高考数学一轮 圆锥曲线的综合问题(学案)
高考数学 考点突破——圆锥曲线:圆锥曲线的综合问题学案-人教版高三全册数学学案
圆锥曲线的综合问题【知识梳理】1.直线与圆锥曲线的位置关系判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或变量y )的一元方程,即⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y ,得ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则:Δ>0⇔直线与圆锥曲线C 相交; Δ=0⇔直线与圆锥曲线C 相切; Δ<0⇔直线与圆锥曲线C 相离.(2)当a =0,b ≠0时,即得到一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线,则直线l 与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+1k2·|y 1-y 2|【考点突破】考点一、直线与圆锥曲线的位置关系【例1】在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. [解析] (1)椭圆C 1的左焦点为F 1(-1,0),∴c =1, 又点P (0,1)在曲线C 1上,∴0a 2+1b2=1,得b =1,则a 2=b 2+c 2=2,所以椭圆C 1的方程为x 22+y 2=1.(2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m消去y ,得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m 消去y ,得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.② 综合①②,解得⎩⎪⎨⎪⎧k =22,m =2或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2. 【类题通法】研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥曲线方程组成的方程组解的个数,消元后,应注意讨论含x 2项的系数是否为零的情况,以及判别式的应用.但对于选择题、填空题要充分利用几何条件,用数形结合的方法求解. 【对点训练】已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.[解析] 将直线l 的方程与椭圆C 的方程联立,得方程组222142y x m x y =+⎧⎪⎨+=⎪⎩ ② ① 将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点. (3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点.考点二、弦长问题【例2】如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[解析] (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3, 所以椭圆方程为x 24+y 23=1.(2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k2, 所以|AB |=k 2+1|x 1-x 2| =k 2+1·x 1+x 22-4x 1x 2=12k 2+13+4k2. 同理,|CD |=12⎝ ⎛⎭⎪⎫1k 2+13+4k2=12k 2+13k 2+4. 所以|AB |+|CD |=12k 2+13+4k 2+12k 2+13k 2+4=84k 2+123+4k 23k 2+4=487,解得k =±1, 所以直线AB 的方程为x -y -1=0或x +y -1=0. 【类题通法】 求解弦长的四种方法(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.(3)联立直线与圆锥曲线方程,消元得到关于x 或y 的一元二次方程,利用根与系数的关系得到(x 1-x 2)2或(y 1-y 2)2,代入两点间的距离公式.(4)当弦过焦点时,可结合焦半径公式求解弦长. 【对点训练】设F 1,F 2分别是椭圆D :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2作倾斜角为π3的直线交椭圆D 于A ,B 两点,F 1到直线AB 的距离为23,连接椭圆D 的四个顶点得到的菱形的面积为2 5.(1)求椭圆D 的方程;(2)设过点F 2的直线l 被椭圆D 和圆C :(x -2)2+(y -2)2=4所截得的弦长分别为m ,n ,当m ·n 最大时,求直线l 的方程.[解析] (1)设F 1的坐标为(-c ,0),F 2的坐标为(c ,0)(c >0), 则直线AB 的方程为y =3(x -c ),即3x -y -3c =0, ∴|-3c -3c |(3)2+(-1)2=23,解得c =2.∵12·2a ·2b =25,∴ab =5, 又a 2=b 2+c 2,∴a 2=5,b 2=1, ∴椭圆D 的方程为x 25+y 2=1.(2)由题意知,可设直线l 的方程为x =ty +2,则圆心C 到直线l 的距离d =|2t |t 2+1,∴n =222-d 2=4t 2+1, 由⎩⎪⎨⎪⎧x =ty +2,x 25+y 2=1得(t 2+5)y 2+4ty -1=0, 设直线l 与椭圆D 的交点坐标为(x 1,y 1),(x 2,y 2), ∴y 1+y 2=-4t t 2+5,y 1y 2=-1t 2+5, ∴m =1+t 2|y 1-y 2|=25(t 2+1)t 2+5,∴m ·n =85·t 2+1t 2+5=85t 2+1+4t 2+1≤25⎝ ⎛⎭⎪⎫当且仅当t 2+1=4t 2+1,即t =±3时,等号成立,∴直线l 的方程为x -3y -2=0或x +3y -2=0.考点三、中点弦问题【例3】已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .x 245+y 236=1B .x 236+y 227=1 C .x 227+y 218=1 D .x 218+y 29=1 (2)已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.[答案] (1) D (2) x +2y -3=0[解析] (1)因为直线AB 过点F (3,0)和点(1,-1),所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y 2b 2=1消去y ,得⎝ ⎛⎭⎪⎫a24+b 2x 2-32a 2x+94a 2-a 2b 2=0, 所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3,a =32, 故E 的方程为x 218+y 29=1.(2)法一 易知此弦所在直线的斜率存在,所以设其方程为y -1=k (x -1),此弦的两端点坐标分别为A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y -1=k (x -1),x 24+y 22=1,消去y 整理得,(2k 2+1)x 2-4k (k -1)x +2(k 2-2k -1)=0,∴x 1+x 2=4k (k -1)2k 2+1, 又∵x 1+x 2=2,∴4k (k -1)2k 2+1=2,解得k =-12. 故此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.法二 易知此弦所在直线的斜率存在,所以设斜率为k , 此弦的两端点坐标分别为A (x 1,y 1),B (x 2,y 2), 则x 214+y 212=1①,x 224+y 222=1②, ①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. ∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.【类题通法】处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:【对点训练】1.若椭圆的中心在原点,一个焦点为(0,2),直线y =3x +7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为________.[答案] x 28+y 212=1[解析] 因为椭圆的中心在原点,一个焦点为(0,2),则a 2-b 2=4,所以可设椭圆方程为y 2b 2+4+x 2b2=1,由⎩⎪⎨⎪⎧y =3x +7,y 2b 2+4+x 2b2=1,消去x ,整理得 (10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+196=0,设直线y =3x +7与椭圆相交所得弦的端点为(x 1,y 1),(x 2,y 2), 由一元二次方程根与系数的关系得:y 1+y 2=14(b 2+4)10b 2+4=2. 解得:b 2=8.所以a 2=12. 则椭圆方程为x 28+y 212=1.2.过椭圆x 216+y 24=1内一点P (3,1),且被这点平分的弦所在直线的方程是________.[答案] 3x +4y -13=0[解析] 设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点, 由于A ,B 两点均在椭圆上, 故x 2116+y 214=1,x 2216+y 224=1, 两式相减得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0.又∵P 是A ,B 的中点,∴x 1+x 2=6,y 1+y 2=2,∴k AB =y 1-y 2x 1-x 2=-34. ∴直线AB 的方程为y -1=-34(x -3).即3x +4y -13=0.。
高三数学教案:圆锥曲线的综合问题
第八节 圆锥曲线的综合应用一、基本知识概要:1知识精讲:圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.2重点难点:正确熟练地运用解析几何的方法解决圆锥曲线的综合问题,从中进一步体会分类讨论、等价转化等数学思想的运用.3思维方式:数形结合的思想,等价转化,分类讨论,函数与方程思想等.4特别注意:要能准确地进行数与形的语言转换和运算、推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。
二、例题:例1. A ,B 是抛物线)0(22>=p px y 上的两点,且OA OB ⊥(O 为坐标原点)求证:(1)A ,B 两点的横坐标之积,纵坐标之积分别是定植; (2)直线AB 经过一个定点证明:(1)设,,2,2),,(),,(21212221212211=+∴⊥==y y x x OB OA px y px y y x B y x A 则两式相乘得2212214,4p x x p y y =-=)0,2),0,2),2(2).(2,2,),(2)2(212112112121212221p x x p p x y y p y x x y y p y y AB y y p k x x x x p y y AB 时,显然也过点(当过定点(化简得的方程所以直线当=-+=-+=-+=≠-=-所以直线AB 过定点(2p,0)例2、(2005年春季北京,18)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b )0,0(≠>b a ,且交抛物线)(),(于22112,N ,M )0(2y x y x p px y >=两点。
(1) 写出直线l 的截距式方程 (2) 证明:by y 11121=+(3) 当p a 2=时,求MON ∠的大小。
数学一轮复习第八章平面解析几何第九节圆锥曲线的综合问题第1课时最值范围证明问题学案含解析
第九节圆锥曲线的综合问题最新考纲考情分析1.掌握解决直线与椭圆、抛物线的位置关系的思想方法.2.了解圆锥曲线的简单应用.3.理解数形结合的思想.1.直线与椭圆、抛物线的位置关系是近几年高考命题的热点.2.考查知识有直线与椭圆、抛物线相交,涉及弦长、中点、面积、对称、存在性问题.3.题型主要以解答题的形式出现,属中高档题。
知识点一直线与圆锥曲线的位置关系1.直线与圆锥曲线的位置关系判断直线l与圆锥曲线C的位置关系时,通常将直线l的方程Ax+By+C=0(A,B不同时为0)代入圆锥曲线C的方程F(x,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即错误!消去y,得ax2+bx+c=0。
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C相交;Δ=0⇔直线与圆锥曲线C相切;Δ<0⇔直线与圆锥曲线C相离.(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l 与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=错误!|x1-x2|=错误!·错误!=错误!·|y1-y2|=错误!·错误!.知识点二圆锥曲线中的最值与取值范围问题圆锥曲线中的最值与取值范围问题一直是高考命题的热点,各种题型都有,命题角度很广,归纳起来常见的命题角度有:1.转化为函数利用基本不等式或二次函数求最值;2.利用三角函数有界性求最值;3.数形结合利用几何性质求最值.知识点三圆锥曲线中的定值与定点问题1.这类问题一般考查直线与圆锥曲线的位置关系,一元二次方程的根与系数之间的关系,考查斜率、向量的运算以及运算能力.2.解决这类定点与定值问题的方法有两种:一是研究一般情况,通过逻辑推理与计算得到定点或定值,这种方法难度大,运算量大,且思路不好寻找;另外一种方法就是先利用特殊情况确定定点或定值,然后验证,这样在整理式子或求值时就有了明确的方向.1.思考辨析判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.(√)(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.(×)(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C 只有一个公共点.(×)(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=错误!|y1-y2|.(√)解析:(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.2.小题热身(1)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(C)A.1条B.2条C.3条D.4条解析:结合图形分析可知,满足题意的直线共有3条:直线x=0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x=0).(2)(2020·浙江八校联考)抛物线y=ax2与直线y=kx+b(k≠0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则(B)A.x3=x1+x2B.x1x2=x1x3+x2x3C.x1+x2+x3=0 D.x1x2+x2x3+x3x1=0解析:由错误!消去y得ax2-kx-b=0,可知x1+x2=错误!,x1x2=-错误!,令kx+b=0得x3=-错误!,所以x1x2=x1x3+x2x3.(3)已知抛物线y=ax2(a>0)的准线为l,l与双曲线x24-y2=1的两条渐近线分别交于A,B两点,若|AB|=4,则a=错误!.解析:抛物线y=ax2(a〉0)的准线l:y=-错误!,双曲线错误!-y2=1的两条渐近线分别为y=错误!x,y=-错误!x,可得x A=-错误!,x B=错误!,可得|AB|=错误!-错误!=4,解得a=错误!。
高三数学一轮复习圆锥曲线的综合问题
3
第三页,共43页。
解决圆锥曲线综合问题的思路
1.对于圆锥曲线的综合问题,在对题目内涵 进行深刻挖掘的基础上,应用整体思想,构建 转化的“框架”,然后综合利用代数手段解 题.
例1 设F1、F2分别为椭圆C:
=1(a>b
>0)的左、右两个焦点.若M、N是椭圆C上关
于原点对称的两个点,点P是椭圆上任意一点,
当直线PM、PN的斜率都存在,并记为kPM、 kPN时.
求证:kPM·kPN是及点P位置无关的定值. 6
第六页,共43页。
[分析] 设出M点的坐标,利用已知条件得到 N的坐标,将kPM·kPN的值计算出来为定值即 可.
2.圆锥曲线的定义是解决综合题的基础.定 义在本质上揭示了平面上的动点及定点(或定直 线)的距离满足某种特殊关系,用数形结合思想 去理解圆锥曲线中的参数(a,b,c,e,p等) 的几何意义以及这些参数之间的相互关系,进 而通过它们之间的关系组成题设条件的转化.
4
第四页,共43页。
3.综合题中常常离不开直线及圆锥曲线的位 置关系,因此要树立将直线及圆锥曲线方程联 立,应用判别式、根及系数的关系的意识.
y
F=1+-kky
0,xF=(1+ky0)2, k2
1-ky0-1+ky0 ∴kEF=yxEE- -yxFF=(1-kky0)2-(1-+kky0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
11
高考数学一轮复习 第九章 平面解析几何 第9讲 圆锥曲线的综合问题 第2课时 定点、定值、探索性问题
第2课时 定点、定值、探索性问题圆锥曲线中的定点问题(师生共研)(2020·某某模拟)过抛物线C :y 2=4x 的焦点F 且斜率为k 的直线l 交抛物线C于A ,B 两点,且|AB |=8.(1)求直线l 的方程;(2)若A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出该点的坐标. 【解】 (1)由y 2=4x 知焦点F 的坐标为(1,0),则直线l 的方程为y =k (x -1), 代入抛物线方程y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0, 由题意知k ≠0,且Δ=[-(2k 2+4)]2-4k 2·k 2=16(k 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k2,x 1x 2=1.由抛物线的弦长公式知|AB |=x 1+x 2+2=8,则2k 2+4k2=6,即k 2=1,解得k =±1.所以直线l 的方程为y =±(x -1).(2)由(1)及抛物线的对称性知,D 点的坐标为(x 1,-y 1), 直线BD 的斜率k BD =y 2+y 1x 2-x 1=y 2+y 1y 224-y 214=4y 2-y 1, 所以直线BD 的方程为y +y 1=4y 2-y 1(x -x 1), 即(y 2-y 1)y +y 2y 1-y 21=4x -4x 1.因为y 21=4x 1,y 22=4x 2,x 1x 2=1,所以(y 1y 2)2=16x 1x 2=16, 即y 1y 2=-4(y 1,y 2异号).所以直线BD 的方程为4(x +1)+(y 1-y 2)y =0, 对任意y 1,y 2∈R ,有⎩⎪⎨⎪⎧x +1=0,y =0,解得⎩⎪⎨⎪⎧x =-1,y =0,即直线BD 恒过定点(-1,0).求解圆锥曲线中定点问题的两种方法(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.(2)直接推理法:①选择一个参数建立方程,一般将题目中给出的曲线方程(包含直线方程)中的常数k 当成变量,将变量x ,y 当成常数,将原方程转化为kf (x ,y )+g (x ,y )=0的形式;②根据曲线(包含直线)过定点时与参数没有关系(即方程对参数的任意值都成立),得到方程组⎩⎪⎨⎪⎧f (x ,y )=0g (x ,y )=0;③以②中方程组的解为坐标的点就是曲线所过的定点,若定点具备一定的限制条件,可以特殊解决.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)上动点P 到两焦点F 1,F 2的距离之和为4,当点P 运动到椭圆C 的一个顶点时,直线PF 1恰与以原点O 为圆心,以椭圆C 的离心率e 为半径的圆相切.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,若直线PA ,PB 分别交直线x =6于不同的两点M ,N ,则以线段MN 为直径的圆是否过定点?若是,请求出该定点的坐标;若不是,请说明理由.解:(1)由椭圆的定义可知2a =4,解得a =2.若点P 运动到椭圆的左、右顶点时,直线PF 1与圆一定相交,则点P 只能在椭圆的上、下顶点,不妨设点P 运动到椭圆的上顶点(0,b ),F 1为左焦点(-c ,0),则直线PF 1:bx -cy +bc =0.由题意得原点O 到直线PF 1的距离等于椭圆C 的离心率e , 所以bc b 2+c 2=ca, 又a 2=b 2+c 2,故b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)由题意知,直线PA ,PB 的斜率存在且都不为0, 设直线PA 的斜率为k ,点P (x 0,y 0),x 0≠±2, 又A (-2,0),B (2,0),所以k PA ·k PB =k ·k PB =y 0x 0+2·y 0x 0-2=y 20x 20-4=1-x 204x 20-4=-14,则k PB =-14k.所以直线PA 的方程为y =k (x +2), 令x =6,得y =8k ,则M (6,8k ); 直线PB 的方程为y =-14k (x -2),令x =6,得y =-1k,则N ⎝ ⎛⎭⎪⎫6,-1k .因为8k ·⎝ ⎛⎭⎪⎫-1k =-8<0,所以以线段MN 为直径的圆与x 轴交于两点,设点G ,H ,并设MN 与x 轴的交点为K , 在以线段MN 为直径的圆中应用相交弦定理,得|GK |·|HK |=|MK |·|NK |=|8k |·⎪⎪⎪⎪⎪⎪-1k =8,因为|GK |=|HK |,所以|GK |=|HK |=22,所以以线段MN 为直径的圆恒过点(6-22,0),点(6+22,0).圆锥曲线中的定值问题(多维探究) 角度一 定线段的长已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (1,0),且经过点P ⎝ ⎛⎭⎪⎫12,354.(1)求椭圆C 的方程;(2)若直线l 与椭圆C 相切,过点F 作FQ ⊥l ,垂足为Q ,求证:|OQ |为定值(其中O 为坐标原点).【解】 (1)由题意可知椭圆C 的左焦点为F ′(-1,0),则半焦距c =1. 由椭圆定义可知 2a =|PF |+|PF ′|=⎝ ⎛⎭⎪⎫1-122+⎝ ⎛⎭⎪⎫0-3542+⎝ ⎛⎭⎪⎫-1-122+⎝ ⎛⎭⎪⎫0-3542=4, 所以a =2,b 2=a 2-c 2=3,所以椭圆C 的方程为x 24+y 23=1. (2)证明:①当直线l 的斜率不存在时,l 的方程为x =±2,点Q 的坐标为(-2,0)或(2,0),此时|OQ |=2;②当直线l 的斜率为0时,l 的方程为y =±3,点Q 的坐标为(1,-3)或(1,3), 此时|OQ |=2;③当直线l 的斜率存在且不为0时,设直线l 的方程为y =kx +m (k ≠0). 因为FQ ⊥l ,所以直线FQ 的方程为y =-1k(x -1).由⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1消去y ,可得(3+4k 2)x 2+8kmx +4m 2-12=0.因为直线l 与椭圆C 相切,所以Δ=(8km )2-4×(3+4k 2)×(4m 2-12)=0, 整理得m 2=4k 2+3.(*)由⎩⎪⎨⎪⎧y =kx +m ,y =-1k (x -1)得Q ⎝ ⎛⎭⎪⎫1-km k 2+1,k +m k 2+1, 所以|OQ |=⎝ ⎛⎭⎪⎫1-km k 2+12+⎝ ⎛⎭⎪⎫k +m k 2+12=1+k 2m 2+k 2+m2(k 2+1)2, 将(*)式代入上式,得|OQ |=4(k 4+2k 2+1)(k 2+1)2=2. 综上所述,|OQ |为定值,且定值为2.直接探求,变量代换探求圆锥曲线中的定线段的长的问题,一般用直接求解法,即先利用弦长公式把要探求的线段表示出来,然后利用题中的条件(如直线与曲线相切等)得到弦长表达式中的相关量之间的关系式,把这个关系式代入弦长表达式中,化简可得弦长为定值.角度二 定几何图形的面积(2020·某某模拟)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A 、B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.【解】 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意可知,M ,N 是轨迹C 上不同于A 、B 的两点,且AP ∥OM ,BP ∥ON , 则直线OM ,ON 的斜率必存在且不为0,k OM ·k ON =k AP ·k BP =-23.①当直线MN 的斜率为0时,设M (x 0,y 0),N (-x 0,y 0),则⎩⎪⎨⎪⎧y 20x 20=23,x 203+y202=1,得⎩⎪⎨⎪⎧|x 0|=62,|y 0|=1, 所以S △MON =12|y 0||2x 0|=62.②当直线MN 的斜率不为0时,设直线MN 的方程为x =my +t ,代入x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,(*)设M (x 1,y 1),N (x 2,y 2),则y 1,y 2是方程(*)的两根, 所以y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m2.又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt (y 1+y 2)+t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3,满足Δ>0.又S △MON =12|t ||y 1-y 2|=|t |-24t 2+48m 2+722(3+2m 2), 所以S △MON =26t 24t 2=62. 综上,△MON 的面积为定值,且定值为62.探求圆锥曲线中几何图形的面积的定值问题,一般用直接求解法,即可先利用三角形面积公式(如果是其他凸多边形,可分割成若干个三角形分别求解)把要探求的几何图形的面积表示出来,然后利用题中的条件得到几何图形的面积表达式中的相关量之间的关系式,把这个关系式代入几何图形的面积表达式中,化简即可.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦点为F 1,F 2,离心率为12,点P 为其上一动点,且三角形PF 1F 2面积的最大值为3,O 为坐标原点.(1)求椭圆C 的方程;(2)若点M ,N 为C 上的两个动点,求常数m ,使OM →·ON →=m 时,点O 到直线MN 的距离为定值,求这个定值.解:(1)依题意知⎩⎪⎨⎪⎧c 2=a 2-b 2,bc =3,c a =12,解得⎩⎨⎧a =2,b =3,所以椭圆C 的方程为x 24+y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),则x 1x 2+y 1y 2=m ,当直线MN 的斜率存在时,设其方程为y =kx +n ,则点O 到直线MN 的距离d =|n |k 2+1=n 2k 2+1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =kx +n ,消去y ,得(4k 2+3)x 2+8knx +4n 2-12=0,由Δ>0得4k 2-n2+3>0,则x 1+x 2=-8kn 4k 2+3,x 1x 2=4n 2-124k 2+3,所以x 1x 2+(kx 1+n )(kx 2+n )=(k 2+1)x 1x 2+kn (x 1+x 2)+n 2=m ,整理得7n2k 2+1=12+m (4k 2+3)k 2+1.因为d =n 2k 2+1为常数,则m =0,d =127=2217,此时7n 2k 2+1=12满足Δ>0. 当MN ⊥x 轴时,由m =0得k OM =±1,联立,得⎩⎪⎨⎪⎧3x 2+4y 2=12,y =±x ,消去y ,得x 2=127,点O 到直线MN 的距离d =|x |=2217亦成立.综上,当m =0时,点O 到直线MN 的距离为定值,这个定值是2217.圆锥曲线中的探索性问题(师生共研)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点分别为F 1,F 2,短轴的一个端点为P ,△PF 1F 2内切圆的半径为b3,设过点F 2的直线l 被椭圆C 截得的线段为RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在一点T ,使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称?若存在,请求出点T 的坐标;若不存在,请说明理由.【解】 (1)由内切圆的性质,得12×2c ×b =12×(2a +2c )×b 3,得c a =12.将x =c 代入x 2a 2+y 2b 2=1,得y =±b 2a ,所以2b2a=3.又a 2=b 2+c 2,所以a =2,b =3, 故椭圆C 的标准方程为x 24+y 23=1.(2)当直线l 垂直于x 轴时,显然x 轴上任意一点T 都满足TS 与TR 所在直线关于x 轴对称.当直线l 不垂直于x 轴时,假设存在T (t ,0)满足条件,设l 的方程为y =k (x -1),R (x 1,y 1),S (x 2,y 2).联立方程,得⎩⎪⎨⎪⎧y =k (x -1),3x 2+4y 2-12=0,得(3+4k 2)x 2-8k 2x +4k 2-12=0, 由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=8k23+4k2,x 1x 2=4k 2-123+4k2①,其中Δ>0恒成立, 由TS 与TR 所在直线关于x 轴对称,得k TS +k TR =0(显然TS ,TR 的斜率存在), 即y 1x 1-t +y 2x 2-t=0 ②.因为R ,S 两点在直线y =k (x -1)上, 所以y 1=k (x 1-1),y 2=k (x 2-1),代入②得k (x 1-1)(x 2-t )+k (x 2-1)(x 1-t )(x 1-t )(x 2-t )=k [2x 1x 2-(t +1)(x 1+x 2)+2t ](x 1-t )(x 2-t )=0,即2x 1x 2-(t +1)(x 1+x 2)+2t =0 ③,将①代入③得8k 2-24-(t +1)8k 2+2t (3+4k 2)3+4k 2=6t -243+4k 2=0 ④,则t =4,综上所述,存在T (4,0),使得当l 变化时,总有TS 与TR 所在直线关于x 轴对称.存在性问题的求解策略解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意.已知圆O :x 2+y 2=4,点F (1,0),P 为平面内一动点,以线段FP 为直径的圆内切于圆O ,设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)M ,N 是曲线C 上的动点,且直线MN 经过定点⎝ ⎛⎭⎪⎫0,12,问在y 轴上是否存在定点Q ,使得∠MQO =∠NQO ,若存在,请求出定点Q ,若不存在,请说明理由.解:(1)设PF 的中点为S ,切点为T ,连接OS ,ST ,则|OS |+|SF |=|OT |=2,取F 关于y 轴的对称点F ′,连接F ′P ,所以|PF ′|=2|OS |,故|F ′P |+|FP |=2(|OS |+|SF |)=4,所以点P 的轨迹是以F ′,F 分别为左、右焦点,且长轴长为4的椭圆, 则曲线C 的方程为x 24+y 23=1.(2)假设存在满足题意的定点Q ,设Q (0,m ),当直线MN 的斜率存在时,设直线MN 的方程为y =kx +12,M (x 1,y 1),N (x 2,y 2).联立,得⎩⎪⎨⎪⎧x 24+y 23=1,y =kx +12,消去y ,得(3+4k 2)x 2+4kx -11=0,则Δ>0,x 1+x 2=-4k3+4k 2,x 1x 2=-113+4k2, 由∠MQO =∠NQO ,得直线MQ 与NQ 的斜率之和为零,易知x 1或x 2等于0时,不满足题意,故y 1-m x 1+y 2-mx 2=kx 1+12-m x 1+kx 2+12-m x 2=2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)x 1x 2=0,即2kx 1x 2+⎝ ⎛⎭⎪⎫12-m (x 1+x 2)=2k ·-113+4k 2+⎝ ⎛⎭⎪⎫12-m ·-4k 3+4k 2=4k (m -6)3+4k 2=0,当k ≠0时,m =6,所以存在定点(0,6),使得∠MQO =∠NQO ;当k =0时,定点(0,6)也符合题意.易知当直线MN 的斜率不存在时,定点(0,6)也符合题意. 综上,存在定点(0,6),使得∠MQO =∠NQO .解析几何减少运算量的常见技巧技巧一 巧用平面几何性质已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B .12 C.23D .34【解析】 设OE 的中点为N ,如图,因为MF ∥OE ,所以有ON MF =a a +c ,MF OE =a -ca.又因为OE =2ON ,所以有12=aa +c ·a -c a ,解得e =c a =13,故选A.【答案】 A此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 技巧二 设而不求,整体代换对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B两点.若AB 的中点坐标为M (1,-1),则E 的标准方程为( )A.x 245+y 236=1 B .x 236+y 227=1 C.x 227+y 218=1 D .x 218+y 29=1 【解析】 通解:设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=2,y 1+y 2=-2,⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,①x 22a 2+y22b 2=1,②①-②得(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b2=0, 所以k AB =y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2)=b 2a 2.又k AB =0+13-1=12,所以b 2a 2=12.又9=c 2=a 2-b 2,解得b 2=9,a 2=18, 所以椭圆E 的标准方程为x 218+y 29=1.优解:由k AB ·k OM =-b 2a 2得,-1-01-3×-11=-b 2a2得,a 2=2b 2,又a 2-b 2=9,所以a 2=18,b 2=9,所以椭圆E 的标准方程为x 218+y 29=1.【答案】 D本题设出A ,B 两点的坐标,却不求出A ,B 两点的坐标,巧妙地表达出直线AB 的斜率,通过将直线AB 的斜率“算两次”建立几何量之间的关系,从而快速解决问题.技巧三 巧用“根与系数的关系”,化繁为简某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.已知椭圆x 24+y 2=1的左顶点为A ,过A 作两条互相垂直的弦AM ,AN 交椭圆M ,N两点.(1)当直线AM 的斜率为1时,求点M 的坐标;(2)当直线AM 的斜率变化时,直线MN 是否过x 轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.【解】 (1)直线AM 的斜率为1时,直线AM 的方程为y =x +2,代入椭圆方程并化简得5x 2+16x +12=0.解得x 1=-2,x 2=-65,所以M ⎝ ⎛⎭⎪⎫-65,45.(2)设直线AM 的斜率为k ,直线AM 的方程为y =k (x +2),联立方程⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1, 化简得(1+4k 2)x 2+16k 2x +16k 2-4=0. 则x A +x M =-16k21+4k 2,又x A =-2,则x M =-x A -16k 21+4k 2=2-16k 21+4k 2=2-8k21+4k 2.同理,可得x N =2k 2-8k 2+4.由(1)知若存在定点,则此点必为P ⎝ ⎛⎭⎪⎫-65,0. 证明如下:因为k MP =y Mx M +65=k ⎝ ⎛⎭⎪⎫2-8k 21+4k 2+22-8k 21+4k 2+65=5k4-4k 2, 同理可计算得k PN =5k4-4k2. 所以直线MN 过x 轴上的一定点P ⎝ ⎛⎭⎪⎫-65,0.本例在第(2)问中可应用根与系数的关系求出x M =2-8k21+4k 2,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量.技巧四 巧妙“换元”减少运算量变量换元的关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而将非标准型问题转化为标准型问题,将复杂问题简单化.变量换元法常用于求解复合函数的值域、三角函数的化简或求值等问题.如图,已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32.(1)求椭圆C 的方程;(2)已知直线l :y =kx +m 与圆O :x 2+y 2=1相切,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.【解】 (1)由已知椭圆的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),则A (a ,0),B (0,b ),F (c ,0)(c =a 2-b 2).由已知可得e 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,可得c =3b ①.S △AFB =12×|AF |×|OB |=12(a -c )b =1-32②.将①代入②,得12(2b -3b )b =1-32,解得b =1,故a =2,c = 3.所以椭圆C 的方程为x 24+y 2=1.(2)圆O 的圆心为坐标原点,半径r =1,由直线l :y =kx +m 与圆O :x 2+y 2=1相切,得|m |1+k2=1,故有m 2=1+k 2③. 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,消去y ,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0.由题可知k ≠0,即(1+4k 2)x 2+8kmx +4(m 2-1)=0, 所以Δ=16(4k 2-m 2+1)=48k 2>0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=16(4k 2-m 2+1)(4k 2+1)2④. 将③代入④中,得|x 1-x 2|2=48k2(4k 2+1)2,故|x 1-x 2|=43|k |4k 2+1.所以|MN |=1+k 2|x 1-x 2|=1+k 2×43|k |4k 2+1=43k 2(k 2+1)4k 2+1. 故△OMN 的面积S =12|MN |×1=12×43k 2(k 2+1)4k 2+1×1=23k 2(k 2+1)4k 2+1. 令t =4k 2+1,则t ≥1,k 2=t -14,代入上式,得S =23×t -14⎝ ⎛⎭⎪⎫t -14+1t2=32(t -1)(t +3)t2=32t 2+2t -3t 2=32-3t 2+2t+1=32-1t 2+23t +13=32-⎝ ⎛⎭⎪⎫1t -132+49, 所以当t =3,即4k 2+1=3,解得k =±22时,S 取得最大值,且最大值为32×49=1.破解此类题的关键:一是利用已知条件,建立关于参数的方程,解方程,求出参数的值,二是通过变量换元法将所给函数转化为值域容易确定的另一函数,求得其值域,从而求得原函数的值域,形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且ac ≠0)的函数常用此法求解,但在换元时一定要注意新元的取值X 围,以保证等价转化,这样目标函数的值域才不会发生变化.[基础题组练]1.已知直线l 与双曲线x 24-y 2=1相切于点P ,l 与双曲线的两条渐近线交于M ,N 两点,则OM →·ON →的值为( )A .3B .4C .5D .与P 的位置有关解析:选A.依题意,设点P (x 0,y 0),M (x 1,y 1),N (x 2,y 2),其中x 20-4y 20=4,则直线l 的方程是x 0x 4-y 0y =1,题中双曲线的两条渐近线方程为y =±12x .①当y 0=0时,直线l 的方程是x =2或x =-2.由⎩⎪⎨⎪⎧x =2x 24-y 2=0,得⎩⎪⎨⎪⎧x =2y =±1,此时OM →·ON →=(2,-1)·(2,1)=4-1=3,同理可得当直线l 的方程是x =-2时,OM →·ON →=3.②当y 0≠0时,直线l 的方程是y =14y 0(x 0x -4).由⎩⎪⎨⎪⎧y =14y 0(x 0x -4)x24-y 2=0,得(4y 2-x 20)x2+8x 0x -16=0(*),又x 20-4y 20=4,因此(*)即是-4x 2+8x 0x -16=0,x 2-2x 0x +4=0,x 1x 2=4,OM →·ON →=x 1x 2+y 1y 2=x 1x 2-14x 1x 2=34x 1x 2=3.综上所述,OM →·ON →=3,故选A.2.已知抛物线y 2=2px (p >0)的焦点为F ,△ABC 的顶点都在抛物线上,且满足FA →+FB →+FC →=0,则1k AB +1k AC +1k BC=________.解析:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫p 2,0,由FA →+FB →=-FC →,得y 1+y 2+y 3=0.因为k AB =y 2-y 1x 2-x 1=2p y 1+y 2,所以k AC =2p y 1+y 3,k BC =2p y 2+y 3,所以1k AB +1k AC +1k BC =y 1+y 22p +y 3+y 12p+y 2+y 32p=0. 答案:03.(2020·某某模拟)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点M在椭圆C 上滑动,若△MF 1F 2的面积取得最大值4时,有且仅有2个不同的点M 使得△MF 1F 2为直角三角形.(1)求椭圆C 的方程;(2)过点P (0,1)的直线l 与椭圆C 分别相交于A ,B 两点,与x 轴交于点Q .设QA →=λPA →,QB →=μPB →,求证:λ+μ为定值,并求该定值.解:(1)由对称性知,点M 在短轴端点时,△MF 1F 2为直角三角形且∠F 1MF 2=90°,且S △MF 1F 2=4,所以b =c 且S =12·2c ·b =bc=4,解得b =c =2,a 2=b 2+c 2=8, 所以椭圆C 的方程为x 28+y 24=1.(2)证明:显然直线l 的斜率不为0,设直线l :x =t (y -1),联立⎩⎪⎨⎪⎧x 28+y 24=1,x =t (y -1),消去x ,得(t 2+2)y 2-2t 2y +t 2-8=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t 2t 2+2,y 1y 2=t 2-8t 2+2.令y =0,则x =-t ,所以Q (-t ,0), 因为QA →=λPA →,所以y 1=λ(y 1-1), 所以λ=y 1y 1-1.因为QB →=μPB →,所以y 2=μ(y 2-1),所以μ=y 2y 2-1.所以λ+μ=y 1y 1-1+y 2y 2-1=2y 1y 2-(y 1+y 2)y 1y 2-(y 1+y 2)+1=83. 4.(2020·某某某某联考)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,下顶点为A ,O 为坐标原点,点O 到直线AF 2的距离为22,△AF 1F 2为等腰直角三角形. (1)求椭圆C 的标准方程;(2)直线l 与椭圆C 分别相交于M ,N 两点,若直线AM 与直线AN 的斜率之和为2,证明:直线l 恒过定点,并求出该定点的坐标.解:(1)由题意可知,直线AF 2的方程为x c +y-b=1, 即-bx +cy +bc =0,则bc b 2+c 2=bc a=22.因为△AF 1F 2为等腰直角三角形,所以b =c , 又a 2=b 2+c 2,可得a =2,b =1,c =1, 所以椭圆C 的标准方程为x 22+y 2=1.(2)证明:由(1)知A (0,-1).当直线l 的斜率存在时,设直线l 的方程为y =kx +t (t ≠±1), 代入x 22+y 2=1,得(1+2k 2)x 2+4ktx +2t 2-2=0,所以Δ=16k 2t 2-4(1+2k 2)(2t 2-2)>0,即t 2-2k 2<1. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-4kt1+2k 2,x 1x 2=2t 2-21+2k2.因为直线AM 与直线AN 的斜率之和为2, 所以k AM +k AN =y 1+1x 1+y 2+1x 2=kx 1+t +1x 1+kx 2+t +1x 2=2k +(t +1)(x 1+x 2)x 1x 2=2k -(t +1)·4kt2t 2-2=2, 整理得t =1-k .所以直线l 的方程为y =kx +t =kx +1-k =k (x -1)+1,显然直线y =k (x -1)+1经过定点(1,1).当直线l 的斜率不存在时,设直线l 的方程为x =m .因为直线AM 与直线AN 的斜率之和为2,设M (m ,n ),则N (m ,-n ), 所以k AM +k AN =n +1m +-n +1m =2m=2,解得m =1, 此时直线l 的方程为x =1,显然直线x =1也经过该定点(1,1). 综上,直线l 恒过点(1,1).[综合题组练]1.(2020·某某五市十校联考)已知动圆C 过定点F (1,0),且与定直线x =-1相切. (1)求动圆圆心C 的轨迹E 的方程;(2)过点M (-2,0)的任一条直线l 与轨迹E 分别相交于不同的两点P ,Q ,试探究在x 轴上是否存在定点N (异于点M ),使得∠QNM +∠PNM =π?若存在,求点N 的坐标;若不存在,说明理由.解:(1)法一:由题意知,动圆圆心C 到定点F (1,0)的距离与其到定直线x =-1的距离相等,又由抛物线的定义,可得动圆圆心C 的轨迹是以F (1,0)为焦点,x =-1为准线的抛物线,其中p =2.所以动圆圆心C 的轨迹E 的方程为y 2=4x .法二:设动圆圆心C (x ,y ),由题意知(x -1)2+y 2=|x +1|, 化简得y 2=4x ,即动圆圆心C 的轨迹E 的方程为y 2=4x . (2)假设存在点N (x 0,0),满足题设条件.由∠QNM +∠PNM =π可知,直线PN 与QN 的斜率互为相反数,即k PN +k QN =0.① 由题意知直线PQ 的斜率必存在且不为0,设直线PQ 的方程为x =my -2.联立⎩⎪⎨⎪⎧y 2=4x ,x =my -2,得y 2-4my +8=0.由Δ=(-4m )2-4×8>0,得m >2或m <- 2. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4m ,y 1y 2=8. 由①式得k PN +k QN =y 1x 1-x 0+y 2x 2-x 0=y 1(x 2-x 0)+y 2(x 1-x 0)(x 1-x 0)(x 2-x 0)=0,所以y 1(x 2-x 0)+y 2(x 1-x 0)=0, 即y 1x 2+y 2x 1-x 0(y 1+y 2)=0.消去x 1,x 2,得14y 1y 22+14y 2y 21-x 0(y 1+y 2)=0,14y 1y 2(y 1+y 2)-x 0(y 1+y 2)=0, 因为y 1+y 2≠0,所以x 0=14y 1y 2=2,所以存在点N (2,0).使得∠QNM +∠PNM =π.2.(2020·某某某某教学质量监测)已知抛物线C :x 2=2py (p >0)的焦点为F ,过点F 的直线分别交抛物线于A ,B 两点.(1)若以AB 为直径的圆的方程为(x -2)2+(y -3)2=16,求抛物线C 的标准方程; (2)过点A ,B 分别作抛物线的切线l 1,l 2,证明:l 1,l 2的交点在定直线上. 解:(1)设AB 中点为M ,A 到准线的距离为d 1,B 到准线的距离为d 2,M 到准线的距离为d ,则d =y M +p2.由抛物线的定义可知,d 1=|AF |,d 2=|BF |,所以d 1+d 2=|AB |=8, 由梯形中位线可得d =d 1+d 22=4,所以y M +p2=4.又y M =3,所以3+p2=4,可得p =2,所以抛物线C 的标准方程为x 2=4y .(2)证明:设A (x 1,y 1),B (x 2,y 2),由x 2=2py ,得y =x 22p ,则y ′=xp,所以直线l 1的方程为y -y 1=x 1p (x -x 1),直线l 2的方程为y -y 2=x 2p(x -x 2),联立得x =x 1+x 22,y =x 1x 22p, 即直线l 1,l 2的交点坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22p .因为AB 过焦点F ⎝ ⎛⎭⎪⎫0,p 2,由题可知直线AB 的斜率存在,故可设直线AB 方程为y -p2=kx ,代入抛物线x 2=2py 中,得x 2-2pkx -p 2=0,所以x 1x 2=-p 2,y =x 1x 22p =-p 22p =-p2,p 2上.所以l1,l2的交点在定直线y=-。
高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(学生版) 新人教版
【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想.2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活.【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题【例题精析】考点一 圆锥曲线中的最值与面积问题例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。
(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B作直线交椭圆于,P Q ,22PB QB ⊥,求△2PB Q 的面积【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.考点二 定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB 的边长为83,且其三个顶点均在抛物线E :x 2=2py (p >0)上。
高考数学 圆锥曲线的综合问题(学案)绝密资料
圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。
(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。
3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。
★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 . 点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28yx =的准线2x =-与x 轴的交点为Q (-2 , 0),于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩ 其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C.【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OMK , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程; (Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BMk k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11(),(,2222C D ,它的中点不是N ,不合题意 设直线l 的方程为11()2y k x -=-将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得 221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D , 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-, 将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-,将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。
2019届高考理科数学一轮复习精品学案:第54讲圆锥曲线的综合问题第2课时(含解析)
第 2 课时 最值﹑范围﹑证明问题【讲堂考点研究】例 1 [ 思路点拨 ] (1) 由极点坐标及椭圆的离心率 , 即可求得 a 和 c 的值 , 从而可求得椭圆方程 ;(2) 分类议论 , 当斜率为 0 时 , 即可求得 m 的值 , 设直线 l 的方程 , 代入椭圆方程 , 利用根与系数的关系及弦长公式即可求得 m 的表达式 , 利用导数求得函数的单一性及最值 , 即可求得 m 的最大值 .解 :(1) 由于椭圆 :1( 0) 的极点坐标为 (± ,0), 且离心率为,C + = a>b>因此a=, 且 = , 解得 1b= .故椭圆 C 的方程为 +y 2=1.(2) 由于 = >2, 因此直线 MN 的斜率存在 .又由于直线 MN 在 y 轴上的截距为 m , 因此可设直线 MN 的方程为 y=kx+m ,代入椭圆方程 2 得(1+6 2 2 kmx+6( 2=0,+y =1, k ) x +12 m- 1) 由于(12 ) 2 - 24(1 6 2)(21) 24(1 6 22) 0,= km+ km-=+ k -m >因此2162.m< + k设 M ( x 1, y 1), N ( x 2, y 2),由根与系数的关系得 x 1+x 2= , x 1x 2=,则 = |x 1-x 2|= =.由于 =,因此 =,2.整理得 m=令 k2+1=t ≥1,则 k2=t- 1,2= 75- 18t+≤= , 因此 m=等号成立的条件是2 2 2 2, 切合题意. t= ,此时 k = , m= ,知足 m<1+6k故 m的最大值为.变式题解:(1)曲线C上的点知足|PF1|+|PF2|=2>|F 1F2|= 2,∴曲线 C是以 F1, F2为焦点的椭圆,且 a=, c=1, b=1,∴曲线 C的方程是+y2=1.(2) ∵=λ=μa,∴M, N, F2三点共线,且直线 MN的斜率为, ∴直线 MN的方程为 y=( x- 1),与椭圆方程联立得7x2- 12x+4=0,设 M( x1, y1), N( x2, y2),∴==.设 P( cosθ,sinθ),到直线的距离d= = ,∴P MN ∴d max=,△ MNP的最大值为|MN| · max.∴S d =例 2 [ 思路点拨 ] (1) 第一依据抛物线的准线方程可求得 a 的值,而后依据椭圆的离心率联合a2=b2+c2可求得 b 的值,由此求得椭圆 C 和抛物线 C 的方程;(2)由题意知直线的斜率必定存在, 由此设直线l : y=kx+2, 代1 2入椭圆的方程 , 消去y获得对于x的一元二次方程 , 而后利用鉴别式大于零及根与系数的关系, 利用“O在以线段 PQ为直径的圆的外面”等价于“· >0”成立不等式,求得 k 的取值范围 .解 :(1) 由题意得= , 2, 故抛物线 2 的方程为 2 2y.又e= =,∴c=, 1, 从而椭圆 1 的方程为∴a= C x =- ∴b= C+y2=1.(2)明显直线 x=0不知足题设条件,故可设直线 l : y=kx+2, P( x1, y1), Q( x2, y2) .由得 (1 +4k2) x2+16kx+12=0.∵2 2∴k∈-∞,-∪,+∞ , =(16 k) - 4×12(1 +4k ) >0,x1 +x2=, x1x2=,依据题意 , 得 0°<∠POQ<90°, 即·>0,∴·=x1x2+y1y2=x1x2+( kx1+2)( kx2+2) =(1 +k2) x1x2+2k( x1+x2) +4=+2k×+4=>0,解得- 2<k<2.综上得 k∈- 2, -∪,2.变式题解:(1) 由题知F ,0 , 3 2+,|FD|= |FA|=34 , 则D3 4 ,0, 的中= + + + p + + p+ FD点坐标为+2+,0 , 则+2+=3+2, 解得p=2, 故C的方程为y2=4x.(2) 证明 : 依题可设直线AB 的方程为0(≠ 0), ( 1,y 1), ( 2, y2),则 (2,-y 2).x=my+x m A x B x E x由消去 x , 得244 0 0,由于x 0≥ ,因此1621600,y - my- x = = m+ x >y 1 +y 2=4m , y 1y 2=- 4x 0 .设 P 的坐标为 ( x P ,0), 则=( x 2-x P , -y 2), =( x 1-x P , y 1) .由题知∥ , 因此 ( x 2-x P ) y 1+y 2( x 1-x P ) =0,即 x 2y 1+y 2x 1== =( y 1+y 2) x P ,明显 y 1+y 2=4m ≠0, 因此 x P ==-x 0, 即证得点 P 的坐标为 ( -x 0,0) .由题知△ EPB 为等腰直角三角形 , 因此 k AP =1, 即=1, 即=1,222, x 0<1.因此 y 1-y 2=4, 因此 ( y 1+y 2) - 4y 1y 2=16, 即 16m+16x 0 =16, 则 m=1-x 0 又由于 x 0≥ , 因此 ≤ x 0<1.d= = =,令=t ∈ 1,, 则 x 0=2-t 2, d= = - 2t , 易知 f ( t ) = - 2t 在 1, 上是减函数 , 因此 d ∈,2 .例 3 [ 思路点拨 ] (1) 设经过焦点的直线 AB 的方程为 y=k x- ( k ≠ 0), 联立直线的方程和抛物线的方程,利用韦达定理以及斜率之积等于-p 求出 p 的值 , 由此求得抛物线方程 ;(2) 利用 (1) 求得 M 点的坐标 , 利用直线 OM 的方程求出 D 点的坐标 , 二者横坐标的比值大于2,得证 .解 :(1) 设 A ( x , y ), B ( x , y ), 直线 AB ( 不垂直于 x 轴 ) 的方程可设为 y=k x- ( k ≠0) .1122∵ 直线 过点 F 且与抛物线 C 交于 , 两点 ,ABA B∴ =2px 1 , =2px 2.∵直线与的斜率之积为,∴,∴2, 得 1 2 4 OA OB -p =-p =p x x = .由得 k2x2- ( k2p+2p) x+=0,此中( 2 2 ) 2 2 2 2 0, ∴x+x = , x x = ,1 2 1 2∴p=4,∴抛物线 C的方程为 y2=8x.(2) 证明 : 设M( x0, y0), D( x3, y3), ∵M为线段AB的中点 ,∴x=( x +x = =,y =k x - =,0 12) 0 (02)∴直线 OD的斜率 k OD= =,∴直线 OD的方程为 y=x,代入抛物线方程y2=8x, 得 x3=, ∴=k2+2,2∴2∵k>0, = =k +2>2.变式题解:(1) 依题意得= , 1, 222, + = a =b +c解得 a2=4, b2=2,故椭圆 C的方程为+=1.(2) 证明 : 由椭圆的对称性, 不如假定存在k>0,使得= .由题意得a2=2b2,则椭圆 C:+ =1,联立直线l 与椭圆 C的方程可得(1 +2k2) x2+4kbx=0,解得 x P=-, 因此=×,由于 BP⊥BQ,因此=×=×,由于= ,因此2×=×, 即 2k3- 2k2+4k- 1=0.记f ( )232 2 4 1, 由于0, 0, 因此函数f存在零点 , x = x - x + x- f < f >因此存在k∈R,使得= .【备选原因】例 1 考察直线与抛物线的地点关系, 以及面积最值的求解 ; 例 2 以抛物线为载体, 综合考察动点的轨迹问题、对称问题及范围问题;例3第(2) 问要点在于对地点关系的考察, 将证明共线问题转变为斜率问题 .1 [配合例 1 使用 ] [ 2017·云南师范大学隶属中学月考 ] 已知抛物线 :2 2 ( 0), 圆 :( 2)2 2 4,C y = px p> M x- +y = 圆心到抛物线准线的距离为3,点 ( 0,y 0)( x 0≥5)是抛物线在第一象限上的点, 过点P 作圆的两条切线 , M P x M分别与 x 轴交于A, B两点 .(1)求抛物线 C的方程;(2)求△ PAB面积的最小值 .解 :(1)由题知2+ =3,得p=2,∴抛物线方程为y2=4x.(2) 设切线方程为y-y 0=k( x-x 0), k≠0,令 y=0,解得 x=x0-,∴ 切线与 x 轴的交点为,0,x -圆心 (2,0) 到切线的距离 d= =2, ∴(2 k+y 0-kx 0) 2=4( k 2+1),整理得 (- 4x 0) k 2+(4 y 0- 2x 0y 0) k+ - 4=0.设两条切线的斜率分别为 k 1, k 2, 则 k 1+k 2= , k 1·k 2=,∴S =x -- x -·y ==2 =2=2 ( x - 1) + +2 .△ PAB记 t=x 0- 1∈ [4, +∞ ), 则 f ( t ) =t+ +2.∵f' ( t ) =1- =>0, ∴f ( t ) 在 [4, +∞) 上单一递加 , ∴f (t ) ≥ 4+ +2= , ∴S △ PAB ≥ 2× = ,∴△ PAB 面积的最小值为 .2 [ 配合例 2 使用 ] [ 2017·安徽江南十校联考 ] 在平面直角坐标系 xOy 中 , 点 M 到点 F (1,0) 的距离比它到 y 轴的距离大 1.(1) 求点 M 的轨迹 C 的方程 ;(2) 若在y 轴右边 , 曲线 C 上存在两点对于直线x- 2 0对称,求 的取值范围.y-m= m 解 :(1) 设点 M 的坐标为 ( x , y ) .由题意得= +1,即 = +1,化简得 y 2=4x ( x ≥ 0) 或 y=0( x<0),∴点 M 的轨迹 C 的方程为 y 2=4x ( x ≥ 0) 或 y=0( x<0) .(2) 设在 y 轴右边 , 曲线 C 上的两点 A ( x 1, y 1), B ( x 2, y 2)( x 1>0, x 2>0) 对于直线 x- 2y-m=0 对称 , 则可设直线 AB 的方程为 2x+y+n=0.由得 y 2+2y+2n=0, 则 4- 8n>0 且 y 1+y 2=-2,∴n< , 线段的中点为 P, - 1.AB∵P 在直线 x- 2y-m=0 上 , ∴ +2-m=0, 即 m=- .∵n< , ∴m>, 即 m 的取值范围为, +∞ .3 [ 配合例 3 使用 ] [ 2017·皖南一模 ] 如下图 , 已知椭圆 C : +y 2=1 的左极点为A , 右焦点为 F , O 为原 点 , , 是 y 轴上的两个动点 , 且⊥ , 直线 和 分别与椭圆C 交于 ( 异于 ), ( 异于 ) 两点.M NMF NF AM AN E M D N(1) 求△ MFN 面积的最小值 ;(2) 证明 : E , O , D 三点共线 .解 :(1) 易知 F (1,0), 设 M (0, t 1), N (0, t 2),⊥ ,1 120,得1 2=- 1,∵MF NF ∴ ·= +t t =t t∴S = ×1×|t-t 2|= ( |t |+|t|)≥ ×2=1,△ MFN112当且仅当 t 1=-t 2=1 时取等号 ,∴△ MFN 面积的最小值为 1.(2) 证明:易知 (,0).A -设 (0, t ), 由 (1) 可得N 0, - ( t ≠±1),M直线 AM , AN 的方程分别为y= x+t , y=- x- ,联立化简得 (1 +t 2) x 2+2 t 2x+2t 2- 2=0,∴- x E=, 可得x E=, y E=×+t=, 可得k OE=.联立化简得 (1 +t2) x2+2x+2- 2t 2 =0,可得 - x D=, 解得x D=, y D=-×- =, 可得k OD=, ∴k OE=k OD,∴E, O, D三点共线.。
2016届高考数学一轮复习教学案(基础知识+高频考点+解题训练)圆锥曲线的综合问题
2016届高考数学一轮复习教学案圆锥曲线的综合问题[知识能否忆起]1.直线与圆锥曲线的位置关系判定直线与圆锥曲线的位置关系时,通常是将直线方程与曲线方程联立,消去变量y (或x )得关于变量x (或y )的方程:ax 2+bx +c =0(或ay 2+by +c =0).若a ≠0,可考虑一元二次方程的判别式Δ,有: Δ>0⇔直线与圆锥曲线相交; Δ=0⇔直线与圆锥曲线相切; Δ<0⇔直线与圆锥曲线相离.若a =0且b ≠0,则直线与圆锥曲线相交,且有一个交点. 2.圆锥曲线的弦长问题设直线l 与圆锥曲线C 相交于A 、B 两点,A (x 1,y 1),B (x 2,y 2),则弦长|AB |=1+k 2|x 1-x 2|或1+1k2|y 1-y 2|.[小题能否全取]1.(教材习题改编)与椭圆x 212+y 216=1焦点相同,离心率互为倒数的双曲线方程是( )A .y 2-x 23=1 B.y 23-x 2=1C.34x 2-38y 2=1D.34y 2-38x 2=1 解析:选A 设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),则⎩⎪⎨⎪⎧a 2+b 2=c 2,ca =2,c =2,得a =1,b = 3.故双曲线方程为y 2-x 23=1.2.(教材习题改编)直线y =kx -k +1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定解析:选A 由于直线y =kx -k +1=k (x -1)+1过定点(1,1),而(1,1)在椭圆内,故直线与椭圆必相交.3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( ) A .1条 B .2条 C .3条D .4条解析:选C 结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0).4.过椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为1的直线与椭圆的另一个交点为M ,与y 轴的交点为B ,若|AM |=|MB |,则该椭圆的离心率为________.解析:由题意知A 点的坐标为(-a,0),l 的方程为y =x +a ,所以B 点的坐标为(0,a ),故M 点的坐标为⎝ ⎛⎭⎪⎫-a 2,a 2,代入椭圆方程得a 2=3b 2,则c 2=2b 2,则c 2a 2=23,故e =63.答案:635.已知双曲线方程是x 2-y 22=1,过定点P (2,1)作直线交双曲线于P 1,P 2两点,并使P (2,1)为P 1P 2的中点,则此直线方程是________________.解析:设点P 1(x 1,y 1),P 2(x 2,y 2),则由x 21-y 212=1,x 22-y 222=1,得k =y 2-y 1x 2-x 1=x 2+x 1y 2+y 1=2×42=4,从而所求方程为4x -y -7=0.将此直线方程与双曲线方程联立得14x 2-56x +51=0,Δ>0,故此直线满足条件.答案:4x -y -7=01.直线与圆锥曲线的位置关系,主要涉及弦长、弦中点、对称、参数的取值范围、求曲线方程等问题.解题中要充分重视根与系数的关系和判别式的应用.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长(即应用弦长公式);涉及弦的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目中的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”.典题导入[例1] (2012·北京高考)已知椭圆C :x 2a2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程;(2)当△AMN 的面积为103时,求k 的值.[自主解答](1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1. (2)由⎩⎪⎨⎪⎧y =k x -,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=+k 2x 1+x 22-4x1x 2]=2+k 2+6k 21+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k 2,所以△AMN 的面积为 S =12|MN |· d =|k |4+6k 21+2k 2.由|k |4+6k 21+2k 2=103,解得k =±1.由题悟法研究直线与圆锥曲线的位置关系时,一般转化为研究其直线方程与圆锥方程组成的方程组解的个数,但对于选择、填空题也可以利用几何条件,用数形结合的方法求解.以题试法1.(2012·信阳模拟)设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A.⎣⎢⎡⎦⎥⎤-12,12 B .[-2,2] C .[-1,1]D .[-4,4]解析:选C 易知抛物线y 2=8x 的准线x =-2与x 轴的交点为Q (-2,0),于是,可设过点Q (-2,0)的直线l 的方程为y =k (x +2)(由题可知k 是存在的),联立⎩⎪⎨⎪⎧y 2=8x ,y =k x +⇒k 2x 2+(4k 2-8)x +4k 2=0.当k =0时,易知符合题意;当k ≠0时,其判别式为Δ=(4k 2-8)2-16k 4=-64k 2+64≥0,可解得-1≤k ≤1.典题导入[例2] (2012·浙江高考)如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.不过原点O 的直线l与C 相交于A ,B 两点,且线段AB 被直线OP 平分.(1)求椭圆C 的方程;(2)求△ABP 面积取最大值时直线l 的方程.[自主解答] (1)设椭圆左焦点为F (-c,0),则由题意得⎩⎪⎨⎪⎧+c 2+1=10,c a =12,得⎩⎪⎨⎪⎧c =1,a =2.所以椭圆方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),线段AB 的中点为M .当直线AB 与x 轴垂直时,直线AB 的方程为x =0,与不过原点的条件不符,舍去.故可设直线AB 的方程为y =kx +m (m ≠0),由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2=12消去y ,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, ① 则Δ=64k 2m 2-4(3+4k 2)(4m 2-12)>0,⎩⎪⎨⎪⎧x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2.所以线段AB 的中点为M ⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 因为M 在直线OP :y =12x 上,所以3m 3+4k 2=-2km3+4k 2.得m =0(舍去)或k =-32.此时方程①为3x 2-3mx +m 2-3=0,则Δ=3(12-m 2)>0,⎩⎪⎨⎪⎧x 1+x 2=m ,x 1x 2=m 2-33.所以|AB |=1+k 2·|x 1-x 2|=396·12-m 2,设点P 到直线AB 的距离为d ,则d =|8-2m |32+22=2|m -4|13. 设△ABP 的面积为S ,则 S =12|AB |·d =36·m -2-m 2.其中m ∈(-23,0)∪(0,23).令u (m )=(12-m 2)(m -4)2,m ∈[-23,23 ],u ′(m )=-4(m -4)(m 2-2m -6)=-4(m -4)(m -1-7)(m -1+7).所以当且仅当m =1-7时,u (m )取到最大值. 故当且仅当m =1-7时,S 取到最大值.综上,所求直线l 的方程为3x +2y +27-2=0.由题悟法1.解决圆锥曲线的最值与范围问题常见的解法有两种:几何法和代数法.(1)若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决,这就是几何法;(2)若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,这就是代数法.2.在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;(3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围.以题试法2.(2012·东莞模拟)已知抛物线y 2=2px (p ≠0)上存在关于直线x +y =1对称的相异两点,则实数p 的取值范围为( )A.⎝ ⎛⎭⎪⎫-23,0B.⎝ ⎛⎭⎪⎫0,23C.⎝ ⎛⎭⎪⎫-32,0D.⎝ ⎛⎭⎪⎫0,32 解析:选B 设抛物线上关于直线x +y =1对称的两点是M (x 1,y 1)、N (x 2,y 2),设直线MN 的方程为y =x +b .将y =x +b 代入抛物线方程,得x 2+(2b -2p )x +b 2=0,则x 1+x 2=2p -2b ,y 1+y 2=(x 1+x 2)+2b =2p ,则MN 的中点P 的坐标为(p -b ,p ).因为点P 在直线x +y =1上,所以2p -b =1,即b =2p -1.又Δ=(2b -2p )2-4b 2=4p 2-8bp >0,将b =2p -1代入得4p 2-8p (2p -1)>0,即3p 2-2p <0,解得0<p <23.典题导入[例3] (2012·辽宁高考)如图,椭圆C 0:x 2a 2+y 2b 2=1(a >b >0,a ,b 为常数),动圆C 1:x 2+y 2=t 21,b <t 1<a .点A 1,A 2分别为C 0的左,右顶点,C 1与C 0相交于A ,B ,C ,D 四点.(1)求直线AA 1与直线A 2B 交点M 的轨迹方程;(2)设动圆C 2:x 2+y 2=t 22与C 0相交于A ′,B ′,C ′,D ′四点,其中b <t 2<a ,t 1≠t 2.若矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,证明:t 21+t 22为定值. [自主解答] (1)设 A (x 1,y 1),B (x 1,-y 1),又知A 1(-a,0),A 2(a,0),则直线A 1A 的方程为y =y 1x 1+a(x +a ),①直线A 2B 的方程为y =-y 1x 1-a(x -a ).②由①②得y 2=-y 21x 21-a2(x 2-a 2).③由点A (x 1,y 1)在椭圆C 0上,故x 21a 2+y 21b 2=1.从而y 21=b 2⎝ ⎛⎭⎪⎫1-x 21a 2,代入③得x 2a 2-y 2b 2=1(x <-a ,y <0). (2)证明:设A ′(x 2,y 2),由矩形ABCD 与矩形A ′B ′C ′D ′的面积相等,得4|x 1||y 1|=4|x 2|·|y 2|,故x 21y 21=x 22y 22.因为点A ,A ′均在椭圆上,所以b 2x 21⎝ ⎛⎭⎪⎫1-x 21a 2=b 2x 22⎝ ⎛⎭⎪⎫1-x 22a 2. 由t 1≠t 2,知x 1≠x 2,所以x 21+x 22=a 2,从而y 21+y 22=b 2, 因此t 21+t 22=a 2+b 2为定值.由题悟法1.求定值问题常见的方法有两种(1)从特殊入手,求出表达式,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y =kx +b ,然后利用条件建立b 、k 等量关系进行消元,借助于直线系方程找出定点;(2)从特殊情况入手,先探求定点,再证明一般情况.以题试法3.(2012·山东省实验中学模拟)已知抛物线y 2=2px (p ≠0)及定点A (a ,b ),B (-a,0),ab ≠0,b 2≠2pa ,M 是抛物线上的点.设直线AM ,BM 与抛物线的另一个交点分别为M 1,M 2,当M 变动时,直线M 1M 2恒过一个定点,此定点坐标为________.解析:设M ⎝ ⎛⎭⎪⎫y 202p ,y 0,M 1⎝ ⎛⎭⎪⎫y 212p ,y 1,M 2⎝ ⎛⎭⎪⎫y 222p ,y 2,由点A ,M ,M 1共线可知y 0-b y 202p-a=y 1-y 0y 212p -y 202p ,得y 1=by 0-2pa y 0-b,同理由点B ,M ,M 2共线得y 2=2pay 0.设(x ,y )是直线M 1M 2上的点,则y 2-y 1y 222p -y 212p =y 2-y y 222p-x,即y 1y 2=y (y 1+y 2)-2px ,又y 1=by 0-2pa y 0-b,y 2=2pay 0,则(2px -by )y 02+2pb (a -x )y 0+2pa (by -2pa )=0.当x =a ,y =2pab时上式恒成立,即定点为⎝⎛⎭⎪⎫a ,2pa b . 答案:⎝ ⎛⎭⎪⎫a ,2pa b1.已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则1PA ,·2PF ,的最小值为( )A .-2B .-8116C .1D .0解析:选A 设点P (x ,y ),其中x ≥1.依题意得A 1(-1,0),F 2(2,0),由双曲线方程得y 2=3(x 2-1).1PA ,·2PF ,=(-1-x ,-y )·(2-x ,-y )=(x +1)(x -2)+y 2=x 2+y 2-x -2=x 2+3(x 2-1)-x -2=4x 2-x -5=4⎝ ⎛⎭⎪⎫x -182-8116,其中x ≥1.因此,当x =1时,1PA ,·2PF ,取得最小值-2.2.过抛物线y 2=2x 的焦点作一条直线与抛物线交于A 、B 两点,它们的横坐标之和等于2,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条解析:选B 设该抛物线焦点为F ,则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且仅有两条.3.(2012·南昌联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 作与x 轴垂直的直线,分别与双曲线、双曲线的渐近线交于点M 、N (均在第一象限内),若FM ,=4MN ,,则双曲线的离心率为( )A.54B.53C.35D.45解析:选B 由题意知F (c,0),则易得M ,N 的纵坐标分别为b 2a,bc a,由FM ,=4MN ,得b 2a =4·⎝ ⎛⎭⎪⎫bc a -b 2a ,即b c =45.又c 2=a 2+b 2,则e =c a =53.4.已知椭圆x 225+y 216=1的焦点是F 1,F 2,如果椭圆上一点P 满足PF 1⊥PF 2,则下面结论正确的是( )A .P 点有两个B .P 点有四个C .P 点不一定存在D .P 点一定不存在解析:选D 设椭圆的基本量为a ,b ,c ,则a =5,b =4,c =3.以F 1F 2为直径构造圆,可知圆的半径r =c =3<4=b ,即圆与椭圆不可能有交点.5.已知椭圆C :x 22+y 2=1的两焦点为F 1,F 2,点P (x 0,y 0)满足x 202+y 20≤1,则|PF 1|+|PF 2|的取值范围为________.解析:当P 在原点处时,|PF 1|+|PF 2|取得最小值2;当P 在椭圆上时,|PF 1|+|PF 2|取得最大值22,故|PF 1|+|PF 2|的取值范围为[2,22 ].答案:[2,22 ]6.(2013·长沙月考)直线l :x -y =0与椭圆x 22+y 2=1相交于A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.解析:由⎩⎪⎨⎪⎧x -y =0,x22+y 2=1,得3x 2=2,∴x =±63,∴A ⎝ ⎛⎭⎪⎪⎫63,63,B ⎝ ⎛⎭⎪⎪⎫-63,-63,∴|AB |=433.设点C (2cos θ,sin θ),则点C 到AB 的距离d =|2cos θ-sin θ|2=32·⎪⎪sin(θ-φ)⎪⎪≤32,∴S △ABC =12|AB |·d ≤12×433×32=2.答案:27.设F 1,F 2分别是椭圆E :x 2+y 2b 2=1(0<b <1)的左,右焦点,过F 1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求|AB |;(2)若直线l 的斜率为1,求b 的值. 解:(1)由椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43.(2)l 的方程为y =x +c ,其中c =1-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎩⎪⎨⎪⎧y =x +c ,x 2+y2b2=1,化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=-2c1+b 2,x 1x 2=1-2b 21+b 2.因为直线AB 的斜率为1, 所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|.则89=(x 1+x 2)2-4x 1x 2=-b 2+b 22--2b 21+b 2=8b 4+b 22,解得b =22.8.(2012·黄冈质检)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上任意一点到右焦点F 的距离的最大值为2+1.(1)求椭圆的方程;(2)已知点C (m,0)是线段OF 上一个动点(O 为坐标原点),是否存在过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 点,使得|AC |=|BC |?并说明理由.解:(1)∵⎩⎪⎨⎪⎧e =c a =22a +c =2+1,∴⎩⎪⎨⎪⎧a =2c =1,∴b =1,∴椭圆的方程为x 22+y 2=1.(2)由(1)得F (1,0),∴0≤m ≤1. 假设存在满足题意的直线l ,设l 的方程为y =k (x -1),代入x 22+y 2=1中,得(2k 2+1)x 2-4k 2x +2k 2-2=0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,∴y 1+y 2=k (x 1+x 2-2)=-2k2k 2+1.设AB 的中点为M ,则M ⎝ ⎛⎭⎪⎫2k 22k 2+1,-k 2k 2+1. ∵|AC |=|BC |,∴CM ⊥AB ,即k CM ·k AB =-1,∴k2k 2+1m -2k 22k 2+1·k =-1,即(1-2m )k 2=m .∴当0≤m <12时,k =±m1-2m,即存在满足题意的直线l ;当12≤m ≤1时,k 不存在,即不存在满足题意的直线l . 9.(2012·江西模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线y =x +6与以原点为圆心,以椭圆C 的短半轴长为半径的圆相切,F 1,F 2为其左,右焦点,P 为椭圆C 上任一点,△F 1PF 2的重心为G ,内心为I ,且IG ∥F 1F 2.(1)求椭圆C 的方程;(2)若直线l :y =kx +m (k ≠0)与椭圆C 交于不同的两点A ,B ,且线段AB 的垂直平分线过定点C ⎝ ⎛⎭⎪⎫16,0,求实数k 的取值范围.解:(1)设P (x 0,y 0),x 0≠±a ,则G ⎝ ⎛⎭⎪⎫x 03,y 03.又设I (x I ,y I ),∵IG ∥F 1F 2, ∴y I =y 03,∵|F 1F 2|=2c ,∴S △F 1PF 2=12·|F 1F 2|·|y 0|=12(|PF 1|+|PF 2|+|F 1F 2|)·| y 03| ,∴2c ·3=2a +2c ,∴e =c a =12,又由题意知b =|6|1+1,∴b =3,∴a =2,∴椭圆C 的方程为x 24+y 23=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 24+y 23=1y =kx +m,消去y ,得(3+4k 2)x 2+8kmx +4m 2-12=0,由题意知Δ=(8km )2-4(3+4k 2)(4m 2-12)>0,即m 2<4k 2+3,又x 1+x 2=-8km3+4k 2,则y 1+y 2=6m3+4k 2,∴线段AB 的中点P 的坐标为⎝ ⎛⎭⎪⎫-4km 3+4k 2,3m 3+4k 2. 又线段AB 的垂直平分线l ′的方程为y =-1k ⎝ ⎛⎭⎪⎫x -16,点P 在直线l ′上,∴3m3+4k 2=-1k ⎝ ⎛⎭⎪⎫-4km 3+4k 2-16, ∴4k 2+6km +3=0,∴m =-16k(4k 2+3),∴k 2+236k 2<4k 2+3,∴k 2>332,解得k>68或k <-68,∴k 的取值范围是⎝ ⎛⎭⎪⎪⎫-∞,-68∪⎝ ⎛⎭⎪⎪⎫68,+∞.1.(2012·长春模拟)已知点A (-1,0),B (1,0),动点M 的轨迹曲线C 满足∠AMB =2θ,|AM |,·|BM |,cos 2θ=3,过点B 的直线交曲线C 于P ,Q 两点.(1)求|AM |,+|BM |,的值,并写出曲线C 的方程; (2)求△APQ 的面积的最大值.解:(1)设M (x ,y ),在△MAB 中,|AB |,=2,∠AMB =2θ,根据余弦定理得|AM |,2+|BM |,2-2|AM |,·|BM |,cos 2θ=|AB |,2=4,即(|AM |,+|BM |,)2-2|AM |,·|BM |,·(1+cos 2θ)=4,所以(|AM|,+|BM|,)2-4|AM|,| BM|,·cos2θ=4.因为|AM|,·|BM|,cos2θ=3,所以(|AM|,+|BM|,)2-4×3=4,所以|AM|,+|BM|,=4.又|AM|,+|BM|,=4>2=|AB|,因此点M的轨迹是以A,B为焦点的椭圆(点M在x轴上也符合题意),设椭圆的方程为x2a2+y2b2=1(a>b>0),则a=2,c=1,所以b2=a2-c2=3.所以曲线C的方程为x24+y23=1.(2)设直线PQ的方程为x=my+1.由⎩⎪⎨⎪⎧x=my+1x24+y23=1,消去x,整理得(3m2+4)y2+6my-9=0.①显然方程①的判别式Δ=36m2+36(3m2+4)>0,设P(x1,y1),Q(x2,y2),则△APQ的面积S△APQ=12×2×|y1-y2|=|y1-y2|.由根与系数的关系得y1+y2=-6m3m2+4,y1y2=-93m2+4,所以(y1-y2)2=(y1+y2)2-4y1y2=48×3m2+33m 2+42.令t=3m2+3,则t≥3,(y1-y2)2=48t+1t+2,由于函数φ(t )=t +1t在[3,+∞)上是增函数,所以t +1t ≥103,当且仅当t =3m 2+3=3,即m =0时取等号,所以(y 1-y 2)2≤48103+2=9,即|y 1-y 2|的最大值为3, 所以△APQ 的面积的最大值为3,此时直线PQ 的方程为x =1. 2.(2012·郑州模拟)已知圆C 的圆心为C (m,0),m <3,半径为5,圆C 与离心率e>12的椭圆E :x 2a 2+y 2b 2=1(a >b >0)的其中一个公共点为A (3,1),F 1,F 2分别是椭圆的左、右焦点.(1)求圆C 的标准方程;(2)若点P 的坐标为(4,4),试探究直线PF 1与圆C 能否相切?若能,设直线PF 1与椭圆E 相交于D ,B 两点,求△DBF 2的面积;若不能,请说明理由.解:(1)由已知可设圆C 的方程为(x -m )2+y 2=5(m <3), 将点A 的坐标代入圆C 的方程中,得(3-m )2+1=5, 即(3-m )2=4,解得m =1,或m =5. ∴m <3,∴m =1.∴圆C 的标准方程为(x -1)2+y 2=5. (2)直线PF 1能与圆C 相切,依题意设直线PF 1的斜率为k ,则直线PF 1的方程为y =k (x -4)+4,即kx -y -4k +4=0,若直线PF 1与圆C 相切,则|k -0-4k +4|k 2+1=5.∴4k 2-24k +11=0,解得k =112或k =12.当k =112时,直线PF 1与x 轴的交点的横坐标为3611,不合题意,舍去.当k =12时,直线PF 1与x 轴的交点的横坐标为-4,∴c =4,F 1(-4,0),F 2(4,0). ∴由椭圆的定义得: 2a =|AF 1|+|AF 2|=+2+12+-2+12=52+2=6 2.∴a =32,即a 2=18,∴e =432=223>12,满足题意.故直线PF 1能与圆C 相切.直线PF 1的方程为x -2y +4=0,椭圆E 的方程为x 218+y 22=1.设B (x 1,y 1),D (x 2,y 2),把直线PF 1的方程代入椭圆E 的方程并化简得,13y 2-16y -2=0,由根与系数的关系得y 1+y 2=1613,y 1y 2=-213,故S △DBF 2=4|y 1-y 2|=4y 1+y 22-4y 1y 2=241013.1.已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过焦点F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:选C 依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1消去y 得(x -1)2=4x ,即x 2-6x +1=0,因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2,所以线段AB 的中点坐标是(3,2).2.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点(m ,n )的直线与椭圆x 29+y 24=1的交点个数为( ) A .至多1个 B .2个 C .1个D .0个解析:选B 由题意得4m 2+n 2>2,即m 2+n 2<4,则点(m ,n )在以原点为圆心,以2为半径的圆内,此圆在椭圆x 29+y 24=1的内部.3.(2012·深圳模拟)如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以椭圆C 的左顶点T 为圆心作圆T :(x +2)2+y 2=r 2(r >0),设圆T 与椭圆C 交于点M 与点N .(1)求椭圆C 的方程;(2)求TM ,·TN ,的最小值,并求此时圆T 的方程; (3)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点,求证:|OR |·|OS |为定值.解:(1)依题意,得a =2,e =ca=32, ∴c =3,b =a 2-c 2=1. 故椭圆C 的方程为x 24+y 2=1.(2)易知点M 与点N 关于x 轴对称,设M (x 1,y 1),N (x 1,-y 1),不妨设y 1>0. 由于点M 在椭圆C 上,∴y 21=1-x 214.(*)由已知T (-2,0),则TM ,=(x 1+2,y 1),TN ,=(x 1+2,-y 1),∴TM ,·TN ,=(x 1+2,y 1)·(x 1+2,-y 1)=(x 1+2)2-y 21=(x 1+2)2-⎝ ⎛⎭⎪⎫1-x 214=54x 21+4x 1+3 =54⎝ ⎛⎭⎪⎫x 1+852-15.由于-2<x 1<2,故当x 1=-85时,TM ,·TN ,取得最小值-15.把x 1=-85代入(*)式,得y 1=35,故M ⎝ ⎛⎭⎪⎫-85,35,又点M 在圆T 上,代入圆的方程得r 2=1325. 故圆T的方程为(x +2)2+y 2=1325. (3)设P (x 0,y 0),则直线MP 的方程为:y -y 0=y 0-y 1x 0-x 1(x -x 0),令y =0,得x R =x 1y 0-x 0y 1y 0-y 1,同理:x S =x 1y 0+x 0y 1y 0+y 1,故x R ·x S =x 21y 20-x 20y 21y 20-y 21.(**)又点M 与点P 在椭圆上,故x 20=4(1-y 20),x 21=4(1-y 21),代入(**)式, 得x R ·x S =-y 21y 20--y 20y 21y 20-y 21=4⎝ ⎛⎭⎪⎫y 20-y 21y 20-y 21=4. 所以|OR |·|OS |=|x R |·|x S |=|x R ·x S |=4为定值.平面解析几何(时间:120分钟,满分150分)一、选择题(本题共12小题,每小题5分,共60分)1.(2012·佛山模拟)已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:选D 由题意得a +2=a +2a,解得a =-2或a =1.2.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析:选B 设P (x P ,1),由题意及中点坐标公式得x P +7=2,解得x P =-5,即P (-5,1),所以k =-13.3.(2012·长春模拟)已知点A (1,-1),B (-1,1),则以线段AB 为直径的圆的方程是( ) A .x 2+y 2=2 B .x 2+y 2= 2C .x 2+y 2=1D .x 2+y 2=4解析:选A AB 的中点坐标为(0,0), |AB |=[1--2+-1-2=22,∴圆的方程为x 2+y 2=2.4.(2012·福建高考)已知双曲线x 24-y 2b 2=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A. 5 B .4 2C .3D .5解析:选A ∵抛物线y 2=12x 的焦点坐标为(3,0),故双曲线x 24-y 2b 2=1的右焦点为(3,0),即c =3,故32=4+b 2,∴b 2=5,∴双曲线的渐近线方程为y =±52x ,∴双曲线的右焦点到其渐近线的距离为⎪⎪⎪⎪⎪⎪⎪⎪52×31+54= 5.5.(2012·郑州模拟)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点分成7∶3的两段,则此双曲线的离心率为( )A.98B.53C.324D.54解析:选B 依题意得,c +b 2=77+3×2c ,即b =45c (其中c 是双曲线的半焦距),a =c 2-b 2=35c ,则c a =53,因此该双曲线的离心率等于53. 6.设双曲线的左,右焦点为F 1,F 2,左,右顶点为M ,N ,若△PF 1F 2的一个顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点的位置是( )A .在线段MN 的内部B .在线段F 1M 的内部或NF 2内部C .点N 或点MD .以上三种情况都有可能解析:选C 若P 在右支上,并设内切圆与PF 1,PF 2的切点分别为A ,B ,则|NF 1|-|NF 2|=|PF 1|-|PF 2|=(|PA |+|AF 1|)-(|PB |+|BF 2|)=|AF 1|-|BF 2|.所以N 为切点,同理P 在左支上时,M 为切点. 7.圆x 2+y 2-4x =0在点P (1, 3)处的切线方程为( ) A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0D .x -3y +2=0解析:选D 圆的方程为(x -2)2+y 2=4,圆心坐标为(2,0),半径为2,点P 在圆上,设切线方程为y -3=k (x -1),即kx -y -k +3=0,所以|2k -k +3|k 2+1=2,解得k =33.所以切线方程为y -3=33(x -1),即x -3y +2=0.8.(2012·新课标全国卷)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( ) A.2B .2 2C .4D .8解析:选C 抛物线y 2=16x 的准线方程是x =-4,所以点A (-4,23)在等轴双曲线C :x 2-y 2=a 2(a >0)上,将点A 的坐标代入得a =2,所以C 的实轴长为4.9.(2012·潍坊适应性训练)已知双曲线C :x 24-y 25=1的左,右焦点分别为F 1,F 2,P为C 的右支上一点,且|PF 2|=|F 1F 2|,则|PF 2|=|F 1F 2|,则1PF ,·2PF ,等于( )A .24B .48C .50D .56解析:选C 由已知得|PF 2|=|F 1F 2|=6,根据双曲线的定义可得|PF 1|=10,在△F 1PF 2中,根据余弦定理可得cos ∠F 1PF 2=56,所以1PF ,·2PF ,=10×6×56=50.10.(2012·南昌模拟)已知△ABC 外接圆半径R =1433,且∠ABC =120°,BC =10,边BC 在x 轴上且y 轴垂直平分BC 边,则过点A 且以B ,C 为焦点的双曲线方程为( )A.x 275-y 2100=1B.x 2100-y 275=1 C.x 29-y 216=1D.x 216-y 29=1 解析:选D ∵sin ∠BAC =BC 2R =5314,∴cos ∠BAC =1114,|AC |=2R sin ∠ABC =2×1433×32=14,sin ∠ACB =sin(60°-∠BAC )=sin 60°cos∠BAC -cos 60°sin∠BAC =32×1114-12×5314=3314, ∴|AB |=2R sin ∠ACB =2×1433×3314=6,∴2a =||AC |-|AB ||=14-6=8,∴a =4,又c =5,∴b 2=c 2-a 2=25-16=9, ∴所求双曲线方程为x 216-y 29=1.11.(2012·乌鲁木齐模拟)已知抛物线y 2=2px (p >0)的焦点为F ,P ,Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是( )A .2± 3B .2+ 3C.3±1D.3-1解析:选A 依题意得F ⎝ ⎛⎭⎪⎫p 2,0,设P ⎝ ⎛⎭⎪⎫y 212p ,y 1,Q ⎝ ⎛⎭⎪⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p2,所以y 21=y 22,所以y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝ ⎛⎭⎪⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2± 3.12.已知中心在原点,焦点在坐标轴上,焦距为4的椭圆与直线x +3y +4=0有且仅有一个交点,则椭圆的长轴长为( )A .32或4 2B .26或27C .25或27D.5或7解析:选C 设椭圆方程为mx 2+ny 2=1(m ≠n 且m ,n >0),与直线方程x +3y +4=0联立,消去x 得(3m +n )y 2+83my +16m -1=0,由Δ=0得3m +n =16mn ,即3n +1m=16,①又c =2,即1m -1n=±4,②由①②联立得⎩⎪⎨⎪⎧m =17n =13或⎩⎪⎨⎪⎧m =1n =15,故椭圆的长轴长为27或2 5.二、填空题(本题有4小题,每小题5分,共20分)13.(2012·青岛模拟)已知两直线l 1:x +y sin θ-1=0和l 2:2x sin θ+y +1=0,当l 1⊥l 2时,θ=________.解析:l 1⊥l 2的充要条件是2sin θ+sin θ=0,即sin θ=0,所以θ=k π(k ∈Z ).所以当θ=k π(k ∈Z )时,l 1⊥l 2.答案:k π(k ∈Z )14.已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,A ,B 分别是此椭圆的右顶点和上顶点,P 是椭圆上一点,O 是坐标原点,OP ∥AB ,PF 1⊥x 轴,|F 1A |=10+5,则此椭圆的方程是______________________.解析:由于直线AB 的斜率为-b a,故直线OP 的斜率为-b a,直线OP 的方程为y =-b a x .与椭圆方程联立得x 2a 2+x 2a 2=1,解得x =±22a .根据PF 1⊥x 轴,取x =-22a ,从而-22a =-c ,即a =2c .又|F 1A |=a +c =10+5,故2c +c =10+5,解得c =5,从而a =10.所以所求的椭圆方程为x 210+y 25=1.答案:x 210+y 25=115.(2012·陕西高考)右图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.解析:设抛物线的方程为x 2=-2py ,则点(2,-2)在抛物线上,代入可得p =1,所以x 2=-2y .当y =-3时,x 2=6,即x =±6,所以水面宽为26.答案:2616.(2012·天津高考)设m ,n ∈R ,若直线l :mx +ny -1=0与x 轴相交于点A ,与y 轴相交于点B ,且l 与圆x 2+y 2=4相交所得弦的长为2,O 为坐标原点,则△AOB 面积的最小值为________.解析:由直线与圆相交所得弦长为2,知圆心到直线的距离为3,即1m 2+n 2=3,所以m 2+n 2=13≥2|mn |,所以|mn |≤16,又A ⎝ ⎛⎭⎪⎫1m ,0,B ⎝ ⎛⎭⎪⎫0,1n ,所以△AOB 的面积为12|mn |≥3,最小值为3.答案:3三、解答题(本题共6小题,共70分)17.(10分)求过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且到点P (0,4)距离为2的直线方程.解:由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧x =1,y =2.所以l 1与l 2的交点为(1,2),设所求直线y -2=k (x -1)(由题可知k 存在),即kx -y +2-k =0,∵P (0,4)到直线距离为2,∴2=|-2-k |1+k 2,解得k =0或k =43.∴直线方程为y =2或4x -3y +2=0.18.(12分)(2012·南昌模拟)已知圆C 过点P (1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1)求圆C 的方程;(2)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:设圆心C (a ,b ),则⎩⎪⎨⎪⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2, 故圆C 的方程为x 2+y 2=2.(2)由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k (x -1),PB :y -1=-k (x -1),由⎩⎪⎨⎪⎧y -1=k x -,x 2+y 2=2得(1+k 2)x 2+2k (1-k )x +(1-k )2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A=-k x B --k x A -x B -x A=2k -k x B +x Ax B -x A=1=k OP ,所以,直线AB 和OP 一定平行.19.(12分)(2012·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),点P ⎝ ⎛⎭⎪⎪⎫55a ,22a 在椭圆上.(1)求椭圆的离心率;(2)设A 为椭圆的左顶点,O 为坐标原点.若点Q 在椭圆上且满足|AQ |=|AO |,求直线OQ 的斜率的值.解:(1)因为点P ⎝ ⎛⎭⎪⎪⎫55a ,22a 在椭圆上,故a 25a 2+a 22b 2=1,可得b 2a 2=58.于是e 2=a 2-b 2a 2=1-b 2a 2=38,所以椭圆的离心率e =64.(2)设直线OQ 的斜率为k ,则其方程为y =kx ,设点Q 的坐标为(x 0,y 0).由条件得⎩⎪⎨⎪⎧y 0=kx 0,x 2a 2+y20b2=1,消去y 0并整理得x 20=a 2b 2k 2a 2+b 2.①由|AQ |=|AO |,A (-a,0)及y 0=kx 0,得(x 0+a )2+k 2x 20=a 2.整理得(1+k 2)x 20+2ax 0=0,而x 0≠0,故x 0=-2a 1+k 2,代入①,整理得(1+k 2)2=4k 2·a 2b 2+4.由(1)知a 2b 2=85,故(1+k 2)2=325k 2+4,即5k 4-22k 2-15=0,可得k 2=5. 所以直线OQ 的斜率k =±5.20.(12分)(2012·河南模拟)已知椭圆x 2a2+y 2b2=1(a >b >0)的离心率为22,短轴的一个端点为M (0,1),直线l :y =kx -13与椭圆相交于不同的两点A ,B .(1)若|AB |=4269,求k 的值; (2)求证:不论k 取何值,以AB 为直径的圆恒过点M . 解:(1)由题意知ca =22,b =1.由a 2=b 2+c 2可得c =b =1,a =2,∴椭圆的方程为x 22+y 2=1.由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1得(2k 2+1)x 2-43kx -169=0.Δ=169k 2-4(2k 2+1)×⎝ ⎛⎭⎪⎫-169=16k 2+649>0恒成立, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k k 2+,x 1x 2=-16k 2+.∴|AB |=1+k 2·|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=4+k 2k 2+k 2+=4269, 化简得23k 4-13k 2-10=0,即(k 2-1)(23k 2+10)=0,解得k =±1.(2)∵MA ,=(x 1,y 1-1),MB ,=(x 2,y 2-1),∴MA ,·MB ,=x 1x 2+(y 1-1)(y 2-1),=(1+k 2)x 1x 2-43k (x 1+x 2)+169=-+k 2k 2+-16k 2k 2++169 =0.∴不论k 取何值,以AB 为直径的圆恒过点M .21. (2012·广州模拟)设椭圆M :x 2a 2+y 22=1(a >2)的右焦点为F 1,直线l :x =a 2a 2-2与x 轴交于点A ,若1OF ,+21AF ,=0(其中O 为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆N :x 2+(y -2)2=1的任意一条直径(E ,F 为直径的两个端点),求PE ,·PF ,的最大值.解:(1)由题设知,A ⎝ ⎛⎭⎪⎪⎫a 2a 2-2,0,F 1(a 2-2,0),由1OF ,+21AF ,=0,得a 2-2=2⎝ ⎛⎭⎪⎪⎫a 2a 2-2-a 2-2, 解得a 2=6.所以椭圆M 的方程为x 26+y 22=1. (2)设圆N :x 2+(y -2)2=1的圆心为N ,则PE ,·PF ,=(NE ,-NP ,)·(NF ,-NP ,) =(-NF ,-NP ,)·(NF ,-NP ,)=NP ,2-NF ,2=NP ,2-1.从而将求PE ,·PF ,的最大值转化为求NP ―→,2的最大值.因为P 是椭圆M 上的任意一点,设P (x 0,y 0),所以x 206+y 202=1,即x 20=6-3y 20. 因为点N (0,2),所以NP ,2=x 20+(y 0-2)2=-2(y 0+1)2+12. 因为y 0∈[-2, 2],所以当y 0=-1时,NP ,2取得最大值12. 所以PE ,·PF ,的最大值为11.22. (2012·湖北模拟)如图,曲线C 1是以原点O 为中心,F 1,F 2为焦点的椭圆的一部分.曲线C 2是以O 为顶点,F 2为焦点的抛物线的一部分,A 是曲线C 1和C 2的交点且∠AF 2F 1为钝角,若|AF 1|=72,|AF 2|=52. (1)求曲线C 1和C 2的方程;(2)设点C 是C 2上一点,若|CF 1|=2|CF 2|,求△CF 1F 2的面积. 解:(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 则2a =|AF 1|+|AF 2|=72+52=6,得a =3.设A (x ,y ),F 1(-c,0),F 2(c,0),则(x +c )2+y 2=⎝ ⎛⎭⎪⎫722,(x -c )2+y 2=⎝ ⎛⎭⎪⎫522,两式相减得xc =32. 由抛物线的定义可知|AF 2|=x +c =52, 则c =1,x =32或x =1,c =32.又∠AF 2F 1为钝角,则x =1,c =32不合题意,舍去.当c =1时,b =22,所以曲线C 1的方程为x 29+y 28=1⎝ ⎛⎭⎪⎫-3≤x ≤32,曲线C 2的方程为y 2=4x ⎝⎛⎭⎪⎫0≤x ≤32. (2)过点F 1作直线l 垂直于x 轴,过点C 作CC 1⊥l 于点C 1,依题意知|CC 1|=|CF 2|. 在Rt △CC 1F 1中,|CF 1|=2|CF 2|=2|CC 1|,所以∠C 1CF 1=45°,所以∠CF 1F 2=∠C 1CF 1=45°.在△CF 1F 2中,设|CF 2|=r ,则|CF 1|=2r ,|F 1F 2|=2. 由余弦定理得22+(2r )2-2×2×2r cos 45°=r 2, 解得r =2,所以△CF 1F 2的面积S △CF 1F 2=12|F 1F 2|·|CF 1|sin 45°=12×2×22sin 45°=2.。
高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新
解答题专项突破(五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、X 围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型1 圆锥曲线中的定点问题典例1(2019·高考)抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解题思路 (1)根据抛物线C 过点(2,-1),列方程求p ,得抛物线C 的方程,进而得出其准线方程.(2)设直线l 的方程,与抛物线C 的方程联立,用根与系数的关系推出关于M ,N 两点坐标的等量关系,设所求定点坐标为(0,n ),利用DA →·DB →=0列方程式求n的值.规X 解答 (1)由抛物线C :x 2=-2py 经过点(2,-1),得22=-2p (-1),解得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明:抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA→=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB→=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB→=x 1x 2y 1y2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2 =-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).典例2(2019·某某模拟)Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA→=AP →,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点⎝ ⎛⎭⎪⎫0,-35的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?假设是,求出定点的坐标;假设不是,请说明理由.解题思路 (1)设Q (x 0,y 0),P (x ,y ),利用所给条件建立两点坐标之间的关系,利用Q 在圆上可得x ,y 的方程,即为所求.(2)设定点为H ,及直线l 的方程,与椭圆方程联立,利用根与系数的关系,及HM →·HN→=0,得出恒等式,求得定点的坐标. 规X 解答 (1)设Q (x 0,y 0),P (x ,y ),那么x 20+y 20=1,由BA →=AP →,得⎩⎨⎧x 0=x2,y 0=-y ,代入x 20+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)假设存在满足条件的定点,由对称性可知,该定点在y 轴上,设定点为H (0,m ),当直线l 的斜率存在时,设直线l 的方程为y =kx -35, 由⎩⎪⎨⎪⎧y =kx -35,x 24+y 2=1,得(1+4k 2)x 2-245kx -6425=0,设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=24k 51+4k 2,x 1x 2=-64251+4k 2,∴y 1+y 2=k (x 1+x 2)-65=-651+4k2,y 1y 2=⎝ ⎛⎭⎪⎫kx 1-35⎝ ⎛⎭⎪⎫kx 2-35=k 2x 1x 2-35k (x 1+x 2)+925=9-100k 2251+4k 2, ∵HM →=(x 1,y 1-m ),HN →=(x 2,y 2-m ), ∴HM →·HN →=x 1x 2+y 1y 2-m (y 1+y 2)+m 2=100m 2-1k 2+25m 2+30m -55251+4k2=0,∵对任意的k 恒成立,∴⎩⎪⎨⎪⎧100m 2-1=0,25m 2+30m -55=0,解得m =1,即定点为H (0,1),当直线l 的斜率不存在时,以MN 为直径的圆也过定点(0,1). 综上,以MN 为直径的圆过定点(0,1). 热点题型2 圆锥曲线中的定值问题典例1 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段FP 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解题思路 (1)R 是线段FP 的中点,且RQ ⊥FP →RQ 是线段PF 的垂直平分线→|PQ |=|QF |→点Q 的轨迹是以F 为焦点,l 为准线的抛物线→确定焦准距,根据抛物线的焦点坐标,求出抛物线的方程.(2)①求|TS |的依据:a =2r 2-d 2,其中a 为弦长,r 为圆的半径,d 为圆心到弦所在直线的距离.②策略:设曲线C 上点M (x 0,y 0),用相关公式求r ,d ;用x 0,y 0满足的等量关系消元.规X 解答 (1)依题意知,点R 是线段FP 的中点, 且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=x 0-12+y 20, 那么|TS |=2r 2-d 2=2y 20-2x 0+1,∵点M 在曲线C 上, ∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.典例2(2019·某某三模)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a2+b2的圆为椭圆C的“准圆〞.假设椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.(1)求椭圆C的方程和其“准圆〞方程;(2)假设点P是椭圆C的“准圆〞上的动点,过点P作椭圆的切线l1,l2交“准圆〞于点M,N.证明:l1⊥l2,且线段MN的长为定值.解题思路(1)根据椭圆的几何性质求a,c,再用b2=a2-c2求b,可得椭圆C 的方程,进而可依据定义写出其“准圆〞方程.(2)分以下两种情况讨论:①l1,l2中有一条斜率不存在;②l1,l2斜率存在.对于①,易知切点为椭圆的顶点;对于②,可设出过P与椭圆相切的直线,并与椭圆方程联立后消元,由Δ=0推出关于椭圆切线斜率的方程,利用根与系数的关系进行证明.规X解答(1)∵椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.∴c=2,a=3,∴b=a2-c2=1,∴椭圆方程为x23+y2=1,∴“准圆〞方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,那么l1:x=±3,当l1:x=3时,l1与“准圆〞交于点(3,1),(3,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l 1:x =-3时,直线l 1,l 2垂直. ②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中x 20+y 20=4.设经过点P (x 0,y 0)与椭圆相切的直线为 y =t (x -x 0)+y 0,∴由⎩⎨⎧y =t x -x 0+y 0,x 23+y 2=1,得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-x 20)t 2+2x 0y 0t +1-y 20=0,∵x 20+y 20=4,∴有(3-x 20)t 2+2x 0y 0t +(x 20-3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-x 20)t 2+2x 0y 0t +(x 20-3)=0,∴t 1·t 2=-1,即l 1,l 2垂直. 综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆〞于点M ,N ,且l 1,l 2垂直. ∴线段MN 为“准圆〞x 2+y 2=4的直径,|MN |=4, ∴线段MN 的长为定值.热点题型3 圆锥曲线中的证明问题典例1抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)假设AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD |,|AB |.由△ABD 的面积为1,列方程求p ,得抛物线的方程.(2)将直线AB 的方程与抛物线C 的方程联立,消去y 并整理,结合根与系数的关系用k ,p 表示M ,N 的坐标.求k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规X 解答 (1)∵AB ∥l ,∴△ABD 为等腰三角形,且FD ⊥AB ,又|FD |=p ,|AB |=2p .∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p 2,A ⎝ ⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p .由⎩⎨⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝ ⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22px 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线的斜率k ′=x 1p . ∴直线AN 与抛物线相切.典例2(2019·某某二模)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(1<a <5)上,该椭圆的左顶点A 到直线x -y +5=0的距离为322.(1)求椭圆C 的标准方程;(2)假设线段MN 平行于y 轴,满足(ON →-2OM →)·MN →=0,动点P 在直线x =23上,满足ON →·NP→=2.证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 解题思路 (1)根据椭圆的左顶点A 到直线x -y +5=0的距离为322,列关于a 的等量关系求解,得椭圆C 的方程.(2)设出M ,N ,P 的坐标(注意M 与N 的横坐标相同,P 的横坐标).先用(ON →-2OM →)·MN →=0和ON →·NP →=2推出坐标之间的关系,再利用这些等量关系证明NF →·OP→=0. 规X 解答 (1)设左顶点A 的坐标为(-a,0), ∵|-a +5|2=322,∴|a -5|=3,解得a =2或a =8(舍去), ∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:由题意,设M (x 0,y 0),N (x 0,y 1),P (23,t ),且y 1≠y 0,由(ON →-2OM →)·MN →=0,可得(x 0-2x 0,y 1-2y 0)·(0,y 1-y 0)=0,整理可得y 1=2y 0,由ON →·NP →=2,可得(x 0,2y 0)·(23-x 0,t -2y 0)=2,整理,得23x 0+2y 0t =x 20+4y 20+2=6,由(1)可得F (3,0), ∴NF →=(3-x 0,-2y 0), ∴NF →·OP →=(3-x 0,-2y 0)·(23,t )=6-23x 0-2y 0t =0, ∴NF ⊥OP ,故过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 热点题型4 圆锥曲线中的最值与X 围问题典例1(2019·某某二模)设F 为抛物线C :y 2=2px 的焦点,A 是C 上一点,F A 的延长线交y 轴于点B ,A 为FB 的中点,且|FB |=3.(1)求抛物线C 的方程;(2)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于M ,N 两点,直线l 2与C 交于D ,E 两点,求四边形MDNE 面积的最小值.解题思路(1)由题意画出图形,结合条件列式求得p ,那么抛物线C 的方程可求.(2)由直线l 1的斜率存在且不为0,设其方程为y =k (x -1),与抛物线方程联立,求出|MN |,同理可求|DE |⎝ ⎛⎭⎪⎫实际上,在|MN |的表达式中用-1k 代替k 即可,可得四边形MDNE 的面积表达式,再利用基本不等式求最值.规X 解答 (1)如图,∵A 为FB 的中点,∴A 到y 轴的距离为p4, ∴|AF |=p 4+p 2=3p 4=|FB |2=32,解得p =2. ∴抛物线C 的方程为y 2=4x . (2)由直线l 1的斜率存在且不为0, 设其方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.∵Δ>0,设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=2+4k 2,那么|MN |=x 1+x 2+2=4⎝ ⎛⎭⎪⎫1+1k 2; 同理设D (x 3,y 3),E (x 4,y 4),∴x 3+x 4=2+4k 2, 那么|DE |=x 3+x 4+2=4(1+k 2).∴四边形MDNE 的面积S =12|MN |·|DE |=8⎝ ⎛⎭⎪⎫2+k 2+1k 2≥32.当且仅当k =±1时,四边形MDNE 的面积取得最小值32.典例2 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),假设S △P AM ∶S △PBN =λ,某某数λ的取值X 围.解题思路 (1)求点B 的坐标→根据k AB =12列方程→由题意得a =2,a 2=b 2+c 2,解方程组求a ,b ,c ,写出椭圆C 的标准方程.(2)S △P AM ∶S △PBN =λ――→面积公式PM →与PN →的关系→点M ,N 坐标之间的关系→直线MN 的方程与椭圆C 的方程联立,消去y 整理→用根与系数的关系得出点M ,N 的坐标之间的关系式→推出λ与k 的关系,并根据k >12求X 围,找到λ所满足的不等式,求出λ的取值X 围.规X 解答 (1)因为BF 1⊥x 轴,所以点B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以⎩⎪⎨⎪⎧ a =2,b 2a a +c=12,a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1. (2)因为S △P AM S △PBN=12|P A |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN=2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2), 所以PM→=-λ2PN →. 由(1)可知P (0,-1),设直线MN :y =kx -1⎝ ⎛⎭⎪⎫k >12,M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx -1,x 24+y 23=1,化简得,(4k 2+3)x 2-8kx -8=0.得⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM →=(x 1,y 1+1),PN →=(x 2,y 2+1), 有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,2-λ2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),那么1<2-λ2λ<4且λ>2⇒4<λ<4+2 3.综上所述,实数λ的取值X 围为(4,4+23). 热点题型5 圆锥曲线中的探索性问题典例1(2019·某某一模)抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.(1)假设过抛物线E的焦点F的直线l与圆C相切,求直线l的方程;(2)在(1)的条件下,假设直线l交抛物线E于A,B两点,x轴上是否存在点M(t,0)使∠AMO=∠BMO(O为坐标原点)?假设存在,求出点M的坐标;假设不存在,请说明理由.解题思路(1)求得抛物线的焦点,设出直线l的方程,运用直线l和圆C相切的条件:d=r,解方程可得所求直线方程.(2)设出A,B的坐标,联立直线l的方程和抛物线E的方程,运用根与系数的关系和直线的斜率公式,依据∠AMO=∠BMO,即k AM+k BM=0列方程化简整理,解方程可得t,即得点M的坐标,从而得到结论.规X解答(1)由题意,得抛物线的焦点F(1,0),当直线l的斜率不存在时,过F的直线不可能与圆C相切,所以直线l的斜率存在.设直线l的斜率为k,方程为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线l的距离为d=|3k-k|1+k2=2|k|1+k2,当直线l与圆C相切时,d=r=1,解得k=±3 3,即直线l的方程为y=±33(x-1).(2)由(1),当直线l的方程为y=33(x-1)时,设A(x1,y1),B(x2,y2),联立抛物线E的方程可得x2-14x+1=0,那么x 1+x 2=14,x 1x 2=1,x 轴上假设存在点M (t,0)使∠AMO =∠BMO , 即有k AM +k BM =0, 得y 1x 1-t+y 2x 2-t =0, 即y 1(x 2-t )+y 2(x 1-t )=0, 由y 1=33(x 1-1),y 2=33(x 2-1), 可得2x 1x 2-(x 1+x 2)-(x 1+x 2-2)t =0,即2-14-12t =0,即t =-1,M (-1,0)符合题意;当直线l 的方程为y =-33(x -1)时,由对称性可得M (-1,0)也符合条件. 所以存在定点M (-1,0)使∠AMO =∠BMO .典例2(2019·某某模拟)点A (0,-1),B (0,1),P 为椭圆C :x 22+y 2=1上异于点A ,B 的任意一点.(1)求证:直线P A ,PB 的斜率之积为-12;(2)是否存在过点Q (-2,0)的直线l 与椭圆C 交于不同的两点M ,N ,使得|BM |=|BN |?假设存在,求出直线l 的方程;假设不存在,请说明理由.解题思路(1)设点P (x ,y )(x ≠0),代入椭圆方程,由直线的斜率公式,即可得证. (2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交,讨论直线的斜率是否为0,联立直线方程和椭圆方程,运用根与系数的关系和两直线垂直的条件:由|BM |=|BN |想到在△BMN 中,边MN 所在直线的斜率与MN边上的中线所在直线的斜率之积为-1,可得所求直线方程.规X 解答 (1)证明:设点P (x ,y )(x ≠0), 那么x 22+y 2=1,即y 2=1-x 22, ∴k P A ·k PB =y +1x ·y -1x =y 2-1x 2 =⎝ ⎛⎭⎪⎫1-x 22-1x 2=-12,故得证.(2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交.①当直线l 的斜率k ≠0时,设直线l 为y =k (x +2),联立椭圆方程x 2+2y 2=2,化简得(1+2k 2)x 2+8k 2x +8k 2-2=0, 由Δ=64k 4-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22(k ≠0), 设点M (x 1,y 1),N (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k2,∴y 1+y 2=k (x 1+x 2)+4k =k ·-8k 21+2k 2+4k =4k 1+2k 2, 取MN 的中点H ,即H ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,那么y1+y22-1x1+x22·k=-1,即2k1+2k2-1-4k21+2k2·k=-1,化简得2k2+2k+1=0,无实数解,故舍去.②当k=0时,M,N为椭圆C的左、右顶点,显然满足|BM|=|BN|,此时直线l的方程为y=0.综上可知,存在直线l满足题意,此时直线l的方程为y=0.。
高考数学一轮 圆锥曲线的综合问题(学案)
§9.8圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。
(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。
3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。
★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 .点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C. 【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x (2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OM K , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BM k k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11((,22C D ,它的中点不是N ,不合题意 设直线l 的方程为11()2y k x -=- 将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯ 直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D -, 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-,将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-, 将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。
专题53 圆锥曲线的综合问题(教学案)-2019年高考数学(理)一轮复习精品资料(原卷版)
专题53 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心部分,也是每年高考必考的一道解答题,常以求曲线的标准方程、位置关系、定点、定值、最值、范围、探索性问题为主.这些试题的命制有一个共同的特点,就是起点低,但在第(2)问或第(3)问中一般都伴有较为复杂的运算,对考生解决问题的能力要求较高,通常作为压轴题的形式出现.高频考点一 圆锥曲线中的定点、定值问题定点、定值问题一般涉及曲线过定点、与曲线上的动点有关的定值问题以及与圆锥曲线有关的弦长、面积、横(纵)坐标等的定值问题.【例1】椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,过其右焦点F 与长轴垂直的弦长为1.(1)求椭圆C 的方程;(2)设椭圆C 的左、右顶点分别为A ,B ,点P 是直线x =1上的动点,直线P A 与椭圆的另一交点为M ,直线PB 与椭圆的另一交点为N .求证:直线MN 经过一定点.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定点问题的常见解法:①假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;②从特殊位置入手,找出定点,再证明该点适合题意.【变式探究】如图,已知双曲线C :x 2a 2-y 2=1(a >0)的右焦点为F ,点A ,B 分别在C 的两条渐近线上,AF ⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-y 0y =1与直线AF 相交于点M ,与直线x =32相交于点N .高频考点二 圆锥曲线中的最值、范围问题圆锥曲线中的最值问题大致可分为两类:一是涉及距离、面积的最值以及与之相关的一些问题;二是求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.【例2】 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C截得的线段长为4105.(1)求椭圆C 的方程;(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.①设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值; ②求△OMN 面积的最大值.【感悟提升】圆锥曲线中的最值问题解决方法一般分两种:一是代数法,从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值;二是几何法,从圆锥曲线的几何性质的角度考虑,根据圆锥曲线几何意义求最值.【变式探究】 设点P (x ,y )到直线x =2的距离与它到定点(1,0)的距离之比为2,并记点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设M (-2,0),过点M 的直线l 与曲线C 相交于E ,F 两点,当线段EF 的中点落在由四点C 1(-1,0),C 2(1,0),B 1(0,-1),B 2(0,1)构成的四边形内(包括边界)时,求直线l 斜率的取值范围.高频考点三 圆锥曲线中的探索性问题圆锥曲线的探索性问题主要体现在以下几个方面:(1)探索点是否存在;(2)探索曲线是否存在;(3)探索命题是否成立.涉及这类命题的求解主要是研究直线与圆锥曲线的位置关系问题.【例3】如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1) 求该椭圆的标准方程;(2) (2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.探究提高 (1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.【变式探究】 在平面直角坐标系xOy 中,经过点(0,2)且斜率为k 的直线l 与椭圆x 22+y 2=1有两个不同的交点P 和Q .(1)求k 的取值范围;(2)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量OP →+OQ →与AB →垂直?如果存在,求k 值;如果不存在,请说明理由.1.【2016高考新课标3理数】已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.ARFQ 2.【2016高考浙江理数】(本题满分15分)如图,设椭圆2221x y a+=(a >1).(I )求直线y =kx +1被椭圆截得的线段长(用a 、k 表示);(II )若任意以点A (0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值 范围.3.【2016高考新课标2理数】已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.144494.【2016年高考北京理数】(本小题14分) 已知椭圆C :22221+=x y a b(0a b >>)的离心率为32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值.5.【2016年高考四川理数】(本小题满分13分)已知椭圆E :22221(0)x y a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线:3l y x =-+与椭圆E 有且只有一个公共点T .(Ⅰ)求椭圆E 的方程及点T 的坐标;(Ⅱ)设O 是坐标原点,直线l’平行于OT ,与椭圆E 交于不同的两点A 、B ,且与直线l 交于点P .证明:存在常数λ,使得2PTPA PB λ=⋅,并求λ的值.6.【2016高考上海理数】(本题满分14)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
2020版高考数学(浙江专用)一轮总复习检测:10.6 圆锥曲线的综合问题 含解析
10.6圆锥曲线的综合问题挖命题【考情探究】分析解读 1.圆锥曲线的综合问题是高考的热点之一,主要考查两大问题:一是根据条件求出平面曲线的方程;二是通过方程研究平面曲线的性质.2.考查点主要有:(1)圆锥曲线的基本概念和性质;(2)与圆锥曲线有关的最值、对称、位置关系等综合问题;(2)有关定点、定值问题,以及存在性等探索性问题.3.预计2020年高考试题中,圆锥曲线的综合问题仍是压轴题之一,复习时应高度重视.炼技法【方法集训】方法1圆锥曲线中的最值和范围问题的求解方法1.(2018浙江9+1高中联盟期中,21)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:+=作两条切线,分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.(1)求证:k1k2为定值;(2)求四边形OPMQ面积的最大值.解析(1)证明:因为直线OP:y=k1x,OQ:y=k2x与圆M相切,所以=,=,可知k1,k2是方程(3-2)k2-6x0y0k+3-2=0的两个不相等的实数根,所以3-2≠0,k 1k2=,因为点M(x0,y0)在椭圆C上,所以=1-,所以k1k2==-.(2)易知直线OP,OQ都不能落在坐标轴上,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以+1=0,即=,因为P(x1,y1),Q(x2,y2)在椭圆C上,所以==,整理得+=2,所以+=1,所以OP2+OQ2=3.因为S四边形OPMQ= (OP+OQ)·=(OP+OQ),OP+OQ≤=,所以S四边形OPMQ的最大值为1.2.(2018浙江台州高三期末质检,21,15分)已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,左顶点为A,点P(,)在椭圆C上,且△PF1F2的面积为2.(1)求椭圆C的方程;(2)过原点O且与x轴不重合的直线交椭圆C于E,F两点,直线AE,AF分别与y轴交于点M,N.求证:以MN为直径的圆恒过焦点F1,F2,并求出△F1MN面积的取值范围.解析(1)∵=×2c×=2,∴c=2,(2分)又点P(,)在椭圆C上,∴+=1,∴a4-9a2+8=0,解得a2=8或a2=1(舍去),又a2-b2=4,∴b2=4,∴椭圆C的方程为+=1.(5分)(2)由(1)可得A(-2,0),F1(-2,0),F2(2,0),当直线EF的斜率不存在时,E,F为短轴的两个端点,不妨设M(0,2),N(0,-2), ∴F1M⊥F1N,F2M⊥F2N,∴以MN为直径的圆恒过焦点F 1,F2.(7分)当直线EF的斜率存在且不为零时,设直线EF的方程为y=kx(k≠0),设点E(x0,y0)(不妨设x0>0),则点F(-x0,-y0),由消去y得x2=,∴x0=,y0=,∴直线AE的方程为y=(x+2),∵直线AE与y轴交于点M,∴令x=0,得y=,即点M,同理可得点N,∴=,=,∴·=0,∴F1M⊥F1N,同理,F2M⊥F2N,则以MN为直径的圆恒过焦点F1,F2,(12分)当直线EF的斜率存在且不为零时,|MN|===2·>4,∴△F1MN的面积S=|OF1|·|MN|>4,又当直线EF的斜率不存在时,|MN|=4,∴△F1MN的面积为|OF1|·|MN|=4,∴△F1MN面积的取值范围是[4,+∞).(15分)方法2 定点、定值问题的求法1.(2017浙江镇海中学模拟卷(四),21)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到其焦点的距离的最小值为1.(1)求a,b的值;(2)过点P(3,0)作直线l交C于A,B两点,①求△AOB面积S的最大值;②设Q为线段AB上的点,且满足=,证明:点Q的横坐标x Q为定值.解析(1)由题意知,所以a=2,c=1,因此b==,故a=2,b=.(4分)(2)显然直线l的斜率存在且不为0,故可设l:y=k(x-3)(k≠0),联立消去y,并整理,得(3+4k2)x2-24k2x+36k2-12=0,其中Δ=48(3-5k2)>0.设A(x1,y1),B(x2,y2),则有x1+x2=,x1·x2=.(6分)①原点O到直线l的距离d=,|AB|=|x1-x2|=·,所以S△AOB=|AB|·d=6·|k|·=6·.(8分)设t=,则k2=,其中t∈,则S=6·=·≤·=.当且仅当9-27t=27t-5,即t=时,取等号.(10分)故△AOB面积S的最大值为.②证明:设==λ,则=-λ,=λ,(12分)所以3-x1=-λ(x2-3),x Q-x1=λ(x2-x Q),消去λ得,x Q===,故点Q的横坐标x Q为定值.(15分)2.(2017浙江五校联考(5月),21)如图,已知椭圆Γ:+=1(a>b>0)经过不同的三点A,B,C(C在第三象限),线段BC的中点在直线OA上.(1)求椭圆Γ的方程及点C的坐标;(2)设点P是椭圆Γ上的动点(异于点A,B,C),且直线PB,PC分别交直线OA于M,N两点,问|OM|·|ON|是不是定值?若是,求该值;若不是,请说明理由.解析(1)由点A,B在椭圆Γ上,得解得所以椭圆Γ的方程为+=1.设点C(m,n),则BC中点为,由已知,求得直线OA的方程为x-2y=0,从而m=2n-1.①又点C在椭圆Γ上,故2m2+8n2=5.②由①②得n= (舍去)或n=-,从而m=-,所以点C的坐标为.(2)设P(x0,y0),M(2y1,y1),N(2y2,y2).当x0≠-且x0≠-时,因为P,B,M三点共线,所以=,整理得y1=.因为P,C,N三点共线,所以=,整理得y2=.因为点P在椭圆Γ上,所以2+8=5,即=-4.从而y1y2=====.所以|OM|·|ON|=|y1|·|y2|=5|y1y2|=,为定值.当x0=-或x0=-时,易求得|OM|·|ON|=,为定值.综上,|OM|·|ON|是定值,为.方法3存在性问题的解法1.(2018浙江“七彩阳光”联盟期中,21)已知抛物线C1:x2=4y的焦点为F,过抛物线C2:y=-x2+3上一点M作抛物线C2的切线l,与抛物线C1交于A,B两点.(1)记直线AF,BF的斜率分别为k1,k2,若k1·k2=-,求直线l的方程;(2)是否存在正实数m,使得对任意点M,都有|AB|=m(|AF|+|BF|)成立?若存在,求出m的值;若不存在,请说明理由.解析(1)设M(x0,y0),由y=-+3,得y'=-,则切线l的斜率为k=-.切线l的方程为y=-(x-x0)+y0=-x++y0=-x-2y0+6+y0,即y=-x-y0+6.(3分)与x2=4y联立,消去y得x2+x0x+4y0-24=0.(4分)设A(x1,y1),B(x2,y2),则有x1+x2=-x0,x1x2=4y0-24,(5分)则y1+y2=-(x1+x2)-2y0+12=-2y0+12=-4y0+18,y1y2==,则由k1·k2=×===-,得5-28y0+23=0,解得y0=1或y0=.(8分)∵=-8(y0-3)≥0,∴y0≤3,故y0=1,∴x0=±4.则直线l的方程为y=±x+5.(9分)(2)由(1)知直线l的方程为y=-x-y0+6,且x1+x2=-x0,x1x2=4y0-24,则|AB|=|x1-x2|=·=·,即|AB|=·=2(5-y0),(11分)而|AF|+|BF|=(y1+1)+(y2+1)=-4y0+20=4(5-y0),(13分)则|AB|=(|AF|+|BF|),(14分)故存在正实数m=,使得对任意点M,都有|AB|=(|AF|+|BF|)成立.(15分)2.(2017浙江镇海中学模拟卷(六),21)椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,M为椭圆C上任意一点,|MF1|-|MF2|的最大值为2,离心率为.(1)若N为椭圆C上任意一点,且F2M⊥F2N,求·的最小值;(2)若过椭圆C右焦点F2的直线l与椭圆C相交于A,B两点,且=3,试问:在椭圆C上是否存在点P,使得线段OP与线段AB 的交点恰为四边形OAPB的对称中心?若存在,求点P的坐标;若不存在,说明理由.解析(1)由题意知,∴故b=,∴椭圆C的方程是+=1,其右焦点F2的坐标为(1,0).∵·=·(+)=·+·=,∴===4-2.(2)由题意知,直线l的斜率不为0.假设符合条件的点P存在,则=+.设A(x1,y1),B(x2,y2),则点P的坐标为(x1+x2,y1+y2),根据=3,得(1-x1,-y1)=2(x2-1,y2),∴y1=-2y2.设直线l的方程为x=my+1,代入椭圆方程整理得(2m2+3)y2+4my-4=0,故y1+y2=-,y1y2=-.易得-y2=-,-2=-,消去y2,得=,解得m2=,即m=±.当m=时,y1+y2=-,x1+x2=m(y1+y2)+2=-+2=,此时P.当m=-时,y1+y2=,x1+x2=m(y1+y2)+2=-+2=,此时P.经检验,点,都在椭圆C上,故C上存在点P,使得线段OP与线段AB的交点恰为四边形OAPB的对称中心.过专题【五年高考】A组自主命题·浙江卷题组考点圆锥曲线的综合问题1.(2018浙江,21,15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.解析本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.(1)设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程=4·即y2-2y0y+8x0-=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)由(1)可知所以|PM|= (+)-x0=-3x0,|y1-y2|=2.因此,△PAB的面积S=|PM|·|y1-y2|=(-4x0.因为+=1(x0<0),所以-4x0=-4-4x0+4∈[4,5].因此,△PAB面积的取值范围是.疑难突破解析几何中“取值范围”与“最值”问题在解析几何中,求某个量(直线斜率,直线在x、y轴上的截距,弦长,三角形或四边形面积等)的取值范围或最值问题的关键是利用条件把所求量表示成关于某个变量(通常是直线斜率,动点的横、纵坐标等)的函数,并求出这个变量的取值范围(即函数的定义域),将问题转化为求函数的值域或最值.2.(2017浙江,21,15分)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.解析本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)解法一:联立直线AP与BQ的方程解得点Q的横坐标是x Q=.因为|PA|==(k+1),|PQ|=(x Q-x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3,令f(k)=-(k-1)(k+1)3.因为f '(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.解法二:如图,连接BP,|AP|·|PQ|=|AP|·|PB|·cos∠BPQ=·(-)=·-.易知P(x,x2),则·=2x+1+2x2-=2x2+2x+,=+=x2+x++x4-x2+=x4+x2+x+.∴|AP|·|PQ|=-x4+x2+x+.设f(x)=-x4+x2+x+,则f '(x)=-4x3+3x+1=-(x-1)(2x+1)2,∴f(x)在上为增函数,在上为减函数,∴f(x)max=f(1)=.故|AP|·|PQ|的最大值为.方法总结在解析几何中,遇到求两线段长度之积的最值或取值范围时,一般用以下方法进行转化.1.直接法:求出各点坐标,用两点间的距离公式,转化为某个参变量(如直线斜率、截距,点的横、纵坐标等)的函数,再求函数的最值或值域.2.向量法:三点共线时,转化为两向量的数量积,再转化为动点的横(或纵坐标)的函数,最后求函数的最值或值域.3.参数法:把直线方程化为参数方程,与曲线方程联立,由根与系数的关系转化为直线的斜率(或直线的截距)的函数,最后求函数的最值或值域.3.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)证明:由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以点P到直线l1的距离的最大值为a-b.评析本题主要考查椭圆的几何性质、点到直线的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式的应用等综合解题能力.B组统一命题、省(区、市)卷题组考点圆锥曲线的综合问题1.(2018北京理,19,14分)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证: +为定值.解析(1)因为抛物线y2=2px过点(1,2),所以2p=4,即p=2.故抛物线C的方程为y2=4x,由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)2-4×k2×1>0,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2),由(1)知x1+x2=-,x1x2=.直线PA的方程为y-2=(x-1).令x=0,得点M的纵坐标为y M=+2=+2.同理得点N的纵坐标为y N=+2.由=λ,=μ得λ=1-y M,μ=1-y N.所以+=+=+=·=·=2.所以+为定值.方法总结圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式有关的等式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用两点间的距离公式求得线段长度的表达式,再依据条件对表达式进行化简、变形即可求得.2.(2017山东理,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l 的斜率.解析本题考查椭圆的方程,直线与椭圆、圆的位置关系,考查最值的求解方法和运算求解能力.(1)由题意知e==,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=·.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立得x2=,y2=,因此|OC|==.由题意可知sin==,而==,令t=1+2,则t>1,∈(0,1),因此=·=·=·≥1,当且仅当=,即t=2时等号成立,此时k1=±,所以sin≤,因此≤,所以∠SOT的最大值为.综上所述,∠SOT的最大值为,取得最大值时直线l的斜率k1=±.思路分析(1)由离心率和焦距,利用基本量运算求解;(2)联立直线l与椭圆方程,利用距离公式求|AB|,联立直线OC与椭圆方程求|OC|,进而建立sin与k1之间的函数关系,利用二次函数的性质求解.解题反思最值问题一般利用函数的思想方法求解,利用距离公式建立sin与k1之间的函数关系是解题关键.牢固掌握基础知识和方法是求解的前提.本题的完美解答体现了数学知识、能力、思想、方法的完美结合.3.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=.由(1)知F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-或k≥.所以直线l的斜率的取值范围为∪.评析本题主要考查椭圆的标准方程和几何性质、直线方程、一元二次不等式等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.4.(2016北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.解析(1)由题意得解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=.直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=.所以|AN|·|BM|=·===4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.一题多解(2)点P在曲线+=1上,不妨设P(2cos θ,sin θ),当θ≠kπ且θ≠kπ+ (k∈Z)时,直线AP的方程为y-0=(x-2),令x=0,得y M=;直线BP的方程为y-1=(x-0),令y=0,得x N=.∴|AN|·|BM|=2·=2=2×2=4(定值).当θ=kπ或θ=kπ+ (k∈Z)时,M,N是定点,易得|AN|·|BM|=4.综上,|AN|·|BM|=4.评析本题考查椭圆的标准方程,直线与圆锥曲线的位置关系及定值问题,方法常规,运算量大,对学生的运算能力要求较高.5.(2016四川,20,13分)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.解析(1)由题意得,a=b,则椭圆E的方程为+=1.由方程组得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x=2,所以椭圆E的方程为+=1,点T的坐标为(2,1).(2)由已知可设直线l'的方程为y=x+m(m≠0),由方程组可得所以P点坐标为,|PT|2=m2.设点A,B的坐标分别为A(x1,y1),B(x2,y2).由方程组可得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2),由Δ>0,解得-<m<.由②得x1+x2=-,x1x2=.所以|PA|==,同理|PB|=.所以|PA|·|PB|====m2.故存在常数λ=,使得|PT|2=λ|PA|·|PB|.评析本题考查了直线与圆锥曲线相交的问题,这类题中常用的方法是方程法,并结合根与系数的关系,两点间的距离公式进行考查,难点是运算量比较大,注意运算技巧.6.(2015课标Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由. 解析(1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M==,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由得=,即x P=.将代入l的方程得b=,因此x M=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.评析本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.C组教师专用题组考点圆锥曲线的综合问题1.(2017山东文,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.解析本题考查椭圆的标准方程及圆锥曲线的相关最值.(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,等号当且仅当t=3时成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述,当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.方法总结求解圆锥曲线相关最值的常用方法:1.几何性质法;2.二次函数最值法;3.基本不等式法;4.三角函数最值法;5.导数法.2.(2017课标全国Ⅰ理,20,12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析本题考查了圆锥曲线的方程以及圆锥曲线与直线位置关系中的定点问题.(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+>+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,.则k1+k2=-=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)·+(m-1)·=0.解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).3.(2016山东,21,14分)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(1)求椭圆C的方程;(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(i)设直线PM,QM的斜率分别为k,k',证明为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为c.由题意知2a=4,2c=2,所以a=2,b==.所以椭圆C的方程为+=1.(2)(i)证明:设P(x0,y0)(x0>0,y0>0). 由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k==,直线QM的斜率k'==-.此时=-3.所以为定值-3.(ii)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=,可得x1=.所以y1=kx1+m=+m.同理x2=,y2=+m.所以x2-x1=-=,y2-y1=+m--m=,所以k AB===.由m>0,x0>0,可知k>0,所以6k+≥2,等号当且仅当k=时取得.此时=,即m=,符合题意.所以直线AB的斜率的最小值为.4.(2015山东,21,14分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)由题意知+=1,又=,解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m), 所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ的面积为3S,所以△ABQ面积的最大值为6.5.(2015陕西,20,12分)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.解析(1)由题设知=,b=1,结合a2=b2+c2,解得a=.所以椭圆E的方程为+y2=1.(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知可知Δ>0.设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=.从而直线AP,AQ的斜率之和k AP+k AQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.评析本题考查椭圆标准方程与简单性质的同时,重点考查直线与椭圆的位置关系.6.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=x,所以x M=,即M.(2)存在.因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足=|x M||x N|.因为x M=,x N=,+n2=1,所以=|x M||x N|==2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ,点Q的坐标为(0,)或(0,-).7.(2015四川,20,13分)如图,椭圆E:+=1(a>b>0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点.当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.解析(1)由已知得,点(,1)在椭圆E上.因此,解得a=2,b=.所以椭圆E的方程为+=1.(2)当直线l与x轴平行时,设直线l与椭圆相交于C,D两点.如果存在定点Q满足条件,则有==1,即|QC|=|QD|.所以Q点在y轴上,可设Q点的坐标为(0,y0).当直线l与x轴垂直时,设直线l与椭圆相交于M,N两点,则M,N的坐标分别为(0,),(0,-).由=,有=,解得y0=1或y0=2.所以,若存在不同于点P的定点Q满足条件,则Q点坐标只可能为(0,2).下面证明:对任意直线l,均有=.当直线l的斜率不存在时,由上可知,结论成立.当直线l的斜率存在时,可设直线l的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立得得(2k2+1)x2+4kx-2=0.其Δ=(4k)2+8(2k2+1)>0,所以,x1+x2=-,x1x2=-.因此+==2k.易知,点B关于y轴对称的点B'的坐标为(-x2,y2).又k QA===k-,k QB'===-k+=k-,所以k QA=k QB',即Q,A,B'三点共线.所以===.故存在与P不同的定点Q(0,2),使得=恒成立.评析本题主要考查椭圆的标准方程与几何性质,直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.8.(2014重庆,21,12分)如图,设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(1)求该椭圆的标准方程;(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程.若不存在,请说明理由.解析(1)设F1(-c,0),F2(c,0),其中c2=a2-b2.由=2得|DF1|== c.从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2得|DF2|2=|DF1|2+|F1F2|2=,因此|DF2|=.所以2a=|DF1|+|DF2|=2,故a=,b2=a2-c2=1.因此,所求椭圆的标准方程为+y2=1.(2)如图,设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2.由圆和椭圆的对称性,易知,x2=-x1,y1=y2.由(1)知F1(-1,0),F2(1,0),所以=(x1+1,y1),=(-x1-1,y1).再由F1P1⊥F2P2得-(x1+1)2+=0.由椭圆方程得1-=(x1+1)2,即3+4x1=0,解得x1=-或x1=0.当x1=0时,P1,P2重合,不存在满足题设要求的圆.当x1=-时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1⊥F1P1,得·=-1.而y1=|x1+1|=,故y0=.圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.评析本题考查椭圆的标准方程、圆的方程的求法以及椭圆的几何性质,直线与圆的位置关系的应用.本题考查了学生分析问题,解决问题的能力、逻辑推理能力、运算求解能力以及利用分类讨论思想解决问题的能力.9.(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O 为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知, =,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.评析本题主要考查椭圆的标准方程、几何性质,直线的方程以及直线与椭圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的综合问题,考查方程思想、函数思想、整体代换以及换元法的应用.考查学生的逻辑推理能力和运算求解能力.10.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0. 由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2.而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.11.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)证明:由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).评析本题主要考查椭圆的标准方程、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、转化与化归、分类与整合等数学思想.12.(2014江西,20,13分)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2.证明:|MN2|2-|MN1|2为定值,并求此定值.解析(1)证明:依题意可设直线AB的方程为y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.设A(x1,y1),B(x2,y2),则有x1x2=-8,。
高考数学一轮复习 第九章 平面解析几何 10 第10讲 圆锥曲线的综合问题教学案
第10讲 圆锥曲线的综合问题圆锥曲线中的定点、定值问题(2020·杭州七校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切.(1)求椭圆C 的方程;(2)过点(1,0)的直线l 与C 相交于A ,B 两点,在x 轴上是否存在点N ,使得NA →·NB →为定值?如果有,求出点N 的坐标及定值;如果没有,请说明理由.【解】 (1)因为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,焦点与短轴的两顶点的连线与圆x 2+y 2=34相切,所以⎝ ⎛e =c a =12bc =32 b 2+c 2a 2=b 2+c2,解得c 2=1,a 2=4,b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2)当直线l 的斜率存在时,设其方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),⎩⎪⎨⎪⎧3x 2+4y 2=12y =k (x -1)⇒(3+4k 2)x 2-8k 2x +4k 2-12=0, 则Δ>0,⎩⎪⎨⎪⎧x 1+x 2=8k24k 2+3x 1x 2=4k 2-124k 2+3, 若存在定点N (m ,0)满足条件, 则有NA →·NB →=(x 1-m )(x 2-m )+y 1y 2 =x 1x 2+m 2-m (x 1+x 2)+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(m +k 2)(x 1+x 2)+k 2+m 2=(1+k 2)(4k 2-12)4k 2+3-(m +k 2)8k 24k 2+3+k 2+m 2=(4m 2-8m -5)k 2+3m 2-124k 2+3. 如果要使上式为定值,则必须有4m 2-8m -53m 2-12=43⇒m =118,验证当直线l 斜率不存在时,也符合.故存在点N ⎝⎛⎭⎪⎫118,0满足NA →·NB →=-13564.圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值.(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得.(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.(2020·杭州、宁波二市三校联考)已知抛物线C :y 2=2px (p >0)过点M (m ,2),其焦点为F ′,且|MF ′|=2.(1)求抛物线C 的方程;(2)设E 为y 轴上异于原点的任意一点,过点E 作不经过原点的两条直线分别与抛物线C 和圆F :(x -1)2+y 2=1相切,切点分别为A ,B ,求证:直线AB 过定点.解:(1)抛物线C 的准线方程为x =-p2,所以|MF ′|=m +p2=2,又4=2pm ,即4=2p ⎝ ⎛⎭⎪⎫2-p 2,所以p 2-4p +4=0,所以p =2, 所以抛物线C 的方程为y 2=4x .(2)证明:设点E (0,t )(t ≠0),由已知切线不为y 轴,设直线EA :y =kx +t ,联立⎩⎪⎨⎪⎧y =kx +t y 2=4x,消去y ,可得k 2x 2+(2kt -4)x +t 2=0,① 因为直线EA 与抛物线C 相切,所以Δ=(2kt -4)2-4k 2t 2=0,即kt =1,代入①可得1t 2x 2-2x +t 2=0,所以x =t 2,即A (t 2,2t ).设切点B (x 0,y 0),则由几何性质可以判断点O ,B 关于直线EF :y =-tx +t 对称,则⎩⎪⎨⎪⎧y 0x 0×t -00-1=-1y 02=-t ·x 02+t ,解得⎩⎪⎨⎪⎧x 0=2t 2t 2+1y 0=2t t 2+1,即B ⎝ ⎛⎭⎪⎫2t2t 2+1,2t t 2+1.直线AF 的斜率为k AF =2tt 2-1(t ≠±1), 直线BF 的斜率为k BF =2tt 2+1-02t 2t 2+1-1=2tt 2-1(t ≠±1),所以k AF =k BF ,即A ,B ,F 三点共线.当t =±1时,A (1,±2),B (1,±1),此时A ,B ,F 三点共线. 所以直线AB 过定点F (1,0).圆锥曲线中的范围、最值问题(高频考点)圆锥曲线中的范围(最值)问题是高考命题的热点,多以解答题的第二问呈现,试题难度较大.主要命题角度有:(1)建立目标函数求范围、最值; (2)利用基本不等式求最值; (3)利用判别式构造不等关系求范围. 角度一 建立目标函数求范围、最值如图,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.【解】 (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标x Q =-k 2+4k +32(k 2+1). 因为|PA |= 1+k 2⎝ ⎛⎭⎪⎫x +12= 1+k 2(k +1),|PQ |= 1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1, 所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.角度二 利用基本不等式求最值(2020·浙江省名校协作体联考)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成了3∶1的两段.(1)求椭圆的离心率;(2)过点C (-1,0)的直线l 交椭圆于不同的两点A ,B ,且AC →=2CB →,当△AOB 的面积最大时,求直线l 的方程.【解】 (1)由题意知,c +b2=3⎝ ⎛⎭⎪⎫c -b 2,所以b =c ,a 2=2b 2,所以e =ca=1-⎝ ⎛⎭⎪⎫b a 2=22. (2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为x =ky -1(k ≠0), 因为AC →=2CB →,所以(-1-x 1,-y 1)=2(x 2+1,y 2), 即2y 2+y 1=0,①由(1)知,a 2=2b 2,所以椭圆方程为x 2+2y 2=2b 2.由⎩⎪⎨⎪⎧x =ky -1x 2+2y 2=2b 2,消去x ,得(k 2+2)y 2-2ky +1-2b 2=0, 所以y 1+y 2=2kk 2+2,② 由①②知,y 2=-2k k 2+2,y 1=4kk 2+2, 因为S △AOB =12|y 1|+12|y 2|,所以S △AOB =3·|k |k 2+2=3·12|k |+|k |≤32·12|k |·|k |=324,当且仅当|k |2=2,即k =±2时取等号, 此时直线l 的方程为x =2y -1或x =-2y -1. 角度三 利用判别式构造不等关系求范围已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,中心在原点.若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的标准方程;(2)设直线y =kx +m (k ≠0)与椭圆相交于不同的两点M ,N .当|AM |=|AN |时,求m 的取值范围.【解】 (1)依题意可设椭圆方程为x 2a2+y 2=1,则右焦点F (a 2-1,0),由题设|a 2-1+22|2=3,解得a 2=3.所以所求椭圆的方程为x 23+y 2=1.(2)设P (x P ,y P ),M (x M ,y M ),N (x N ,y N ),P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1, 得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 因为直线与椭圆相交,所以Δ=(6mk )2-4(3k 2+1)×3(m 2-1)>0⇒m 2<3k 2+1.① 所以x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又因为|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1.②把②代入①,得m 2<2m ,解得0<m <2; 由②得k 2=2m -13>0,解得m >12.综上,m 的取值范围是⎝ ⎛⎭⎪⎫12,2.范围、最值问题的求解策略(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决.(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.1.如图,设抛物线y 2=2px (p >0)的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(1)求p 的值;(2)若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x 轴交于点M .求M 的横坐标的取值范围.解:(1)由题意可得,抛物线上的点A 到焦点F 的距离等于点A 到直线x =-1的距离,由抛物线的定义得p2=1,即p =2.(2)由(1)得,抛物线方程为y 2=4x ,F (1,0),可设A (t 2,2t ),t ≠0,t ≠±1. 因为AF 不垂直于y 轴,可设直线AF :x =sy +1(s ≠0),由⎩⎪⎨⎪⎧y 2=4xx =sy +1,消去x 得y 2-4sy -4=0,故y 1y 2=-4,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又直线AB 的斜率为2t t 2-1,故直线FN 的斜率为-t 2-12t .从而得直线FN :y =-t 2-12t (x-1),直线BN :y =-2t ,所以N ⎝ ⎛⎭⎪⎫t 2+3t 2-1,-2t .设M (m ,0),由A ,M ,N 三点共线得2t t 2-m=2t +2tt 2-t 2+3t 2-1,于是m =2t 2t 2-1=2+2t 2-1.所以m <0或m >2.经检验,m <0或m >2满足题意.综上,点M 的横坐标的取值范围是(-∞,0)∪(2,+∞).2.(2020·杭州中学高三月考)如图,以椭圆x 2a 2+y 2=1的右焦点F 2为圆心,1-c 为半径作圆F 2(其中c 为已知椭圆的半焦距),过椭圆上一点P 作此圆的切线,切点为T .(1)若a =54,P 为椭圆的右顶点,求切线长|PT |;(2)设圆F 2与x 轴的右交点为Q ,过点Q 作斜率为k (k >0)的直线l 与椭圆相交于A ,B 两点,若OA ⊥OB ,且|PT |≥32(a -c )恒成立,求直线l 被圆F 2所截得弦长的最大值. 解:(1)由a =54得c =34,则当P 为椭圆的右顶点时|PF 2|=a -c =12,故此时的切线长|PT |= |PF 2|2-(1-c )2=34. (2)当|PF 2|取得最小值时|PT |取得最小值,而|PF 2|min =a -c ,由|PT |≥32(a -c )恒成立,得(a -c )2-(1-c )2≥32(a -c ),则34≤c <1. 由题意知Q 点的坐标为(1,0),则直线l 的方程为y =k (x -1),代入x 2a2+y 2=1,得(a 2k 2+1)x 2-2a 2k 2x +a 2k 2-a 2=0, 设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=2a 2k 2a 2k 2+1,x 1x 2=a 2k 2-a2a 2k 2+1,可得y 1y 2=k 2[x 1x 2-(x 1+x 2)+1]=k 2(1-a 2)a 2k 2+1,又OA ⊥OB ,则x 1x 2+y 1y 2=k 2-a 2a 2k 2+1=0⇒k =a ,可得直线l 的方程为ax -y -a =0,圆心F 2(c ,0)到直线l 的距离d =|ac -a |a 2+1,半径r =1-c ,则直线l 被圆F 2所截得弦长s =2(1-c )2-a 2(1-c )2a 2+1=2(1-c )c 2+2,设1-c =t ,则0<t ≤14,又1s =123t 2-2t +1=12 3⎝ ⎛⎭⎪⎫1t -132+23, 则当t =14时1s 的最小值为412,即当c =34时s 的最大值为24141.圆锥曲线中的探索性问题(2020·温州中学高三模拟)设直线l 与抛物线x 2=2y 交于A ,B 两点,与椭圆x 24+y 23=1交于C ,D 两点,直线OA ,OB ,OC ,OD (O 为坐标原点)的斜率分别为k 1,k 2,k 3,k 4,若OA ⊥OB .(1)是否存在实数t ,满足k 1+k 2=t (k 3+k 4),并说明理由; (2)求△OCD 面积的最大值.【解】 设直线l 方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),D (x 4,y 4). 联立y =kx +b 和x 2=2y ,得x 2-2kx -2b =0,则x 1+x 2=2k ,x 1x 2=-2b ,Δ=4k 2+8b >0. 由OA ⊥OB ,所以x 1x 2+y 1y 2=0,得b =2. 联立y =kx +2和3x 2+4y 2=12,得 (3+4k 2)x 2+16kx +4=0,所以x 3+x 4=-16k 3+4k 2,x 3x 4=43+4k 2.由Δ2=192k 2-48>0,得k 2>14.(1)因为k 1+k 2=y 1x 1+y 2x 2=k ,k 3+k 4=y 3x 3+y 4x 4=-6k ,所以k 1+k 2k 3+k 4=-16. 即存在实数t =-16,满足k 1+k 2=-16(k 3+k 4).(2)根据弦长公式|CD |=1+k 2|x 3-x 4|,得 |CD |=43·1+k 2·4k 2-13+4k2,根据点O 到直线CD 的距离公式,得d =21+k2,所以S △OCD =12|CD |·d =43·4k 2-13+4k2,设4k 2-1=t >0,则S △OCD =43t t 2+4≤3,所以当t =2,即k =±52时,S △OCD 的最大值为 3.探索性问题的求解策略(1)探索性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为假设满足条件的元素(点、直线、曲线或参数)存在,用待定系数法设出,列出关于待定系数的方程组,若方程组有实数解,则元素(点、直线、曲线或参数)存在;否则,元素(点、直线、曲线或参数)不存在.(2)反证法与验证法也是求解探索性问题常用的方法.(2020·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A ,B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程; (2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x-p 2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px,即3x 2-5px +34p 2=0,所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 的中点坐标M 为(m 28+b ,m8),即线段CD的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以kMC 2=m8m28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,故直线l 的方程为x =±11-63y +33-24. [基础题组练]1.已知椭圆E 的中心在坐标原点,左、右焦点F 1,F 2在x 轴上,离心率为12,在其上有一动点A ,A 到点F 1距离的最小值是1.过A ,F 1作一个平行四边形,顶点A ,B ,C ,D 都在椭圆E 上,如图所示.(1)求椭圆E 的方程;(2)判断▱ABCD 能否为菱形,并说明理由.解:(1)依题,令椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),c 2=a 2-b 2(c >0),所以离心率e =c a =12,即a =2c .令点A 的坐标为(x 0,y 0),所以x 20a 2+y 20b2=1,焦点F 1(-c ,0),即|AF 1|=(x 0+c )2+y 20 =x 20+2cx 0+c 2+b 2-b 2x 20a2=c 2a 2x 20+2cx 0+a 2=|c ax 0+a |, 因为x 0∈[-a ,a ],所以当x 0=-a 时,|AF 1|min =a -c , 由题a -c =1,结合上述可知a =2,c =1,所以b 2=3, 于是椭圆E 的方程为x 24+y 23=1.(2)由(1)知F 1(-1,0),直线AB 不能平行于x 轴,所以令直线AB 的方程为x =my -1,设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧3x 2+4y 2-12=0x =my -1,得(3m 2+4)y 2-6my -9=0, 所以y 1+y 2=6m 3m 2+4,y 1y 2=-93m 2+4.连接OA ,OB ,若▱ABCD 是菱形,则OA ⊥OB ,即OA →·OB →=0,于是有x 1x 2+y 1y 2=0,又x 1x 2=(my 1-1)(my 2-1)=m 2y 1y 2-m (y 1+y 2)+1,所以有(m 2+1)y 1y 2-m (y 1+y 2)+1=0,得到-12m 2-53m 2+4=0,可见m 没有实数解, 故▱ABCD 不能是菱形.2.(2020·金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值. 解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4. (2)设直线AB 的方程为y =kx +m ,则|m -2|1+k2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m ,所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减, 当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.3.(2020·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A ,B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23,由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条;当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得y 1-y 2x 1-x 2=-14×x 1+x2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得y 20<59,由r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得13<r <63.所以半径r 的取值范围为(13,63) .4.已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称. (1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解:(1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m2>0.①将线段AB 的中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎪⎫t 2-122+2≤22,当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22. 5.(2020·湘中名校联考)如图,曲线C 由上半椭圆C 1:y 2a 2+x 2b2=1(a >b >0,y ≥0)和部分抛物线C 2:y =-x 2+1(y ≤0)连接而成,C 1与C 2的公共点为A ,B ,其中C 1的离心率为32. (1)求a ,b 的值;(2)过点B 的直线l 与C 1,C 2分别交于点P ,Q (均异于点A ,B ),是否存在直线l ,使得以PQ 为直径的圆恰好过点A ,若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)在C 1,C 2的方程中,令y =0,可得b =1,且A (-1,0),B (1,0)是上半椭圆C 1的左、右顶点.设C 1的半焦距为c ,由c a =32及a 2-c 2=b 2=1得a =2. 所以a =2,b =1.(2)由(1)知,上半椭圆C 1的方程为y 24+x 2=1(y ≥0).易知,直线l 与x 轴不重合也不垂直,设其方程为y =k (x -1)(k ≠0),代入C 1的方程,整理得(k 2+4)x 2-2k 2x +k 2-4=0.(*)设点P 的坐标为(x P ,y P ), 因为直线l 过点B ,所以x =1是方程(*)的一个根.由根与系数的关系,得x P =k 2-4k 2+4,从而y P =-8kk 2+4,所以点P 的坐标为⎝ ⎛⎭⎪⎫k 2-4k 2+4,-8k k 2+4.同理,由⎩⎪⎨⎪⎧y =k (x -1)(k ≠0),y =-x 2+1(y ≤0)得点Q 的坐标为(-k -1,-k 2-2k ). 所以AP →=2k k 2+4(k ,-4),AQ →=-k (1,k +2).因为AP ⊥AQ ,所以AP →·AQ →=0, 即-2k2k 2+4[k -4(k +2)]=0. 因为k ≠0,所以k -4(k +2)=0,解得k =-83.经检验,k =-83符合题意.故直线l 的方程为y =-83(x -1).6.(2020·学军中学高三模拟)已知椭圆x 2a2+y 2=1(a >1),过直线l :x =2上一点P 作椭圆的切线,切点为A ,当P 点在x 轴上时,切线PA 的斜率为±22. (1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解:(1)当P 点在x 轴上时,P (2,0),PA :y =±22(x -2),⎩⎪⎨⎪⎧y =±22(x -2)x2a 2+y 2=1⇒(1a 2+12)x 2-2x +1=0,Δ=0⇒a 2=2,椭圆方程为x 22+y 2=1.(2)设切线为y =kx +m ,设P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m x 2+2y 2-2=0⇒(1+2k 2)x 2+4kmx +2m 2-2=0⇒Δ=0⇒m 2=2k 2+1, 且x 1=-2km 1+2k 2,y 1=m1+2k2,y 0=2k +m , 则|PO |=y 20+4,PO 的直线为y =y 02x ⇒A 到直线PO 距离d =|y 0x 1-2y 1|y 20+4,则S △POA =12|PO |·d =12|y 0x 1-2y 1|=12|(2k +m )-2km 1+2k 2-2m1+2k2| =|1+2k 2+km 1+2k 2m |=|k +m |=|k +1+2k 2|, 所以(S -k )2=1+2k 2⇒k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0⇒S ≥22,此时k =±22,所以△POA 面积的最小值为22. [综合题组练]1.(2020·浙江高考冲刺卷)已知椭圆E :x 2a 2+y 2b2=1(a >b >0),点F ,B 分别是椭圆的右焦点与上顶点,O 为坐标原点,记△OBF 的周长与面积分别为C 和S .(1)求CS的最小值; (2)如图,过点F 的直线l 交椭圆于P ,Q 两点,过点F 作l 的垂线,交直线x =3b 于点R ,当C S取最小值时,求|FR ||PQ |的最小值.解:(1)△OBF 的周长C =b 2+c 2+b +c .△OBF 的面积S =12bc .C S =b 2+c 2+b +c 12bc=2b 2+c 2+b +c bc ≥2·2bc +2bc bc =2+22,当且仅当b =c 时,CS的最小值为2+2 2. (2)由(1)得当且仅当b =c 时,CS的最小值为2+2 2.此时椭圆方程可化为x 22c 2+ y 2c2=1.依题意可得过点F 的直线l 的斜率不能为0,故设直线l 的方程为x =my +c .联立⎩⎪⎨⎪⎧x =my +c x 2+2y 2=2c 2,整理得(2+m 2)y 2+2mcy -c 2=0. y 1+y 2=-2mc 2+m 2,y 1y 2=-c 22+m 2,|PQ |=1+m2(y 1+y 2)2-4y 1y 2=1+m 2×8c 2(m 2+1)2+m 2=22c ×m 2+1m 2+2. 当m =0时,PQ 垂直横轴,FR 与横轴重合,此时|PQ |=2c ,|FR |=3b -c =2c ,|FR ||PQ |=2c 2c = 2.当m ≠0时,设直线FR :y =-m (x -c ),令x =3c 得R (3c ,-2mc ),|FR |=2c m 2+1, |FR ||PQ |=2c m 2+1×m 2+222c (m 2+1)=m 2+22m 2+1 =22(m 2+1+1m 2+1)>22×2=2, 综上所述:当且仅当m =0时,|FR ||PQ |取最小值为 2.2.(2020·杭州市第一次高考数学检测)设点A ,B 分别是x ,y 轴上的两个动点,AB =1.若AC →=λBA →(λ>0).(1)求点C 的轨迹Γ;(2)过点D 作轨迹Γ的两条切线,切点分别为P ,Q ,过点D 作直线m 交轨迹Γ于不同的两点E ,F ,交PQ 于点K ,问是否存在实数t ,使得1|DE |+1|DF |=t|DK |恒成立,并说明理由.解:(1)设A (a ,0),B (0,c ),C (x ,y ),则BA →=(a ,-c ),AC →=(x -a ,y ).由AB =1得a 2+c 2=1,所以⎩⎪⎨⎪⎧x -a =λa y =-λc,消去a ,c ,得点C 的轨迹Γ为x 2(λ+1)2+y 2λ2=1.(2)设点E ,F ,K 的横坐标分别为x E ,x F ,x K ,设点D (s ,t ),则直线PQ 的方程为s (λ+1)2x +tλ2y =1. 设直线m 的方程:y =kx +b ,所以t =ks +b .计算得x K =1-tλ2b s(λ+1)2+t λ2k .将直线m 代入椭圆方程,得⎝ ⎛⎭⎪⎫k 2λ2+1(λ+1)2x 2+2kb λ2x +b 2λ2-1=0,所以x E +x F =-2kbλ2(λ+1)2+k 2,x E x F =b 2-λ2λ2(λ+1)2+k 2,所以|DK ||DE |+|DK ||DF |=|x D -x K ||x D -x E |+|x D -x K ||x D -x F |=⎪⎪⎪⎪⎪⎪s -1-t λ2b s (λ+1)2+t λ2k ·|2x D -(x F +x E)||x 2D -x D (x F +xE )+xF x E|=2.验证当m 的斜率不存在时成立.故存在实数t =2,使得1|DE |+1|DF |=t|DK |恒成立.。
高考数学一轮复习 第十章 圆锥曲线与方程 10.6 圆锥曲线的综合问题学案
§10.6 圆锥曲线的综合问题考纲解读分析解读 1.圆锥曲线的综合问题是高考的热点之一,主要考查两大问题:一是根据条件求出平面曲线的方程;二是通过方程研究平面曲线的性质.2.考查点主要有:(1)圆锥曲线的基本概念和性质;(2)与圆锥曲线有关的最值、对称、位置关系等综合问题;(2)有关定点、定值问题,以及存在性等探索性问题.3.预计2019年高考试题中,圆锥曲线的综合问题仍是压轴题之一,复习时应引起高度重视.五年高考考点 圆锥曲线的综合问题1.(2014福建,9,5分)设P,Q 分别为圆x 2+(y-6)2=2和椭圆+y 2=1上的点,则P,Q 两点间的最大距离是( ) A.5B.+C.7+D.6答案 D2.(2014湖北,9,5分)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=,则椭圆和双曲线的离心率的倒数之和的最大值为( )A. B. C.3 D.2答案 A3.(2017浙江,21,15分)如图,已知抛物线x 2=y,点A ,B ,抛物线上的点P(x,y).过点B 作直线AP 的垂线,垂足为Q.(1)求直线AP 斜率的取值范围; (2)求|PA|·|PQ|的最大值.解析 本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)解法一:联立直线AP与BQ的方程解得点Q的横坐标是x Q=.因为|PA|==(k+1),|PQ|=(x Q-x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3,令f(k)=-(k-1)(k+1)3.因为f '(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.解法二:如图,连接BP,|AP|·|PQ|=|AP|·|PB|·cos∠BPQ=·(-)=·-.易知P(x,x2),则·=2x+1+2x2-=2x2+2x+,=+=x2+x++x4-x2+=x4+x2+x+.∴|AP|·|PQ|=-x4+x2+x+.设f(x)=-x4+x2+x+,则f '(x)=-4x3+3x+1=-(x-1)(2x+1)2,∴f(x)在上为增函数,在上为减函数,∴f(x)max=f(1)=.故|AP|·|PQ|的最大值为.4.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)证明:由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a-b.5.(2013浙江,21,15分)如图,点P(0,-1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积取最大值时直线l1的方程.解析(1)由题意得所以椭圆C1的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意知直线l1的斜率存在,不妨设其为k,则直线l1的方程为y=kx-1. 又圆C2:x2+y2=4,故点O到直线l1的距离d=,所以|AB|=2=2.又l2⊥l1,故直线l2的方程为x+ky+k=0.由消去y,整理得(4+k2)x2+8kx=0,故x0=-.所以|PD|=.设△ABD的面积为S,则S=|AB|·|PD|=,所以S=≤=,当且仅当k=±时取等号.所以所求直线l1的方程为y=±x-1.6.(2017课标全国Ⅰ理,20,12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析本题考查了圆锥曲线的方程以及圆锥曲线与直线位置关系中的定点问题.(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+>+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,.则k1+k2=-=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)·+(m-1)·=0.解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).7.(2017课标全国Ⅰ文,20,12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.解析本题考查直线与抛物线的位置关系.(1)设A(x1,y1),B(x2,y2),则x1≠x2,y1=,y2=,x1+x2=4,于是直线AB的斜率k===1.(2)由y=,得y'=,设M(x3,y3),由题设知=1,解得x3=2,于是M(2,1).设直线AB的方程为y=x+m,故线段AB的中点为N(2,2+m),|MN|=|m+1|.将y=x+m代入y=得x2-4x-4m=0.当Δ=16(m+1)>0,即m>-1时,x1,2=2±2.从而|AB|=|x1-x2|=4.由题设知|AB|=2|MN|,即4=2(m+1),解得m=7.所以直线AB的方程为y=x+7.8.(2017山东理,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l的斜率.解析本题考查椭圆的方程,直线与椭圆、圆的位置关系,考查最值的求解方法和运算求解能力.(1)由题意知e==,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=·.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立得x2=,y2=,因此|OC|==.由题意可知sin==,而==,令t=1+2,则t>1,∈(0,1),因此=·=·=·≥1,当且仅当=,即t=2时等号成立,此时k1=±,所以sin≤,因此≤,所以∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率k1=±.9.(2016北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.解析(1)由题意得解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=.直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=.所以|AN|·|BM|=·===4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.10.(2015课标Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由.解析(1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M==,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由得=,即x P=.将代入l的方程得b=,因此x M=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.11.(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知,=,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.教师用书专用(12—23)12.(2017山东文,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.解析本题考查椭圆的标准方程及圆锥曲线的相关最值.(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立方程得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,等号当且仅当t=3时成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述:当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.13.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以,椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=.由(1)知F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-或k≥. 所以,直线l的斜率的取值范围为∪.14.(2016四川,20,13分)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.解析(1)由题意得,a=b,则椭圆E的方程为+=1.由方程组得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x=2,所以椭圆E的方程为+=1.点T的坐标为(2,1).(2)由已知可设直线l'的方程为y=x+m(m≠0),由方程组可得所以P点坐标为,|PT|2=m2.设点A,B的坐标分别为A(x1,y1),B(x2,y2).由方程组可得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2),由Δ>0,解得-<m<.由②得x1+x2=-,x1x2=.所以|PA|==,同理|PB|=.所以|PA|·|PB|====m2.故存在常数λ=,使得|PT|2=λ|PA|·|PB|.15.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=x,所以x M=,即M.(2)存在.因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足=|x M||x N|.因为x M=,x N=,+n2=1,所以=|x M||x N|==2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ.点Q的坐标为(0,)或(0,-).16.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=. 因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0.由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2.而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.17.(2014山东,21,14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l 交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形.(1)求C的方程;(2)若直线l1∥l,且l1和C有且只有一个公共点E,(i)证明直线AE过定点,并求出定点坐标;(ii)△ABE的面积是否存在最小值?若存在,请求出最小值,若不存在,请说明理由.解析(1)由题意知F.设D(t,0)(t>0),则FD的中点为.因为|FA|=|FD|,由抛物线的定义知3+=,解得t=3+p(t=-3舍去).由=3,解得p=2.所以抛物线C的方程为y2=4x.(2)(i)由(1)知F(1,0),设A(x0,y0)(x0y0≠0),D(x D,0)(x D>0),因为|FA|=|FD|,则|x D-1|=x0+1,由x D>0得x D=x0+2,故D(x0+2,0).故直线AB的斜率k AB=-.因为直线l1和直线AB平行,设直线l1的方程为y=-x+b,代入抛物线方程得y2+y-=0,由题意得Δ=+=0,得b=-.设E(x E,y E),则y E=-,x E=,当≠4时,k AE==-=,可得直线AE的方程为y-y0=(x-x0), 由=4x0,整理可得y=(x-1),直线AE恒过点F(1,0).当=4时,直线AE的方程为x=1,过点F(1,0),所以直线AE过定点F(1,0).(ii)由(i)知直线AE过焦点F(1,0),所以|AE|=|AF|+|FE|=(x0+1)+=x0++2.设直线AE的方程为x=my+1,因为点A(x0,y0)在直线AE上,故m=,设B(x1,y1),直线AB的方程为y-y0=-(x-x0),由于y0≠0,可得x=-y+2+x0,代入抛物线方程得y2+y-8-4x0=0.所以y0+y1=-,可求得y1=-y0-,x1=+x0+4,所以点B到直线AE的距离为d===4.则△ABE的面积S=×4≥16,当且仅当=x0,即x0=1时等号成立.所以△ABE的面积的最小值为16.18.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)证明:由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其判别式Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).19.(2013山东,22,13分)椭圆C:+=1(a>b>0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2.设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m 的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.设直线PF1,PF2的斜率分别为k1,k2.若k≠0,试证明+为定值,并求出这个定值.解析(1)由于c2=a2-b2,将x=-c代入椭圆方程+=1,得y=±,由题意知=1,即a=2b2.又e==,所以a=2,b=1.所以椭圆C的方程为+y2=1.(2)解法一:设P(x0,y0)(y0≠0).又F1(-,0),F2(,0),所以直线PF1,PF2的方程分别为:y0x-(x0+)y+y0=0,:y0x-(x0-)y-y0=0.由题意知=.由于点P在椭圆上,所以+=1.所以=.因为-<m<,-2<x0<2,所以=.所以m=x0.因此-<m<.解法二:设P(x0,y0).当0≤x0<2时,①当x0=时,直线PF2的斜率不存在,易知P或P.若P,则直线PF1的方程为x-4y+=0.由题意得=-m,因为-<m<,所以m=.若P,同理可得m=.②当x0≠时,设直线PF1,PF2的方程分别为y=k1(x+),y=k2(x-). 由题意知=,所以=.因为+=1,并且k1=,k2=,所以===,即=.因为-<m<,0≤x0<2且x0≠,所以=.整理得m=,故0≤m<且m≠.综合①②可得0≤m<.当-2<x0<0时,同理可得-<m<0.综上所述,m的取值范围是.(3)设P(x0,y0)(y0≠0),则直线l的方程为y-y0=k(x-x0).联立得整理得(1+4k2)x2+8(ky0-k2x0)x+4(-2kx0y0+k2-1)=0.由题意知Δ=0,即(4-)k2+2x0y0k+1-=0.又+=1,所以16k2+8x0y0k+=0,故k=-.由(2)知+=+=,所以+==·=-8,因此+为定值,这个定值为-8.20.(2013陕西,20,13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是∠PBQ的角平分线,证明直线l过定点.解析(1)如图,设动圆圆心为O1(x,y),由题意,知|O1A|=|O1M|,当O1不在y轴上时,过O1作O1H⊥MN交MN于H,则H是MN的中点,∴|O1M|=,又|O1A|=,∴=,化简得y2=8x(x≠0).又当O1在y轴上时,O1与O重合,点O1的坐标(0,0)也满足方程y2=8x,∴动圆圆心的轨迹C的方程为y2=8x. (2)由题意,设直线l的方程为y=kx+b(k≠0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得k2x2+(2bk-8)x+b2=0.其中Δ=-32kb+64>0.由根与系数的关系得,x1+x2=,①x1x2=,②因为x轴平分∠PBQ,所以=-,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0,③将①②代入③得2kb2+(k+b)(8-2bk)+2k2b=0,∴k=-b,此时Δ>0,∴直线l的方程为y=k(x-1),即直线l过定点(1,0).21.(2013课标全国Ⅰ,20,12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.解析由已知得圆M的圆心为M(-1,0),半径r1=1;圆N的圆心为N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.(1)因为圆P与圆M外切并且与圆N内切,所以|PM|+|PN|=(R+r1)+(r2-R)=r1+r2=4.由椭圆的定义可知,曲线C是以M,N为左、右焦点,长半轴长为2,短半轴长为的椭圆(左顶点除外),其方程为+=1(x≠-2).(2)对于曲线C上任意一点P(x,y),由于|PM|-|PN|=2R-2≤2,所以R≤2,当且仅当圆P的圆心为(2,0)时,R=2.所以当圆P的半径最长时,其方程为(x-2)2+y2=4.若l的倾斜角为90°,则l与y轴重合,可得|AB|=2.若l的倾斜角不为90°,由r1≠R知l不平行于x轴,设l与x轴的交点为Q,则=,可求得Q(-4,0),所以可设l:y=k(x+4).由l与圆M相切得=1,解得k=±.当k=时,将y=x+代入+=1,并整理得7x2+8x-8=0,解得x1,2=.所以|AB|=|x2-x1|=.当k=-时,由图形的对称性可知|AB|=.综上,|AB|=2或|AB|=.22.(2013广东,20,14分)已知抛物线C的顶点为原点,其焦点F(0,c)(c>0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.(1)求抛物线C的方程;(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;(3)当点P在直线l上移动时,求|AF|·|BF|的最小值.解析(1)依题意,设抛物线C的方程为x2=4cy,由题意知=,c>0,解得c=1.所以抛物线C的方程为x2=4y.(2)抛物线C的方程为x2=4y,即y=x2,求导得y'=x.设A(x1,y1),B(x2,y2),则切线PA,PB的斜率分别为x1,x2,所以切线PA的方程为y-y1=(x-x1),即y=x-+y1,即x1x-2y-2y1=0.同理可得切线PB的方程为x2x-2y-2y2=0.因为切线PA,PB均过点P(x0,y0),所以x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,所以(x1,y1),(x2,y2)为方程x0x-2y0-2y=0的两组解.所以直线AB的方程为x0x-2y-2y0=0.(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,所以|AF|·|BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1,联立方程消去x整理得y2+(2y0-)y+=0.由一元二次方程根与系数的关系可得y1+y2=-2y0,y1y2=,所以|AF|·|BF|=y1y2+(y1+y2)+1=+-2y0+1.又点P(x0,y0)在直线l上,所以x0=y0+2,所以+-2y0+1=2+2y0+5=2+.所以当y0=-时,|AF|·|BF|取得最小值,且最小值为.23.(2013湖北,21,13分)如图,已知椭圆C1与C2的中心在坐标原点O,长轴均为MN且在x轴上,短轴长分别为2m,2n(m>n),过原点且不与x轴重合的直线l与C1,C2的四个交点按纵坐标从大到小依次为A,B,C,D.记λ=,△BDM和△ABN的面积分别为S1和S2.(1)当直线l与y轴重合时,若S1=λS2,求λ的值;(2)当λ变化时,是否存在与坐标轴不重合的直线l,使得S1=λS2?并说明理由.解析依题意可设椭圆C1和C2的方程分别为C1:+=1,C2:+=1.其中a>m>n>0,λ=>1.(1)解法一:如图1,若直线l与y轴重合,即直线l的方程为x=0,则S1=|BD|·|OM|=a|BD|,S2=|AB|·|ON|=a|AB|,所以=.在C1和C2的方程中分别令x=0,可得y A=m,y B=n,y D=-m,于是===.若=λ,则=λ,化简得λ2-2λ-1=0.由λ>1,可解得λ=+1.故当直线l与y轴重合时,若S1=λS2,则λ=+1.解法二:如图1,若直线l与y轴重合,则|BD|=|OB|+|OD|=m+n,|AB|=|OA|-|OB|=m-n;S1=|BD|·|OM|=a|BD|,S2=|AB|·|ON|=a|AB|.所以===.若=λ,则=λ,化简得λ2-2λ-1=0.由λ>1,可解得λ=+1.故当直线l与y轴重合时,若S1=λS2,则λ=+1.(2)解法一:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则d1==,d2==,所以d1=d2.又S1=|BD|d1,S2=|AB|d2,所以==λ,即|BD|=λ|AB|.由对称性可知|AB|=|CD|,所以|BC|=|BD|-|AB|=(λ-1)|AB|,|AD|=|BD|+|AB|=(λ+1)|AB|,于是=.①将l的方程分别与C1,C2的方程联立,可求得x A=,x B=.根据对称性可知x C=-x B,x D=-x A,于是===.②从而由①和②式可得=.③令t=,则由m>n,可得t≠1,于是由③式可解得k2=.因为k≠0,所以k2>0.于是③式关于k有解,当且仅当>0,等价于(t2-1)<0.由λ>1,可解得<t<1,即<<1,由λ>1,解得λ>1+,所以当1<λ≤1+时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>1+时,存在与坐标轴不重合的直线l使得S1=λS2.解法二:如图2,若存在与坐标轴不重合的直线l,使得S1=λS2.根据对称性,不妨设直线l:y=kx(k>0),点M(-a,0),N(a,0)到直线l的距离分别为d1,d2,则d1==,d2==,所以d1=d2.又S1=|BD|d1,S2=|AB|d2,所以==λ.因为===λ,所以=.由点A(x A,kx A),B(x B,kx B)分别在C1,C2上,可得+=1,+=1,两式相减可得+=0,依题意x A>x B>0,所以>.所以由上式解得k2=.因为k2>0,所以由>0,可解得1<<λ.从而1<<λ,解得λ>1+,所以当1<λ≤1+时,不存在与坐标轴不重合的直线l,使得S1=λS2;当λ>1+时,存在与坐标轴不重合的直线l使得S1=λS2.三年模拟A组2016—2018年模拟·基础题组考点圆锥曲线的综合问题1.(2018浙江浙东北联盟期中,2)椭圆+=1(a>0)与双曲线-=1有相同的焦点,则a=( )A.3B.C.5D.答案 A2.(2017浙江湖州期末调研,7)已知双曲线-=1(a>0,b>0)与抛物线y2=2px(p>0)有公共焦点F,且交于A,B两点,若直线AB过焦点F,则该双曲线的离心率是( )A. B.1+ C.2 D.2+答案 B3.(2017浙江镇海中学第一学期期中,8)双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),A为双曲线C右支上一点,且|AF1|=2c,AF1与y轴交于点B,若F2B是∠AF2F1的平分线,则双曲线C的离心率是( )A. B.1+C. D.答案 D4.(2016浙江镇海中学测试(六),6)设抛物线y2=4x的焦点为F,P是抛物线上异于原点的一点.若以P为圆心,FP 为半径的圆与直线4x+3y+5=0相切,则点P的横坐标是( )A.12B.24C.36D.48答案 C5.(2018浙江9+1高中联盟期中,21)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:+=作两条切线,分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.(1)求证:k1k2为定值;(2)求四边形OPMQ面积的最大值.解析(1)因为直线OP:y=k1x,OQ:y=k2x与圆M相切,所以=,=,可知k1,k2是方程(3-2)k2-6x0y0k+3-2=0的两个不相等的实数根,∴3-2≠0,k1k2=,因为点M(x0,y0)在椭圆C上,所以=1-,∴k1k2==-.(2)易知直线OP,OQ都不能落在坐标轴上,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以+1=0,即=,因为P(x1,y1),Q(x2,y2)在椭圆C上,所以==,整理得+=2,所以+=1,所以OP2+OQ2=3.因为S OPMQ=(OP+OQ)·=(OP+OQ),OP+OQ≤=,所以S OPMQ的最大值为1.6.(2017浙江杭州质检,21)已知P,Q为椭圆+y2=1上的两点,满足PF2⊥QF2,其中F1,F2分别为左、右焦点.(1)求|+|的最小值;(2)若(+)⊥(+),设直线PQ的斜率为k,求k2的值.解析(1)由条件得+=2,显然||min=1,所以|+|的最小值为2.(5分)(2)由题意易知OP⊥OQ.又F2P⊥F2Q,所以PQ是直角△POQ和直角△PF2Q的公共斜边,故线段PQ的中点到O,F2两点的距离相等,所以可得线段PQ中点的横坐标为.易知直线PQ的斜率存在,故设直线PQ的方程为y=kx+b,与椭圆方程联立,得整理得(1+2k2)x2+4kbx+2b2-2=0.设P(x1,y1),Q(x2,y2),则x1+x2=-=1,所以 1+2k2=-4kb,①由x1x2=,得y1y2=k2x1x2+kb(x1+x2)+b2=+kb+b2.由x1x2+y1y2=0,得+kb+b2=0,即4k2b2-2k2+3b2-2+kb+2k3b=0,②由①②得20k4+20k2-3=0,解得k2=.(15分)7.(2017浙江衢州质量检测(1月),21)已知椭圆+=1(a>b>0)的长轴长为4,焦距为2,以A为圆心的圆(x-2)2+y2=r2(r>0)与椭圆相交于B、C两点.(1)求椭圆的标准方程;(2)求·的取值范围;(3)设P是椭圆上异于B、C的任意一点,直线PB、PC与x轴分别交于点M、N,求S△POM·S△PON的最大值.解析(1)椭圆的标准方程为+y2=1.(2)设B(x0,y0),则C(x0,-y0),且+=1,∴·=-=-=-4x0+3=-.因为-2<x0<2,所以·的取值范围为.(3)设P(x1,y1)(y1≠±y0),则+=1,直线PB,PC的方程分别为y-y1=(x-x1),y-y1=(x-x1),分别令y=0得x M=,x N=,所以x M x N====4,于是S△POM·S△PON=|OM||ON|·=|x M x N|·=,因为-1≤y1≤1,所以S△POM·S△PON的最大值为1.B组2016—2018年模拟·提升题组一、选择题1.(2018浙江“七彩阳光”联盟期中,7)已知F是双曲线-=1(a>0,b>0)的右焦点,以坐标原点O为圆心,|OF|为半径的圆与该双曲线的渐近线在y轴右侧的两个交点记为A,B,且∠AFB=120°,则双曲线的离心率为( ) A. B. C.2 D.答案 C2.(2017浙江金华十校联考(4月),8)已知a,b为实常数,{c i}(i∈N*)是公比不为1的等比数列,直线ax+by+c i=0与抛物线y2=2px(p>0)均相交,所成弦的中点为M i(x i,y i),则下列说法错误的是( )A.数列{x i}可能是等比数列B.数列{y i}是常数列C.数列{x i}可能是等差数列D.数列{x i+y i }可能是等比数列答案 C3.(2016浙江镇海中学测试卷二,7)已知A1,A2为双曲线C:-=1(a>0,b>0)的左,右顶点,点P为双曲线右支上一点,设∠PA1A2=α,∠PA2A1=β,若cos(α+β)=-,cos(α-β)=,则C的离心率e=( )A.2B.2C.3D.2答案 B二、填空题4.(2017浙江名校协作体,16)设双曲线-=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线交两渐近线于A,B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ,λμ=(λ,μ∈R),则双曲线的离心率e为 .答案三、解答题5.(2018浙江“七彩阳光”联盟期中,21)已知抛物线C1:x2=4y的焦点为F,过抛物线C2:y=-x2+3上一点M作抛物线C2的切线l,与抛物线C1交于A,B两点.(1)记直线AF,BF的斜率分别为k1,k2,若k1·k2=-,求直线l的方程;(2)是否存在正实数m,使得对任意点M,都有|AB|=m(|AF|+|BF|)成立?若存在,求出m的值;若不存在,请说明理由.解析(1)设M(x0,y0),由y=-+3,得y'=-,则切线l的斜率为k=-.切线l的方程为y=-(x-x0)+y0=-x++y0=-x-2y0+6+y0,即y=-x-y0+6.(3分)与x2=4y联立,消去y得x2+x0x+4y0-24=0.(4分)设A(x1,y1),B(x2,y2),则有x1+x2=-x0,x1x2=4y0-24.(5分)则y1+y2=-(x1+x2)-2y0+12=-2y0+12=-4y0+18,y1y2==,又F(0,1),则由k1·k2=×===-,得5-28y0+23=0,解得y0=1或y0=.(8分)∵=-8(y0-3)≥0,∴y0≤3,故y0=1,∴x0=±4.则直线l的方程为y=±x+5.(9分)(2)由(1)知直线l的方程为y=-x-y0+6,且x1+x2=-x0,x1x2=4y0-24.则|AB|=|x1-x2|=·=·,即|AB|=·=2(5-y0),(11分)而|AF|+|BF|=(y1+1)+(y2+1)=-4y0+20=4(5-y0),(13分)则|AB|=(|AF|+|BF|),(14分)故存在正实数m=,使得对任意点M,都有|AB|=(|AF|+|BF|)成立.(15分)6.(2018浙江杭州二中期中,21)已知点P为椭圆C上的任一点,P到直线l1:x=-2的距离为d1,到点F(-1,0)的距离为d2,且=.(1)求椭圆C的方程;(2)如图,直线l与椭圆C交于不同的两点A,B(A,B都在x轴上方),且∠OFA+∠OFB=180°.(i)当A为椭圆C与y轴正半轴的交点时,求直线l的方程;(ii)是否存在一个定点,无论∠OFA如何变化,直线l恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.解析(1)设P(x,y),则d1=|x+2|,d2=,==,化简可得+y2=1,所以椭圆C的方程为+y2=1.(2)(i)由(1)知A(0,1),又F(-1,0),所以k AF==1,因为∠OFA+∠OFB=180°,所以k BF=-1,所以直线BF的方程为y=-(x+1)=-x-1, 代入+y2=1中可得3x2+4x=0,解得x=0(舍)或x=-,所以B,k AB==,所以直线l的方程为y=x+1.(ii)解法一:由于∠OFA+∠OFB=180°,所以k AF+k BF=0.设直线AB的方程为y=kx+b,代入+y2=1中,得x2+2kbx+b2-1=0,设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=,所以k AF+k BF=+=+==0,所以(kx1+b)(x2+1)+(kx2+b)(x1+1)=2kx1x2+(k+b)(x1+x2)+2b=2k×-(k+b)×+2b=0,即=0,所以b-2k=0,因此直线AB的方程为y=k(x+2),即直线l总经过定点M(-2,0). 解法二:由于∠OFA+∠OFB=180°,所以B点关于x轴的对称点B1在直线AF上,设直线AF方程为y=k(x+1),代入+y2=1中得x2+2k2x+k2-1=0.设A(x1,y1),B(x2,y2),则B1(x2,-y2),且x1+x2=-,x1x2=,直线AB的方程为y-y1=(x-x1),令y=0,得x=x1-y1=,因为y1=k(x1+1),-y2=k(x2+1),所以x===-2,所以直线l总经过定点M(-2,0).7.(2017浙江五校联考(5月),21)如图,已知椭圆Γ:+=1(a>b>0)经过不同的三点A,B,C(C在第三象限),线段BC的中点在直线OA上.(1)求椭圆Γ的方程及点C的坐标;(2)设点P是椭圆Γ上的动点(异于点A,B,C),且直线PB,PC分别交直线OA于M,N两点,问|OM|·|ON|是否为定值?若是,求该值;若不是,请说明理由.解析(1)由点A,B在椭圆Γ上,得解得所以椭圆Γ的方程为+=1.设点C(m,n),则BC中点为,由已知,求得直线OA的方程为x-2y=0,从而m=2n-1.①又点C在椭圆Γ上,故2m2+8n2=5.②由①②解得n=(舍去)或n=-.从而m=-,所以点C的坐标为.(2)设P(x0,y0),M(2y1,y1),N(2y2,y2).当x0≠-且x0≠-时,因为P,B,M三点共线,所以=,整理得y1=.因为P,C,N三点共线,所以=,整理得y2=.因为点P在椭圆Γ上,所以2+8=5,即=-4.从而y1y2=====.所以|OM|·|ON|=|y1|·|y2|=5|y1y2|=,为定值.当x0=-或x0=-时,易求得|OM|·|ON|=,为定值.综上,|OM|·|ON|是定值,为.C组2016—2018年模拟·方法题组方法1 圆锥曲线中的定值与最值问题的解题策略1.(2017浙江吴越联盟测试,20)已知椭圆C:+=1(a>b>0)的离心率为,且过点P.(1)求椭圆C的标准方程;(2)过点G(1,0)作两条互相垂直的直线l1,l2,设l1与椭圆C交于M,N两点,l2与椭圆C交于P,Q两点,求·的最大值.解析(1)由题意得解得a2=4,b2=1,故椭圆C:+y2=1.(2)易知·=(+)·(+)=·+·=-(||·||+||·||).当l1,l2中有一条斜率不存在时,则另一条斜率必定为0,此时·=-.当l1,l2斜率都存在时,设l1:x=my+1,与椭圆方程联立并整理得(m2+4)y2+2my-3=0,得y M y N=-,所以||·||=|y M|·|y N|=(1+m2)|y M·y N|=.同理||·||=,所以·=-3=15×,故当=,即m=±1时,·取最大值,为-.综上,当两直线分别为x+y-1=0和x-y-1=0时,·有最大值,最大值为-.2.(2017浙江镇海中学模拟卷(四),21)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到其焦点的距离的最小值为1.(1)求a,b的值;(2)过点P(3,0)作直线l交C于A,B两点,①求△AOB面积S的最大值;②设Q为线段AB上的点,且满足=,证明:点Q的横坐标x Q为定值.解析(1)由题知,所以a=2,c=1,因此b==,故a=2,b=.(4分)(2)显然直线l的斜率存在且不为0,故可设l:y=k(x-3)(k≠0),联立消去y,并整理,得(3+4k2)x2-24k2x+36k2-12=0,其中Δ=48(3-5k2)>0.设A(x1,y1),B(x2,y2),则有x1+x2=,x1·x2=.(6分)①原点O到直线l的距离d=,|AB|=|x1-x2|=·,所以S△AOB=|AB|·d=6·|k|·=6·.(8分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.8圆锥曲线的综合问题★知识梳理★1.直线与圆锥曲线C 的位置关系:将直线l 的方程代入曲线C 的方程,消去y 或者消去x ,得到一个关于x (或y )的方程ax 2+bx +c =0.(1)交点个数:①当 a =0或a≠0,⊿=0 时,曲线和直线只有一个交点;②当 a≠0,⊿>0时,曲线和直线有两个交点;③ 当⊿<0 时,曲线和直线没有交点。
(2) 弦长公式: 2.对称问题:曲线上存在两点关于已知直线对称的条件:①曲线上两点所在的直线与已知直线垂直(得出斜率)②曲线上两点所在的直线与曲线有两个公共点(⊿>0)③曲线上两点的中点在对称直线上。
3.求动点轨迹方程:①轨迹类型已确定的,一般用待定系数法;②动点满足的条件在题目中有明确的表述且轨迹类型未知的,一般用直接法;③一动点随另一动点的变化而变化,一般用代入转移法。
★重难点突破★重点:掌握直线与圆锥曲线的位置关系的判断方法及弦长公式;掌握弦中点轨迹的求法; 理解和掌握求曲线方程的方法与步骤,能利用方程求圆锥曲线的有关范围与最值 难点:轨迹方程的求法及圆锥曲线的有关范围与最值问题重难点:综合运用方程、函数、不等式、轨迹等方面的知识解决相关问题 1.体会“设而不求”在解题中的简化运算功能①求弦长时用韦达定理设而不求;②弦中点问题用“点差法”设而不求.2.体会数学思想方法(以方程思想、转化思想、数形结合思想为主)在解题中运用问题1:已知点1F 为椭圆15922=+y x 的左焦点,点)1,1(A ,动点P 在椭圆上,则||||1PF PA +的最小值为 .点拨:设2F 为椭圆的右焦点,利用定义将||1PF 转化为||2PF ,结合图形,||||6||||21PF PA PF PA -+=+,当2F A P 、、共线时最小,最小值为2-6★热点考点题型探析★考点1直线与圆锥曲线的位置关系 题型1:交点个数问题[例1 ] 设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .[-21,21] B .[-2,2] C .[-1,1] D .[-4,4]【解题思路】解决直线与圆锥曲线的交点个数问题的通法为判别式法 [解析] 易知抛物线28y x =的准线2x =-与x 轴的交点为Q (-2 , 0), 于是,可设过点Q (-2 , 0)的直线l 的方程为(2)y k x =+,4)(1 ||1||212212122x x x x k x x k AB ⋅-+⋅+=-⋅+=联立222228,(48)40.(2),y x k x k x k y k x ⎧=⇒+-+=⎨=+⎩ 其判别式为2242(48)1664640k k k ∆=--=-+≥,可解得 11k -≤≤,应选C. 【名师指引】(1)解决直线与圆锥曲线的交点问题的方法:一是判别式法;二是几何法(2)直线与圆锥曲线有唯一交点,不等价于直线与圆锥曲线相切,还有一种情况是平行于对称轴(抛物线)或平行于渐近线(双曲线)(3)联立方程组、消元后得到一元二次方程,不但要对∆进行讨论,还要对二次项系数是否为0进行讨论【新题导练】1. (09摸底)已知将圆228x y +=上的每一点的纵坐标压缩到原来的12,对应的横坐标不变,得到曲线C ;设)1,2(M ,平行于OM 的直线l 在y 轴上的截距为m (m ≠0),直线l 与曲线C 交于A 、B 两个不同点. (1)求曲线C 的方程;(2)求m 的取值范围.[解析](1)设圆上的动点为)','('y x P 压缩后对应的点为),(y x P ,则⎩⎨⎧==yy xx 2'',代入圆的方程得曲线C 的方程:12822=+y x(2)∵直线l 平行于OM ,且在y 轴上的截距为m,又21=OM K , ∴直线l 的方程为m x y +=21. 由221,2 1.82y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩, 得 222240x mx m ++-= ∵直线l 与椭圆交于A 、B 两个不同点,∴22(2)4(24)0,m m ∆=--> 解得220m m -<<≠且.∴m 的取值范围是2002m m -<<<<或. 题型2:与弦中点有关的问题[例2](08韶关调研)已知点A 、B 的坐标分别是(1,0)-,(1,0).直线,AM BM 相交于点M ,且它们的斜率之积为-2. (Ⅰ)求动点M 的轨迹方程;(Ⅱ)若过点1(,1)2N 的直线l 交动点M 的轨迹于C 、D 两点, 且N 为线段CD 的中点,求直线l 的方程. 【解题思路】弦中点问题用“点差法”或联立方程组,利用韦达定理求解 [解析] (Ⅰ)设(,)M x y , 因为2AM BM k k ⋅=-,:()22221x y x +=≠±(Ⅱ) 设1122(,),(,)C x y D x y 当直线l ⊥x 轴时,l 的方程为12x =,则11((,22C D ,它的中点不是N ,不合题意设直线l 的方程为11()2y k x -=- 将1122(,),(,)C x y D x y 代入()22221x y x +=≠±得221122x y +=…………(1) 222222x y += (2)(1)-(2)整理得:12121212122()12()212y y x x k x x y y ⨯-+==-=-=--+⨯ 直线l 的方程为111()22y x -=--即所求直线l 的方程为230x y +-= 解法二: 当直线l ⊥x 轴时,直线l 的方程为12x =,则11(,(,2222C D -, 其中点不是N ,不合题意.故设直线l 的方程为11()2y k x -=-,将其代入()22221x y x +=≠±化简得222(2)2(1)(1)2022k k k x k x ++-+--=由韦达定理得222212221224(1)4(2)[(1)2]0(1)222(1)2(2)2(1)22(3)2k k k k k k x x k k x x k ⎧--+-->⎪⎪⎪-⎪+=-⎨+⎪⎪--⎪⋅=⎪+⎩,又由已知N 为线段CD 的中点,得122(1)222kk x x k -+=-+12=,解得12k =-, 将12k =-代入(1)式中可知满足条件.此时直线l 的方程为111()22y x -=--,即所求直线l 的方程为230x y +-=【名师指引】通过将C 、D 的坐标代入曲线方程,再将两式相减的过程,称为代点相减.这里,代点相减后,适当变形,出现弦PQ 的斜率和中点坐标,是实现设而不求(即点差法)的关键.两种解法都要用到“设而不求”,它对简化运算的作用明显,用“点差法”解决弦中点问题更简洁 【新题导练】2.椭圆141622=+y x 的弦被点)1,2(P 所平分,求此弦所在直线的方程。
[解析]设弦所在直线与椭圆交于),(),,(2211y x N y x M 两点,则14162121=+y x ,14162222=+y x ,两式相减得:041622122212=-+-y y x x , 化简得0))((4))((21212121=-++-+y y y y x x x x , 把2,42121=+=+y y x x 代入得212112-=--=x x y y k MN故所求的直线方程为)2(211--=-x y ,即042=-+y x3.已知直线y =-x +1与椭圆)0(12222>>=+b a by a x 相交于A 、B 两点,且线段AB 的中点在直线L :x-2y =0上,求此椭圆的离心率[解析] 设),(),,(2211y x B y x A ,AB 的中点为),(00y x M ,代入椭圆方程得1221221=+by a x ,1222222=+b y a x ,两式相减,得2212122121y y x x b x x a y y -+=--+.AB 的中点为),(00y x M 在直线l 上,0200=-∴y x ,222002121==++∴y x y y x x ,而11221-==--AB k x x y y222122=∴=∴e a b 题型3:与弦长有关的问题[例3](山东泰州市联考)已知直线k x y +=2被抛物线y x 42=截得的弦长AB 为20,O 为坐标原点.(1)求实数k 的值;(2)问点C 位于抛物线弧AOB 上何处时,△ABC 面积最大?【解题思路】用“韦达定理”求弦长;考虑△ABC 面积的最大值取得的条件[解析](1)将k x y +=2代入y x 42=得0482=--k x x , 由△01664>+=k 可知4->k ,弦长AB 2016645=+⨯=k ,解得1=k ;(2)当1=k 时,直线为12+=x y ,要使得内接△ABC 面积最大,则只须使得2241=⨯='C Cx y ,即4=C x ,即C 位于(4,4)点处. 【名师指引】用“韦达定理”不要忘记用判别式确定范围 【新题导练】4. (山东省济南市高三统一考试)已知椭圆22122:1(0)x y C a b a b+=>>与直线10x y +-=相交于两点A B 、.(1)当椭圆的半焦距1c =,且222,,a b c 成等差数列时,求椭圆的方程; (2)在(1)的条件下,求弦AB 的长度||AB ;[解析](1)由已知得:2222222b a c b c =+=+,∴222,3b a ==所以椭圆方程为:22132x y +=(2)1122(,),(,)A x y B x y ,由2223610x y x y ⎧+=⎨+-=⎩,得25630x x --=∴121263,55x x x x +==-∴12|||AB x x =-==(文)已知点()A和)B,动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线2y x =-交于D 、E 两点,求线段DE 的长.(文)解:根据双曲线的定义,可知C 的轨迹方程为2212y x -=.设()11,D x y ,()22,E x y ,联立222,1.2y x y x =-⎧⎪⎨-=⎪⎩得2460x x +-=.则12124,6x x x x +=-=-.所以12DE x =-==故线段DE 的长为 考点2:对称问题题型:对称的几何性质及对称问题的求法(以点的对称为主线,轨迹法为基本方法)【新题导练】[例4 ] 若直线l 过圆x 2+y 2+4x -2y =0的圆心M 交椭圆49:22y x C +=1于A 、B 两点,若A 、B 关于点M 对称,求直线l 的方程.[解析] )1,2(-M ,设),(),,(2211y x B y x A ,则2,42121=+-=+y y x x又1492121=+y x ,1492222=+y x ,两式相减得:04922122212=-+-y y x x , 化简得0))((9))((421212121=-++-+y y y y x x x x ,把2,42121=+-=+y y x x 代入得982112=--=x x y y k AB 故所求的直线方程为)2(211--=-x y ,即042=-+y x 所以直线l 的方程为 :8x -9y +25=0.5.已知抛物线y 2=2px 上有一内接正△AOB ,O 为坐标原点. 求证:点A 、B 关于x 轴对称;[解析]设),(),,(2211y x B y x A ,||||OB OA = ,22222121y x y x +=+∴22212122px x px x +=+∴,即0)2)((2121=++-p x x x x ,0,0,021>>>p x x ,21x x =∴,21y y -=,故点A 、B 关于x 轴对称6.在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围. [解析] (1)当0=k 时,曲线上不存在关于直线对称的两点.(2)当k≠0时,设抛物线y 2=4x 上关于直线对称的两点),(),,(2211y x B y x A ,AB 的中点为),(00y x M ,则直线AB 直线的斜率为直线k1-,可设b x k y AB +-=1:代入y 2=4x 得0442=-+kb ky y =∆016162>+kb k )(*kb y y k y y 4,42121-=⋅-=+k x x k y -=+-=210,2kb y y 2)(21++kb k 242+=,kb k x +=202M 在直线y =kx +3上,3)2(22++=-∴kb k k k kk bk 3222---=∴, 代入)(*得即01)3)(1(2<⋅+-+kk k k ,又032>+-k k 恒成立,所以-1<k <0. 综合(1)(2),k 的取值范围是(-1,0) 考点3 圆锥曲线中的范围、最值问题 题型:求某些变量的范围或最值[例5]已知椭圆22122:1(0)x y C a b a b+=>>与直线10x y +-=相交于两点A B 、.当椭圆的离心率e满足32e ≤≤,且0OA OB ⋅= (O 为坐标原点)时,求椭圆长轴长的取值范围. 【解题思路】通过“韦达定理”沟通a 与e 的关系[解析]由22222210b x a y a b x y ⎧+=⎨+-=⎩,得222222()2(1)0a b x a x a b +-+-=由22222(1)0a b a b =+-> ,得221a b +>此时222121222222(1),a a b x x x x a b a b-+==++ 由0OA OB ⋅=,得12120x x y y +=,∴12122()10x x x x -++=即222220a b a b +-=,故22221a b a =-由222222c a b e a a-==,得2222b a a e =-∴221211a e =+-由32e ≤≤得25342a ≤≤2a ≤≤所以椭圆长轴长的取值范围为 【名师指引】求范围和最值的方法:几何方法:充分利用图形的几何特征及意义,考虑几何性质解决问题 代数方法:建立目标函数,再求目标函数的最值. 【新题导练】7. 已知P 是椭圆C :12422=+y x 的动点,点)0,21(A 关于原点O 的对称点是B ,若|PB|的最小值为23,求点P 的横坐标的取值范围。