七年级数学试卷含答案
七年级数学全册试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √3B. πC. 0.101001D. √-12. 若a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列各组数中,成比例的是()A. 2, 4, 6, 8B. 1, 2, 3, 4C. 2, 3, 6, 9D. 4, 5, 6, 74. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 45. 在直角坐标系中,点A(2,3)关于x轴的对称点是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)6. 若等腰三角形底边长为8,腰长为6,则该三角形的面积是()A. 24B. 28C. 32D. 367. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆8. 下列各数中,属于有理数的是()A. √2B. πC. 0.101001D. √-19. 若x + y = 5,x - y = 1,则x的值是()A. 3B. 2C. 1D. 010. 下列函数中,是正比例函数的是()A. y = 2x + 3B. y = x^2 - 1C. y = 3/xD. y = 2x - 4二、填空题(每题3分,共30分)11. 若a > b,则a - b > _______。
12. 0.25 + 0.25 + 0.25 + 0.25 = _______。
13. 在直角坐标系中,点B(-3,4)关于原点的对称点是 _______。
14. 等腰三角形底边长为10,腰长为8,则该三角形的周长是 _______。
15. 若等边三角形的边长为a,则该三角形的面积是 _______。
16. 下列各数中,绝对值最小的是 _______。
七年级数学有理数试卷【含答案】
七年级数学有理数试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. -3/4C. πD. √52. 两个有理数相乘,结果仍为有理数的是:A. 2/3 4/5B. 2/3 √2C. -3/4 πD. √5 √53. 下列哪个数是整数?A. -3/4B. 2.5C. 3D. √94. 两个负数相乘的结果是:A. 正数B. 负数C. 零D. 无法确定5. 下列哪个数是正有理数?A. -3/4B. 2.5C. -3D. √9二、判断题(每题1分,共5分)1. 所有的整数都是有理数。
()2. 两个有理数相加,结果仍为有理数。
()3. 0是有理数。
()4. 两个正数相乘的结果是负数。
()5. 所有的分数都是有理数。
()三、填空题(每题1分,共5分)1. 3/4 + 1/4 = ______2. -2/3 3/2 = ______3. 4/5 1/5 = ______4. | -3/4 | = ______5. -3/4的倒数是______四、简答题(每题2分,共10分)1. 请简述有理数的定义。
2. 请解释有理数的分类。
3. 请简述有理数的乘法法则。
4. 请解释有理数的加法法则。
5. 请简述有理数的除法法则。
五、应用题(每题2分,共10分)1. 计算下列各式的值:a. 3/4 + 1/4b. -2/3 3/2c. 4/5 1/5d. | -3/4 |e. -3/4的倒数2. 判断下列各数是否为有理数,并解释原因:a. √2b. -3/4c. πd. √5e. 2.53. 计算下列各式的值:a. 2/3 + 1/6b. -3/4 2/3c. 5/8 3/8d. | -5/6 |e. -5/6的倒数4. 判断下列各数是否为整数,并解释原因:a. -3/4b. 2.5c. 3d. √9e. -2/35. 计算下列各式的值:a. 3/5 + 2/5b. -4/5 5/4c. 7/10 3/10d. | -7/8 |e. -7/8的倒数六、分析题(每题5分,共10分)1. 分析有理数的乘法法则,并举例说明。
七年级人教版数学期末考试卷及参考答案
七年级期末考试卷班级:姓名:成绩:一、选择题(每题2分,共28分)1.如果零上5℃记作+5℃,那么零下3℃记作()A .-5℃B .-3℃C .+3℃D .+5℃2.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2-13当北京6月15日23时,悉尼、纽约的时间分别是()A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时3.人工智能AlphaGo 因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了20000000局的训练(等同于一个人近千年的训练量).数字20000000用科学记数法表示为()A .70.210´B .7210´C .80.210´D .8210´4.关于多项式23230.3271x y x y xy --+,下列说法错误的是()A .这个多项式是五次四项式B .四次项的系数是7C .常数项是1D .按y 降幂排列为3322720.31xy x y x y --++5.如图,则下列判断正确()A .a+b >0B .a <-1C .a-b >0D .ab >06.设x 、y 、m 都是有理数,下列说法一定正确的是()A .若x =y ,则x +m =y -mB .若x =y ,则xm =ymC .若x =y ,则x ym m=D .若x ym m=,则x =-y 7.化简2a 2-a 2的结果是()A .2a 4B .3a 4C .a 2D .4a28.下列方程的解法中,错误的个数是()①方程211x x -=+移项,得30x =②方程2(1)3(2)5x x ---=去括号得,22635x x --+=③方程21142x x ---=去分母,得422(1)x x --=-④方程32x =-系数化为1得,32x =-A .1B .2C .3D .49.如图所示的图形经过折叠可以得到一个正方体,则与“我”字一面相对的面上的字是()A .爱B .庆C .学D .中10.如果35x =是关于x 的方程50x m -=的解,那么m 的值为()A .3B .13C .3-D .13-11.已知3,2a b c d -=+=,则()()a c b d +--的值是()A .-1B .1C .-5D .512.已知数列1b ,2b ,3b ,···满足121n n nb b b +++=,其中1n ³,若12b =且25b =,则2019b 的值为()A .2B .5C .45D .3513.对于两个不相等的有理数a b 、,我们规定Max {a b 、}表示a b 、中的较大值,如:Max {2、4}=4,按照这个规定,方程Max {x x -、}=3x +2的解为()A .1-B .12-C .-1或-12D .1或1214.如图,数轴上O 、A 两点的距离为4,一动点P 从点A 出发,按以下规律跳动:第1次跳动到AO 的中点1A 处,第2次从1A 点跳动到1A O 的中点2A 处,第3次从2A 点跳动到2A O 的中点3A 处,按照这样的规律继续跳动到点456,,,...,n A A A A (3n ³,n 是整数)处,问经过这样2020次跳动后的点与O 点的距离是()A .201812B .201912C .202012D .202112二、填空题(每个小题3分,共12分,)15.甲、乙、丙三地的海拔高度分别为20,10m m -和5m -,那么最高的地方比最低的地方高__________m16.如图是一个计算程序,若输入a 的值为-1,则输出的结果应为____.17.甲、乙两站相距480公里,一列慢车从甲站开往乙站,每小时行80公里,一列快车从乙站开往甲站,每小时行120公里.慢车从甲站开出1小时后,快车从乙站开出,那么快车开出__________小时后快车与慢车相距200公里.18.已知∠AOB =45°,∠BOC =30°,则∠AOC =.三、解答题(19-21每题6分,22-25每题8分,26题10分,满分60分)(1)()()()12838--++--+(2)()157362912æö-+´-ç÷èø(3)()322524-´--¸20.解下列方程:(1)532(5)x x +=-(2)2523136x x -+=-21.有三个有理数x ,y ,z ,若x =()211n --,且x 与y 互为相反数,y 是z 的倒数.(1)当n 为奇数时,求出x ,y ,z 这三个数.(2)根据(1)的结果计算:xy ﹣y n ﹣(y ﹣z)2019的值.22.已知如图,数轴上有A ,B ,C ,D 四个点,点A 对应的数为-1,且AB=a+b ,BC=2a-b ,BD=3a+2b(1)求点B ,C ,D 所对应的数(用含a 和b 的代数式表示);(2)若a=3,C 为AD 的中点,求b 的值,并确定点B ,C ,D 对应的数.23.对,a b 定义一种新运算T :规定2(,)2T a b ab ab a =-+,(其中,a b 均为有理数),这里等式右边是通常的四则运算.如:2(1,3)1321314T =´-´´+=;(1)求(2,3)T -的值;(2)计算1,32a T +æöç÷èø;(3)若(2,)m T x =,(,3)n T x =-(其中x 为有理数),比较m 与n 的大小.24.如图,OD 是∠AOB 的平分线,OE 是∠BOC 的平分线.(1)若∠BOC =50°,∠BOA =80°,求∠DOE 的度数;(2)若∠AOC =150°,求∠DOE 的度数;(3)你发现∠DOE 与∠AOC 有什么等量关系?给出结论并说明.25.某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元.“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x 条(20x >).(1)若该客户按方案一购买,需付款______元.(用含x 的代数式表示)若该客户按方案二购买,需付款______元.(用含x 的代数式表示)(2)若40x =,通过计算说明此时按哪种方案购买较为合算?(3)当40x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.26.如图,已知A 、B 、C 是数轴上三点,点C 表示的数为3,2BC =,6AB =.(1)数轴上点A 表示的数为______,点B 表示的数为______.(2)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向右匀速运动,t 何值时,P 、Q 两点到B 点的距离相等.(3)动点P 、Q 分别从A 、C 同时出发,点P 以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 以每秒1个单位长度的速度沿数轴向左匀速运动,M 为AP 的中点,点N 在线段CQ 上,且23CN CQ =,设运动时间为t ()0t >秒.①求数轴上M 、N 表示的数(用含t 的式子表示);②在运动过程中,点P 到点B 的距离、点Q 到点B 的距离以及点P 到点Q 的距离,是否存在两段相等,若存在,求出此时t 的值;若不存在,请说明理由.答案:一、选择题1、B 2、A 3、B 4、B 5、A 6、B 7、C 8、C 9、C 10、A 11、D 12、C 13、B 14、A 二、填空题15、3016、-517、1或318、15或75度三、解答题19、(1)1(2)8(3)8--++--1283=++--8=0(2)()157362912æö-+´-ç÷èø157(36)(36)(36)2912=´--´-+´-=-18+20-21=-19(3)2325(2)4-´--¸20(2)=---=-1820、解:(1)()5325x x +=-53102x x +=-,55=x ,1x =;(2)2523136x x -+=-()()225623x x -=-+,613x =,136x =.21、解:()1当n 为奇数时,1,1,1x y z =-==,()2当1,1,1x y z =-==时,原式–1102=--=-.22、(1)因为A 对应数-1,且AB=a+b所以点B 对应数轴上点的数值是1()1a b a b -++=+-又2,(2)3BC a b AC a b a b a =-=++-= 所以点C 对应的数值是13a -+;32,(32)43BD a b AD a b a b a b=+=+++=+ 所以点D 对应的数值是143a b -++;(2)因为点C 为AD 的中点所以AC=CD ,33a a b=+23b a =因为a=3,所以b=2所以B 对应数轴上的数值是:3+2-1=4;点C 对应数轴上的点的数值是:1338-+´=;点D 对应数轴上的数值是:1433217-+´+´=.23、(1)T(-2,3)()()2232232=-´-´-´+-181228=-+-=-;(2)2111133232222a a a a T ++++æö=´-´´+ç÷èø,9(1)3(1)1222a a a +++=-+7(1)2a +=;(3)2(2)2222m T x x x ==-´+,2242x x =-+,2(3)32()3n T x x x x=-=-×--×-,96x x x =-+-4x =-,所以2220m n x =+>﹣.所以m n >.24、(1)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOA ,∵∠BOC=50°,∠BOA=80°,∴∠BOD=25°,∠BOE=40°,∴∠DOE=25°+40°=65°;(2)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOC ,∠BOE=∠COE=12∠BOC ,∵∠AOC=150°,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC=75°;(3)∠DOE=12∠AOC ;理由是:∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线,∴∠AOD=∠BOD=12∠BOA ,∠BOE=∠COE=12∠BOC ,∴∠DOE=∠DOB+∠EOB=12(∠BOC+∠BOA)=12∠AOC .25、(1)按方案一购买:201000200(20)20016000x x ´+´-=+,按方案二购买:(100020200)0.918018000x x ´+´=+;(2)当40x =时,方案一:200401600024000´+=(元)方案二:180401800025200´+=(元)所以,按方案一购买较合算.(3)先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带.则200002002090%23600+´´=(元)26、(1) 点C 表示的数为3,2BC =,6AB =,且A ,B ,C 位置如数轴上所示,\点B 表示的数为321-=点A 表示的数为165-=-.故答案为:5-,1.(2)点P 表示的数为52t -+,点Q 表示的数为3+t ,则|521||26|PB t t =-+-=-,312QB t t =+-=+,|26|2t t \-=+,当03t ££时,622t t -=+,43t =,当3t >时,262t t -=+,8t =,综上,43t =或8.故答案为:43t =或8.(3)①Q 表示的数为3t -,M表示的数为5(52)52t t -+-+=-+,N Q 在线段CQ 上,2233CN CQ t ==,N \表示的数为233t -;故答案为:M 表示的数为5t -+,N 表示的数为233t -.②|26|PB t =-,|52(3)||38|PQ t t t =-+--=-,|31||2|QB t t =--=-;(1)若PB PQ =,则|26||38|t t -=-,2638t t -=-或26380t t -+-=,则2t =或145t =;(2)若PB QB =,则|26||2|t t -=-,262t t -=-或2620t t -+-=,则83t =或4t =;(3)若PQ QB =,则|38||2|t t -=-,382t t -=-或3820t t -+-=,52t =或3t =;综上,存在,且2t =或3或4或52或85或145.。
七年级数学上册期末试卷(附含答案)
七年级数学上册期末试卷(附含答案)(满分:120分考试时间:120分)一选择题(本题共计10 小题每题3 分共计30分)1. 下列各数:0−5−(−7)−|−8|(−4)2中负数有()A.1个B.2个C.3个D.4个2. 若a+b<0ab<0则()A.a>0B.a<0C.a b两数一正一负且正数的绝对值大于负数的绝对值D.a b两数一正一负且负数的绝对值大于正数的绝对值3. 2018年上半年长沙市实现农林牧渔业总产值1958000万元数据1958000用科学记数法表示()A.19.58×104B.0.1958×107C.1.958×106D.1.958×10104. 如果水位升高6m时水位变化记为+6m那么水位下降6m时水位变化记为()A.−3 mB.3 mC.6 mD.−6 m5. 下列说法错误的是()A.−2的相反数是2B.3的倒数是13C.(−3)−(−5)=2D.−1104这三个数中最小的数是06. 有理数−1−203中最小的数是()A.−1B.−2C.0D.37. 若A和B都是4次多项式则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式8. 数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画一条长15厘米的线段AB则AB盖住的整数点的个数共有()个.A.13或14个B.14或15个C.15或16个D.16或17个9. 如图下列式子成立的是()A.a−b>0B.a+b<0C.a−b<0D.b−1<010. 已知表示实数a b的点在数轴上的位置如图所示下列结论错误的是()A.|a|<1<|b|B.1<−a<bC.1<|a|<bD.−b<a<−1二填空题(本题共计4 小题每题3 分共计12分)11. 8的相反数是________ −11的倒数是________ ________的绝对值是1________的立方是8.212. 在月球表面白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C.则月球表面昼夜的温差为________∘C.13. 若|a|=5b=−2且ab>0则a+b=________.14. 某公交车原坐有22人经过4个站点时上下车情况如下(上车为正下车为负):(+4, −8)(−5, +6)(−3, +2)(+1, −7)则车上还有________人.三解答题(本题共计8 小题共计78分)15.(8分) 某班抽查了10名同学的期末成绩以80分为基准超出的记作为正数不足的记为负数记录的结果如下:+8−3+12−7−10−3−8+10+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.16.(10分) 某淘宝商家计划平均每天销售某品牌儿童滑板车100辆但由于种种原因实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正不足记为负):(1)根据记录的数据可知该店前三天共销售该品牌儿童滑板车________辆(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售________辆(3)本周实际销售总量达到了计划数量没有?(4)该店实行每日计件工资制每销售一辆车可得40元若超额完成任务则超过部分每辆另奖15元少销售一辆扣20元那么该店铺的销售人员这一周的工资总额是多少元?17.(10分) 中国渔政船在小岛附近东西航向上巡航从小岛出发如果规定向东航行为正巡航记录为:(单位:海里)+80−40+60+75−65−80此时(1)渔政船在出发点哪个方向?你知道它离出发点有多远?(2)如果轮船巡航每海里耗油0.2吨请你替船长算一算一共耗多少吨油?18. (10分)请画一条数轴然后在数轴上把下列各数表示出来:312−4−2120−11并把这些数用“<”号连接.19.(10分) 计算:(1)|−0.75|−(−0.25)+|−18|+78(2)−23−2×(−3)+2÷5−(−1)2019.20. (10分)某人用460元购买8套不同的儿童服装再以一定的价格出售如果每套儿童服装以65元的价格为标准超出的记作正数不足的记为负数那么售价(单位:元)分别为+2−3+2+1−2−10−2.当卖完这8套服装后此人是盈利还是亏损?盈利或亏损多少元?21.(10分) 如图在平面直角坐标中直线AB分别交x轴y轴于点A(a,0)和点B(0,b)且a b满足a2+4a+4+|2a+b|=0.(1)a=________ b=________.(2)点P在直线AB的右侧且∠APB=45∘:①若点P在x轴上则点P的坐标为_________②若△ABP为直角三角形求点P的坐标.22. (10分)某个体儿童服装店老板以每件32元的价格购进30件T恤针对不同的顾客30件T恤的售价不完全相同若以47元为标准超出的钱记为正不足的钱记为负则记录的结果如下表所示:问:该服装店在售完这30件T恤后赚了多少钱?参考答案一选择题(本题共计10 小题每题 3 分共计30分)1.【答案】B【考点】正数和负数的识别【解析】先化简各数再根据小于0的数是负数求解.【解答】解:∵ 0既不是正数也不是负数−5<0−(−7)=7>0−|−8|=−8<0(−4)2=16>0∵ 负数共有2个.故选B.2.【答案】D【考点】有理数的乘法有理数的加法【解析】先根据ab<0结合乘法法则易知a b异号而a+b<0根据加法法则可知负数的绝对值大于正数的绝对值解可确定答案.【解答】解:∵ ab<0∵ a b异号又∵ a+b<0∵ 负数的绝对值大于正数的绝对值.故选D.3.【答案】C【考点】科学记数法--表示较大的数【解析】此题暂无解析【解答】解:1958000用科学记数法可表示为1.958×106.故选C.4.【答案】D【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】因为上升记为+ 所以下降记为-所以水位下降6m时水位变化记作−6m.5.【答案】D【考点】倒数有理数的减法有理数大小比较相反数【解析】根据相反数的概念倒数的概念有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:−2的相反数是2A正确3的倒数是1B正确3(−3)−(−5)=−3+5=2C正确−1104这三个数中最小的数是−11D错误.故选D.6.【答案】B【考点】有理数大小比较有理数的概念及分类【解析】先求出|−1|=1|−2|=2根据负数的绝对值越大这个数就越小得到−2<−1而0大于任何负数小于任何正数则有理数−1−203的大小关系为−2<−1<0<3.【解答】解:∵ |−1|=1|−2|=2∵ −2<−1∵ 有理数−1−203的大小关系为−2<−1<0<3.故选B.7.【答案】C【考点】多项式的项与次数【解析】若A和B都是4次多项式通过合并同类项求和时结果的次数定小于或等于原多项式的最高次数.【解答】解:若A和B都是4次多项式则A+B的结果的次数一定是次数不高于4次的整式.故选C.8.【答案】C【考点】数轴【解析】某数轴的单位长度是1厘米若在这个数轴上随意画出一条长为15厘米的线段AB则线段AB盖住的整点的个数可能正好是16个也可能不是整数而是有两个半数那就是15个.【解答】解:依题意得:①当线段AB起点在整点时覆盖16个数②当线段AB起点不在整点即在两个整点之间时覆盖15个数.故选C.9.【答案】C【考点】有理数大小比较数轴【解析】根据a b两点在数轴上的位置判断出其取值范围再对各选项进行逐一分析即可.【解答】解:∵ a b两点在数轴上的位置可知:−1<a<0b>1|a|<|b|∵ a−b<0a+b>0b−1>0故A B D错误故C正确.故选C.10.【答案】A【考点】数轴【解析】首先根据数轴的特征判断出a−101b的大小关系然后根据正实数都大于0负实数都小于0正实数大于一切负实数两个负实数绝对值大的反而小逐一判断每个选项的正确性即可.【解答】解:根据实数a b在数轴上的位置可得a<−1<0<1<b∵ 1<|a|<|b|∵ 选项A错误∵ 1<−a<b∵ 选项B正确∵ 1<|a|<b∵ 选项C正确∵ −b<a<−1∵ 选项D正确.故选A.二填空题(本题共计4 小题每题3 分共计12分)11.【答案】−8,−23,±1,2【考点】立方根的实际应用相反数绝对值倒数【解析】分别根据相反数绝对值倒数立方的概念即可求解.【解答】解:8的相反数是−8−112的倒数是−23±1的绝对值是12的立方是8.12.【答案】310【考点】正数和负数的识别【解析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【解答】解:白天阳光垂直照射的地方温度高达+127∘C夜晚温度可降至−183∘C所以月球表面昼夜的温差为:127∘C−(−183∘C)=310∘C.故答案为:310.13.【答案】−7【考点】绝对值【解析】考查绝对值的意义及有理数的运算根据|a|=5b=−2且ab>0可知a=−5代入原式计算即可.【解答】解:∵ |a|=5b=−2且ab>0∵ a=−5∵ a+b=−5−2=−7.故答案为:−7.14.【答案】12【考点】有理数的加法正数和负数的识别【解析】根据有理数的加法可得答案.【解答】解:由题意得22+4+(−8)+6+(−5)+2+(−3)+1+(−7)=12(人)故答案为:12.三解答题(本题共计8 小题共计78分)15.【答案】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).【考点】算术平均数正数和负数的识别【解析】(1)根据正负数的意义解答即可(2)求出所有记录的和的平均数再加上基准分即可.【解答】解:(1)最高分为:80+12=92(分)最低分为:80−10=70(分)(2)8−3+12−7−10−3−8+1+0+10=8+12+1+10+0−3−7−10−3−8=31−31=0所以10名同学的平均成绩80+0=80(分).16.【答案】29629(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.【考点】整式的混合运算正数和负数的识别【解析】(1)根据前三天销售量相加计算即可(2)将销售量最多的一天与销售量最少的一天相减计算即可(3)将总数量乘以价格解答即可.【解答】解:(1)4−3−5+300=296.故答案为:296.(2)21+8=29.故答案为:29.(3)+4−3−5+14−8+21−6=17>0∵ 本周实际销量达到了计划数量.(4)(17+100×7)×40+(4+14+21)×15+ (−3−5−8−6)×20=28825(元).答:该店铺的销售人员这一周的工资总额是28825元.17.【答案】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.【考点】有理数的混合运算绝对值正数和负数的识别【解析】(1)根据有理数的加法可得答案(2)根据行车就耗油可得耗油量.【解答】解:(1)80+(−40)+60+75+(−65)+(−80)=30(海里).答:渔政船在出发点东方向它离出发点有30海里.(2)(80+|−40|+60+75+|−65|+|−80|)×0.2=80(吨).答:一共耗80吨油.18.【答案】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.【考点】有理数大小比较数轴【解析】再在数轴上表示出来数轴左边的数比右边的数小.【解答】解:如图:用“<”号连接为−4<−212<−1<0<12<1<3.19.【答案】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.【考点】有理数的混合运算有理数的加减混合运算绝对值【解析】此题暂无解析【解答】解:(1)原式=0.75+0.25+18+78=1+1=2.(2)原式=−8+6+25+1=−1+2 5=−35.20.【答案】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.【解析】有理数的加法:同号取相同符号并把绝对值相加异号两数相加取绝对值较大的数的符号用较大绝对值减去较小绝对值.相反数相加和为零.【解答】解:(+2−3+2+1−2−1+0−2)+65×8−460=517−460=57(元)∵ 57>0∵ 当卖完这8套服装后此人是盈利盈利57元.21.【答案】−2,4(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).【考点】全等三角形的性质与判定非负数的性质:偶次方非负数的性质:绝对值【解析】解:(1)由题意得得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.【解答】解:(1)由题意得a2+4a+4+|2a+b|=(a+2)2+|2a+b|=0所以a+2=02a+b=0解得a=−2b=4.故答案为:−24.(2)①(4,0)∵ 点P在x轴上则OP=OB=4∵ 点P的坐标为(4,0).②∠BAP=90∘时过点P作PH⊥x轴于点H则∠HAP+∠BAH=90∘,∠OBA+∠BAH=90∘∵ ∠OBA=∠HAP.又∵ ∠APB=45∘,∠BAP=90∘∵ ∠APB=∠ABP=45∘∵ AP=AB又∵ ∠BOA=∠AHP=90∘∵ △AOB≅△PHA(AAS)∵ PH=AO=2,AH=OB=4∵ OH=AH−OA=2.故点P的坐标为(2,−2)当∠ABP=90∘时作BM//x轴PM⊥BM于点M可证△AOB≅△PMB(AAS)∵ PM=AO=2,BM=OB=4∵ 点P的坐标为(4,2)故点P的坐标为(2,−2)或(4,2).22.【答案】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.【考点】有理数的混合运算正数和负数的识别【解答】解:该服装店卖出货物所得钱数为:47×30+[(+3)×7+(+2)×6+(+1)×3+0×5+(−1)×4+(−2)×5] =1410+22=1432(元)1432−32×30=1432−960=472(元).答:该服装店赚472元.。
数学试卷七年级上册含答案
一、选择题(每题3分,共30分)1. 下列各数中,正整数是()A. -1.2B. 0.5C. -2D. 3答案:D2. 下列各数中,负分数是()A. -1/2B. 1/2C. 1D. -1答案:A3. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:D4. 下列各数中,有理数是()A. √2B. √3C. √5D. √7答案:A5. 下列各数中,有理数是()A. πB. 2πC. π/2D. π/4答案:D6. 下列各数中,实数是()A. -1/2B. √2C. πD. 2答案:D7. 下列各数中,整数是()A. 0.5B. -1/2C. √2D. π答案:A8. 下列各数中,有理数是()A. 0.5B. -1/2C. √2D. π答案:B9. 下列各数中,无理数是()A. 0.5B. -1/2C. √2D. π答案:C10. 下列各数中,实数是()A. 0.5B. -1/2C. √2D. π答案:D二、填空题(每题5分,共25分)11. (-3)+(-2)=_________ (-3)×(-2)=_________ (-3)÷(-2)=_________答案:-5 6 1.512. 2/3 + 3/4 =_________ 2/3 - 3/4 =_________ 2/3 × 3/4 =_________答案:17/12 -1/12 1/213. 2√2 - 3√2 =_________ 2√2 + 3√2 =_________ 2√2 × 3√2=_________答案:-√2 5√2 1214. (√3)^2 =_________ (√2)^3 =_________ (√5)^4 =_________答案:3 2√2 2515. 2√2 ÷ √2 =_________ 3√3 ÷ √3 =_________ 4√5 ÷ √5=_________答案:2 3 4三、解答题(每题10分,共40分)16. (1)求下列各数的相反数:-3 1/2 √2答案:3 -1/2 -√2(2)求下列各数的倒数:-3 1/2 √2答案:-1/3 2 √2/217. (1)计算下列各式的值:3/4 + 2/3 2/5 - 1/2 4/7 × 3/8答案:17/12 1/10 3/14(2)计算下列各式的值:√3 - √2 √5 + √3 √7 - √5答案:√3 - √2 √5 + √3 √7 - √5 18. (1)化简下列各式:2√3+ 3√3 4√2 - 2√2 5√5 - 3√5答案:5√3 2√2 2√5(2)化简下列各式:√3 × √2 √5 × √3 √7 × √2答案:√6 √15 √1419. (1)解下列一元一次方程:2x - 3 = 7答案:x = 5(2)解下列一元一次方程:3x + 2 = 11答案:x = 3(3)解下列一元一次方程:4x - 5 = 9答案:x = 3.5注意:本试卷仅供参考,具体分数设置和难度可根据实际情况进行调整。
七年级数学超难试卷答案
一、选择题(每题5分,共50分)1. 已知方程 2x - 3 = 5,求x的值。
答案:x = 42. 一个长方形的长是6cm,宽是3cm,求长方形的面积。
答案:面积 = 长× 宽= 6cm × 3cm = 18cm²3. 若a² = 9,那么a的值是多少?答案:a = ±34. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是?答案:点P关于x轴的对称点坐标为(2,-3)5. 下列哪个图形是轴对称图形?A. 长方形B. 正方形C. 三角形D. 梯形答案:B. 正方形6. 一个等边三角形的边长为8cm,求该三角形的周长。
答案:周长= 3 × 边长= 3 × 8cm = 24cm7. 若一个数的平方根是±2,那么这个数是?答案:这个数是48. 下列哪个数是负数?A. -5B. 0C. 5D. -3答案:A. -59. 一个圆的半径是r,那么这个圆的直径是?答案:直径 = 2r10. 一个三角形的两边长分别为3cm和4cm,第三边长最长为多少?答案:最长边长为7cm二、填空题(每题5分,共50分)11. 若a = 5,那么a² + 2a + 1的值是?答案:a² + 2a + 1 = 5² + 2×5 + 1 = 25 + 10 + 1 = 3612. 下列哪个数是奇数?答案:313. 一个梯形的上底是4cm,下底是6cm,高是3cm,求梯形的面积。
答案:面积 = (上底 + 下底) × 高÷ 2 = (4cm + 6cm) × 3cm ÷ 2 = 18cm²14. 一个平行四边形的对角线互相平分,那么这个平行四边形是?答案:矩形15. 若一个数的倒数是2,那么这个数是?答案:这个数是1/216. 一个圆的周长是31.4cm,求该圆的半径。
西安西工大附中2023-2024学年第一学期七年级数学期末考试试卷附详细答案
西安西工大附中2023-2024学年第一学期期末考试七年级数学试题一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.122.如图所示的几何体的左视图是( )3.如图,已知点B 在点A 的北偏东65°方向,点C 在点A 的南偏西20°方向,则∠BAC 的度数为( ) A.135°B.130°C.125°D.120°4.下列计算,正确的是( ) A.a 2·a 3=a 6B.a 2+a 3=a 5C.(-a 2)3=-a 6D.a 6÷(-a)3=-a 25.点O 、A 、B 、C 在数轴上的位置如图所示,其中点A 、B 到原点O 的距离相等,点A 、C 之间的距离为2.若点C 表示的数为x ,则点B 所表示的数为( ) A.x +2B.x -2C.-x +2D.-x -26.已知a 是两位数,b 是三位数,把b 直接写在a 的右面,就成为一个五位数,这个五位数用代数式可表示成( )第3题图第5题图D.C.B.A. 第2题图A.abB.100a+bC.a+100bD.1000a+b7.若M(5x -y 2)=y 4-25x 2,那么代数式M 应为( ) A.5x 2-y 2B.5x +y 2C.-y 2+5xD.-5x -y 28.《孙子算经》中有一道题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车;若每2人共乘一车,则最终剩余9个人无车可乘,问共有多少人,多少辆车?设共有x 人,则可列方程为( ) A.x+23=x 2-9B.x 3+2=x−92C.x 3-2=x+92D.x−23=x 2+99.计算24046×(-0.25)2024的结果为() A.-22022B.22022C.14D.-1410.有理数a 、b 、c 所对应的点在数轴上的位置如图所示,化简|a -b|-|2c -a|+|c -b|的结果是( ) A.cB.3c -2bC.2a -3cD.-3c二、填空题(共6小题,每小题3分,计18分)11.西安市冬季里某一天的气温为-7℃~-1℃,这一天西安市的温差是____℃. 12.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,即0.00000000022米.将0.00000000022用科学记数法表示为________.13.小明用若干根等长的小木棒设计出如图所示的图形,则第n 个图形中有小木棒____根.第13题图第3个图形第1个图形第2个图形第4个图形…第10题图14.已知m 、n 为有理数,且4x 2+m x +9=(2x +n)2,则m+n 的值为____.15.如图,∠AOB=126°,射线OC 在∠AOB 外,且∠BOC=2∠AOC ,若OM 平分∠BOC ,ON 平分∠AOC ,则∠MON=____°.16.在如图所示的三阶幻方中,填写了一些数、代数式和汉字(其中每个代数式或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为____. 三、解答题(共7小题,计52分) 17.计算题(每小题4分,共12分) (1)-14÷(-5)2×(-53)-|0.8-1|(2)(-2x 2)3+ x 2·x 4-(-3x 3)2(3)解方程:3+x−12=x -x+1418.(5分)先化简,再求值:[(x -2y)2-(x +3y)(x -3y)+3y 2]÷(-4y),其中x =2023,y=-14.19.(6分)列方程解决下面问题.甲、乙两人分别从A ,B 两地同时出发、沿同一条路线相向匀速行驶,已知出发后3h 两人相遇.乙的速度比甲快20km/h ,相遇后乙再经1h 到达A 地.求甲、乙两人的速度. 20.(6分)如图,B 、C 两点把线段AD 分成2︰5︰3三部分,M 为AD 的中点,BM=6,求CM 的长度.第20题图ABM C D第15题图AN BC MO0 信实守诚-8-11 x +1 -x -3第16题图21.(6分)为了解某校七年级学生数学期中考试情况,小亮随机抽取了部分学生的数学成绩(成绩都为整数)为样本,分为A(100~90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果制成如下统计图,请根据图中信息解答以下问题.(1)这次抽样调查的样本容量为_____. (2)请补全条形统计图.(3)这个学校七年级共有学生1200人,若分数为80分(含80分)以上为优秀,估计这次七年级学生期中数学考试成绩为优秀的学生人数大约有多少?22.(7分)如图①,点O 为直线AB 上一点,过点O 作射线0C ,使∠AOC=60°,将一把直角三角尺的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图①中的三角尺绕点O 逆时针旋转至图②,使得点N 在OC 的反向延长线上,求∠MOB 的度数.(2)将图①中的三角尺绕点O 顺时针旋转至图③,使ON 在∠AOC 的内部,请探究∠AOM 与∠NOC 之间的数量关系,并说明理由.第21题图A B C D 25%50%10%CD 等级23.(10分)探究与实践 问题发现(1)用四个长为a ,宽为b 的长方形拼成如图所示的正方形ABCD ,由此可以得到(a+b)2、(a -b)2、ab 的等量关系是_____. 问题探究(2)如图②,将边长为a 的正方形APCD 和边长为b 正方形BPEF 拼在一起,使得A 、P 、B 共线,点E 落在PC 上,连接AB.若AB=8,△APE 的面积为7.5,求CE 的长度. 问题解决(3)如图③,某小区物业准备在小区内规划设计一块休闲娱乐区,其中BE 、CF 为两条互相垂直的道路,且BG=CG ,EG=FG ,四边形ABGF 与四边形CDEG 为长方形,现计划在两个三角形区域种植花草,两个长方形区域铺设塑胶地面,按规划要求,道路BE 的长度为80米.若种值花草每平方米需要100元,铺设塑胶地面每平方米需要30元,若物业为本次修建休闲娱乐区筹集了25万元,请你通过计算说明该物业筹集的资金是否够用?(道路的宽度均不计)第22题图图①B 图②BN 图③BM西安西工大附中2023-2024学年第一学期期末考试七年级数学试题参考答案一、选择题(共10小题,每小题3分,计30分) 1.计算2-1的结果是( ) A.-2B.2C.-12D.121.解:2-1=121=12,故选D 。
七年级数学试卷及答案
七年级数学试卷及答案一、选择题(每小题2分,共20分)1、下列运算正确的是()a.b. c. d.2、如图,下列推理错误的是()a.∵∠1=∠2,∴c∥db.∵∠3=∠4,∴c∥dc.∵∠1=∠3,∴a∥bd.∵∠1=∠4,∴a∥b3、以下关系式中,恰当的就是()a.b.c.d.4、下列各式中不能用平方差公式计算的是()a、b、c、d、5、汽车已经开始高速行驶时,油箱内有油40再升,如果每小时耗油5再升,则油箱内余油量q(升)与行驶时间t(时)的关系用图象表示应为图中的是()6、若,则等同于()a、1b、c、d、7、如果一个角的补角就是°,那么这个角的余角的度数就是()a、30°b、60°c、90°d、°8、例如图,存有一块所含45°角的直角三角板的两个顶点放到直尺的对边上.如果∠1=20°,那么∠2的度数是()a.30°b.25°c.20°d.15°9、下列说法中,正确的是()a.内错角成正比.b.同旁内角优势互补.c.同角的补角相等.d.相等的角是对顶角.10、例如图,以下条件中,能够认定de∥ac的就是()a.∠edc=∠efcb.∠afe=∠acdc.∠1=∠2d.∠3=∠4二、填空题(每小题2分,共20分)11、用科学计数法则表示0.=12、一个角的补角是它的余角的4倍,则这个角是_________度。
13、若x2+mx+25就是全然平方式,则m=___________。
14、已知,那么a=。
15、未知:a+b=1.5,ab=﹣1,则(a﹣2)(b﹣2)= _________ .16、如图,∥,,平分,则的度数为。
17、若,18、排序(x2+nx+3)(x2-3x)的结果C99mg的项,那么n=.19、校园里栽下一棵小树高1.8米,以后每年长0.3米,则n年后的树高l米与年数n 年之间的关系式为__________________.20、观测以下各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.三、答疑题21、计算题(每小题3分,共12分)(1)(2)(2a+b)4÷(2a+b)2(3)(4)(15x4y2-12x2y3-3x2)÷(-3x2)22、利用乘法公式简算(每小题4分后,共16分后)(1)-×(2)98(3)(x+3y+2)(x—3y+2)(4)化简求值:,其中,23、作图题:(3分后)如图,一块大的三角板abc,d是ab上一点,现要求过点d割出一块小的角板ade,使∠ade=∠abc,请用尺规作出∠ade.(不写作法,保留作图痕迹,要写结论)24、(10分后)例如图就是甲、乙两人同一地点启程后,路程随其时间变化的图象.(1)此变化过程中,__________是自变量,_________是因变量.(2)甲的速度就是________千米/时,乙的速度就是________千米/时(3)6时表示_________________________(4)路程为千米,甲高速行驶了____小时,乙高速行驶了_____小时.(5)9时甲在乙的________(前面、后面、相同位置)(6)分别写下甲乙两人高速行驶的路程s(千米)与高速行驶的时间t(小时)的函数关系式(不建议写下自变量的值域范围)s甲=___________________________s乙=_____________________________25、(5分)已知∠1=∠2,∠d=∠c求证:∠a=∠f26、(4分后)如图所示的长方形或正方形三类卡片各存有若干张,恳请你用这些卡片,拆成一个面积就是2a2+3ab+b2长方形(建议:所比拼图形中每类卡片都必须存有,卡片之间无法重合。
七年级数学期末试卷及答案
【导语】虽然在学习的过程中会遇到许多不顺⼼的事,但古⼈说得好——吃⼀堑,长⼀智。
多了⼀次失败,就多了⼀次教训;多了⼀次挫折,就多了⼀次经验。
没有失败和挫折的⼈,是永远不会成功的。
本篇⽂章是©⽆忧考⽹为您整理的《七年级数学期末试卷及答案》,供⼤家借鉴。
【篇⼀】 ⼀、选择题(每⼩题4分,共40分) 1.﹣4的绝对值是() A.B.C.4D.﹣4 考点:绝对值. 分析:根据⼀个负数的绝对值是它的相反数即可求解. 解答:解:﹣4的绝对值是4. 故选C. 点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运⽤到实际运算当中. 绝对值规律总结:⼀个正数的绝对值是它本⾝;⼀个负数的绝对值是它的相反数;0的绝对值是0. 2.下列各数中,数值相等的是()A.32与23B.﹣23与(﹣2)3C.3×22与(3×2)2D.﹣32与(﹣3)2 考点:有理数的乘⽅. 分析:根据乘⽅的意义,可得答案. 解答:解:A32=9,23=8,故A的数值不相等; B﹣23=﹣8,(﹣2)3=﹣8,故B的数值相等; C3×22=12,(3×2)2=36,故C的数值不相等; D﹣32=﹣9,(﹣3)2=9,故D的数值不相等; 故选:B. 点评:本题考查了有理数的乘⽅,注意负数的偶次幂是正数,负数的奇次幂是负数. 3.0.3998四舍五⼊到百分位,约等于()A.0.39B.0.40C.0.4D.0.400 考点:近似数和有效数字. 分析:把0.3998四舍五⼊到百分位就是对这个数百分位以后的数进⾏四舍五⼊. 解答:解:0.3998四舍五⼊到百分位,约等于0.40. 故选B. 点评:本题考查了四舍五⼊的⽅法,是需要识记的内容. 4.如果是三次⼆项式,则a的值为()A.2B.﹣3C.±2D.±3 考点:多项式. 专题:计算题. 分析:明⽩三次⼆项式是多项式⾥⾯次数的项3次,有两个单项式的和.所以可得结果. 解答:解:因为次数要有3次得单项式, 所以|a|=2 a=±2. 因为是两项式,所以a﹣2=0 a=2 所以a=﹣2(舍去). 故选A. 点评:本题考查对三次⼆项式概念的理解,关键知道多项式的次数是3,含有两项. 5.化简p﹣[q﹣2p﹣(p﹣q)]的结果为()A.2pB.4p﹣2qC.﹣2pD.2p﹣2q 考点:整式的加减. 专题:计算题. 分析:根据整式的加减混合运算法则,利⽤去括号法则有括号先去⼩括号,再去中括号,最后合并同类项即可求出答案. 解答:解:原式=p﹣[q﹣2p﹣p+q], =p﹣q+2p+p﹣q, =﹣2q+4p, =4p﹣2q. 故选B. 点评:本题主要考查了整式的加减运算,解此题的关键是根据去括号法则正确去括号(括号前是﹣号,去括号时,各项都变号). 6.若x=2是关于x的⽅程2x+3m﹣1=0的解,则m的值为()A.﹣1B.0C.1D. 考点:⼀元⼀次⽅程的解. 专题:计算题. 分析:根据⽅程的解的定义,把x=2代⼊⽅程2x+3m﹣1=0即可求出m的值. 解答:解:∵x=2是关于x的⽅程2x+3m﹣1=0的解, ∴2×2+3m﹣1=0, 解得:m=﹣1. 故选:A. 点评:本题的关键是理解⽅程的解的定义,⽅程的解就是能够使⽅程左右两边相等的未知数的值. 7.某校春季运动会⽐赛中,⼋年级(1)班、(5)班的竞技实⼒相当,关于⽐赛结果,甲同学说:(1)班与(5)班得分⽐为6:5;⼄同学说:(1)班得分⽐(5)班得分的2倍少40分.若设(1)班得x分,(5)班得y分,根据题意所列的⽅程组应为() A.B. C.D. 考点:由实际问题抽象出⼆元⼀次⽅程组. 分析:此题的等量关系有:(1)班得分:(5)班得分=6:5;(1)班得分=(5)班得分×2﹣40. 解答:根据(1)班与(5)班得分⽐为6:5,有: x:y=6:5,得5x=6y; 根据(1)班得分⽐(5)班得分的2倍少40分,得x=2y﹣40. 可列⽅程组为. 故选:D. 点评:列⽅程组的关键是找准等量关系.同时能够根据⽐例的基本性质对等量关系①把⽐例式转化为等积式. 8.下⾯的平⾯图形中,是正⽅体的平⾯展开图的是() A.B.C.D. 考点:⼏何体的展开图. 分析:由平⾯图形的折叠及正⽅体的展开图解题. 解答:解:选项A、B、D中折叠后有⼀⾏两个⾯⽆法折起来,⽽且缺少⼀个底⾯,不能折成正⽅体. 故选C. 点评:熟练掌握正⽅体的表⾯展开图是解题的关键. 9.如图,已知∠AOB=∠COD=90°,⼜∠AOD=170°,则∠BOC的度数为()A.40°B.30°C.20°D.10° 考点:⾓的计算. 专题:计算题. 分析:先设∠BOC=x,由于∠AOB=∠COD=90°,即∠AOC+x=∠BOD+x=90°,从⽽易求∠AOB+∠COD﹣∠AOD,即可得x=10°. 解答:解:设∠BOC=x, ∵∠AOB=∠COD=90°, ∴∠AOC+x=∠BOD+x=90°, ∴∠AOB+∠COD﹣∠AOD=∠AOC+x+∠BOD+x﹣(∠AOC+∠BOD+x)=10°, 即x=10°. 故选D. 点评:本题考查了⾓的计算、垂直定义.关键是把∠AOD和∠AOB+∠COD表⽰成⼏个⾓和的形式. 10.⼩明把⾃⼰⼀周的⽀出情况⽤如图所⽰的统计图来表⽰,则从图中可以看出() A.⼀周⽀出的总⾦额 B.⼀周内各项⽀出⾦额占总⽀出的百分⽐ C.⼀周各项⽀出的⾦额 D.各项⽀出⾦额在⼀周中的变化情况 考点:扇形统计图. 分析:根据扇形统计图的特点进⾏解答即可. 解答:解:∵扇形统计图是⽤整个圆表⽰总数⽤圆内各个扇形的⼤⼩表⽰各部分数量占总数的百分数.通过扇形统计图可以很清楚地表⽰出各部分数量同总数之间的关系, ∴从图中可以看出⼀周内各项⽀出⾦额占总⽀出的百分⽐. 故选B. 点评:本题考查的是扇形统计图,熟知从扇形图上可以清楚地看出各部分数量和总数量之间的关系是解答此题的关键. ⼆、填空题(每⼩题5分,共20分) 11.在(﹣1)2010,(﹣1)2011,﹣23,(﹣3)2这四个数中,的数与最⼩的数的差等于17. 考点:有理数⼤⼩⽐较;有理数的减法;有理数的乘⽅. 分析:根据有理数的乘⽅法则算出各数,找出的数与最⼩的数,再进⾏计算即可. 解答:解:∵(﹣1)2010=1,(﹣1)2011=﹣1,﹣23=﹣8,(﹣3)2=9, ∴的数是(﹣3)2,最⼩的数是﹣23, ∴的数与最⼩的数的差等于=9﹣(﹣8)=17. 故答案为:17. 点评:此题考查了有理数的⼤⼩⽐较,根据有理数的乘⽅法则算出各数,找出这组数据的值与最⼩值是本题的关键. 12.已知m+n=1,则代数式﹣m+2﹣n=1. 考点:代数式求值. 专题:计算题. 分析:分析已知问题,此题可⽤整体代⼊法求代数式的值,把代数式﹣m+2﹣n化为含m+n的代数式,然后把m+n=1代⼊求值. 解答:解:﹣m+2﹣n=﹣(m+n)+2, 已知m+n=1代⼊上式得: ﹣1+2=1. 故答案为:1. 点评:此题考查了学⽣对数学整体思想的掌握运⽤及代数式求值问题.关键是把代数式﹣m+2﹣n化为含m+n的代数式. 13.已知单项式与﹣3x2n﹣3y8是同类项,则3m﹣5n的值为﹣7. 考点:同类项. 专题:计算题. 分析:由单项式与﹣3x2n﹣3y8是同类项,可得m=2n﹣3,2m+3n=8,分别求得m、n的值,即可求出3m﹣5n的值. 解答:解:由题意可知,m=2n﹣3,2m+3n=8, 将m=2n﹣3代⼊2m+3n=8得, 2(2n﹣3)+3n=8, 解得n=2, 将n=2代⼊m=2n﹣3得, m=1, 所以3m﹣5n=3×1﹣5×2=﹣7. 故答案为:﹣7. 点评:此题主要考查学⽣对同类项得理解和掌握,解答此题的关键是由单项式与﹣3x2n﹣3y8是同类项,得出m=2n﹣3,2m+3n=8. 14.已知线段AB=8cm,在直线AB上有⼀点C,且BC=4cm,M是线段AC的中点,则线段AM的长为2cm或6cm. 考点:两点间的距离. 专题:计算题. 分析:应考虑到A、B、C三点之间的位置关系的多种可能,即点C在线段AB的延长线上或点C在线段AB上. 解答:解:①当点C在线段AB的延长线上时,此时AC=AB+BC=12cm,∵M是线段AC的中点,则AM=AC=6cm; ②当点C在线段AB上时,AC=AB﹣BC=4cm,∵M是线段AC的中点,则AM=AC=2cm. 故答案为6cm或2cm. 点评:本题主要考查两点间的距离的知识点,利⽤中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选⽤它的不同表⽰⽅法,有利于解题的简洁性.同时,灵活运⽤线段的和、差、倍、分转化线段之间的数量关系也是⼗分关键的⼀点. 三、计算题(本题共2⼩题,每⼩题8分,共16分) 15. 考点:有理数的混合运算. 专题:计算题. 分析:在进⾏有理数的混合运算时,⼀是要注意运算顺序,先算⾼⼀级的运算,再算低⼀级的运算,即先乘⽅,后乘除,再加减.同级运算按从左到右的顺序进⾏.有括号先算括号内的运算.⼆是要注意观察,灵活运⽤运算律进⾏简便计算,以提⾼运算速度及运算能⼒. 解答:解:, =﹣9﹣125×﹣18÷9, =﹣9﹣20﹣2, =﹣31. 点评:本题考查了有理数的综合运算能⼒,解题时还应注意如何去绝对值. 16.解⽅程组:. 考点:解⼆元⼀次⽅程组. 专题:计算题. 分析:根据等式的性质把⽅程组中的⽅程化简为,再解即可. 解答:解:原⽅程组化简得 ①+②得:20a=60, ∴a=3, 代⼊①得:8×3+15b=54, ∴b=2, 即. 点评:此题是考查等式的性质和解⼆元⼀次⽅程组时的加减消元法. 四、(本题共2⼩题,每⼩题8分,共16分) 17.已知∠α与∠β互为补⾓,且∠β的⽐∠α⼤15°,求∠α的余⾓. 考点:余⾓和补⾓. 专题:应⽤题. 分析:根据补⾓的定义,互补两⾓的和为180°,根据题意列出⽅程组即可求出∠α,再根据余⾓的定义即可得出结果. 解答:解:根据题意及补⾓的定义, ∴, 解得, ∴∠α的余⾓为90°﹣∠α=90°﹣63°=27°. 故答案为:27°. 点评:本题主要考查了补⾓、余⾓的定义及解⼆元⼀次⽅程组,难度适中. 18.如图,C为线段AB的中点,D是线段CB的中点,CD=1cm,求图中AC+AD+AB的长度和. 考点:两点间的距离. 分析:先根据D是线段CB的中点,CD=1cm求出BC的长,再由C是AB的中点得出AC及AB的长,故可得出AD的长,进⽽可得出结论. 解答:解:∵CD=1cm,D是CB中点, ∴BC=2cm, ⼜∵C是AB的中点, ∴AC=2cm,AB=4cm, ∴AD=AC+CD=3cm, ∴AC+AD+AB=9cm. 点评:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键. 五、(本题共2⼩题,每⼩题10分,共20分) 19.已知,A=a3﹣a2﹣a,B=a﹣a2﹣a3,C=2a2﹣a,求A﹣2B+3C的值. 考点:整式的加减. 专题:计算题. 分析:将A、B、C的值代⼊A﹣2B+3C去括号,再合并同类项,从⽽得出答案. 解答:解:A﹣2B+3C=(a3﹣a2﹣a)﹣2(a﹣a2﹣a3)+3(2a2﹣a), =a3﹣a2﹣a﹣2a+2a2+2a3+6a2﹣3a, =3a3+7a2﹣6a. 点评:本题考查了整式的加减,解决此类题⽬的关键是熟记去括号法则,熟练运⽤合并同类项的法则,这是各地中考的常考点. 20.⼀个两位数的⼗位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与⼗位数字对调之后组成的两位数.求这个两位数. 考点:⼀元⼀次⽅程的应⽤. 专题:数字问题;⽅程思想. 分析:先设这个两位数的⼗位数字和个位数字分别为x,7﹣x,根据题意列出⽅程,求出这个两位数. 解答:解:设这个两位数的⼗位数字为x,则个位数字为7﹣x, 由题意列⽅程得,10x+7﹣x+45=10(7﹣x)+x, 解得x=1, ∴7﹣x=7﹣1=6, ∴这个两位数为16. 点评:本题考查了数字问题,⽅程思想是很重要的数学思想. 六.(本题满分12分) 21.取⼀张长⽅形的纸⽚,如图①所⽰,折叠⼀个⾓,记顶点A落下的位置为A′,折痕为CD,如图②所⽰再折叠另⼀个⾓,使DB沿DA′⽅向落下,折痕为DE,试判断∠CDE的⼤⼩,并说明你的理由. 考点:⾓的计算;翻折变换(折叠问题). 专题:⼏何图形问题. 分析:根据折叠的原理,可知∠BDE=∠A′DE,∠A′DC=∠ADC.再利⽤平⾓为180°,易求得∠CDE=90°. 解答:解:∠CDE=90°. 理由:∵∠BDE=∠A′DE,∠A′DC=∠ADC, ∴∠CDA′=∠ADA′,∠A′DE=∠BDA, ∴∠CDE=∠CDA′+∠A′DE, =∠ADA′+∠BDA, =(∠ADA′+∠BDA′), =×180°, =90°. 点评:本题考查⾓的计算、翻折变换.解决本题⼀定明⽩对折的两个⾓相等,再就是运⽤平⾓的度数为180°这⼀隐含条件. 七.(本题满分12分) 22.为了“让所有的孩⼦都能上得起学,都能上好学”,国家⾃2007年起出台了⼀系列“资助贫困学⽣”的政策,其中包括向经济困难的学⽣免费提供教科书的政策.为确保这项⼯作顺利实施,学校需要调查学⽣的家庭情况.以下是某市城郊⼀所中学甲、⼄两个班的调查结果,整理成表(⼀)和图(⼀): 类型班级城镇⾮低保 户⼝⼈数农村户⼝⼈数城镇户⼝ 低保⼈数总⼈数 甲班20550 ⼄班28224 (1)将表(⼀)和图(⼀)中的空缺部分补全. (2)现要预定2009年下学期的教科书,全额100元.若农村户⼝学⽣可全免,城镇低保的学⽣可减免,城镇户⼝(⾮低保)学⽣全额交费.求⼄班应交书费多少元?甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐是多少? (3)五四青年节时,校团委免费赠送给甲、⼄两班若⼲册科普类、⽂学类及艺术类三种图书,其中⽂学类图书有15册,三种图书所占⽐例如图(⼆)所⽰,求艺术类图书共有多少册? 考点:条形统计图. 分析:(1)由统计表可知:甲班农村户⼝的⼈数为50﹣20﹣5=25⼈;⼄班的总⼈数为28+22+4=54⼈; (2)由题意可知:⼄班有22个农村户⼝,28个城镇户⼝,4个城镇低保户⼝,根据收费标准即可求解; 甲班的农村户⼝的学⽣和城镇低保户⼝的学⽣都可以受到国家资助教科书,可以受到国家资助教科书的总⼈数为25+5=30⼈,全班总⼈数是50⼈,即可求得; (3)由扇形统计图可知:⽂学类图书有15册,占30%,即可求得总册数,则求出艺术类图书所占的百分⽐即可求解. 解答:解: (1)补充后的图如下: (2)⼄班应交费:28×100+4×100×(1﹣)=2900元; 甲班受到国家资助教科书的学⽣占全班⼈数的百分⽐:×100%=60%; (3)总册数:15÷30%=50(册), 艺术类图书共有:50×(1﹣30%﹣44%)=13(册). 点评:本题考查的是条形统计图和扇形统计图的综合运⽤.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表⽰出每个项⽬的数据;扇形统计图直接反映部分占总体的百分⽐⼤⼩. ⼋、(本题满分14分) 23.如图所⽰,∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数. (2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数. (3)如果(1)中∠BOC=β(β为锐⾓),其他条件不变,求∠MON的度数. (4)从(1)(2)(3)的结果你能看出什么规律? (5)线段的计算与⾓的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4),设计⼀道以线段为背景的计算题,并写出其中的规律来? 考点:⾓的计算. 专题:规律型. 分析:(1)⾸先根据题中已知的两个⾓度数,求出⾓AOC的度数,然后根据⾓平分线的定义可知⾓平分线分成的两个⾓都等于其⼤⾓的⼀半,分别求出⾓MOC和⾓NOC,两者之差即为⾓MON的度数; (2)(3)的计算⽅法与(1)⼀样. (4)通过前三问求出的⾓MON的度数可发现其都等于⾓AOB度数的⼀半. (5)模仿线段的计算与⾓的计算存在着紧密的联系,也在已知条件中设计两条线段的长,设计两个中点,求中点间的线段长. 解答:解:(1)∵∠AOB=90°,∠BOC=30°, ∴∠AOC=90°+30°=120°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=60°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=45°; (2)∵∠AOB=α,∠BOC=30°, ∴∠AOC=α+30°, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+15°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC=15° ∴∠MON=∠MOC﹣∠NOC=; (3)∵∠AOB=90°,∠BOC=β, ∴∠AOC=90°+β, ⼜OM平分∠AOC, ∴∠MOC=∠AOC=+45°, ⼜∵ON平分∠BOC, ∴∠NOC=∠BOC= ∴∠MON=∠MOC﹣∠NOC=45°; (4)从(1)(2)(3)的结果可知∠MON=∠AOB; (5) ①已知线段AB的长为20,线段BC的长为10,点M是线段AC的中点,点N是线段BC的中点,求线段MN的长; ②若把线段AB的长改为a,其余条件不变,求线段MN的长; ③若把线段BC的长改为b,其余条件不变,求线段MN的长; ④从①②③你能发现什么规律. 规律为:MN=AB. 点评:本题考查了学会对⾓平分线概念的理解,会求⾓的度数,同时考查了学会归纳总结规律的能⼒,以及会根据⾓和线段的紧密联系设计实验的能⼒. 【篇⼆】 ⼀、选择题(每题3分,共30分) 1.﹣2的相反数是()A.﹣B.﹣2C.D.2 2.据平凉市旅游局统计,2015年⼗⼀黄⾦周期间,平凉市接待游客38万⼈,实现旅游收⼊16000000元.将16000000⽤科学记数法表⽰应为()A.0.16×108B.1.6×107C.16×106D.1.6×106 3.数轴上与原点距离为5的点表⽰的是()A.5B.﹣5C.±5D.6 4.下列关于单项式的说法中,正确的是()A.系数、次数都是3B.系数是,次数是3C.系数是,次数是2D.系数是,次数是3 5.如果x=6是⽅程2x+3a=6x的解,那么a的值是()A.4B.8C.9D.﹣8 6.绝对值不⼤于4的所有整数的和是()A.16B.0C.576D.﹣1 7.下列各图中,可以是⼀个正⽅体的平⾯展开图的是() A.B.C.D. 8.“⼀个数⽐它的相反数⼤﹣4”,若设这数是x,则可列出关于x的⽅程为()A.x=﹣x+(﹣4)B.x=﹣x+4C.x=﹣x﹣(﹣4)D.x﹣(﹣x)=4 9.⽤⼀个平⾯去截:①圆锥;②圆柱;③球;④五棱柱,能得到截⾯是圆的图形是()A.①②③B.①②④C.②③④D.①③④ 10.某商店有两个进价不同的计算器都卖了64元,其中⼀个盈利60%,另⼀个亏损20%,在这次买卖中,这家商店()A.不赔不赚B.赚了32元C.赔了8元D.赚了8元 ⼆、填空题(每题3分,共30分) 11.﹣3的倒数的绝对值是. 12.若a、b互为倒数,则2ab﹣5=. 13.若a2mb3和﹣7a2b3是同类项,则m值为. 14.若|y﹣5|+(x+2)2=0,则xy的值为. 15.两点之间,最短;在墙上固定⼀根⽊条⾄少要两个钉⼦,这是因为. 16.时钟的分针每分钟转度,时针每分钟转度. 17.如果∠A=30°,则∠A的余⾓是度;如果∠1+∠2=90°,∠1+∠3=90°,那么∠2与∠3的⼤⼩关系是. 18.如果代数式2y2+3y+5的值是6,求代数式4y2+6y﹣3的值是. 19.若规定“*”的运算法则为:a*b=ab﹣1,则2*3=. 20.有⼀列数,前五个数依次为,﹣,,﹣,,则这列数的第20个数是. 三、计算和解⽅程(16分) 21.计算题(8分) (1) (2)(2a2﹣5a)﹣2(﹣3a+5+a2) 22.解⽅程(8分) (1)4x﹣1.5x=﹣0.5x﹣9(2)1﹣=2﹣. 四、解答题(44分) 23.(6分)先化简,再求值:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3),其中. 24.(7分)⼀个⾓的余⾓⽐它的补⾓的⼤15°,求这个⾓的度数. 25.(7分)如图,∠AOB为直⾓,∠AOC为锐⾓,且OM平分∠BOC,ON平分∠AOC,求∠MON的度数. 26.(7分)⼀项⼯程由甲单独做需12天完成,由⼄单独做需8天完成,若两⼈合作3天后,剩下部分由⼄单独完成,⼄还需做多少天? 27.(7分)今年春节,⼩明到奶奶家拜年,奶奶说过年了,⼤家都长了⼀岁,⼩明问奶奶多⼤岁了.奶奶说:“我现在的年龄是你年龄的5倍,再过5年,我的年龄是你年龄的4倍,你算算我现在的年龄是多少?”聪明的同学,请你帮帮⼩明,算出奶奶的岁数. 28.(10分)某市电话拨号上⽹有两种收费⽅式,⽤户可以任选其⼀:A、计时制:0.05元/分钟;B、⽉租制:50元/⽉(限⼀部个⼈住宅电话上⽹).此外,每种上⽹⽅式都得加收通信费0.02元/分钟. (1)⼩玲说:两种计费⽅式的收费对她来说是⼀样的.⼩玲每⽉上⽹多少⼩时? (2)某⽤户估计⼀个⽉内上⽹的时间为65⼩时,你认为采⽤哪种⽅式较为合算?为什么? 参考答案 ⼀、选择题(每题3分,共30分) 题号12345678910 答案DBCDBBCAAD ⼆、填空题(每题3分,共30分) 11.1/3;12.﹣3;13.1;14.﹣32;15.线段;两点确定⼀条直线; 16.6度;0.5度;17.60度;∠2=∠3;18.﹣1;19.5;20.﹣20/21. 三、计算和解⽅程(16分) 21.(1)1/12;(2)a-10;22.(1)x=-3;(2)x=1 四、解答题(44分) 23.解:﹣6x+3(3x2﹣1)﹣(9x2﹣x+3) =-6x+9x2﹣3﹣9x2+x﹣3 =-5x﹣6----------------------------------------------------------------------------4分 当时,-5x﹣6=-5×(-1/3)-6=-13/3---------------------------------------2分 24.解:设这个⾓的度数为x,则它的余⾓为(90°﹣x),补⾓为(180°﹣x),--------2分 依题意,得:(90°﹣x)﹣(180°﹣x)=15°,-------------------------------------------4分 解得x=40°.--------------------------------------------------------------------------------------6分 答:这个⾓是40°.----------------------------------------------------------------------------7分 25.解:∵OM平分∠BOC,ON平分∠AOC, ∴∠MOC=∠BOC,∠NOC=∠AOC,------------------------------------------------------2分 ∴∠MON=∠MOC﹣∠NOC=(∠BOC﹣∠AOC)-----------------------------------------4分 =(∠BOA+∠AOC﹣∠AOC) =∠BOA =45°.----------------------------------------------------------------------------------------------6分 故∠MON的度数为45°.-------------------------------------------------------------------------7分 26.解:设⼄还需做x天.-----------------------------------------------------------------------1分 由题意得:++=1,-------------------------------------------------------------------------4分 解之得:x=3.------------------------------------------------------------------------------------6分 答:⼄还需做3天.------------------------------------------------------------------------------7分 27.解:设⼩明现在的年龄为x岁,则奶奶现在的年龄为5x岁,根据题得,--------------1分 4(x+5)=5x+5,---------------------------------------------------------------------------------3分 解得:x=15,-------------------------------------------------------------------------------------5分 经检验,符合题意,5x=15×5=75(岁).------------------------------------------------------6分 答:奶奶现在的年龄为75岁.------------------------------------==--------------------------7分 28.解:(1)设⼩玲每⽉上⽹x⼩时,根据题意得------------------------------------------1分 (0.05+0.02)×60x=50+0.02×60x,--------------------------------------------------------------2分 解得x=.-----------------------------------------------------------------------------------------5分 答:⼩玲每⽉上⽹⼩时;--------------------------------------------------------------------6分 (2)如果⼀个⽉内上⽹的时间为65⼩时, 选择A、计时制费⽤:(0.05+0.02)×60×65=273(元),----------------------------------8分 选择B、⽉租制费⽤:50+0.02×60×65=128(元). 所以⼀个⽉内上⽹的时间为65⼩时,采⽤⽉租制较为合算.--------------------------------10分 【篇三】 ⼀、选择题:每⼩题3分,共30分。
七年级数学全部试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,正数是()A. -2.5B. -3.2C. 0D. 1.2答案:D2. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 长方形C. 平行四边形D. 梯形答案:B3. 下列代数式中,同类项是()A. 3x^2yB. 2xyC. 4x^2D. 5y^2答案:B4. 已知一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是()A. 40cm^2B. 32cm^2C. 48cm^2D. 64cm^2答案:A5. 如果a=3,b=-2,那么2a-b的值是()A. 1B. 5C. -1D. -5答案:B6. 下列各数中,能被3整除的是()A. 16B. 27C. 34D. 49答案:B7. 下列图形中,中心对称图形是()A. 等腰三角形B. 正方形C. 等边三角形D. 长方形答案:B8. 一个长方形的长是10cm,宽是5cm,那么它的周长是()A. 25cmB. 30cmC. 35cmD. 40cm答案:B9. 下列各数中,绝对值最大的是()A. -5B. -3C. 2D. 1答案:A10. 下列方程中,解为x=3的是()A. 2x+1=7B. 3x-2=5C. 4x+3=11D. 5x-1=13答案:A二、填空题(每题3分,共30分)11. 有理数-3的相反数是__________。
答案:312. 下列各数中,负数是__________。
答案:-213. 下列图形中,有3条对称轴的是__________。
答案:正方形14. 下列各数中,绝对值最小的是__________。
答案:015. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________。
答案:22cm16. 如果a=2,b=3,那么a^2+b^2的值是__________。
答案:1317. 下列各数中,能被5整除的是__________。
答案:2518. 下列图形中,中心对称图形是__________。
成都七中数学七年级试卷(含答案)
成都七中数学七试卷(含答案)第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1、- 2的相反数是( )A.1/2B.-2C.-1/2D.22.在数轴上距离原点2个单位长度的点所表示的数是 ( ) (A) 2 (B)2- (C)2或2- (D)1或1-3.如下图,下列图形属于柱体的有( )个A.4B.5C.2D.14.据舟山市旅游局统计,2012年舟山市接待境内外游客约2771万人次.数据2771万用科学记数法表示为( )A .2771×107B .2.771×107C .2.771×104D .2.771×1055.如果a >b ,下列各式中不正确...的是 ……………………………………………( ) A .-5a >-5b B .a +3>b +3 C .a 2>b2 D .a -b >06.若a 、b 互为相反数,c 、d 互为倒数,m 到原点的距离为2,则代数式|m |-cd +a+bm的值为…………………………………………………………………………………( ) A .-3 B .-3或1 C .-5 D .17.已知方程x 2k -1+k =0是关于x 的一元一次方程,则方程的解等于 ()A.-1 B.1 C.12D.-128.一根绳子弯曲成如图1的形状,用剪刀像图2那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图3那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a,b之间把绳子再剪(n-2)次(剪开的方向与a 平行),这样一共剪n次时绳子的段数是( )A.4n+1 B.4n+2 C.4n+3 D.4n+59.下列各组数中,相等的是( )A.﹣1与(﹣4)+(﹣3)B.|﹣3|与﹣(﹣3)C.与D.(﹣4)2与﹣1610.钟面角是指时钟的时针与分针所成的角,如果时间从下午2点整到下午4点整,钟面角为90°的情况有()A.有一种B.有二种C.有三种D.有四种第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.如图,已知O是直线AB上一点,∠1=20°,OD平分∠BOC,则∠2的度数是__度.12.如果a-b=3,ab=-1,则代数式3ab-a+b-2的值是_________.13.在数轴上与-5表示的点相距2个单位长度的点表示的数为.14.已知:点A在数轴上的位置如图所示,点B也在数轴上,且A、B两点之间的距离是2,则点B表示的数是;15.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步,不断往返的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,x n表示21CD第n秒时机器人在数轴上的位置所对应的数.则下列结论:(1)x3=3;(2)x8=4;(3)x105<x104;(4)x2013<x2014中,正确结论的个数是_______________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.计算(1))(-12)-5+(-14)-(-39);(2)(3)17.计算(1))(-12)-5+(-14)-(-39);(2)(3)18.已知(x-1)5=ax5+bx4+cx3+dx2+ex+f.求:(1)a+b+c+d+e+f的值;(2)a+c+e的值.19.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用−1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵<<,即2<<3,∴的整数部分为2,小数部分为(−2).请解答:(1)的整数部分是__________,小数部分是__________(2)如果的小数部分为a,的整数部分为b,求a+b−的值;20.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数): 星期 一 二 三 四 五 六 日增减/辆 ﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10 (1)生产量最多的一天比生产量最少的一天多生产多少辆? (2)本周总的生产量是多少辆?21 .如图,将连续的奇数1、3、5、7 …… ,排列成如下的数表,用十字框框出5个数。
七年级数学大题试卷及答案
一、解答题(本大题共4小题,共40分)1. (10分)已知一元二次方程 $x^2 - 4x + 3 = 0$,求其解。
2. (10分)一个长方形的长是10cm,宽是长的一半,求这个长方形的面积。
3. (10分)一辆汽车从甲地出发,以每小时80公里的速度行驶,3小时后到达乙地。
如果汽车以每小时100公里的速度行驶,需要多少时间才能到达乙地?4. (10分)小明从家出发去图书馆,他可以选择骑自行车或者步行。
骑自行车每小时可以行驶15公里,步行每小时可以行驶5公里。
小明从家到图书馆的距离是30公里,他应该选择哪种方式去图书馆?二、应用题(本大题共2小题,共20分)5. (10分)某工厂生产一批零件,计划每天生产200个,用5天完成。
实际生产时,由于技术改进,每天多生产了30个零件。
实际用了多少天完成生产?6. (10分)一个梯形的上底是10cm,下底是20cm,高是15cm。
求这个梯形的面积。
三、证明题(本大题共1小题,共10分)7. (10分)已知在直角三角形ABC中,∠C是直角,∠A和∠B是锐角。
证明:∠A + ∠B = 90°。
答案:一、解答题1. 解:$x^2 - 4x + 3 = 0$ 可以分解为 $(x - 1)(x - 3) = 0$,所以 $x =1$ 或 $x = 3$。
2. 解:长方形的长是10cm,宽是5cm(10cm的一半),面积 $S = 长 \times 宽= 10cm \times 5cm = 50cm^2$。
3. 解:甲地到乙地的距离为 $80公里/小时 \times 3小时 = 240公里$。
以100公里/小时的速度行驶,需要的时间为 $240公里 \div 100公里/小时 = 2.4小时$。
4. 解:骑自行车到图书馆需要的时间为 $30公里 \div 15公里/小时 = 2小时$,步行需要的时间为 $30公里 \div 5公里/小时 = 6小时$。
因此,小明应该选择骑自行车去图书馆。
七年级(上)期末数学试卷(含答案解析)
七年级(上)期末数学试卷(含答案解析)一、选择题(本大题共10小题,共30.0分)1.在下列有理数:-5,-(-3)3,|-|,0,-22中,负数有()A. 1个B. 2个C. 3个D. 4个2.随着北京公交车票价调整,乘客在乘车时可以通过新版公交站牌计算乘车费用,新版站牌每一个站名上方都有一个相应的数字,将上下车站站名称对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参考票制规则计算票价,具体来说:另外,一卡通刷卡实行8折优惠,小明用一卡通乘车上车时站名上对应的数字是5,下车时站名上对应的数字是20,那么小明乘车的费用是()A. 1.6元B. 2元C. 2.4元D. 3.2元3.下列各组中,不是同类项的是()A. 52与25B. -ab与baC. 0.2a2b与-a2bD. a2b3与-a3b24.下列说法:①倒数等于本身的数只有1;②若a、b互为相反数,那么a、b的商必定等于-1;③对于任意实数x,|x|+x一定是非负数;④两个负数,绝对值小的反而大,其中正确的个数是()A. 0个B. 1个C. 2个D. 3个5.在有理数-32,3.5,-(-3),|-2|、(-)2,-3.1415926中,负数的个数是()A. 1个B. 2个C. 3个D. 4个6.数18000用科学记数法表示为()A. 0.18×104B. 1.8×104C. 18×104D. 1.8×1057.下列各组数中,相等的一组是()A. (-2)3与-23B. (-2)2与-22C. (-3×2)3与3×(-2)3D. -32与(-3)+(-3)8.如图几何体的俯视图是()A.B.C.D.9.要使多项式不含的项,则的值是A. B. C. D.10.如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A. 64°B. 66°C. 74°D. 86°二、填空题(本大题共10小题,共40.0分)11.单项式-4πa3b的系数是______.12.如图,数a,b,c所表示的数如图所示:化简代数式的结果为:|a+b-c|-2|b-a|+|2c|=______.13.已知有理数a、b在数轴上的位置如图所示,化简|a-b|+|a+b|的结果为______.14.已知a、b互为相反数,m、n互为倒数,x的绝对值为2,则-2mn+-x=______.15.将直角三角形按如图放置,直角顶点重合,则∠AOB+∠COD=______.16.若∠A的补角等于116°,则∠A= .17.若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和相等,则a+b+c的值为______.18.如图.AC,BD交于点O.图中共有______ 条线段,它们分别是______ .19.废纸回收能减少树木的砍伐量,保持森林覆盖率,有利于封山育林减少水土流失,有利于生态环境,能减少化学原料的运用与排放,减少污染,有利于环境维护和降低消费本钱.若回收废纸1kg,可生产(结再生纸0.6kg,小明和小亮每学期分别能回收讲义等废纸a kg,b kg,这些废纸可生产再生纸______kg.果用含a,b的代数式表示)20.若x2=9,则x= ______ ;若x3=-27,x= ______ ;已知|x|=9,则x= ______ .三、计算题(本大题共1小题,共5.0分)21.先化简,再求值:5a2-[a2-(2a-5a2)-2(a2-3a)],其中a=4.四、解答题(本大题共7小题,共45.0分)22.某一出租车一天下午以菜市场为出发地在东西方向营运, 约定向东为正,向西为负,行车里程(单位:千米)依先后次序记录如下: +8,-3,-4,+2,-8,+13,-2(1)将最后一名乘客送到目的地,出租车离出发点菜市场多远?在菜市场的什么方向?(2)若每千米耗油0.2升,问从出发地出发到收工时共耗油多少升?23.有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,化简|c-a|+|c-b|+|a+b|.24.由角的旋转的定义可知,平角的两边成一条直线,能不能说直线就是平角?周角两边重合成同一条射线,能不能说周角就是射线?为什么?25.如图,已知∠1+∠2=180°,∠3=∠B,对DE∥BC说明理由.理由:∵∠1+∠2=180°(已知)且∠1+______=180°(邻补角定义),∴∠2=______,∴BD∥EF (______),∴∠3=______(两直线平行,内错角相等),又∵∠3=∠B(已知)∴______=______(等量代换),∴DE∥BC (______).26.如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;(1)过点P画OA的垂线,垂足为H;(2)线段PH的长度是点P到______的距离,______是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是______(用“<”号连接)27.已知长方形的长为a,宽为b.(1)求阴影部分的面积.(用a、b字母表示)(2)当a=5,b=3时,求阴影部分的面积.28.已知直线AB∥CD,P为平面内一点,连接PA、PD.(1)如图1,已知∠A=50°,∠D=150°,求∠APD的度数;(2)如图2,判断∠PAB、∠CDP、∠APD之间的数量关系为______.(3)如图3,在(2)的条件下,AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠APD,求∠AND的度数.答案和解析1.【答案】B【解析】解:∵-(-3)3=27,|-|=,-22=-4,∴-5,-(-3)3,|-|,0,-22中,负数有-5,-22,故选B.首先化简各数,根据负数的定义分别进行判断,从而得出负数的个数即可.本题主要考查了正数和负数以及绝对值和乘方等知识,正确化简各数是解题关键.2.【答案】C【解析】解:小明乘车|20-5|=15(站),对应的票价为3元,3×80%=2.4(元),故选:C.先计算出小明乘车是15站,对照表格,对应的票价是3元,根据一卡通刷卡实行8折优惠,即可计算出费用.本题考查了有理数的减法,绝对值,根据题意求出小明乘车路程,对照表格,得出对应的票价,这是解题的关键.3.【答案】D【解析】解:A.52与25是同类项,故此选项不符合题意;B.-ab与ba所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;C.0.2a2b与-a2b所含字母相同,相同字母的指数相同,是同类项,故此选项不符合题意;Da2b3与-a3b2所含字母相同,但相同字母的指数不同,不是同类项,故此选项符合题意.故选:D.根据同类项的定义(所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项)即可作出判断.本题考查了同类项,掌握同类项的定义是解答本题的关键.4.【答案】C【解析】解:①倒数等于本身的数只有1,错误,还有-1;②若a、b互为相反数,那么a、b的商必定等于-1,错误,a,b不能等于0;③对于任意实数x,|x|+x一定是非负数,正确;④两个负数,绝对值小的反而大,正确.故选:C.直接利用倒数以及绝对值和相反数的性质分别分析得出答案.此题主要考查了倒数以及绝对值和相反数的性质,正确把握相关性质是解题关键.5.【答案】B【解析】解:-32=-9,-(-3)=3,|-2|=2,,∴-32,-3.1415926是负数,一共2个,故选:B.根据有理数的乘方法则、相反数的概念、绝对值的性质计算,根据负数的概念判断即可.本题考查的是有理数的乘方、绝对值的性质、正数和负数,掌握有理数的乘方法则、绝对值的性质是解题的关键.6.【答案】B【解析】解:18000=1.8×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【答案】A【解析】解:A.(-2)3=-8,-23=-8,相等,此选项符合题意;B.(-2)2=4,-22=-4,不相等,此选项不符合题意;C.(-3×2)3=(-6)3=-216,3×(-2)3=3×(-27)=-81,不相等,此选项不符合题意;D.-32=-9,(-3)+(-3)=-6,不相等,此选项不符合题意;故选:A.根据乘方的定义和有理数混合运算顺序逐一计算即可判断.本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.8.【答案】C【解析】解:从上面看,是一个矩形,矩形内部是一个由虚线围成的小矩形.故选:C.找到从几何体的上面看所得到图形即可.此题主要考查了简单几何体的三视图,三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形.注意所看到的线都要用实线表示出来.9.【答案】D【解析】由题意得,,,,故选D。
初中七年级上册数学试卷【含答案】
初中七年级上册数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个等腰三角形的底边长为10厘米,腰长为13厘米,那么这个三角形的周长是多少?A. 32厘米B. 36厘米C. 42厘米D. 46厘米4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 一个正方形的面积是81平方厘米,那么它的边长是多少?A. 9厘米B. 10厘米C. 11厘米D. 12厘米二、判断题(每题1分,共5分)1. 任何两个奇数相加的和都是偶数。
()2. 一个等边三角形的三个角都是60度。
()3. 两个负数相乘的结果是正数。
()4. 一个数的平方根只有一个。
()5. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)1. 最大的两位数是______。
2. 1千米等于______米。
3. 一个等腰三角形的底角是45度,那么它的顶角是______度。
4. 5的立方是______。
5. 2的平方根是______。
四、简答题(每题2分,共10分)1. 请简述勾股定理。
2. 请解释什么是质数。
3. 请说明等边三角形的特点。
4. 请解释什么是绝对值。
5. 请简述如何计算一个正方体的体积。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,请计算它的面积。
2. 一个数的平方是36,请找出这个数。
3. 一个等腰三角形的周长是30厘米,底边长是10厘米,请计算腰长。
4. 请计算下列各式的值:(-3) + (-5)5. 请计算下列各式的值:8 ÷ (-2)六、分析题(每题5分,共10分)1. 小明家的花园是一个长方形,长是20米,宽是10米,他想用篱笆围起来,请问他需要多长的篱笆。
七年级数学全册单元测试卷试卷(word版含答案)
七年级数学全册单元测试卷试卷(word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.将一副三角板放在同一平面内,使直角顶点重合于点O(1)如图①,若∠AOB=155°,求∠AOD、∠BOC、∠DOC的度数.(2)如图①,你发现∠AOD与∠BOC的大小有何关系?∠AOB与∠DOC有何关系?直接写出你发现的结论.(3)如图②,当△AOC与△BOD没有重合部分时,(2)中你发现的结论是否还仍然成立,请说明理由.【答案】(1)解:∵而同理:∴∴(2)解:∠AOD与∠BOC的大小关系为:∠AOB与∠DOC存在的数量关系为:(3)解:仍然成立.理由如下:∵又∵∴【解析】【分析】(1)先计算出再根据(2)根据(1)中得出的度数直接写出结论即可.(3)根据即可得到利用周角定义得∠AOB+∠COD+∠AOC+∠BOD=360°,而∠AOC=∠BOD=90°,即可得到∠AOB+∠DOC=180°.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
七年级(下)期末数学试卷(含答案)
七年级(下)期末数学试卷(解析版)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣15.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.36.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是18.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=,n=.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn 的值.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=,<3.5>=.(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是.(3)已知x,y满足方程组,求x,y的取值范围.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.根据下列表述,能确定位置的是()A.东经118°,北纬40°B.江东大桥南C.北偏东30°D.某电影院第2排【分析】根据在平面内,要有两个有序数据才能清楚地表示出一个点的位置,即可得答案.【解答】解:在平面内,点的位置是由一对有序实数确定的,只有A能确定一个位置,故选A.【点评】本题考查了在平面内,如何表示一个点的位置的知识点.2.为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是()A.400名学生的体重B.被抽取的50名学生C.400名学生D.被抽取的50名学生的体重【分析】本题考查的是确定总体.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本.【解答】解:本题考查的对象是某校初三年级400名学生的体重情况,故总体是400名学生的体重.故选:A.【点评】解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据非负数的性质判断出点P的纵坐标是负数,再根据各象限内点的坐标特征解答.【解答】解:∵﹣x2﹣1≤﹣1,∴点P(3,﹣x2﹣1)所在的象限是第四象限.故选D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A.a>0 B.a<0 C.a>﹣1 D.a<﹣1【分析】本题可对a>﹣1,与a<﹣1的情况进行讨论.不等式两边同时除以一个正数不等号方向不变,同时除以一个负数不等号方向改变,据此可解本题.【解答】解:(1)当a>﹣1时,原不等式变形为:x>1;(2)当a<﹣1时,原不等式变形为:x<1.故选:D.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意同除a+1时是否要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式,不等号的方向不变.在不等式的两边同时乘以或除以同一个正数,不等号的方向不变;在不等式的两边同时乘以或除以同一个负数,不等号的方向改变.5.若x、y满足方程组,则x﹣y的值等于()A.﹣1 B.1 C.2 D.3【分析】方程组两方程相减即可求出x﹣y的值.【解答】解:,②﹣①得:2x﹣2y=﹣2,则x﹣y=﹣1,故选:A.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.6.如图:AB∥CD,直线MN与AB交于E,过点E作直线HE⊥MN,∠1=130°,则∠2等于()A.50°B.40°C.30°D.60°【分析】先根据平行线的性质及对顶角相等求出∠AEM的度数,再根据垂直的性质求出∠2的度数即可.【解答】解:∵∠1=130°,∴∠3=∠1=130°,∵AB∥CD,∴∠3=∠AEM,∵HE⊥MN,∴∠HEM=90°,∴∠2=∠3﹣∠HEM=130°﹣90°=40°.故选B.【点评】本题涉及到的知识点为:(1)对顶角相等;(2)两直线平行,同位角相等;(3)垂线的定义.7.下列选项中正确的是()A.27的立方根是±3 B.的平方根是±4C.9的算术平方根是3 D.立方根等于平方根的数是1【分析】A、根据立方根的即可判定;B、根据算术平方根、平方根的定义即可判定;C、根据算术平方根的定义即可判定;D、根据平方根、立方根的定义求解即可判定.【解答】解:A、27的立方根是3,故选项错误;B、的平方根是±2,故选项错误;C、9的算术平方根是3,故选项正确;D、立方根等于平方根的数是1和0,故选项错误.故选C.【点评】本题主要考查了平方根和立方根的性质,并利用此性质解题.平方根的被开数不能是负数,开方的结果必须是非负数;立方根的符号与被开立方的数的符号相同.要注意一个正数的平方根有两个,它们互为相反数.8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x元、y元,则下列方程组正确的是()A.B.C.D.【分析】如果设甲商品原来的单价是x元,乙商品原来的单价是y元,那么根据“甲、乙两种商品原来的单价和为100元”可得出方程为x+y=100;根据“甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%”,可得出方程为x(1﹣10%)+y(1+40%)=100(1+20%).【解答】解:设甲商品原来的单价是x元,乙商品原来的单价是y元.根据题意列方程组:.故选:C.【点评】找到两个等量关系是解决本题的关键,还需注意相对应的原价及相应的百分比得到的新价格.9.如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是()①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.A.①②③ B.①②④ C.①③④ D.①③【分析】利用同位角相等(都等于90°),同旁内角互补,两条直线平行,或同一平面内,垂直于同一条直线的两条直线平行作答.【解答】解:由图可知,用角尺画木板边缘的两条垂线,这样画的理由:①同位角相等,两直线平行;③同旁内角互补,两直线平行;④平面内垂直于同一直线的两条直线平行.故选C.【点评】本题考查平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;两条直线都和第三条直线平行,那么这两条直线平行;在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行.10.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤C.D.m≤【分析】先求出两个不等式的解集,再根据有解列出不等式组求解即可.【解答】解:,解不等式①得,x<2m,解不等式②得,x>2﹣m,∵不等式组有解,∴2m>2﹣m,∴m>.故选C.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).二、填空题:本大题共5小题,每小题3分,共15分,把答案填在题中横线上.11.若|x+3|+=0,则x y的值为9.【分析】直接利用非负数的性质得出x,y的值,进而利用有理数的乘方运算法则求出答案.【解答】解:∵|x+3|+=0,∴x=﹣3,y=2,则x y=(﹣3)2=9.故答案为:9.【点评】此题主要考查了非负数的性质,正确得出x,y的值是解题关键.12.已知关于x的不等式x﹣a<1的解集如图所示,则a的值为1.【分析】根据在数轴上表示不等式解集的方法得出不等式的解集,再用a表示出不等式的解集,进而可得出a的值.【解答】解:由题意可知,x<2,∵解不等式x﹣a<1得,x<1+a,∴1+a=2,解得a=1.故答案为:1.【点评】本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键.13.若方程4x m﹣n﹣5y m+n=6是二元一次方程,则m=1,n=0.【分析】根据二元一次方程的定义,可得x和y的指数分别都为1,列关于m、n的方程组,再求出m和n的值,最后代入可得到m n的值.【解答】解:根据二元一次方程的定义,得,解得,故答案为:1,0.【点评】考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程.14.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,BC=9,DH=2,平移距离为3,则阴影部分的面积是15.【分析】根据平移的性质,判断出△HEC∽△ABC,再根据相似三角形的性质列出比例式解答.【解答】14.15解:由平移的性质知,BE=3,DE=AB=6,∴HE=DE﹣DH=6﹣2=4,∴S四边形HDFC =S梯形ABEH=(AB+EH)BE=(6+4)×3=15.故答案为:15.【点评】本题主要利用了平行线截线段对应成比例和平移的基本性质求解,找出阴影部分和三角形面积之间的关系是关键.15.在平面直角坐标系中,点A1(1,2),A2(2,5),A3(3,10),A4(4,17),…,用你发现的规律确定点A n的坐标为(n,n2+1).【分析】首先观察各点坐标,找出一般规律,然后根据规律确定点A n的坐标.【解答】解:设A n(x,y).∵当n=1时,A1(1,1),即x=1,y=12+1,当n=2时,A2(2,5),即x=2,y=22+1;当n=3时,A3(3,10),即x=3,y=32+1;当n=4时,A1(4,17),即x=4,y=42+1;…∴当n=n时,x=n,y=n2+1,故答案为:(n,n2+1).【点评】此题主要考查了点的坐标规律,解决本题的关键在于总结规律.对于寻找规律的题,应通过观察,发现哪些部分没有变化,哪些部分发生了变化,变化的规律是什么.三、解答题:本大题共7小题,共55分,解答应写出证明过程或演算步骤.16.(1)解方程组:;(2)解不等式组:.【分析】(1)先用加减消元法求出x的值,再用代入消元法求出y的值即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1),①+②×3得,10x=50,解得x=5,把x=5代入②得,10+y=13,解得y=3.故方程组的解为;(2),由①得,x<3,由②得,x≥﹣2,故方程组的解为:﹣2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.18.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.【分析】根据甲看错了方程①中的m,②没有看错,代入②得到一个方程求出n的值,乙看错了方程②中的n,①没有看错,代入①求出m的值,然后再把m、n的值代入代数式计算即可求解【解答】解:根据题意得,4×(﹣3)﹣b(﹣1)=﹣2,5a+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.【点评】本题考查了二元一次方程的解,根据题意列出方程式解题的关键.19.某市球类运动协会为了筹备一次大型体育活动,购进了一定数量的体育器材,器材管理员对购买的部分器材进行了统计,图表和图是器材管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表器材种类频数频率排球20乒乓球拍50 0.50篮球25 0.25足球合计 1(1)填充频率分布表中的空格.(2)在图中,将表示“排球”和“足球”的部分补充完整.(3)若该协会购买这批体育器材时,篮球和足球一共花去950元,且足球每个的价格比篮球多10元,现根据筹备实际需要,准备再采购篮球和足球这两种球共10个(两种球的个数都不能为0),计划资金不超过320元,试问该协会有哪几种购买方案?【分析】(1)根据乒乓球的总数为50,频数为0.50,求出体育器材总数,然后减去乒乓球、排球、篮球数目,即可得到足球频数、频率及合计数.(2)根据统计表中的数据,将统计图补充完整即可.(3)列方程求出篮球和足球的单价,再根据单价列出不等式,推知购买方案.【解答】解:(1)50÷0.50=100个;则足球有100﹣20﹣50﹣25=5个;足球频率=0.05;排球频率=0.2;合计为100.故答案为:0.2;5,0.05;100.(2)如图:.(3)设篮球每个x元,足球每个(x+10)元,列方程得,25x+5(x+10)=950,解得x=30,则篮球每个30元,足球每个40元.设再买y个篮球,列不等式得,30y+40(10﹣y)≤320,解得y≥8,由于篮球足球共10个,则篮球8个,足球2个;或篮球9个,足球1个.【点评】本题考查了频数分布表、频数分布直方图及一元一次方程的应用,从图中得到相关信息是解题的关键.20.某中学计划从办公用品公司购买A,B两种型号的小黑板.经洽谈,购买一块A型小黑板比购买一块B型小黑板多用20元,且购买5块A型小黑板和4块B型小黑板共需820元.(1)求购买一块A型小黑板、一块B型小黑板各需多少元.(2)根据该中学实际情况,需从公司购买A,B两种型号的小黑板共60块,要求购买A,B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的.则该中学从公司购买A,B两种型号的小黑板有哪几种方案?哪种方案的总费用最低?【分析】(1)设购买一块A型小黑板需要x元,一块B型为y元,根据等量关系:购买一块A型小黑板比买一块B型小黑板多用20元;购买5块A型小黑板和4块B型小黑板共需820元;可列方程组求解.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块,根据需从公司购买A、B 两种型号的小黑板共60块,要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,可列不等式组求解.【解答】解:(1)设一块A型小黑板x元,一块B型小黑板y元.则,解得.答:一块A型小黑板100元,一块B型小黑板80元.(2)设购买A型小黑板m块,则购买B型小黑板(60﹣m)块则,解得20≤m≤22,又∵m为正整数∴m=20,21,22则相应的60﹣m=40,39,38∴共有三种购买方案,分别是方案一:购买A型小黑板20块,购买B型小黑板40块;方案二:购买A型小黑板21块,购买B型小黑板39块;方案三:购买A型小黑板22块,购买B型小黑板38块.方案一费用为100×20+80×40=5200元;方案二费用为100×21+80×39=5220元;方案三费用为100×22+80×38=5240元.∴方案一的总费用最低,即购买A型小黑板20块,购买B型小黑板40块总费用最低,为5200元.【点评】本题考查理解题意的能力,关键根据购买黑板块数不同钱数的不同求出购买黑板的钱数,然后要求购买A、B两种型号小黑板的总费用不超过5240元.并且购买A型小黑板的数量不小于购买B型小黑板数量的,列出不等式组求解.21.我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:(1)[﹣4.5]=﹣5,<3.5>=4.(2)若[x]=2,则x的取值范围是2≤x<3;若<y>=﹣1,则y的取值范围是﹣2≤y<﹣1.(3)已知x,y满足方程组,求x,y的取值范围.【分析】(1)根据题目所给信息求解;(2)根据[2.5]=2,[3]=3,[﹣2.5]=﹣3,可得[x]=2中的2≤x<3,根据<a>表示大于a 的最小整数,可得<y>=﹣1中,﹣2≤y<﹣1;(3)先求出[x]和<y>的值,然后求出x和y的取值范围.【解答】解:(1)由题意得,[﹣4.5]=﹣5,<3.5>=4;(2)∵[x]=2,∴x的取值范围是2≤x<3;∵<y>=﹣1,∴y的取值范围是﹣2≤y<﹣1;(3)解方程组得:,∴x,y的取值范围分别为﹣1≤x<0,2≤y<3.【点评】本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.22.如图,已知直线AC∥BD,直线AB、CD不平行,点P在直线AB上,且和点A、B 不重合.(1)如图①,当点P在线段AB上时,若∠PAC=20°,∠PDB=30°,求∠CPD的度数;(2)当点P在A、B两点之间运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?(直接写出答案)(3)如图②,当点P在线段AB延长线运动时,∠PCA、∠PDB、∠CPD之间满足什么样的等量关系?并说明理由.【分析】(1)如图①,过P点作PE∥AC交CD于E点,由于AC∥BD,则PE∥BD,根据平行线的性质得∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,所以∠CPD=50°;(2)证明方法与(1)一样;(3)如图②,过P点作PF∥BD交CD于F点,由于AC∥BD,则PF∥AC,根据平行线的性质得∠CPF=∠PCA,∠DPF=∠PDB,所以∠CPD=∠PCA﹣∠PDB.【解答】解:(1)如图①,过P点作PE∥AC交CD于E点,∵AC∥BD∴PE∥BD,∴∠CPE=∠PCA=20°,∠DPE=∠PDB=30°,∴∠CPD=∠CPE+∠DPE=50°;(2)∠CPD=∠PCA+∠PDB(证明方法与(1)一样;(3)∠CPD=∠PCA﹣∠PDB.理由如下:如图②,过P点作PF∥BD交CD于F点,∵AC∥BD,∴PF∥AC,∴∠CPF=∠PCA,∠DPF=∠PDB,∴∠CPD=∠CPF﹣∠DPF=∠PCA﹣∠PDB;【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.合理添加平行线是解决此题的关键.。
七年级上册数学试卷答案【含答案】
七年级上册数学试卷答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是质数?()A. 21B. 37C. 39D. 492. 如果一个三角形的两边长分别是8cm和15cm,那么第三边的长度可能是多少cm?()A. 7cmB. 23cmC. 17cmD. 24cm3. 下列哪个图形是平行四边形?()A. 矩形B. 梯形C. 正方形D. 圆形4. 下列哪个数是偶数?()A. 101B. 102C. 103D. 1045. 下列哪个数是立方数?()A. 27B. 28C. 29D. 30二、判断题1. 2是偶数。
()2. 任何两个奇数相加的和都是偶数。
()3. 三角形的内角和是180度。
()4. 任何两个偶数相加的和都是偶数。
()5. 任何两个奇数相乘的积都是奇数。
()三、填空题1. 最大的两位数是______。
2. 0除以任何不为0的数都得______。
3. 1米等于______分米。
4. 三角形的内角和是______度。
5. 2的平方是______。
四、简答题1. 请列举出前五个质数。
2. 请写出三个偶数相加的例子,并说明其和为什么是偶数。
3. 请解释三角形内角和的概念。
4. 请说明平行四边形的特征。
5. 请列举出前三个立方数。
五、应用题1. 一个长方形的长是10cm,宽是5cm,请计算它的面积。
2. 一个数加上5后得到8,请计算这个数是多少。
3. 一个三角形的三边长分别是3cm、4cm和5cm,请判断这个三角形是什么类型的三角形。
4. 请计算0.5乘以4的结果。
5. 一个正方形的边长是6cm,请计算它的周长。
六、分析题1. 请分析并解释为什么两个奇数相加的和是偶数。
2. 请分析并解释为什么三角形的内角和是180度。
七、实践操作题1. 请用直尺和圆规画出一个边长为5cm的正方形。
2. 请用直尺和圆规画出一个内角为90度的直角三角形。
八、专业设计题1. 设计一个简易的分数加法计算器,要求能够输入两个分数,输出它们的和。
七年级上册数学期末测试卷(含答案)
七年级上册数学期末测试卷(含答案)数学试卷(考试时间:120分钟试卷满分:120分)一、选择题(本题共12小题,每小题3分,共36分)。
1.下列四个数中,属于负数的是()A.﹣3B.3C.πD.0【答案】A【解答】解:A.﹣3是负数,故本选项符合题意;B.3是正数,故本选项不符合题意;C.π是正数,故本选项不符合题意;D.0既不是正数,也不是负数,故本选项不符合题意;故选:A.2.在﹣5,﹣3,0,1.7这4个数中绝对值最大的数是()A.﹣5B.﹣3C.0D.1.7【答案】A【解答】解:∵|﹣5|=5,|﹣3|=3,|0|=0,|1.7|=1.7,∴5>3>1.7>0,故选:A.3.下面四个立体图形的展开图中,是圆锥展开图的是()A.B.C.D.【答案】B【解答】解:A.这个立体图形是长方体,故本选项不符合题意;B.圆锥的展开图为一个扇形和一个圆形,故这个立体图形是圆锥,故本选项符合题意;C.这个立体图形是三棱柱,故本选项不符合题意;D.这个立体图形是圆柱,故本选项不符合题意;试题第1页(共22页)试题第2页(共22页)试题第3页(共22页)试题第4页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封故选:B.4.近似数2.01精确到()A.百位B.个位C.十分位D.百分位【答案】D【解答】解:近似数2.01精确到百分位.故选:D.5.木匠师傅锯木料时,先在木板上画两个点,然后过这两点弹出一条墨线.他运用的数学原理是()A.两点之间,线段最短B.线动成面C.经过一点,可以作无数条直线D.两点确定一条直线【答案】D【解答】解:在木板上画出两个点,然后过这两点弹出一条墨线,此操作的依据是两点确定一条直线.故选:D.6.若单项式﹣x m y n与2x3y4是同类项,则m,n分别是()A.m=3,n=4B.m=4,n=3C.m=﹣3,n=﹣4D.m=﹣4,n=﹣3【答案】A【解答】解:∵单项式﹣x m y n与2x3y4是同类项,∴m=3,n=4,故选:A.7.根据等式的性质,下列变形错误的是()A.如果x=y,那么x+5=y+5B.如果x=y,那么﹣3x=﹣3yC.如果x=y,那么x﹣2=y+2D.如果x=y,那么+1=+1【答案】C【解答】解:A.如果x=y,那么x+5=y +5,故本选项不符合题意;B.如果x=y,那么﹣3x=﹣3y,故本选项不符合题意;C.如果x=y,那么x﹣2=y﹣2,故本选项符合题意;D.如果x=y,那么+1=+1,故本选项不符合题意;故选:C.8.有理数a、b在数轴上的对应点的位置如图所示:则下面结论正确的是()A.a+b>0B.a+b<0C.ab>0D.a+b=0【答案】D【解答】解:∵由图可知a、b两点到原点的距离相同,∴a+b=0,ab<0.故选:D.9.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程()A.240x=150x+12B.240x=150x﹣12C.240x=150(x+12)D.240x=150(x﹣12)【答案】C【解答】解:设快马x天可以追上慢马,依题意,得:240x=150(x+12).故选:C.10.在如图的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是()A.28B.54C.65D.75【答案】B【解答】解:设三个数中最小的数为x,则另外两数分别为x+7,x+14,∴三个数的和为x+(x+7)+(x+14)=3x+21,依题意得:3x+21=28,解得x=,不是整数,故A不符合题意,3x+21=54,解得x=11,由月历表可知此时框出的三个数是11,18,25,故B符合题意,3x+21=65,解得x=,不是整数,故C不符合题意,3x+21=75,解得x=18,由月历表可知此时不能框出符合题意的三个数,故D不符合题意,故选:B.11.已知线段AB,延长AB至C,使BC=2AB,D是线段AC上一点,且BD=AB,则的值是()A.6B.4C.6或4D.6或2【答案】D试题第5页(共22页)试题第6页(共22页)试题第7页(共22页)试题第8页(共22页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封【解答】解:如图,当点D在线段AB时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD=AB,∴AD=AB,∴==6,当点D在线段BC上时,∵BC=2AB,∴AC=AB+BC=3AB,∵BD′=AB,∴AD′=AB,∴==2,综上所述,的值是6或2,故选:D.12.OB是∠AOC内部一条射线,OM是∠AOB平分线,ON是∠AOC平分线,OP是∠NOA平分线,OQ是∠MOA平分线,则∠POQ:∠BOC=()A.1:2B.1:3C.2:5D .1:4【答案】D【解答】解:∵OM是∠AOB 平分线,OQ 是∠MOA平分线,∴∠AOQ=∠AOM=∠AOB,∵ON是∠AOC平分线,OP是∠NOA平分线,∴∠AOP=∠AON=∠AOC=(∠AOB+∠BOC),∴∠POQ=∠AOP﹣∠AOQ=(∠AOB+∠BOC)﹣∠AOB,=∠BOC,∴∠POQ:∠BOC=1:4,故选:D.二、填空题(本题共6题,每小题3分,共18分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题:1.方程20x=的解是()A.2x=-B.0x=C.12x=-D.12x=2.以下四个标志中,是轴对称图形的是()A.B.C.D.3.解方程组⎩⎨⎧=+=-②①,.102232yxyx时,由②-①得()A.28y=B.48y=C.28y-=D.48y-=4.已知三角形两边的长分别是6和9,则这个三角形第三边的长可能为()A.2 B.3C.7D.165.一个一元一次不等式组的解集在数轴上表示如右图,则此不等式组的解集是()A.x>3 B.x≥3 C.x>1 D.x≥16.将方程31221+=--xx去分母,得到的整式方程是()A.()()12231+=--xx B.()()13226+=--xxC.()()12236+=--xx D.22636+=--xx7.在△ABC中,∠A∶∠B∶∠C=1∶2∶3,则△ABC的形状是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形8.已知x m=是关于x的方程26x m+=的解,则m的值是()A.-3 B.3 C.-2 D.29.下列四组数中,是方程组20,21,32x y zx y zx y z++=⎧⎪--=⎨⎪--=⎩的解是()A.1,2,3.xyz=⎧⎪=-⎨⎪=⎩B.1,0,1.xyz=⎧⎪=⎨⎪=⎩C.0,1,0.xyz=⎧⎪=-⎨⎪=⎩D.0,1,2.xyz=⎧⎪=⎨⎪=-⎩。
·432-1 110.将△ABC 沿BC 方向平移3个单位得△DEF .若△ABC 的周长等于8, 则四边形ABFD 的周长为( )A .14B .12C .10D .811.如图是由相同的花盆按一定的规律组成的正多边形图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…,则第8个图形中花盆的个数为A .56B .64C .72D .9012.如图,将△ABC 绕着点C 顺时针旋转50°后得到△A B C ''.若A ∠=40°,'B ∠=110°,则∠BCA '的度数为( )A .30°B .50°C .80°D .90°二、填空题:)13.在方程21x y -=中,当1x =-时,y =. 14.一个正八边形的每个外角等于度.15.如图,已知△ABC ≌△ADE ,若AB =7,AC =3,则BE 的值为. 16.不等式32>x 的最小整数解是. 17.若不等式组0,0x b x a -<⎧⎨+>⎩的解集为23x <<,则关于x ,y 的方程组的解为.…ABECDFA CB ′′15题图 DEA BC18题图AD BCP Q18.如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点 相遇时,它们同时停止运动.设Q 点运动的时间为x (秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的的值或取值 X 围是. 三、解答题: 19.解方程组:,.202321x y x y -=⎧⎨+=⎩20.解不等式组:20,2(21)15.x x x -<⎧⎨-≤+⎩四、解答题21.如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1; (2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2; (3)在直线m 上画一点P ,使得P C P C 21+的值最小.21题图22.一件工作,甲单独做15小时完成,乙单独做10小时完成.甲先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独完成.那么乙还需要多少小时才能完成?23.如图,AD 是ABC ∆边BC 上的高,BE 平分ABC ∠交AD 于点E .若︒=∠60C ,︒=∠70BED .求ABC ∠和BAC ∠的度数.24.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元. (1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有5% 的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?ADB CE23题图五、解答题:(本大题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上. 25.阅读下列材料:我们知道x 的几何意义是在数轴上数x 对应的点与原点的距离,即x =0x -,也就是说,x 表示在数轴上数x 与数0对应的点之间的距离;这个结论可以推广为12x x -表示在数轴上数1x 与数2x 对应的点之间的距离;例1.解方程|x |=2.因为在数轴上到原点的距离为2的点对应的数为2±,所以方程|x |=2的解为2x =±.例2.解不等式|x -1|>2.在数轴上找出|x -1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x -1|=2的解为x =-1或x =3,因此不等式|x -1|>2的解集为x <-1或x >3.例3.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x 的值.因为在数轴上1和-2对应的点的距离为3(如图),满足方程的x 对应的点在1的右边或-2的左边.若x 对应的点在1的右边,可得x =2;若x 对应的点在-2的左边,可得x =-3,因此方程|x参考阅读材料,解答下列问题: (1)方程|x +3|=4的解为; (2)解不等式:|x -3|≥5;-21-1342-2 0 12(3)解不等式:|x -3|+|x +4|≥9.26.如图1,点D 为△ABC 边BC 的延长线上一点.(1)若:3:4A ABC ∠∠=,︒=∠140ACD ,求A ∠的度数;(2)若ABC ∠的角平分线与ACD ∠的角平分线交于点M ,过点C 作CP ⊥BM 于点P . 求证:1902MCP A ∠=︒-∠; (3)在(2)的条件下,将△MBC 以直线BC 为对称轴翻折得到△NBC ,NBC ∠的角平分线与NCB ∠的角平分线交于点Q (如图2),试探究∠BQC 与∠A 有怎样的数量关系,请写出你的猜想并证明.C ABD MP26题图1BDMNAC PQ26题图2XX 市2016—2017学年度七年级下期期末考试参考答案13.3-;14.45; 15.4; 16.2x =;17.4,3.x y =-⎧⎨=-⎩18.0<x ≤43或2x =.三、解答题:19.解:由①,得2x y =.③………………………………………………………………1分将③代入②,得4321y y +=.解得3y =.…………………………………………………………………………3分 将3y =代入①,得6x =.………………………………………………………6分 ∴原方程组的解为6,3.x y =⎧⎨=⎩………………………………………………………7分 20.解:解不等式①,得2x <.……………………………………………………………3分解不等式②,得x ≥3-.…………………………………………………………6分∴不等式组的解集为:3-≤2x <.………………………………………………7分四、解答题: 21.作图如下:22.解:设乙还需要x 小时才能完成.根据题意,得………………………………………1分911510x+=.…………………………………………………………………………5分 解得4x =.…………………………………………………………………………9分 经检验,4x =符合题意.答:乙还需要4小时才能完成.……………………………………………………10分 23.解:∵AD 是ABC ∆的高,∴︒=∠90ADB ,……………………………………………………………………2分 又∵180DBE ADB BED ∠+∠+∠=︒,︒=∠70BED ,∴18020DBE ADB BED ∠=︒-∠-∠=︒.……………………………………4分 ∵BE 平分ABC ∠,∴︒=∠=∠402DBE ABC . ………………………………………………………6分 又∵︒=∠+∠+∠180C ABC BAC ,60C ∠=︒,∴C ABC BAC ∠-∠-︒=∠180︒=80.……………………………………………10分24.解:(1)设该水果店两次分别购买了x 元和y 元的水果.根据题意,得……………1分(1)正确画出△A 1B 1C 1. (4)分(2)正确画出△A 2B 2C 2. (8)分(3)正确画出点P . ……………………10分21题答图2200,2.40.54x y yx +=⎧⎪⎨=⨯⎪-⎩………………………………………………………………3分 解得800,1400.x y =⎧⎨=⎩………………………………………………………………5分经检验,800,1400x y =⎧⎨=⎩符合题意.答:水果店两次分别购买了800元和1400元的水果.……………………6分 (2)第一次所购该水果的重量为800÷4=200(千克).第二次所购该水果的重量为200×2=400(千克). 设该水果每千克售价为a 元,根据题意,得[200(1-3%)+400(1-5%)]8001400a --≥1244.………………………8分 解得 6a ≥.答:该水果每千克售价至少为6元. ··············· 10分五、解答题:25.解:(1)1x =或7x =-.………………………………………………………………4分(2)在数轴上找出|x -3|=5的解.∵在数轴上到3对应的点的距离等于5的点对应的数为-2或8, ∴方程|x -3|=5的解为x =-2或x =8,∴不等式|x -3|≥5的解集为x ≤-2或x ≥8. ··········· 8分 (3)在数轴上找出|x -3|+|x +4|=9的解.由绝对值的几何意义知,该方程就是求在数轴上到3和-4对应的点的距离之和等于9的点对应的x 的值.∵在数轴上3和-4对应的点的距离为7,∴满足方程的x 对应的点在3的右边或-4的左边.若x 对应的点在3的右边,可得x =4;若x 对应的点在-4的左边,可得x =-5, ∴方程|x -3|+|x +4|=9的解是x =4或x =-5,∴不等式|x -3|+|x +4|≥9的解集为x ≥4或x ≤-5. ········ 12分26.(1)解:∵4:3:=∠∠B A ,∴可设3,4A k B k ∠=∠=.又∵ACD A B ∠=∠+∠140=°, ∴34140k k +=°,AM PCM BMCP AABC ACD M ABCMBC ACD MCD ABCACD MB MC ABCACD A MBC MCD M MBC MCD ∠-︒=∠-︒=∠∴⊥∠=∠-∠=∠∴∠=∠∠=∠∴∠∠∠-∠=∠∠-∠=∠∴∠21909021)(212121∵又,、分别平分、∵同理可证:的外角是△∵解得20k =°.∴360A k ∠==°. ······················ 4分(2)证明:(3)猜想A BQC ∠+︒=∠4190.9分 证明如下:∵BQ 平分∠CBN ,CQ 平分∠B , ∴BCN QCB CBN QBC ∠=∠∠=∠2121,, ∴)(BCN CBN Q ∠+∠-︒=∠21180)N ∠-︒-︒=180(21180N ∠+︒=2190. ··········· 10分由(2)知:A M ∠=∠21,又由轴对称性质知:∠M =∠N ,∴A BQC ∠+︒=∠4190.………………………………………8分………………………………………6分。