10.(1)y =x ﹣3,y =x 2﹣2x ﹣3.(2)存在,点P 2103,22⎛⎫+- ⎪ ⎪⎝⎭11.(1)A (−1,0),B (3,0) 23233yx ;(2)P (32,532-),d 2=46203+;(3)'O 的横坐标为:512-或512--或920112或920112或115.12.(1)()1,41m --+ 13x -<<;(2)四边形AMDN 是矩形;(3)△所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或1,1;△抛物线2L 应平移的距离是423+或423-. 13.(1)△1;△233;△是,值为1 (2)()1a n m -=或0m n += 14.(1)2214433y x x =-+ (2)(3,4)F ;菱形OEAF 的面积为24(3)存在,点P 坐标为(0,4)或2436,1313⎛⎫⎪⎝⎭15.(1)1b = (2)21y x x =--(3)△()12,12--或()12,12++;△当0=t 时,四边形PBQC 的面积最大。

专题24 二次函数中的菱形问题(解析版)

专题24 二次函数中的菱形问题(解析版)

专题24 二次函数中的菱形问题1、如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)根据图像,直接写出不等式x2+bx+c>0的解集:.(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为:.【答案】(1)y=x2-4x+3;(2)x<1或x>3;(3)(2,-1)【解析】(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).把A、B两点的坐标代入得:{1+b+c=09+3b+c=0,解得:{b=−4c=3,∴抛物线的函数表达式为y=x2-4x+3;.(2)由图象得:不等式x2+bx+c>0,即y>0时,x<1或x>3;故答案为:x<1或x>3;(3)(2,-1).y=x2-4x+3=(x-2)2-1,∴顶点坐标为(2,-1),当E、D点在x轴的上方,即DE∥AB,AE=AB=BD=DE=2,此时不合题意,如图,根据“菱形ADBE 的对角线互相垂直平分,抛物线的对称性”得到点D 是抛物线y=x 2-4x+3的顶点坐标,即(2,-1), 故答案是:(2,-1).2、如图,已知抛物线23)0(y a bx a =++≠经过点1,0A 和点()3,0B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)若点P 是直线BC 下方的抛物线上一动点(不点B ,C 重合),过点P 作y 轴的平行线交直线BC 于点D ,设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长;②连接PB ,PC ,求PBC ∆的面积最大时点P 的坐标;(3)设抛物线的对称轴与BC 交于点E ,点M 是抛物线的对称轴上一点,N 为y 轴上一点,是否存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形?如果存在,请直接写出点M 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣4x +3;(2)①用含m 的代数式表示线段PD 的长为﹣m 2+3m ;②△PBC 的面积最大时点P 的坐标为(32,﹣34);(3)存在这样的点M 和点N ,使得以点C 、E 、M 、N 为顶点的四边形是菱形.点M 的坐标为M 1(2,3),M 2(2,1﹣),M 3(2,). 【解析】(1)∵抛物线y =ax 2+bx+3(a≠0)经过点A (1,0)和点B (3,0),与y 轴交于点C , ∴309330a b a b ++=⎧⎨++=⎩,解得14a b =⎧⎨=-⎩,∴抛物线解析式为y =x 2﹣4x+3; (2)①设P (m ,m 2﹣4m+3),将点B (3,0)、C (0,3)代入得直线BC 解析式为y BC =﹣x+3. ∵过点P 作y 轴的平行线交直线BC 于点D ,∴D(m,﹣m+3),∴PD=(﹣m+3)﹣(m2﹣4m+3)=﹣m2+3m.答:用含m的代数式表示线段PD的长为﹣m2+3m.②S△PBC=S△CPD+S△BPD=12OB•PD=﹣32m2+92m=﹣32(m﹣32)2+278.∴当m=32时,S有最大值.当m=32时,m2﹣4m+3=﹣34.∴P(32,﹣34).答:△PBC的面积最大时点P的坐标为(32,﹣34).(3)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形.根据题意,点E(2,1),∴EF=CF=2,∴EC=2,根据菱形的四条边相等,∴,∴M(2,1-)或(2,)当EM=EF=2时,M(2,3)∴点M的坐标为M1(2,3),M2(2,1﹣),M3(2,).3、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方抛物线上的任意一点.(1)求这个二次函数y=x2+bx+c的解析式.(2)连接PO,PC,并将△POC沿y轴对折,得到四边形POP′C,如果四边形POP′C为菱形,求点P的坐标.(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与△AOC相似,请求出此时点P的坐标.【答案】(1)y=x 2﹣2x ﹣3(2)(2)(2+√102,-32)(3)P 、C 、B 为顶点的三角形与△AOC 相似,此时点P 的坐标(1,﹣4)【解析】(1)将B 、C 点代入函数解析式,得:{9+3b +c =0c =−3 ,解得:{b =−2c =−3 ,这个二次函数y =x 2+bx +c的解析式为y =x 2﹣2x ﹣3;(2)∵四边形POP ′C 为菱形,∴OC 与PP ′互相垂直平分,∴y P =−OC 2=−32,即x 2﹣2x ﹣3=−32,解得:x 1=2+√102,x 2=2−√102(舍),P (2+√102,−32);(3)∵∠PBC <90°,∴分两种情况讨论:①如图1,当∠PCB =90°时,过P 作PH ⊥y 轴于点H ,BC 的解析式为y =x ﹣3,CP 的解析式为y =﹣x ﹣3,设点P 的坐标为(m ,﹣3﹣m ),将点P 代入代入y ═x 2﹣2x ﹣3中,解得:m 1=0(舍),m 2=1,即P (1,﹣4);AO =1,OC =3,CB =√32+32=3√2,CP =√12+(−4+3)2=√2,此时BC CP=CO AO=3,△AOC ∽△PCB ;②如图2,当∠BPC =90°时,作PH ⊥y 轴于H ,作BD ⊥PH 于D . ∵PC ⊥PB ,∴△PHC ∽△BDP ,∴PH HC=BD PD.设点P 的坐标为(m ,m 2﹣2m ﹣3),则PH =m ,HC =-(m 2﹣2m ﹣3)-(-3)=-m 2+2m ,BD =-(m 2﹣2m ﹣3),PD =3-m ,∴m−m 2+2m=−(m 2−2m−3)3−m,∴1m−2=−(m +1),解得:m =1+√52或1−√52(舍去).当m =1+√52时,m 2﹣2m ﹣3=−5+√52.∵△PHC ∽△BDP ,∴PCPB =HC PD =−m 2+2m 3−m =√5−15−√5=√5=√55≠COAO =3,以P 、C 、B 为顶点的三角形与△AOC 不相似.综上所述:P 、C 、B 为顶点的三角形与△AOC 相似,此时点P 的坐标(1,﹣4).4、如图,在平面直角些标系中,二次函数y =ax 2+bxA (﹣1,0),C (2,0),与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求二次函数的表达式及其顶点的坐标; (2)若P 为y 轴上的一个动点,连接PD ,求12PB +PD 的最小值; (3)M (x ,t )为抛物线对称轴上一个动点,若平面内存在点N ,使得以A 、B 、M 、N 为顶点的四边形为菱形,则这样的点N 共有 个. 【答案】(1)2y x x =-1,2;(2(3)5个 【解析】(1)∵二次函数2y ax bx =+A (﹣1,0)C (2,0),∴0420a b a b ⎧-=⎪⎨+-=⎪⎩,解得:2a b ⎧=⎪⎪⎨⎪=⎪⎩∴二次函数的表达式为2y x x =-∵y =2212222x x x ⎫-=--⎪⎝⎭∴抛物线的顶点坐标为(1,2; (2)如图,连接AB ,作DH ⊥AB 于H ,交OB 于P ,此时12PB +PD 最小.理由:∵OA =1,OB ,∴OA tan ABO OB ∠==,∵303tan ︒=, ∴∠ABO =30°, ∴PH =12PB , ∴12PB +PD =PH +PD =DH , ∴此时12PB +PD 最短(垂线段最短);∵抛物线的顶点坐标为(1,2, ∴()13122AD =--=,∵∠ABO =30°, ∴∠HAD =60°,在Rt △ADH 中,∵∠AHD =90°,AD =32,∠HAD =60°,∴sin60°=DH AD =∴DH =4,∴12PB +PD (3)①以A 为圆心AB 为半径画弧,因为AB >AD ,故此时圆弧与对称轴有两个交点,且AM =AB ,即M 点存在两个,所以满足条件的N 点有两个; ②以B 为圆心AB 为半径画弧,因为12AB >,故此时圆弧与对称轴有两个交点,且BM =AB ,即M 点有两个,所以满足条件的N 点有两个;③线段AB 的垂直平分线与对称轴有一个交点,此时AM =BM ,因为M 点有一个,所以满足条件的N 点有一个;则满足条件的N 点共有5个, 故答案为:5.5、如图,在平面直角坐标系中,二次函数y =﹣x 2+bx +c 的图象与x 轴交于A 、B 两点,A 点的坐标为(﹣3,0),B 点在原点的左侧,与y 轴交于点C (0,3),点P 是直线BC 上方的抛物线上一动点 (1)求这个二次函数的表达式;(2)连接PO 、PC ,并把△POC 沿CO 翻折,得到四边形POP ′C (如图1所示),那么是否存在点P ,使四边形POP ′C 为菱形?若存在,请此时点P 的坐标:若不存在,请说明理由; (3)当点P 运动到什么位置时,四边形ABCP 的面积最大,并求出其最大值.【答案】(1)y =﹣x 2﹣2x +3;(2)存在.P 点的坐标为(﹣2,32);(3)P 点的坐标为(﹣32,154),四边形ABPC 的面积的最大值为758. 【方法引导】(1)利用待定系数法直接将B、C两点直接代入y=x2+bx+c求解b,c的值即可得抛物线解析式;(2)利用菱形对角线的性质及折叠的性质可以判断P点的纵坐标为﹣32,令y=﹣32即可得x2﹣2x﹣3=﹣32,解该方程即可确定P点坐标;(3)由于△ABC的面积为定值,当四边形ABCP的面积最大时,△BPC的面积最大;过P作y轴的平行线,交直线BC于Q,交x轴于F,易求得直线AC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC 的面积,由此可得到关于四边形ABCP的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABCP的最大面积及对应的P点坐标.【解析】(1)∵C点坐标为(0,3),∴y=﹣x2+bx+3,把A(﹣3,0)代入上式得,0=9﹣3b+3,解得,b=﹣2,∴该二次函数解析式为:y=﹣x2﹣2x+3;(2)存在.如图1,设P点的坐标为(x,﹣x2﹣2x+3),PP′交CO于E,当四边形POP'C为菱形时,则有PC=PO,连接PP′,则PE⊥CO于E,∴OE=CE=32,令﹣x2﹣2x+3=32,解得,x1=﹣22,x2=22-(不合题意,舍去).∴P,32).(3)如图2,过点P作y轴的平行线与BC交于点Q,与OA交于点F,设P(x,﹣x2﹣2x+3),设直线AC的解析式为:y=kx+t,则303k tt-+=⎧⎨=⎩,解得:13kt=⎧⎨=⎩,∴直线AC的解析式为y=x+3,则Q点的坐标为(x,x+3),当0=﹣x2﹣2x+3,解得:x1=1,x2=﹣3,∴AO=3,OB=1,则AB=4,S四边形ABCP=S△ABC+S△APQ+S△CPQ=12AB•OC+12QP•OF+12QP•AF=12×4×3+12[(﹣x2﹣2x+3)﹣(x+3)]×3=﹣32(x+32)2+758.当x=﹣32时,四边形ABCP的面积最大,此时P点的坐标为(﹣32,154),四边形ABPC的面积的最大值为758.【思路引导】此题考查了二次函数综合题,需要掌握二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解.6、如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC ⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由【答案】(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】解:(1)x=0时,y=1,∴点A的坐标为:(0,1),∵BC⊥x轴,垂足为点C(3,0),∴点B的横坐标为3,当x=3时,y=52,∴点B的坐标为(3,52),设直线AB的函数关系式为y=kx+b,1532bk b=⎧⎪⎨+=⎪⎩,解得,121kb⎧=⎪⎨⎪=⎩,则直线AB的函数关系式112y x=+(2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1),当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3);(3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形, ①当t=1时,MP=32,PC=2, ∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形.7、已知,在平面直角坐标系内一直线l 1:y =-x +3分别与x 轴、y 轴交于A 、B 两点,抛物线y =-x 2+bx +c 经过A 、B 两点,y 轴右侧部分抛物线上有一动点C ,过点C 作y 轴的平行线交直线l 1于点D .(1)求抛物线的函数表达式;(2)如图1,C 在第一象限,求以CD 为直径的⊙E 的最大面积,并判断此时⊙E 与抛物线的对称轴是否相切?若不相切,求出使得⊙E 与该抛物线对称轴相切时点C 的横坐标;(3)坐标平面内是否存在点M ,使B 、C 、D 、M 为顶点的四边形为菱形?若存在,直接写出点M 的坐标;不存在,请说明理由.【答案】(1)y =−x 2+2x +3;(2)不相切, C 的横坐标分别为2和5−√172;(3)M (0,1),(2,3)(0,1-3√2),(0,1+3√2). 【解析】解:(1)直线l 1:y =-x +3分别与x 轴、y 轴交于A 、B 两点,可得A 点(3,0),B 点(0,3),将A 、B 两点坐标代入y =-x 2+bx +c ,可得 {0=−9+3b +c 3=c ,可得b=2,c=3∴抛物线的函数表达式y =−x 2+2x +3; (2)①可得抛物线对称轴为:x =−b2a =1,∵ C 在第一象限,以CD 为直径的⊙E 的最大面积,即CD 最长时,圆的面积最大, 设直线CD 的横坐标为t ,0<t <3, ∴D 点坐标(t ,-t+3),C 点坐标(t ,-t 2+2t+3),∴ |CD|=-t 2+2t+3-(-t+3)= -t2+3t (0<t <3),∴当t=−b2a =32时,CD 最长,此时CD 最长为94,此时圆E 的半径为98,此时CD 与对称轴的距离为32-1=12≠98, 故不相切.②当CD 在对称轴右边时,即1<t <3时 |CD|= -t2+3t (1<t <3);圆E 的半径为t -1,可得|CD|=2r ;-t 2+3t=2(t -1),解得:t 1=-1(舍去);t 2=2;当CD 在对称轴左边时,即即0<t <1时, 有-t 2+3t=2(1-t ),解得:t 1=5+√172(舍去),t 2=5−√172;综上所述:t=2或t=5−√172,⊙E 与该抛物线对称轴相切.(3)存在,由菱形性质可得M 点坐标(0,1),(2,3)(0,1-3√2),(0,1+3√2).8、如图,二次函数y =−x 2+3x +m 的图象与x 轴的一个交点为B(4,0),另一个交点为A ,且与y 轴相交于C 点(1)求m 的值及C 点坐标;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由(3)P 为抛物线上一点,它关于直线BC 的对称点为Q ,当四边形PBQC 为菱形时,求点P 的坐标(直接写出答案);【答案】(1)m =4, C(0,4) (2) 存在, M(2,6)(3)P 点坐标为(1+√5,1+√5)或(1−√5,1−√5)【解析】解:(1) 将点B(4,0)的坐标代入二次函数y =−x 2+3x +m ,即−42+3×4+m =0,解得m =4,故二次函数解析式为y =−x 2+3x +4,令x =0,解得y =4,故C 点坐标为(0,4); (2)存在,理由:∵B(4,0),C(0,4)∴直线BC 的解析式为y =−x +4,当直线BC 向上平移b 单位后和抛物线只有一个公共点时,△MBC 面积最大,∴{y =−x +4+b y =−x 2+3x +4整理得:x 2−4x +b =0 ∴∆=16−4b =0,∴b =4 ∴{x =2y =6 ∴M(2,6)(3)如图2、图3所示,连接PQ交BC于点G。

二次函数存在性问题专题复习(全面典型含答案)

二次函数存在性问题专题复习(全面典型含答案)

中考数学专题复习——存在性问题存在性问题是指判断满足某种条件的事物是否存在的问题,这类问题的知识覆盖面较广,综合性较强,题意构思非常精巧,解题方法灵活,对学生分析问题和解决问题的能力要求较高,是近几年来包括深圳在内各地中考的“热点”。

这类题目解法的一般思路是:假设存在→推理论证→得出结论。

若能导出合理的结果,就做出“存在”的判断,导出矛盾,就做出不存在的判断。

以下为几种典型的二次函数中出现的存在性问题,讲解后希望各位考生在以后的考试中如果遇到此类型时能够很顺畅的把过程写下来。

一、二次函数中相似三角形的存在性问题1.(2011枣庄10分)如图,在平面直角坐标系xoy 中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,顶点为D. (1)写出h k 、的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.(2011临沂13分)如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存在性问题3. (2011日照10分)如图,抛物线()20y ax bx a >=+与双曲线ky x=相交于点A ,B .已知点B 的坐标为(-2,-2),点A 在第一象限内,且tan ∠AOX 错误!未找到引用源。

中考数学压轴专练专题08 二次函数与菱形存在型问题(学生版)

中考数学压轴专练专题08 二次函数与菱形存在型问题(学生版)

【典例分析】例1 如图,在平面直角坐标系中,直线AB 和抛物线交于点A (-4,0),B (0,4),且点B 是抛物线的顶点.(1)求直线AB 和抛物线的解析式.(2)点P 是直线上方抛物线上的一点,求当△PAB 面积最大时点P 的坐标.(3)M 是直线AB 上一动点,在平面直角坐标系内是否存在点N ,使以O 、B 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由. 例2如图,抛物线的图象经过点A (﹣2,0),点B (4,0),点D (2,4),与y 轴交于点C ,作直线BC ,连接AC ,CD .(1)求抛物线的函数表达式;(2)E 是抛物线上的点,求满足∠ECD=∠ACO 的点E 的坐标;(3)点M 在y 轴上且位于点C 上方,点N 在直线BC 上,点P 为第一象限内抛物线上一点,若以点C ,M ,N ,P 为顶点的四边形是菱形,求菱形的边长.例3如图,已知点A (-2,4) 和点B (1,0)都在抛物线2y mx 2mx n =++上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.例4如图,在平面直角坐标系中,已知抛物线与轴交于O点、A点,B为抛物线上一点,C为y轴上一点,连接BC,且BC//OA,已知点O(0,0),A(6,0),B(3,m),AB=.(1)求B点坐标及抛物线的解析式.,(2)M是CB上一点,过点M作y轴的平行线交抛物线于点E,求DE的最大值;(3)坐标平面内是否存在一点F,使得以C、B、D、F为顶点的四边形是菱形?若存在,求出符合条件的点F坐标;若不存在,请说明理由.例5如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x 轴于点E,已知OB=OC=6.(1)求抛物线的解析式及点D的坐标;(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.例6如图(1),已知菱形的边长为,点在轴负半轴上,点在坐标原点,点的坐标为(,),抛物线顶点在边上,并经过边的中点.(1)求这条抛物线的函数解析式;(2)点关于直线的对称点是,求点到点的最短距离;(3)如图(2)将菱形以每秒个单位长度的速度沿轴正方向匀速平移,过点作于点,交抛物线于点,连接、.设菱形平移的时间为秒(),问是否存在这样的,使与相似?若存在,求出的值;若不存在,请说明理由.【变式训练】1.如图,在平面直角坐标系中,点A(,0)是轴上一点,以OA为对角线作菱形OBAC,使得60°,现将抛物线沿直线OC平移到,则当抛物线与菱形的AB边有公共点时,则m的取值范围是()A.B.C.D.2.直线122y x =+与y 轴交于点A ,与直线12y x =-交于点B ,以AB 为边向右作菱形ABCD ,点C 恰与原点O 重合,抛物线()2y x h k =-+的顶点在直线12y x =-上移动,若抛物线与菱形的边AB 、BC 都有公共点,则h 的取值范围是( )A .122h -≤≤B .21h -≤≤C .312h -≤≤D .112h -≤≤ 3.如图1,菱形ABCD 的对角线交于点O ,AC=2BD ,点P 是 AO 上一个动点,过点P 作AC 的垂线交菱形的边于M ,N 两点.设AP =x ,△OMN 的面积为y ,表示y 与x 的函数关系大致如图2所示的抛物线.(1)图2所示抛物线的顶点坐标为( , ) ; (2)菱形ABCD 的周长为 . 4.二次函数223y x =的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2017个菱形的周长=_____________.5.如图,在平面直角坐标系中,菱形ABCD 的三个顶点A ,B ,D 均在抛物线y=ax 2﹣4ax+3(a <0)上.若点A 是抛物线的顶点,点B 是抛物线与y 轴的交点,则点D 的坐标为__.6.如图,在平面直角坐标系中,O 是坐标原点,菱形OABC 的顶点A (3,4),C 在x 轴的负半轴,抛物线y=﹣(x ﹣2)2+k 过点A . (1)求k 的值;(2)若把抛物线y=﹣(x ﹣2)2+k 沿x 轴向左平移m 个单位长度,使得平移后的抛物线经过菱形OABC 的顶点C .试判断点B 是否落在平移后的抛物线上,并说明理由.7.如图,已知点A (-2,4) 和点B (1,0)都在抛物线y =mx 2+2mx +n 上.(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形AA B B ''为菱形,求平移后抛物线的表达式;(3)试求出菱形AA B B ''的对称中心点M 的坐标.8.如图1,抛物线()221y ax a x =+-,其中(0)a >,点A (-2,m )在该抛物线上,过点A 作直线l ∥xB AO11--xy轴,与抛物线交于另一点B,与y轴交于点C.(1)求m的值.(2)当a=2时,求点B的坐标.(3)如图2,以OB为对角线作菱形OPBQ,顶点P在直线l上,顶点Q在x轴上.①若PB=2AP,求a的值.②菱形OPBQ的面积的最小值是.9.如图,抛物线C1:y=﹣49(x+3)2与x,y轴分别相交于点A,B,将抛物线C1沿对称轴向上平移,记平移后的抛物线为C2,抛物线C2的顶点是D,与y轴交于点C,射线DC与x轴相交于点E,(1)求A,B点的坐标;(2)当CE:CD=1:2时,求此时抛物线C2的顶点坐标;(3)若四边形ABCD是菱形.①此时抛物线C2的解析式;②点F在抛物线C2的对称轴上,且点F在第三象限,点M在抛物线C2上,点P是坐标平面内一点,是否存在以A,F,P,M为顶点的四边形与菱形ABCD相似,并且这个菱形以A为顶点的角是钝角,若存在求出点F的坐标,若不存在请说明理由.10.如图,抛物线4212--=x x y 与坐标轴相交于A 、B 、C 三点,P 是线段AB 上一动点(端点除外),过P 作AC PD //,交BC 于点D ,连接CP .(1)直接写出A 、B 、C 的坐标; (2)求抛物线4212--=x x y 的对称轴和顶点坐标; (3)求PCD ∆面积的最大值,并判断当PCD ∆的面积取最大值时,以PA 、PD 为邻边的平行四边形是否为菱形.11.如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+c (a >0)与x 轴交于点O 、M .对称轴为直线x=2,以OM 为直径作圆A ,以OM 的长为边长作菱形ABCD ,且点B 、C 在第四象限,点C 在抛物线对称轴上,点D 在y 轴负半轴上;(1)求证:4a+b=0;(2)若圆A 与线段AB 的交点为E ,试判断直线DE 与圆A 的位置关系,并说明你的理由; (3)若抛物线顶点P 在菱形ABCD 的内部且∠OPM 为锐角时,求a 的取值范围.12.如图,在平面直角坐标系xOy 中,已知抛物线y=x 2+bx+c 经过A (0,3),B (1,0)两点,顶点为M . (1)求b 、c 的值;(2)若只沿y 轴上下平移该抛物线后与y 轴的交点为A 1,顶点为M 1,且四边形AMM 1A 1是菱形,写出平移后抛物线的表达式.13.如图,已知抛物线2y x bx c =++与x 轴交于点A ,B ,AB=2,与y 轴交于点C ,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P 为对称轴上一动点,求△APC 周长的最小值;(3)设D 为抛物线上一点,E 为对称轴上一点,若以点A ,B ,D ,E 为顶点的四边形是菱形,则点D 的坐标为 .14.如图,的顶点坐标分别为,,,把沿直线翻折,点的对应点为,抛物线经过点,顶点在直线上.证明四边形是菱形,并求点的坐标;求抛物线的对称轴和函数表达式;在抛物线上是否存在点,使得与的面积相等?若存在,直接写出点的坐标;若不存在,请说明理由.15.如图1,已知菱形ABCD的边长为23,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(- 3,3),抛物线y=ax2+b(a≠0)经过AB、CD两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<3 )①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值范围.(写出答案即可)16.如图,已知抛物线y=ax2+bx﹣4与x轴交于A(﹣2,0),B(8,0)两点,与y轴交于点C,连接BC,以BC为一边,作菱形BDEC,使其对角线在坐标轴上,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求抛物线的解析式;(2)将抛物线向上平移n个单位,使其顶点在菱形BDEC内(不含菱形的边),求n的取值范围;(3)当点P在线段OB上运动时,直线l交BD于点M.试探究m为何值时,四边形CQMD是平行四边形,并说明理由.17.已知抛物线m 的顶点为(1,0),且经过点(0,1). (1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m 个单位,设得到的抛物线的顶点为A ,与x 轴的两个交点为B 、C (点B 在点C 的左侧),若△ABC 为等边三角形. ①求m 的值;②设点A 关于x 轴的对称点为点D ,在抛物线上是否存在点P ,使得以点P 、C 、B 、D 为顶点构成的四边形是菱形?若存在,请写出点P 的坐标;若不存在,请说明理由. 18.如图12,已知抛物线2y ax c 过点2,2,4,5,过定点0,2F 的直线:2l y kx 与抛物线交于A ,B 两点,点B 在点A 的右侧,过点B 作x 轴的垂线,垂足为C .(1)求抛物线的解析式;(2)当点B 在抛物线上运动时,判断线段BF 与BC 的数量关系(、、),并证明你的判断; (3)P 为y 轴上一点,以,,,B C F P 为顶点的四边形是菱形,设点0,P m ,求自然数m 的值;(4)若1k ,在直线l 下方的抛物线上是否存在点Q ,使得QBF △的面积最大,若存在,求出点Q 的坐标及QBF △的最大面积,若不存在,请说明理由.19.已知抛物线2y ax bx c =++的顶点为(1,0),且经过点(0,1).(1)求该抛物线对应的函数的解析式;(2)将该抛物线向下平移m(m>0)个单位,设得到的抛物线的顶点为A,与x轴的两个交点为B、C,若△ABC 为等边三角形.①求m的值;②设点A关于x轴的对称点为点D,在抛物线上是否存在点P,使四边形CBDP为菱形?若存在,写出点P 的坐标;若不存在,请说明理由.20.如图,已知点A (0,4) 和点B (3,0)都在抛物线上.(1)求、n;(2)向右平移上述抛物线,记平移后点A的对应点为D,点B的对应点为C,若四边形A BCD为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AC的交点为点E ,试在轴上找点F,使得以点C、E、F为顶点的三角形与△ ABE相似。

二次函数中的菱形、三角形存在性问题 学生版

二次函数中的菱形、三角形存在性问题 学生版

二次函数中的菱形、三角形存在性问题学生版简介这个文档将讨论二次函数中的菱形和三角形的存在性问题。

我们将探讨在何种情况下,二次函数图像可能呈现出菱形或三角形的形状。

菱形存在性问题当二次函数的方程为 $ax^2+bx+c=0$ 时,可以通过求解方程得到二次函数的根。

如果方程有两个不同的实根,我们可以预期函数图像将呈现出一个开口向下的U形。

然而,当方程有两个相同的实根时,即存在两个相同的解 $x_1=x_2$,函数图像将呈现出一个菱形的形状。

菱形形状的二次函数图像的特点是,函数在两个实根处的斜率为0。

这意味着函数图像在这两个点上的变化趋势为平行于x轴。

在这种情况下,函数图像没有顶点,而是一个平缓的平行四边形形状。

三角形存在性问题当二次函数的方程为 $ax^2+bx+c=0$ 时,如果方程有两个不同的虚根,即解为复数,我们可以预期函数图像将呈现出一个开口向上的U形。

然而,当方程有一个实根和一个虚根时,即存在一个复根和一个实根,函数图像将呈现出一个三角形的形状。

三角形形状的二次函数图像的特点是,函数在实根处的斜率不为0。

这意味着函数图像在这个实根点上的变化趋势不平行于x轴。

在这种情况下,函数图像有一个顶点,且图像从这个顶点开始呈现出一个向上开口的三角形形状。

总结在二次函数中,存在着菱形和三角形的图像形状。

当方程有两个相同的实根时,函数图像将呈现出一个菱形的形状;当方程有一个实根和一个虚根时,函数图像将呈现出一个三角形的形状。

这些特殊的图像形状提供了二次函数的一种变化和特性,我们可以通过观察方程的根来探索图像的形状。

希望这份文档能帮助你了解二次函数中的菱形和三角形存在性问题。

如果你有进一步的问题或需要详细的解释,请随时向老师或同学寻求帮助。

毕业班测试二次函数压轴题,菱形的存在性问题解题方法

毕业班测试二次函数压轴题,菱形的存在性问题解题方法

毕业班测试二次函数压轴题,菱形的存在性问题解题方法本题是齐齐哈尔建华区期中测试试卷,第25题二次函数压轴题,第三问面积比找点,两种情况,第四问垂直平分线上的找点对学生造成困扰,菱形的存在性通常构造方法,已知两点固定,可以做两圆一垂直平分线,与等腰三角形存在性问题构造方法类似,等腰三角形一对称就是菱形。

我们先看下题目:(这题敲了4个多小时,大家多支持)解题过程:解:(1)解方程:x(^2)-6x+5=0(x-5)(x-1)=0x[1]=5,x[2]=1∵p,q是方程x(^2)-6x+5=0的两实数根,且p<q∴p=1,q=5∴A(1,0),B(0,5)把A(1,0),B(0,5)代入抛物线y=-x(^2)+bx+c中解得:b=-4,c=5∴抛物线解析式为:y=-x(^2)-4x+5中(2)∵x=-(b/2a)=-2,A(1,0)∴C(-5,0),D(-2,9)过点D作DF⊥x轴交BC于点E∵OB=OC∴△OBC是等腰直角三角形∵EF∥BO∴EF=CF=3∴DE=6∵S[△BCD]=S[△DEC]+S[△DEB]=(1/2)DE*OC=(1/2)×6×5=15利用高相同,面积比转化到底边的比,设出未知数,表示点H坐标,代入函数解析式即可求解(3)设PH与BC交于点G①当S[△PCG]:S[△CGH]=2:3时设GP=CP=2a,则HG=3a∴OP=5-2a∴H(2a-5,5a)把点H的坐标代入y=-x(^2)-4x+5中,得-(2a-5)(^2)-4(2a-5)+5=5a-4a(^2)+20a-25-8a+20+5=5a4a(^2)-7a=0a(4a-7)=0a=0(舍去),a=(7/4)∴此时点P的坐标为(-(3/2),0)②当S[△PCG]:S[△CGH]=3:2时设GP=CP=3b,则HG=2b∴OP=5-3b∴H(3b-5,5b)把点H的坐标代入y=-x(^2)-4x+5中,得-(3b-5)(^2)-4(3b-5)+5=5b-9b(^2)+30b-25-12b+20+5=5b9(b^2)-13b=0b(9b-13)=0b=0(舍去),b=(13/9)∴此时点P的坐标为(-(2/3),0)第四问:点的存在性(4)菱形的存在性构造方法:两圆一垂直平分线①作CD的垂直平分线交CD于点E,交BC于M[1] 法一:补全图形,利用一线三垂直易证:△EFC∽△M[1]GE∵D(-2,9),C(-5,0)∴E(-3.5,4.5)∴EF=1.5tan∠FBE=(1/3)设GM[1]=x,则GE=3x∴4.5-x=1.5+3xx=(3/4)∴OH=(5/4),HM[1]=(15/4)∴M[1](-(5/4),(15/4))法二:利用相似比求解过点D作DF⊥x轴,作M[1]G⊥x轴∵D(-2,9),C(-5,0)∴CF=3,DF=9∴CD=3√(10)(1:3:√(10))∴CE=(3√(10)/2)∴CQ=15设CG=M[1]G=x,则GQ=3x∴x+3x=15x=(15/4)∴OG=(5/4)∴M[1](-(5/4),(15/4))以点C为圆心CD长为半径画圆,与BC分别交于点M[2],M[3] ②∵D(-2,9),C(-5,0)∴CF=3,DF=9∴CD=3√(10)∴CM[2]=3√(10)过点M[2]作M[2]K⊥x轴∴CK=M[2]K=3√(5)∴OK=3√(5)-5∴M[2](3√(5)-5,3√(5))③同理CM[3]=3√(10)∴M[3](-3√(5)-5,-3√(5))④以点D为圆心DC长为半径作圆交BC于点M[4] ∵D(-2,9),C(-5,0)∴CF=3,DF=9∴CD=DM[4]=3√(10)∵△DCF≌△DM[4]R∴M[4]R=3,DR=9∴M[4](7,12)∴存在点M,坐标为(-(5/4),(15/4))或(3√(5)-5,3√(5))或(-3√(5)-5,-3√(5))或(7,12)中考二次函数压轴题视频专栏:专栏中考二次函数压轴题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y正半轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】3.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.4.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.(1)求抛物线的表达式;(2)如图2,当t=1时,求S△ACP的面积;(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?5.如图,已知已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线的解析式(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标.(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M 的运动时间t的值;若不能,请说明理由.6.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q 两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.7.已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(,),对称轴是;(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.8.(2016 山东省威海市).如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E 是抛物线上的点,求满足∠ECD=∠ACO 的点E 的坐标;(3)点M 在y 轴上且位于点C 上方,点N 在直线BC 上,点P 为第一象限内抛物线上一点,若以点C ,M ,N ,P 为顶点的四边形是菱形,求菱形的边长.9. (2012 山东省烟台市) 如图, 在平面直角坐标系中,已知矩形ABCD 的三个顶点(10)B ,,(30)C ,,(34)D ,,以A 为顶点的抛物线2y ax bx c =++过点C ,动点P 从点A 出发,沿线段AB 向点B 运动.同时动点Q 从点C 出发,沿线段CD 向点D 运动,点P Q ,的运动速度均为每秒1个单位.运动时间为t 秒,过点P 作PE AB ⊥交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF AD ⊥于F ,交抛物线于点G ,当t 为何值时,ACG △的面积最大?最大值为多少? (3)在动点P Q ,运动的过程中,当t 何值时,在矩形ABCD 内(包括边界)存在点H ,使以C Q E H ,,,为顶点的四边形为菱形?请直接写出t 的值.10.(2012 青海省) 如图,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于(03)C -,点,点P 是直线BC 下方抛物线上的动点. (1)求这个二次函数表达式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP C ',那么是否存在点P ,使四边形POP C'为菱形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.二次函数之菱形的存在性参考答案1.如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y正半轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)过点B作BF⊥x轴于F,在Rt△BCF中∵∠BCO=45°,BC=12∴CF=BF=12∵C 的坐标为(﹣18,0)∴AB=OF=6∴点B的坐标为(﹣6,12).(2)过点D作DG⊥y轴于点G,∵AB∥DG,∴△ODG∽△OBA,∵===,AB=6,OA=12,∴DG=4,OG=8,∴D(﹣4,8),E(0,4)设直线DE解析式为y=kx+b(k≠0)∴∴;∴直线DE解析式为y=﹣x+4.(3)结论:存在.设直线y=﹣x+4分别与x轴、y轴交于点E、点F,则E(0,4),F(4,0),OE=OF=4,EF=4.如答图2所示,有四个菱形满足题意.①菱形OEP1Q1,此时OE为菱形一边.则有P1E=P1Q1=OE=4,P1F=EF﹣P1E=4﹣4.易知△P1NF为等腰直角三角形,∴P1N=NF=P1F=4﹣2;设P1Q1交x轴于点N,则NQ1=P1Q1﹣P1N=4﹣(4﹣2)=2,又ON=OF﹣NF=2,∴Q1(2,﹣2);②菱形OEP2Q2,此时OE为菱形一边.此时Q2与Q1关于原点对称,∴Q2(﹣2,2);③菱形OEQ3P3,此时OE为菱形一边.此时P3与点F重合,菱形OEQ3P3为正方形,∴Q3(4,4);④菱形OP4EQ4,此时OE为菱形对角线.由菱形性质可知,P4Q4为OE的垂直平分线,由OE=4,得P4纵坐标为2,代入直线解析式y=﹣x+4得横坐标为2,则P4(2,2),由菱形性质可知,P4、Q4关于OE或y轴对称,∴Q4(﹣2,2).综上所述,存在点Q,使以O、E、P、Q为顶点的四边形是菱形;点Q的坐标为:Q1(2,﹣2),Q2(﹣2,2),Q3(4,4),Q4(﹣2,2).2.如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时,求四边形POBE的面积;(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形?若存在,直接写出点N的坐标;若不存在,请说明理由.【温馨提示:考生可以根据题意,在备用图中补充图形,以便探究】【解答】解:(1)∵抛物线y=ax2+bx﹣2的对称轴是直线x=1,A(﹣2,0)在抛物线上,∴,解得:,抛物线解析式为y=x2﹣x﹣2;(2)令y=x2﹣x﹣2=0,解得:x1=﹣2,x2=4,当x=0时,y=﹣2,∴B(4,0),C(0,﹣2),设BC 的解析式为y=kx+b,则,解得:,∴y=x﹣2,设D(m,0),∵DP∥y轴,∴E(m,m﹣2),P(m,m2﹣m﹣2),∵OD=4PE,∴m=4(m2﹣m﹣2﹣m+2),∴m=5,m=0(舍去),∴D(5,0),P(5,),E(5,),∴四边形POBE的面积=S△OPD﹣S△EBD=×5×﹣1×=;(3)存在,设M(n,n﹣2),①以BD为对角线,如图1,∵四边形BNDM是菱形,∴MN垂直平分BD,∴n=4+,∴M(,),∵M,N关于x轴对称,∴N(,﹣);②以BD为边,如图2,∵四边形BNDM是菱形,∴MN∥BD,MN=BD=MD=1,过M作MH⊥x轴于H,∴MH2+DH2=DM2,即(n﹣2)2+(n﹣5)2=12,∴n1=4(不合题意),n2=5.6,∴N(4.6,),同理(n﹣2)2+(4﹣n)2=1,∴n1=4+(不合题意,舍去),n2=4﹣,∴N(5﹣,﹣),③以BD为边,如图3,过M作MH⊥x轴于H,∴MH2+BH2=BM2,即(n﹣2)2+(n﹣4)2=12,∴n1=4+,n2=4﹣(不合题意,舍去),∴N(5+,),综上所述,当N(,﹣)或(4.6,)或(5﹣,﹣)或(5+,),以点B,D,M,N为顶点的四边形是菱形.3.如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C (0,﹣8),点D是抛物线的顶点.(1)求抛物线的解析式及顶点D的坐标;(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.【解答】解:(1)将点A、点C的坐标代入抛物线的解析式得:,解得:a=1,c=﹣8.∴抛物线的解析式为y=x2﹣2x﹣8.∵y=(x﹣1)2﹣9,∴D(1,﹣9).(2)将y=0代入抛物线的解析式得:x2﹣2x﹣8=0,解得x=4或x=﹣2,∴B(4,0).∵y=(x﹣1)2﹣9,∴抛物线的对称轴为x=1,∴E(1,0).∵将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,∴EP为∠BEF的角平分线.∴∠BEP=45°.设直线EP的解析式为y=﹣x+b,将点E的坐标代入得:﹣1+b=0,解得b=1,∴直线EP的解析式为y=﹣x+1.将y=﹣x+1代入抛物线的解析式得:﹣x+1=x2﹣2x﹣8,解得:x=或x=.∵点P在第四象限,∴x=.∴y=.∴P(,).(3)设CD的解析式为y=kx﹣8,将点D的坐标代入得:k﹣8=﹣9,解得k=﹣1,∴直线CD的解析式为y=﹣x﹣8.设直线CB的解析式为y=k2x﹣8,将点B的坐标代入得:4k2﹣8=0,解得:k2=2.∴直线BC的解析式为y=2x﹣8.将x=1代入直线BC的解析式得:y=﹣6,∴F(1,﹣6).设点M的坐标为(a,﹣a﹣8).当MF=MB时,(a﹣4)2+(a+8)2=(a﹣1)2+(a+2)2,整理得:6a=﹣75,解得:a=﹣.∴点M的坐标为(﹣,).当FM=FB时,(a﹣1)2+(a+2)2=(4﹣1)2+(﹣6﹣0)2,整理得:a2+a﹣20=0,解得:a=4或a=﹣5.∴点M的坐标为(4,﹣12)或(﹣5,﹣3).综上所述,点M的坐标为(﹣,)或(4,﹣12)或(﹣5,﹣3).4.如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.(1)求抛物线的表达式;(2)如图2,当t=1时,求S△ACP的面积;(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?【解答】解:(1)∵抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,∴,解得:.∴抛物线的表达式为y=﹣x2+3x+4.(2)令x=0,则y=4,即点C的坐标为(0,4),∴BC==4.设直线BC的解析式为y=kx+4,∵点B的坐标为(4,0),∴0=4k+4,解得k=﹣1,∴直线BC的解析式为y=﹣x+4.当t=1时,CP=,点A(﹣1,0)到直线BC的距离h===,S△ACP=CP•h=××=.(3)①∵直线BC的解析式为y=﹣x+4,∴CP=t,OE=t,设P(t,﹣t+4),F(t,﹣t2+3t+4),(0≤t≤4)PF=﹣t2+3t+4﹣(﹣t+4)=﹣t2+4t,(0≤t≤4).当t=﹣=2时,PF取最大值,最大值为4.②∵△PCF沿CF折叠得到△P′CF,∴PC=P′C,PF=P′F,当四边形PFP′C是菱形时,只需PC=PF.∴t=﹣t2+4t,解得:t1=0(舍去),t2=4﹣.故当t=4﹣时,四边形PFP′C是菱形.5.如图,已知已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D,直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线的解析式(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标.(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M 的运动时间t的值;若不能,请说明理由.【解答】解:(1)∵点B(﹣2,m)在直线y=﹣2x﹣1上∴m=﹣2×(﹣2)﹣1=4﹣1=3,所以,点B(﹣2,3),又∵抛物线经过原点O,∴设抛物线的解析式为y=ax2+bx,∵点B(﹣2,3),A(4,0)在抛物线上,∴,解得:.∴抛物线的解析式为y=x2﹣x;(2)∵P(x,y)是抛物线上的一点,∴P(x,x2﹣x),若S△ADP=S△ADC,∵S△ADC=AD•OC,S△ADP=AD•|y|,又∵点C是直线y=﹣2x﹣1与y轴交点,∴C(0,﹣1),∴OC=1,∴|x2﹣x|=1,即x2﹣x=1,或x2﹣x=﹣1,解得:x1=2+2,x2=2﹣2,x3=x4=2,∴点P的坐标为P1(2+2,1)P2=(2﹣2,1),P3)2,1);(3)结论:存在.∵抛物线的解析式为y=x2﹣x,∴顶点E(2,﹣1),对称轴为x=2;点F是直线y=﹣2x﹣1与对称轴x=2的交点,∴F(2,﹣5),DF=5.又∵A(4,0),∴AE=.如右图所示,在点M的运动过程中,依次出现四个菱形:①菱形AEM1Q1.∵此时EM1=AE=,∴M1F=DF﹣DE﹣DM1=4﹣,∴t1=4﹣;②菱形AEOM2.∵此时DM2=DE=1,∴M2F=DF+DM2=6,∴t2=6;③菱形AEM3Q3.∵此时EM3=AE=,∴DM3=EM3﹣DE=﹣1,∴M3F=DM3+DF=(﹣1)+5=4+,∴t3=4+;④菱形AM4EQ4.此时AE为菱形的对角线,设对角线AE与M4Q4交于点H,则AE⊥M4Q4,∵易知△AED∽△M4EH,∴=,即=,得M4E=,∴DM4=M4E﹣DE=﹣1=,∴M4F=DM4+DF=+5=,∴t4=.综上所述,存在点M、点Q,使得以Q、A、E、M四点为顶点的四边形是菱形;时间t的值为:t1=4﹣,t2=6,t3=4+,t4=.6.如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q 两点,点Q在y轴的右侧.(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN 能否为菱形?若能,求出点N的坐标;若不能,请说明理由.【解答】解:(1)∵抛物线与y轴交于点C(0,﹣).∴a﹣3=﹣,解得:a=,∴y=(x+1)2﹣3当y=0时,有(x+1)2﹣3=0,∴x1=2,x2=﹣4,∴A(﹣4,0),B(2,0).(2)∵A(﹣4,0),B(2,0),C(0,﹣),D(﹣1,﹣3)∴S四边形ABCD=S△ADH+S梯形OCDH+S△BOC=×3×3+(+3)×1+×2×=10.从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:①当直线l边AD相交与点M1时,则S=×10=3,∴×3×(﹣y)=3∴y=﹣2,点M1(﹣2,﹣2),过点H(﹣1,0)和M1(﹣2,﹣2)的直线l的解析式为y=2x+2.②当直线l边BC相交与点M2时,同理可得点M2(,﹣2),过点H(﹣1,0)和M2(,﹣2)的直线l的解析式为y=﹣x﹣.综上所述:直线l的函数表达式为y=2x+2或y=﹣x﹣.(3)设P(x1,y1)、Q(x2,y2)且过点H(﹣1,0)的直线PQ的解析式为y=kx+b,∴﹣k+b=0,∴b=k,∴y=kx+k.由,∴+(﹣k)x﹣﹣k=0,∴x1+x2=﹣2+3k,y1+y2=kx1+k+kx2+k=3k2,∵点M是线段PQ的中点,∴由中点坐标公式的点M(k﹣1,k2).假设存在这样的N点如图,直线DN∥PQ,设直线DN的解析式为y=kx+k﹣3由,解得:x1=﹣1,x2=3k﹣1,∴N(3k﹣1,3k2﹣3)∵四边形DMPN是菱形,∴DN=DM,∴(3k)2+(3k2)2=()2+()2,整理得:3k4﹣k2﹣4=0,∵k2+1>0,∴3k2﹣4=0,解得k=±,∵k<0,∴k=﹣,∴P(﹣3﹣1,6),M(﹣﹣1,2),N(﹣2﹣1,1)∴PM=DN=2,∵PM∥DN,∴四边形DMPN是平行四边形,∵DM=DN,∴四边形DMPN为菱形,∴以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(﹣2﹣1,1).7.已知抛物线y=x2+1(如图所示).(1)填空:抛物线的顶点坐标是(0,1),对称轴是x=0(或y轴);(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PB⊥x轴,垂足为B.若△PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上.在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由.【解答】解:(1)顶点坐标是(0,1),对称轴是y轴(或x=O).(2)∵△PAB是等边三角形,∴∠ABO=90°﹣60°=30°.∴AB=20A=4.∴PB=4.解法一:把y=4代入y=x2+1,得x=±2.∴P1(2,4),P2(﹣2,4).解法二:∴OB==2∴P1(2,4).根据抛物线的对称性,得P2(﹣2,4).(3)∵点A的坐标为(0,2),点P的坐标为(2,4)∴设线段AP所在直线的解析式为y=kx+b ∴解得:∴解析式为:y=x+2设存在点N使得OAMN是菱形,∵点M在直线AP上,∴设点M的坐标为:(m,m+2)如图,作MQ⊥y轴于点Q,则MQ=m,AQ=OQ﹣OA=m+2﹣2=m∵四边形OAMN为菱形,∴AM=AO=2,∴在直角三角形AMQ中,AQ2+MQ2=AM2,即:m2+(m)2=22 解得:m=±代入直线AP的解析式求得y=3或1,当P点在抛物线的右支上时,分为两种情况:当N在右图1位置时,∵OA=MN,∴MN=2,又∵M点坐标为(,3),∴N点坐标为(,1),即N1坐标为(,1).当N在右图2位置时,∵MN=OA=2,M点坐标为(﹣,1),∴N点坐标为(﹣,﹣1),即N2坐标为(﹣,﹣1).当P点在抛物线的左支上时,分为两种情况:第一种是当点M在线段PA上时(PA内部)我们求出N点坐标为(﹣,1);第二种是当M点在PA的延长线上时(在第一象限)我们求出N点坐标为(,﹣1)∴存在N1(,1),N2(﹣,﹣1)N3(﹣,1),N4(,﹣1)使得四边形OAMN是菱形.8.(2016 山东省威海市).如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.分析(1)用待定系数法求出抛物线解析式即可.(2)分①点E在直线CD上方的抛物线上和②点E在直线CD下方的抛物线上两种情况,用三角函数求解即可;(3)分①CM为菱形的边和②CM为菱形的对角线,用菱形的性质进行计算;解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN 是平行四边形,连接PN 交CM 于点Q ,∵四边形CPMN 是菱形,∴PQ ⊥CM ,∠PCQ=∠NCQ ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ ,设点P (n ,﹣ n 2+n+4),∴CQ=n ,OQ=n+2,∴n+4=﹣n 2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.9. (2012 山东省烟台市) 如图, 在平面直角坐标系中,已知矩形ABCD 的三个顶点(10)B ,,(30)C ,,(34)D ,,以A 为顶点的抛物线2y ax bx c =++过点C ,动点P 从点A 出发,沿线段AB 向点B 运动.同时动点Q 从点C 出发,沿线段CD 向点D 运动,点P Q ,的运动速度均为每秒1个单位.运动时间为t 秒,过点P 作PE AB ⊥交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF AD ⊥于F ,交抛物线于点G ,当t 为何值时,ACG △的面积最大?最大值为多少?(3)在动点P Q ,运动的过程中,当t 何值时,在矩形ABCD 内(包括边界)存在点H ,使以C Q E H ,,,为顶点的四边形为菱形?请直接写出t 的值.解:(1)(14)A ,.由题意知,可设抛物线解析式为2(1)4y a x =-+.因抛物线过点(30)C ,,∴20(31)4a =-+.∴1a =-.所以抛物线的解析式为2(1)4y x =--+,即223y x x =-+-.(2)∵(14)A ,,(30)C ,,∴可求直线AC 的解析式为26y x =-+. 点(14)P t -,.将4y t =-代入26y x =-+中,解得点E 的横坐标为12t x =+. ∴点G 的横坐标为12t +,代入抛物线的解析式中, 可求点G 的纵坐标为244t -. ∴GE =224(4)444t t t ⎛⎫---=- ⎪⎝⎭. 又点A 到GE 的距离为2t ,C 到GE 的距离为22t -, 即1122222ACG AEG CEG t t S S S EG EG ⎛⎫=+=••+•- ⎪⎝⎭△△△ 21112(2)1224t t ⎛⎫=•-=-+ ⎪⎝⎭.当2t =时,ACG S △的最大值为1. (3)2013t =或2085t =-. 10.(2012 青海省) 如图,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于(03)C -,点,点P 是直线BC 下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP C ',那么是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.解:(1)将B 、C 两点的坐标代入2=++y x bx c 得 3=9=3b c c +-⎧⎨-⎩,解得=2=3b c -⎧⎨-⎩. 所以二次函数的表达式为:2=23y x x --.(2)假设抛物线上存在点P ,使得四边形POP C '为菱形.设P 点坐标为(x ,223x x --),连接PP '交CO 于点E .∵四边形POP C '为菱形,∴PC=PO ;PE ⊥CO . ∴OE=EC=32,∴P 点的纵坐标为32-, 即223x x --=32-, 解得12210210==22x x +-,(不合题意,舍去). 即存在这样的点,此时P 点的坐标为(2102+,32-)(3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F , 设P (x ,223x x --).由223x x --=0得点A 坐标为(-1,0).又已知点B 和点C 的坐标,从而直线BC 的解析式为y=x -3.Q 点的坐标为(x ,x -3),则AB=4,CO=3,BO=3,PQ=23x x -+. ∴S 四边形ABPC =S △ABC + S △BPQ + S △CPQ =12AB·CO +12PQ·BF +12PQ·FO =12AB·CO +12PQ·(BF +FO )= 12AB·CO +12PQ·BO=12×4×3+12(23x x -+)×3=239622x x -++=23375()228x --+.当x=32时,四边形ABPC 的面积最大.此时P 点的坐标为(32,154-),四边形ABPC 的最大面积为758.。

相关文档
最新文档