TVS瞬态电压抑制二极管(钳位二极管)原理参数
tvs二极管最大钳位电压
tvs二极管最大钳位电压
摘要:
I.简介
- 介绍TVS二极管
- 引出最大钳位电压的概念
S二极管的工作原理
- 解释TVS二极管的作用
- 详述TVS二极管的工作原理
III.最大钳位电压的定义与影响因素
- 定义最大钳位电压
- 分析影响最大钳位电压的因素
IV.如何选择合适的TVS二极管
- 依据最大钳位电压选择合适的TVS二极管
- 结合实际应用场景进行选择
V.总结
- 回顾TVS二极管和最大钳位电压的重要性
- 强调选择合适TVS二极管的重要性
正文:
TVS二极管,又称为瞬态电压抑制器,是一种电子元件,具有保护电路免受电压瞬变损害的功能。
在电路设计中,选择合适的TVS二极管,尤其是其最大钳位电压,对于确保电路的正常运行至关重要。
TVS二极管的工作原理是在反向电压达到一定程度时,通过雪崩击穿机制迅速导通,将过电压钳位在预定值。
在这个过程中,最大钳位电压是一个关键参数。
最大钳位电压是指TVS二极管在击穿状态下,所能承受的最大反向电压。
当反向电压超过最大钳位电压时,TVS二极管可能因过载而损坏。
选择合适的TVS二极管,首先要根据电路的工作电压、工作环境等因素,确定所需的最大钳位电压。
例如,在电源保护应用中,一般选择最大钳位电压略高于电源电压的TVS二极管;而在通信接口保护中,需要根据信号线的传输速率、距离等因素,选择合适最大钳位电压的TVS二极管。
总之,了解TVS二极管的最大钳位电压及其影响因素,有助于我们根据实际应用场景选择合适的TVS二极管,确保电路的正常运行。
TVS二极管的主要参数
TVS二极管的主要参数处理瞬时脉冲对器件损害的最好办法是将瞬时电流从敏感器件引开。
TVS二极管在线路板上与被保护线路并联,当瞬时电压超过电路正常工作电压后,TVS二极管便发生雪崩,提供给瞬时电流一个超低电阻通路,其结果是瞬时电流通过二极管被引开,避开被保护器件,并且在电压恢复正常值之前使被保护回路一直保持截止电压。
当瞬时脉冲结束以后,TVS二极管自动回复高阻状态,整个回路进入正常电压。
许多器件在承受多次冲击后,其参数及性能会发生退化,而只要工作在限定范围内,二极管将不会发生损坏或退化。
从以上过程可以看出,在选择TVS二极管时,必须注意以下几个参数的选择:1. 最小击穿电压VBR和击穿电流IR。
VBR是TVS最小的击穿电压,在25℃时,低于这个电压TVS是不会发生雪崩的。
当TVS流过规定的1mA电流(IR)时,加于TVS两极的电压为其最小击穿电压VBR。
按TVS的VBR与标准值的离散程度,可把VBR分为5%和10%两种。
对于5%的VBR来说,VWM=;对于10%的VBR来说,VWM=。
为了满足IEC61000-4-2国际标准,TVS二极管必须达到可以处理最小8kV(接触)和15kV(空气)的ESD冲击,有的半导体生产厂商在自己的产品上使用了更高的抗冲击标准。
对于某些有特殊要求的便携设备应用,设计者可以按需要挑选器件。
2. 最大反向漏电流ID和额定反向关断电压VWM。
VWM这是二极管在正常状态时可承受的电压,此电压应大于或等于被保护电路的正常工作电压,否则二极管会不断截止回路电压;但它又需要尽量与被保护回路的正常工作电压接近,这样才不会在TVS工作以前使整个回路面对过压威胁。
当这个额定反向关断电压VWM加于TVS的两极间时它处于反向关断状态,流过它的电流应小于或等于其最大反向漏电流ID。
3. 最大箝位电压VC和最大峰值脉冲电流IPP。
当持续时间为20mS的脉冲峰值电流IPP 流过TVS时,在其两端出现的最大峰值电压为VC。
TVS二极管的工作原理及主要参数
TVS二极管的工作原理及主要参数TVS二极管(Transient Voltage Suppressor Diode)是一种用于保护电路免受过电压和过流的影响的二极管。
它依赖于其非线性电阻特性,在电压超过其额定工作电压时,快速地降低电阻以保护电路。
下面将对TVS二极管的工作原理和主要参数进行详细介绍。
一、工作原理TVS二极管的工作原理是利用PN结的整流特性和非线性电阻特性。
当电压低于其额定工作电压时,TVS二极管表现出类似于普通二极管的整流特性,将电流快速导通。
但当电压超过其额定工作电压时,电阻会快速减小,导致电流快速增大。
在额定工作电压以下,TVS二极管的电阻很高,只有极小的漏电流通过。
但当电压超过其额定工作电压时,TVS二极管的电阻快速降低到一个很低的值,导致大量电流通过,并将过电压转移到接地。
二、主要参数1.额定工作电压:TVS二极管的额定工作电压是指其能够正常工作的最高电压。
当电压超过额定工作电压时,TVS二极管会开始导通。
2.电静态电容:电静态电容是指TVS二极管在静态工作条件下的电容值。
它决定了TVS二极管对高频信号的响应能力。
3.峰值脉冲功率:TVS二极管的峰值脉冲功率是指在额定工作电压下,它能够处理的最大瞬态能量。
这个参数决定了TVS二极管能够吸收和释放的过电压能量。
4.尖峰耐受电流:尖峰耐受电流是指在额定工作电压下,TVS二极管能够吸收的最大瞬态电流。
它决定了TVS二极管能够处理的过流能力。
5.反向导通电流:反向导通电流是指TVS二极管在反向电压下,可以通过的最大电流。
这个参数决定了TVS二极管在反向电压下的耐受能力。
6.响应时间:响应时间是指TVS二极管由导通到非导通或由非导通到导通所需要的时间。
这个参数决定了TVS二极管对瞬态电压的响应速度。
7.数量级:数量级是指TVS二极管的最大额定工作电压的数量级。
它决定了TVS二极管能够承受的最高电压。
以上是TVS二极管的工作原理及其主要参数的详细介绍。
tvs瞬态抑制二极管参数
TVS瞬态抑制二极管参数1. 介绍瞬态抑制二极管(Transient Voltage Suppressor Diode,简称TVS二极管)是一种用于保护电子电路免受瞬态电压干扰的器件。
它可以有效地抑制过电压和过电流,保护电路中的其他元件不受损坏。
本文将重点介绍TVS瞬态抑制二极管的参数,包括其电气参数、封装参数和可靠性参数。
2. 电气参数2.1 额定电压(Vr)额定电压是指TVS二极管能够正常工作的最大电压。
当电压超过额定电压时,TVS二极管将开始导通,以保护电路免受过电压的影响。
2.2 尖峰脉冲功率(Ppp)尖峰脉冲功率是指TVS二极管能够吸收的瞬态脉冲能量。
它表示了TVS二极管在瞬态电压出现时能够承受的最大功率。
通常情况下,尖峰脉冲功率越大,TVS二极管的抑制能力越强。
2.3 最大反向峰值电流(Ipp)最大反向峰值电流是指TVS二极管能够承受的最大反向电流。
当电路中的电压超过额定电压时,TVS二极管将导通,使电流通过,以保护电路。
最大反向峰值电流越大,TVS二极管的抑制能力越强。
2.4 动态电阻(Rd)动态电阻是指TVS二极管在导通状态下的电阻。
动态电阻越小,TVS二极管的抑制能力越强。
因此,低动态电阻是衡量TVS二极管性能好坏的重要指标之一。
3. 封装参数3.1 封装类型TVS瞬态抑制二极管有多种封装类型可供选择,常见的封装类型有DO-214、SMA、SMB等。
不同的封装类型适用于不同的应用场景。
选择合适的封装类型可以提高电路的可靠性和稳定性。
3.2 封装尺寸封装尺寸是指TVS二极管的外部尺寸。
在进行电路设计时,需要考虑TVS二极管的封装尺寸是否符合电路板的布局要求,以确保TVS二极管能够正确安装在电路板上。
3.3 焊接温度焊接温度是指TVS二极管在焊接过程中所能承受的最高温度。
在进行电路组装时,需要控制焊接温度,避免超过TVS二极管的最大焊接温度,以免影响其性能和可靠性。
4. 可靠性参数4.1 工作温度范围工作温度范围是指TVS二极管能够正常工作的温度范围。
瞬态电压抑制二极管特点及主要参数
瞬态电压抑制二极管特点及主要参数瞬态电压抑制二极管(Transient Voltage Suppression Diode,简称TVS)是一种具有快速响应速度和高抑制能力的电子器件,用于保护电路免受瞬态电压损害。
本文将介绍TVS的特点及其主要参数。
一、特点:1.快速响应:TVS具有快速响应的特点,可以对电路中的瞬态电压进行实时抑制和压制,从而保护电路中的敏感元件免受电压激发。
2.高抑制能力:TVS具有很高的能量抑制能力,能够抑制各种瞬态电压的能量,如雷击、电源噪声等,有效地保护电路。
3.可靠性高:TVS采用高可靠性材料制造,具有长寿命,能够在宽温度范围内正常工作,适应各种环境。
4.低导通电压:TVS的导通电压很低,通常在几伏范围内,可以快速地将瞬态电压导通到接地,从而保护电路中的各种敏感元件。
5.极低反向漏电流:TVS的反向漏电流很低,几乎可以忽略不计,可以避免对电路其他部分的影响。
6.可重复使用:TVS在电压脉冲消失后可以自动恢复正常工作状态,可以重复使用。
7.尺寸小:TVS体积小,适合在电路板上进行集成设计,减少系统空间占用。
二、主要参数:1. 额定电压(Rated Voltage):TVS的额定电压是指在正常工作状态下,TVS的最高允许电压。
通常使用Vr表示。
2. 极限电压(Breakdown Voltage):TVS的极限电压是指TVS开始导通的电压,也是TVS开始工作的电压。
3. 峰值脉冲功率(Peak Pulse Power):TVS的峰值脉冲功率是指TVS可以吸收的最大脉冲能量。
4. 导通电压(Clamping Voltage):当TVS开始导通时,导通电压是指在导通状态下TVS两端的电压。
5. 漏电流(Leakage Current):TVS正常工作时的反向漏电流。
漏电流应该尽量小,以避免对电路的干扰。
6. 响应时间(Response Time):TVS响应电压的时间,通常以纳秒为单位。
瞬态抑制二极管钳位电压
瞬态抑制二极管钳位电压一、瞬态抑制二极管的概念及作用瞬态抑制二极管(Transient Voltage Suppressor Diode,简称TVS 二极管)是一种特殊的二极管,它的主要作用是保护电路中的其他元器件不受到过电压的损坏。
当电路中出现过电压时,TVS二极管能够迅速地将过电压限制在一个安全范围内,以保护其他元器件。
二、TVS二极管的结构和工作原理1. TVS二极管的结构TVS二极管由两个PN结组成,其中一个PN结为正向偏置,另一个PN结为反向偏置。
与普通二极管不同的是,TVS二极管具有更高的掺杂浓度和更短的扩散距离,在正常工作状态下具有很高的阻值和很低的漏电流。
2. TVS二极管的工作原理当外部电路出现过电压时,TVS二极管会突然变成导通状态,并将过电压引导到地线上。
在这个过程中,由于TVS二极管具有很低的动态阻值,在限制过电压时能够提供很大的电流,从而保护其他元器件不受到过电压的损害。
三、TVS二极管的参数1. 钳位电压TVS二极管的钳位电压是指在正常工作状态下,TVS二极管的反向电压达到一定值时,其导通电流急剧增加,并将过电压限制在一个安全范围内。
钳位电压是TVS二极管最重要的参数之一,它决定了TVS二极管能够承受的最大过电压值。
2. 最大反向工作电压最大反向工作电压是指TVS二极管能够承受的最大反向偏置电压。
如果超过这个值,就会破坏TVS二极管。
3. 最大导通电流最大导通电流是指在TVS二极管导通状态下,能够通过它的最大电流值。
如果超过这个值,就会破坏TVS二极管。
四、如何选择合适的TVS二极管?1. 根据应用场景选择合适的钳位电压根据实际应用场景中可能出现的最高过电压值来选择合适的钳位电压。
一般来说,钳位电压应该比实际应用场景中可能出现的最高过电压值略高一些,以确保TVS二极管能够正常工作。
2. 根据应用场景选择合适的最大反向工作电压根据实际应用场景中可能出现的最大反向偏置电压来选择合适的最大反向工作电压。
瞬态电压抑制二极管参数
瞬态电压抑制二极管参数【原创实用版】目录1.瞬态电压抑制二极管的概念与作用2.瞬态电压抑制二极管的结构与工作原理3.瞬态电压抑制二极管的参数及其特性4.瞬态电压抑制二极管的应用领域与优势5.瞬态电压抑制二极管的选用与安装注意事项正文一、瞬态电压抑制二极管的概念与作用瞬态电压抑制二极管(Transient Voltage Suppression Diode,简称 TVS),又称为钳位二极管,是一种高效能的电路保护器件。
它可以保护电器设备不受导线引入的电压尖峰破坏,有效地将瞬态电压信号限制在正常范围内,从而避免电路元件受到瞬态电压的损害。
二、瞬态电压抑制二极管的结构与工作原理瞬态电压抑制二极管的外形与普通二极管相同,但其内部结构具有特殊的设计。
当承受一个高能量的大脉冲时,瞬态电压抑制二极管的工作阻抗会立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平。
其响应时间仅为 10-12 毫秒,因此可以有效地保护电子线路中的精密元器件。
三、瞬态电压抑制二极管的参数及其特性瞬态电压抑制二极管的主要参数包括最大钳位电压、最小击穿电压、最大浪涌电流等。
其中最大钳位电压是指瞬态电压抑制二极管在反向应用条件下,能够限制电压的最大值;最小击穿电压是指瞬态电压抑制二极管开始导通的最小电压值;最大浪涌电流是指瞬态电压抑制二极管允许通过的正向浪涌电流的最大值。
瞬态电压抑制二极管具有响应速度快、箝位电压低、大脉冲承受能力高等优点,可以有效地保护电路免受瞬态电压的干扰和损害。
四、瞬态电压抑制二极管的应用领域与优势瞬态电压抑制二极管广泛应用于通信、计算机、家电、工业控制等领域。
它可以有效地保护电路元件免受瞬态电压的损害,降低故障率,节省人工和物料成本,提高工作效率。
五、瞬态电压抑制二极管的选用与安装注意事项在选择瞬态电压抑制二极管时,需要根据被保护电路的电压、电流等参数选择合适的型号。
瞬态电压抑制二极管参数
瞬态电压抑制二极管参数瞬态电压抑制二极管(Transient Voltage Suppression Diode,TVS)是一种用于抑制电路中瞬态电压峰值的重要电子组件。
在电力系统、通信设备、汽车电子以及各种电子设备中起到了至关重要的保护作用。
瞬态电压抑制二极管参数的合理选择对于电路的可靠性和稳定性具有重要意义。
本文将深入探讨瞬态电压抑制二极管参数的相关内容,希望能够对读者进行全面、深刻和灵活的理解。
一、瞬态电压抑制二极管的概述瞬态电压抑制二极管,又称为TVS二极管,主要用于对电路中的瞬态电压进行保护。
它的主要作用是通过提供一个低阻抗的路径,将瞬态电压引导到地或其他低电压点,以保护电路中的敏感元件不受损坏。
瞬态电压抑制二极管的参数主要包括最大峰值电压(Vc),最大峰值电流(Ipp),保护电压(Vr),响应时间(tr),以及功率耗散能力等。
二、瞬态电压抑制二极管参数的影响因素1. 最大峰值电压(Vc):Vc是瞬态电压抑制二极管能够承受的最大电压,在选择时应考虑电路中可能出现的最高电压,以确保其能够提供有效的保护。
根据电路的需求,Vc的值应略高于电路中最高电压值。
2. 最大峰值电流(Ipp):Ipp是瞬态电压抑制二极管能够承受的最大电流,也是保护电路的重要参数。
在电路中发生瞬态电压过冲时,瞬态电流会通过二极管,因此选择具有足够大的Ipp值的二极管可以确保其正常工作。
3. 保护电压(Vr):Vr是指瞬态电压抑制二极管对于保护电路中敏感元件的保护电压。
当瞬态电压超过Vr时,二极管将开始导通,将瞬态电压引导到地或其他低电压点。
根据电路中敏感元件的额定工作电压,选择合适的Vr值非常重要。
4. 响应时间(tr):响应时间是瞬态电压抑制二极管从正常工作状态到完全导通所需的时间。
较短的响应时间可以更快地保护电路中的敏感元件,因此在选择二极管时需要注意其响应时间。
5. 功率耗散能力:功率耗散能力是指瞬态电压抑制二极管在正常工作状态下能够耗散的最大功率。
TVS(瞬变抑制)二极管参数与选型
TVS(瞬变抑制)二极管参数与选型TVS管的英文名是TRANSIENT VOLTAGE SUPPRESSOR,中文名叫瞬变抑制二极管。
它在承受瞬间高能量脉冲时,能在极短的内由原来的高阻抗状态变为低阻抗,并把电压箝制到特定的水平,从而有效的保护用户的设备和元器件不受损坏。
由于其具有箝位电压低、动作时间快等特点;因此比较适合于多级保护电路的末级保护。
此外也能和其它保护元件配合使用,组成专用的防雷装置。
目录TVS的参数特性TVS的应用TVS和其它浪涌保护元件的区别TVS的选用方法TVS管TVS的参数特性1.TVS特性TVS管是典型的PN结雪崩器件,和普通稳压管的击穿特性差不多。
但这条曲线只反映了TVS特性的一个部分,还必须补充下图所示的特性曲线,才能反映TVS的全部特性。
这是在双踪示波器上观察到的TVS管承受大电流冲击时的电流及电压波形。
图中曲线1是TVS管中的电流波形,它表示流过TVS管的电流由1mA突然上升到峰值,然后按指数规律下降,造成这种电流冲击的原因可能是雷击、过压等。
曲线2是TVS管两端电压的波形,它表示TVS中的电流突然上升时,TVS两端电压也随之上升,但最大只上升到VC值,这个值比击穿电压VBR略大,从而对后面的电路元件起到保护作用。
TVS在电路中和稳压管一样,是反向使用的。
2.参数说明A.击穿电压(VBR):TVS在此时阻抗骤然降低,处于雪崩击穿状态。
B.测试电流(IT):TVS的击穿电压VBR在此电流下测量而得。
一般情况下IT取1mA。
C.反向变位电压(VRWM):TVS的最大额定直流工作电压,当TVS两端电压继续上升,TVS将处于高阻状态。
此参数也可被认为是所保护电路的工作电压。
D.最大反向漏电流(IR):在工作电压下测得的流过TVS的最大电流。
E.最大峰值脉冲电流(IPP):TVS允许流过的最大浪涌电流,它反映了TVS的浪涌抑制能力。
F.最大箝位电压(VC):当TVS管承受瞬态高能量冲击时,管子中流过大电流,峰值为IPP,端电压由VRWM值上升到VC值就不再上升了,从而实现了保护作用。
双向tvs瞬态抑制二极管的工作原理
双向tvs瞬态抑制二极管的工作原理双向TVS瞬态抑制二极管的工作原理大家好,今天我要给大家讲解一下双向TVS瞬态抑制二极管的工作原理。
我们要明白什么是双向TVS瞬态抑制二极管,它有什么作用。
双向TVS瞬态抑制二极管是一种电子元器件,它可以在同一电路中实现正向和反向导通功能。
当电压达到某一值时,它会自动切换导通状态,从而保护其他元器件不受过电压的影响。
下面,我将从三个方面来详细讲解它的工作原理。
一、正向导通1.1 工作原理双向TVS瞬态抑制二极管的正向导通原理是利用其PN结的正向击穿特性。
当正向电压加在二极管两端时,PN结区域的载流子浓度迅速增加,使得pn结两侧形成一个低阻抗区域。
这时,电流可以通过这个低阻抗区域顺利地流入或流出二极管,实现导通。
1.2 关键参数正向导通的关键参数有两个:一是反向电压(VR),二是最大反向电流(IR)。
反向电压是指在二极管没有导通时,两端所加的最大电压。
当反向电压超过一定值时,二极管会进入截止状态,不再导通。
最大反向电流是指在反向电压为零时,二极管能够承受的最大反向电流。
这两个参数决定了二极管在正常工作状态下的性能。
二、反向导通2.1 工作原理双向TVS瞬态抑制二极管的反向导通原理是利用其PN结的反向击穿特性。
当反向电压加在二极管两端时,PN结区域的载流子浓度迅速降低,使得pn结两侧形成一个高阻抗区域。
这时,由于高阻抗区域的存在,电流无法通过这个区域流过二极管,实现反向导通。
由于二极管内部的P区和N区的载流子浓度差异较大,会产生一个较大的反向漏电流。
2.2 关键参数反向导通的关键参数同样有两个:一是反向电压(VR),二是最大反向漏电流(IR)。
反向电压是指在二极管没有导通时,两端所加的最大电压。
当反向电压超过一定值时,二极管会进入截止状态,不再反向导通。
最大反向漏电流是指在反向电压为零时,二极管能够承受的最大反向漏电流。
这两个参数决定了二极管在反向工作状态下的性能。
tvs钳位二极管工作原理
tvs钳位二极管工作原理TVS钳位二极管是一种用于保护电路的重要元件。
它的工作原理基于其特殊的电压-电流特性,可以在电路中提供快速的反向电压保护。
TVS钳位二极管是一种特殊的二极管,也称为稳压二极管或瞬态电压抑制器。
它的主要作用是限制电路中的瞬态电压,避免电路中其他元件受到过高的电压损坏。
TVS钳位二极管的工作原理可以简单地解释为,当电路中的电压超过设定的阈值时,TVS钳位二极管会迅速变为导通状态,将电压限制在一个较低的安全范围内。
换句话说,TVS钳位二极管可以将过高的电压转移到自身上,保护其他元件不受损坏。
TVS钳位二极管的工作原理可以通过下面三个关键要素来解释:击穿电压、响应时间和能量处理能力。
击穿电压是指TVS钳位二极管能够忍受的最大电压。
当电路中的电压超过这个值时,TVS钳位二极管会迅速变为导通状态,并将电压限制在一个较低的安全范围内。
这种击穿电压是根据具体应用需求来选择的,以确保电路中其他元件的安全。
响应时间是指TVS钳位二极管从非导通状态变为导通状态所需的时间。
由于TVS钳位二极管需要迅速响应来保护电路,因此其响应时间必须很短。
通常情况下,TVS钳位二极管的响应时间在纳秒级别,这使得它非常适合用于高速电路和敏感的电子设备中。
能量处理能力是指TVS钳位二极管能够吸收和耗散的能量。
当电路中出现瞬态电压时,TVS钳位二极管能够吸收这些能量,并将其耗散为热能。
这种能量处理能力是通过TVS钳位二极管的结构和材料来实现的,通常会使用特殊的硅材料或氧化锌来提高其能量处理能力。
总结起来,TVS钳位二极管的工作原理是通过击穿电压、响应时间和能量处理能力来保护电路中的其他元件。
当电路中的电压超过设定的阈值时,TVS钳位二极管会迅速变为导通状态,将电压限制在一个较低的安全范围内。
这使得TVS钳位二极管成为电路保护中不可或缺的元件,广泛应用于各种电子设备和系统中。
瞬态电压抑制二极管参数
瞬态电压抑制二极管参数瞬态电压抑制二极管(Transient Voltage Suppressor,简称TVS)是一种高效能保护电子设备的元件,其主要功能是在电路受到瞬态高电压冲击时,能够迅速地将电压钳制在预定值,从而保护后续电路免受损坏。
以下是关于TVS二极管的一些重要参数及其影响的详细讨论。
1.反向击穿电压(Vbr):这是TVS二极管开始导通并抑制电压的电压值。
在选择TVS二极管时,必须确保Vbr高于正常工作电压,但低于要保护的电路可以承受的最大电压。
2.最大钳位电压(Vc):当TVS二极管处于导通状态时,它会将电压钳制在此电压值。
Vc应小于被保护电路的最大允许电压。
3.最大峰值脉冲电流(Ipp):这是TVS二极管能够承受的最大电流值。
超过此值的电流可能导致二极管损坏。
在选择TVS二极管时,需要考虑电路中可能出现的最大瞬态电流。
4.最大浪涌功率(Pppm):这个参数表示TVS二极管在承受瞬态脉冲时能够耗散的最大功率。
Pppm值越大,二极管的保护能力越强。
5.箝位因子(K):箝位因子是最大钳位电压与反向击穿电压之比。
箝位因子越小,表示TVS二极管对电压的抑制能力越强。
6.响应时间(t):响应时间是从TVS二极管开始承受瞬态电压到其完全导通所需的时间。
响应时间越短,对电路的保护效果越好。
在选择TVS二极管时,需要注意其响应时间是否满足应用需求。
7.结电容(Cj):结电容是TVS二极管的一个寄生参数,它会影响电路的性能。
在选择TVS二极管时,需要注意其结电容值是否对电路产生影响。
为了确保TVS二极管的性能和可靠性,还需要考虑其工作环境条件,如工作温度范围、湿度和机械应力等。
在选择和使用TVS二极管时,应遵循制造商提供的建议和指南,以确保其能够有效地保护电路免受瞬态高电压的冲击。
最后,TVS二极管的参数选择应根据具体的应用场景和需求进行权衡和折衷。
在选择TVS二极管时,需要综合考虑上述参数以及成本、可靠性和可维护性等因素,以确保所选的TVS二极管能够满足实际应用的需求并提供良好的性能表现。
tvs二极管最大钳位电压
tvs二极管最大钳位电压【原创实用版】目录S 二极管的概念与作用S 二极管的最大钳位电压S 二极管的最大钳位电压的测量方法S 二极管最大钳位电压的选择与应用正文一、TVS 二极管的概念与作用TVS(Transient Voltage Suppressor)二极管,即瞬态电压抑制器二极管,是一种具有抑制瞬态电压功能的半导体器件。
它具有响应速度快、抑制电压能力强、漏电流小等特点,广泛应用于保护电子设备免受静电放电、浪涌电压等瞬态电压的损害。
二、TVS 二极管的最大钳位电压TVS 二极管的最大钳位电压,是指在特定的瞬态电压作用下,TVS 二极管两端的电压达到的最高值。
这个值决定了 TVS 二极管对瞬态电压的抑制能力。
通常情况下,TVS 二极管的最大钳位电压越高,其抑制瞬态电压的能力越强。
三、TVS 二极管的最大钳位电压的测量方法测量 TVS 二极管的最大钳位电压,通常采用以下两种方法:1.静态测量法:通过给定的直流电压,逐步增加到一定值,此时 TVS 二极管开始导通,记录此时的电压值,即为其最大钳位电压。
2.动态测量法:采用特定的测试设备,模拟瞬态电压波形,通过观察和记录 TVS 二极管两端的电压波形,确定其最大钳位电压。
四、TVS 二极管最大钳位电压的选择与应用在选择 TVS 二极管时,需要根据被保护电路的电压范围和工作环境,选择最大钳位电压合适的器件。
在实际应用中,TVS 二极管常用于以下几个方面:1.静电保护:在电子设备中,TVS 二极管可用于防止静电放电对电路造成损害。
2.电源保护:在电源系统中,TVS 二极管可抑制输入电压的瞬态变化,保证电源系统稳定工作。
3.信号线保护:在信号传输线中,TVS 二极管可防止信号线受到瞬态电压干扰,保证信号传输质量。
总之,TVS 二极管的最大钳位电压是衡量其抑制瞬态电压能力的重要参数。
TVS二极管的主要参数
TVS二极管的主要参数处理瞬时脉冲对器件损害的最好办法是将瞬时电流从敏感器件引开。
TVS二极管在线路板上与被保护线路并联,当瞬时电压超过电路正常工作电压后,TVS二极管便发生雪崩,提供给瞬时电流一个超低电阻通路,其结果是瞬时电流通过二极管被引开,避开被保护器件,并且在电压恢复正常值之前使被保护回路一直保持截止电压。
当瞬时脉冲结束以后,TVS二极管自动回复高阻状态,整个回路进入正常电压。
许多器件在承受多次冲击后,其参数及性能会发生退化,而只要工作在限定范围内,二极管将不会发生损坏或退化。
从以上过程可以看出,在选择TVS二极管时,必须注意以下几个参数的选择:1. 最小击穿电压VBR和击穿电流IR。
VBR是TVS最小的击穿电压,在25℃时,低于这个电压TVS是不会发生雪崩的。
当TVS流过规定的1mA电流(IR)时,加于TVS两极的电压为其最小击穿电压VBR。
按TVS的VBR与标准值的离散程度,可把VBR分为5%和10%两种。
对于5%的VBR来说,VWM=0.85VBR;对于10%的VBR来说,VWM=0.81VBR。
为了满足IEC61000-4-2国际标准,TVS二极管必须达到可以处理最小8kV(接触)和15kV(空气)的ESD冲击,有的半导体生产厂商在自己的产品上使用了更高的抗冲击标准。
对于某些有特殊要求的便携设备应用,设计者可以按需要挑选器件。
2. 最大反向漏电流ID和额定反向关断电压VWM。
VWM这是二极管在正常状态时可承受的电压,此电压应大于或等于被保护电路的正常工作电压,否则二极管会不断截止回路电压;但它又需要尽量与被保护回路的正常工作电压接近,这样才不会在TVS工作以前使整个回路面对过压威胁。
当这个额定反向关断电压VWM加于TVS的两极间时它处于反向关断状态,流过它的电流应小于或等于其最大反向漏电流ID。
3. 最大箝位电压VC和最大峰值脉冲电流IPP。
当持续时间为20mS的脉冲峰值电流IPP流过TVS时,在其两端出现的最大峰值电压为VC。
瞬态抑制二极管(TVS管)基础知识
瞬态抑制二极管(TVS管)基础知识瞬态抑制二极管(TVS管)基础知识什么叫TVS管(瞬态抑制二极管)?瞬态抑制二极管(TVS)又叫钳位型二极管,是目前国际上普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但却能吸收高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平,其响应时间仅为10-12毫秒,因此可有效地保护电子线路中的精密元器件。
TVS 允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A。
双向TVS 可在正反两个方向吸收瞬时大脉冲功率,并把电压钳制到预定水平,双向TVS 适用于交流电路,单向TVS一般用于直流电路。
可用于防雷击、防过电压、抗干扰、吸收浪涌功率等,是一种理想的保护器件。
耐受能力用瓦特(W)表示。
TVS二极管的特性(1)将TVS二极管加在信号及电源线上,能防止微处理器或单片机因瞬间的肪冲,如静电放电效应、交流电源之浪涌及开关电源的噪音所导致的失灵。
(2)静电放电效应能释放超过10000V、60A以上的脉冲,并能持续10ms;而一般的TTL器件,遇到超过30ms的10V脉冲时,便会导至损坏。
利用TVS二极管,可有效吸收会造成器件损坏的脉冲,并能消除由总线之间开关所引起的干扰(Crosstalk)。
(3)将TVS二极管放置在信号线及接地间,能避免数据及控制总线受到不必要的噪音影响。
TVS二极管特性曲线:图1 单向TVS二极管特性曲线图2 双向TVS二极管特性曲线说明:V BR:崩溃电压@I T- TVS瞬间变为低阻抗的点V RWM:维持电压-在此阶段TVS为不导通之状态V C:钳制电压@Ipp -钳制电压约略等于1.3*VBR VF:正向导通电压@IF -正向压降。
I R:逆向漏电流@V RWMI T:崩溃电压之测试电流I PP:突波峰值电流I F:正向导通电流图2 TVS二极管电路原理TVS管的主要电参数(1)击穿电压V(BR)器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。
什么是钳位二极管?钳位二极管保护原理
什么是钳位二极管?钳位二极管保护原理钳位二极管其实就是TVS 管,也就是瞬态抑制二极管的简称(Transient Voltage Suppressor)。
它是在稳压二极管的基础上进展而来的,是一种二极管形式的新型高效能爱护器件,也就是限压型的过压爱护器件。
TVS通常采纳二极管式的轴向引线封装结构,也有贴片的,TVS的核心单元是芯片,芯片有单极型和双极型两种结构,单极型TVS有一个PN结,双极型TVS有两个PN结。
单极性只对一个方向的浪涌电压冲击起爱护作用,双极性。
瞬态二极管对相反的极性浪涌电压冲击都起爱护作用,相当于两只稳压管反向串联。
这种管突出的特点就是具有击穿电压低、响应时间为几十ps数量级、漏电流小、瞬态功率大、无噪声等特点,因此在信号系统内得到广泛的应用及认可。
下面来先了解一下两个二极管反向串联时候是怎工作的,如下图D1和D2两个二极管反向串联在一起,这属于钳位爱护电路,也有利用这种钳位来取过零信号,在钳位电路中,二极管负极接地,则正极端电路被钳位零电位以下;工作时候一次只能有一个二极管导通,而另一个处于截止状态,那么它的正反向压降就会被钳制在二极管正向导通压降0.5-0.7(假如导通压降是此)以下,从而起到爱护电路的目的。
如下图是TVS管的电压---电流特性。
在浪涌电压的作用下,TVS管两
极之间电压由额定反向关断电压VWM上升到击穿电压VBR 时被击穿,消失了击穿电流,,于是流过TVS 管的电流将达到峰值脉冲电流IPP ,其两端的电压也被钳位于预定的最大钳位电压VC以下。
其后随着脉冲电流按指数衰减,TVS 管两极的电压也不断下降,最终恢复到初态,这就是TVS 管抑制浪涌电流脉冲功率,爱护电子器件的原理。
TVS瞬态电压抑制二极管(钳位二极管)原理参数
瞬态电压抑制二极管(TVS)又叫钳位二极管,是目前国际上普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但却能吸收高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平,其响应时间仅为10-12毫秒,因此可有效地保护电子线路中的精密元器件。
瞬态电压抑制二极管允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A。
双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压钳制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。
可用于防雷击、防过电压、抗干扰、吸收浪涌功率等,是一种理想的保护器件。
耐受能力用瓦特(W)表示。
瞬态电压抑制二极管的主要电参数(1)击穿电压V(BR)器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。
(2)最大反向脉冲峰值电流IPP在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。
IPP与最大钳位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。
使用时应正确选取TVS,使额定瞬态脉冲功率PPR大于被保护器件或线路可能出现的最大瞬态浪涌功率。
瞬态电压抑制二极管的分类瞬态电压抑制二极管可以按极性分为单极性和双极性两种,按用途可分为各种电路都适用的通用型器件和特殊电路适用的专用型器件。
如:各种交流电压保护器、4~200mA电流环保器、数据线保护器、同轴电缆保护器、电话机保护器等。
若按封装及内部结构可分为:轴向引线二极管、双列直插TVS阵列(适用多线保护)、贴片式、组件式和大功率模块式等。
瞬态电压抑制二极管的应用目前已广泛应用于计算机系统、通讯设备、交/ 直流电源、汽车、电子镇流器、家用电器、仪器仪表(电度表)、RS232/422/423/485、I/O、LAN、ISDN 、ADSL、USB、MP3、PDAS、GPS、CDMA、GSM、数字照相机的保护、共模/差模保护、RF耦合/IC驱动接收保护、电机电磁波干扰抑制、声频/视频输入、传感器/变速器、工控回路、继电器、接触器噪音的抑制等各个领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
TVS瞬态电压抑制二极管(钳位二极管)原理参数
瞬态电压抑制二极管(TVS)又叫钳位二极管,是目前国际上普遍使用的一种高效能电路保护器件,它的外型与普通二极管相同,但却能吸收高达数千瓦的浪涌功率,它的主要特点是在反向应用条件下,当承受一个高能量的大脉冲时,其工作阻抗立即降至极低的导通值,从而允许大电流通过,同时把电压钳制在预定水平,其响应时间仅为10-12毫秒,因此可有效地保护电子线路中的精密元器件。
瞬态电压抑制二极管允许的正向浪涌电流在TA=250C,T=10ms条件下,可达50~200A。
双向TVS可在正反两个方向吸收瞬时大脉冲功率,并把电压钳制到预定水平,双向TVS适用于交流电路,单向TVS一般用于直流电路。
可用于防雷击、防过电压、抗干扰、吸收浪涌功率等,是一种理想的保护器件。
耐受能力用瓦特(W)表示。
瞬态电压抑制二极管的主要电参数
(1)击穿电压V(BR)
器件在发生击穿的区域内,在规定的试验电流I(BR)下,测得器件两端的电压称为击穿电压,在此区域内,二极管成为低阻抗的通路。
(2)最大反向脉冲峰值电流IPP
在反向工作时,在规定的脉冲条件下,器件允许通过的最大脉冲峰值电流。
IPP与最大钳位电压VC(MAX)的乘积,就是瞬态脉冲功率的最大值。
使用时应正确选取TVS,使额定瞬态脉冲功率PPR大于被保护器件或线路可能出现的最大瞬态浪涌功率。
瞬态电压抑制二极管的分类
瞬态电压抑制二极管可以按极性分为单极性和双极性两种,按用途可分为各种电路都适用的通用型器件和特殊电路适用的专用型器件。
如:各种交流电压保护器、4~200mA电流环保器、数据线保护器、同轴电缆保护器、电话机保护器等。
若按封装及内部结构可分为:轴向引线二极管、双列直插TVS阵列(适用多线保护)、贴片式、组件式和大功率模块式等。
瞬态电压抑制二极管的应用
目前已广泛应用于计算机系统、通讯设备、交/ 直流电源、汽车、电子镇流器、家用电器、仪器仪表(电度表)、RS232/422/423/485、I/O、LAN、ISDN 、ADSL、USB、M P3、PDAS、GPS、CDMA、GSM、数字照相机的保护、共模/差模保护、RF耦合/IC驱
动接收保护、电机电磁波干扰抑制、声频/视频输入、传感器/变速器、工控回路、继电器、接触器噪音的抑制等各个领域。
瞬态电压抑制二极管的特点
(1)将TVS二极管加在信号及电源线上,能防止微处理器或单片机因瞬间的肪冲,如静电放电效应、交流电源之浪涌及开关电源的噪音所导致的失灵。
(2)静电放电效应能释放超过10000V、60A以上的脉冲,并能持续10ms;而一般的T TL器件,遇到超过30ms的10V脉冲时,便会导至损坏。
利用TVS二极管,可有效吸收会造成器件损坏的脉冲,并能消除由总线之间开关所引起的干扰(Crosstalk)。
(3)将TVS二极管放置在信号线及接地间,能避免数据及控制总线受到不必要的噪音影响。
瞬态电压抑制二极管的选用技巧
(1)确定被保护电路的最大直流或连续工作电压、电路的额定标准电压和“高端”容限。
(2)TVS额定反向关断VWM应大于或等于被保护电路的最大工作电压。
若选用的VWM 太低,器件可能进入雪崩或因反向漏电流太大影响电路的正常工作。
串行连接分电压,并行连接分电流。
(3)TVS的最大钳位电压VC应小于被保护电路的损坏电压。
(4)在规定的脉冲持续时间内,TVS的最大峰值脉冲功耗PM必须大于被保护电路内可能出现的峰值脉冲功率。
在确定了最大钳位电压后,其峰值脉冲电流应大于瞬态浪涌电流。
(5)对于数据接口电路的保护,还必须注意选取具有合适电容C的TVS器件。
(6)根据用途选用TVS的极性及封装结构。
交流电路选用双极性TVS较为合理;多线保护选用TVS阵列更为有利。
(7)温度考虑。
瞬态电压抑制器可以在-55℃~+150℃之间工作。
如果需要TVS在一个变化的温度工作,由于其反向漏电流ID是随增加而增大;功耗随TVS 结温增加而下降,从+25℃~+175℃,大约线性下降50%雨击穿电压VBR随温度的增加按一定的系数增加。
因此,必须查阅有关产品资料,考虑温度变化对其特性的影响。
处理瞬时脉冲对元件损害的最好办法是将瞬时电流从感应元件引开。
TVS二极管在线路板上与被保护线路并联,当瞬时电压超过电路正常工作电压后,TVS二极管便产生雪崩,
提供给瞬时电流一个超低电阻通路,其结果是瞬时电流透过二极管被引开,避开被保护元件,并且在电压恢复正常值之前使被保护回路一直保持截止电压。
当瞬时脉冲结束以后,TVS 二极管自动回覆高阻状态,整个回路进入正常电压。
许多元件在承受多次冲击后,其参数及性能会产生退化,而只要工作在限定范围内,二极管将不会产生损坏或退化。
从以上过程可以看出,在选择TVS二极管时,必须注意以下几个参数的选择:
1. 最小击穿电压VBR和击穿电流I R 。
VBR是TVS最小的击穿电压,在25℃时,低于这个电压TVS是不会产生雪崩的。
当TVS流过规定的1mA电流(IR )时,加于TVS两极的电压为其最小击穿电压V BR 。
按TVS的VBR与标准值的离散程度,可把VBR分为5%和10%两种。
对于5%的VBR来说,V WM =0.85VBR;对于10%的VBR来说,V WM =0.81VBR。
为了满足IEC61000-4-2国际标准,TVS二极管必须达到可以处理最小8kV(接触)和15kV(空气)的ESD冲击,部份半导体厂商在自己的产品上使用了更高的抗冲击标准。
对于某些有特殊要求的可携设备应用,设计者可以依需要挑选元件。
2.最大反向漏电流ID和额定反向切断电压VWM。
VWM是二极管在正常状态时可承受的电压,此电压应大于或等于被保护电路的正常工作电压,否则二极管会不断截止回路电压;但它又需要尽量与被保护回路的正常工作电压接近,这样才不会在TVS工作以前使整个回路面对过压威胁。
当这个额定反向切断电压VWM加于TVS的两极间时它处于反向切断状态,流过它的电流应小于或等于其最大反向漏电流ID。
3.最大钳位电压VC和最大峰值脉冲电流I PP 。
当持续时间为20ms的脉冲峰值电流IPP 流过TVS时,在其两端出现的最大峰值电压为VC。
V C 、IPP反映了TVS的突波抑制能力。
VC与VBR之比称为钳位因子,一般在1.2~1.4之间。
VC是二极管在截止状态提供的电压,也就是在ESD冲击状态时通过TVS的电压,它不能大于被保护回路的可承受极限电压,否则元件面临被损伤的危险。
4. Pppm额定脉冲功率,这是基于最大截止电压和此时的峰值脉冲电流。
对于手持设备,一般来说500W的TVS就足够了。
最大峰值脉冲功耗PM是TVS能承受的最大峰值脉冲功耗值。
在特定的最大钳位电压下,功耗PM越大,其突波电流的承受能力越大。
在特定的功耗PM下,钳位电压VC越低,其突波电流的承受能力越大。
另外,峰值脉冲功耗还与脉冲波形、持续时间和环境温度有关。
而且,TVS所能承受的瞬态脉冲是不重覆的,元件规定的脉冲重覆频率(持续时间与间歇时间之比)为0.01%。
如果电路内出现重覆性脉冲,应考虑脉冲功率的累积,有可能损坏TVS。
5. 电容器量C。
电容器量C是由TVS雪崩结截面决定的,是在特定的1MHz频率下测得的。
C的大小与TVS的电流承受能力成正比,C太大将使讯号衰减。
因此,C是数据介面电路选用TVS的重要参数。
电容器对于数据/讯号频率越高的回路,二极管的电容器对电路的干扰越大,形成噪音或衰减讯号强度,因此需要根据回路的特性来决定所选元件的电容器范围。
高频回路一般选择电容器应尽量小(如LCTVS、低电容器TVS,电容器不大于3p F),而对电容器要求不高的回路电容器选择可高于40pF。
瞬态电压抑制二极管特性曲线:
图1 单向TVS二极管特性曲线
图2 双向TVS二极管特性曲线
说明:
V BR:崩溃电压@I T- TVS瞬间变为低阻抗的点
V RWM:维持电压-在此阶段TVS为不导通之状态
V C:钳制电压@Ipp -钳制电压约略等于1.3*VBR VF:正向导通电压@IF -正向压降I R:逆向漏电流@V RWM
I T:崩溃电压之测试电流
I PP:突波峰值电流
I F:正向导通电流
图2 瞬态电压抑制二极管电路原理本文摘自互联网:/erjiguan/954_1/。