初中七年级数学期中考试试卷
湖南省长沙市华益中学2023-2024学年上学期七年级期中考试数学试卷
23年秋初一华益中学期中考试数学试卷 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分) −1.(3分)2的相反数是()A .2−B .2C .21D . −21 2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国 聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .6 0.11610⨯D .83.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|(1)−−12B .与2(2)−C .3−2与3D .322与 32()2 a b +<4.(3分)若0 ab <,0,则下列说法正确的是()A .a ,b 同号B . a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能5.(3分)关于整式,下列说法正确的是() A .x y 2的次数是2B .0不是单项式3πC .mn 的系数是3x x −−D .2332是三次三项式−2a b n 6.(3分)若5 5a b 32m n 与+的差仍是单项式,则m n的值是()A .2B .0 −C .1D .17.(3分)下列各式运用等式的性质变形,错误的是() a b =A .若,则+=+a b =B a c b c .若,则=c ca ba b =C .若,则=a b =D ac bc .若,则−=−a c b c −1A 8.(3分)如果数轴上的点对应的数为,点B 与 A 点相距3个单位长度,则点 B 所对 应的有理数为()A .2−B .4−C .2或4−D .2或49.(3分)某同学在解关于x x mx 的方程−=+313时,把m x =看错了,结果解得4,则该同m 学把看成了()−A .2B .2C .34D .27 10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C,则该地半夜的气温为. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为.13.(3分)已知a ,b a b ++−=满足|3|(2)02+,则a b ()2023的值是.14.(3分)已知轮船在逆水中前进的速度是a 千米时,水流的速度是5/千米 /时,则这轮船在顺水中前进的速度是/千米时. a a 2+−=1015.(3分)已知,则代数式 a a 2222021++的值是.16.(3分)若k x −−=||4k (5)60− 是关于x的一元一次方程,则k 的值为.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)−+−−⨯−2|23|2(1)32023.18.(6分)解方程:x x =−+−6312152.19.(6分)先化简,再求值:+−−−m m n m n 2(32)6()22,其中=−m 3,=n 3.20.(8分)(1)已知有理数a ,b ,c 在数轴上对应的点如图所示,化简:−+−−−b a a c c b ||||||; (2)已知=−A x x 532,=−+B x x 1162,求当=x 1时,求−A B 的值.21.(8分)如图,在长为++a ab 12,宽为−a ab 22的长方形纸板上裁去一个边长为b 的正方形.(1)求剩余纸板的周长C (用含a ,b 的代数式表示); (2)当=a 3,=b 1时,求C 的值.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克? (2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?23.(9分)已知关于x 的整式=+−+A x ax x 3322,整式=+−+B x ax x 24222,若a 是常数,且−A B 3不含x 的一次项. (1)求a 的值;(2)若b 为整数,关于x 的一元一次方程+−=bx x 230的解是整数,求+a b 5的值.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = ,a = ,b = ; (2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t秒,甲班的A 同学在数轴上位置C拿到最后一棒接力棒时,记为0t=,此时乙班的B同学已经位于数轴上数10的位置,A同学以每秒8米向左运动,B同学以每秒5米向左运动,两位同学到达D点立即停止运动.(1)当0t=时,A、B同学相距米;当1t=时,A、B同学在数轴上所表示的数为、.(2)①若t秒后A同学恰好追上B同学,求t;②当A同学到达终点D后,B同学还要经过多少秒到达D点.③分别取线段AC、BD中点为E、F,若在点A、B运动期间,4mEF nDA−始终保持不变(其中m,n为常数),求mn的值.23年秋初一华益中学期中考试数学试卷参考答案与试题解析 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)−1.(3分)2的相反数是()A .2−B .2C .21D . −21 【分析】根据相反数的定义进行判断即可.−【解答】解:2的相反数是2,故选:A .【点评】本题考查相反数,掌握相反数的定义是正确判断的前提.2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .60.11610⨯D .8a ⨯10【分析】将一个数表示成n a 的形式,其中1||10<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1160万 ==⨯11600000 1.16107,故选:B .【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.3.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|−1B .2(1)−与2(2)−C .3−2与3D .322与32()2【分析】根据有理数的乘方运算法则、绝对值的意义可进行求解.【解答】解:A −−=、(2)2−−=−,|2|2 −−,所以(2)−−与|2|不相等不符合题意;−=−11B 、2 −=,(1)12(1)−2,所以与−12不相等不符合题意;−=−C 、(2)83−=−28,3(2)−,所以3−23与相等符合题意;D 、3924()2=,所以322与23()2不相等不符合题意;C 故选:.【点评】本题主要考查有理数的乘方运算,熟练掌握有理数的乘方运算法则是解题的关键. 4.(3分)若0a b +<,0ab <,则下列说法正确的是( ) A .a ,b 同号B .a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能【分析】根据题意得知a 、b 异号,并且负数的绝对值较大,挖掘出这一条件后,再对四个选项逐一分析.【解答】解:0ab <,a ∴、b 异号,又0a b +<,∴负数的绝对值较大, 根据这一条件判断:A 、C 、D 选项错误;B 选项正确; 故选:B .【点评】本题考查了有理数的除法,两个不等于零的数相乘,两数相乘,同号为正,异号为负,并把绝对值相乘.5.(3分)关于整式,下列说法正确的是( ) A .2x y 的次数是2 B .0不是单项式C .3mn π的系数是3D .3223x x −−是三次三项式【分析】根据单项式的系数与单项式的次数的定义对A 、C 进行判断;根据单独的一个数字或字母也是单项式对B 进行判断;根据多项式的次数和项数的定义对D 进行判断. 【解答】解:A 、2x y 的次数是3,所以A 选项错误; B 、数字0是单项式,所以B 选项错误; C 、3mn π的系数是3π,所以C 选项错误;D 、3223x x −−是三次三项式,所以D 选项正确.故选:D .【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.也考查了多项式的定义. 6.(3分)若52n a b −与325m n a b +的差仍是单项式,则n m 的值是( ) A .2B .0C .1−D .1【分析】由52n a b −与325m n a b +的差仍是单项式知52n a b −与325m n a b +是同类项,据此可得3n =,25m n +=,解之求出m 的值,代入计算可得.【解答】解:52n a b −与325m n a b +的差仍是单项式,52n a b ∴−与325m n a b +是同类项,3n ∴=,25m n +=, 1m ∴=,则311n m ==,故选:D .【点评】本题主要考查同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.7.(3分)下列各式运用等式的性质变形,错误的是( ) A .若a b =,则a c b c +=+ B .若a b =,则a bc c=C .若a b =,则ac bc =D .若a b =,则a c b c −=−【分析】根据等式的性质,可得答案.【解答】解:A 、若a b =,则a c b c +=+,故A 不符合题意; B 、c 等于零时,除以c 无意义,故B 符合题意; C 、若a b =,则ac bc =,故C 不符合题意;D 、若a b =,则a c b c −=−,故D 不符合题意;故选:B .【点评】本题考查了等式的性质,熟记等式的性质是解题关键.8.(3分)如果数轴上的点A 对应的数为1−,点B 与A 点相距3个单位长度,则点B 所对应的有理数为( ) A .2B .4−C .2−或4D .2或4−【分析】考虑在A 点左边和右边两种情形解答问题.【解答】解:在A 点左边与A 点相距3个单位长度的点所对应的有理数为4−; 在A 点右边与A 点相距3个单位长度的点所对应的有理数为2. 故选:D .【点评】本题考查了数轴上两点间的距离,解题的关键是注意分类讨论.9.(3分)某同学在解关于x 的方程313x mx −=+时,把m 看错了,结果解得4x =,则该同学把m 看成了( ) A .2−B .2C .43D .72【分析】将4x =代入313x mx −=+中解得m 的值即可.x =【解答】解:将4x mx 代入−=+313中可得−=+m 12143m =,解得:2,B 故选:. 【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)x 【分析】设有个人共同出钱买鸡,根据买鸡需要的总钱数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有x x x 个人共同出钱买鸡,根据题意得:−=+811513.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C ,则该地半夜的气温为︒−1C . 【分析】利用题意列出算式解答即可.【解答】解:+− =−163211920︒=−1C .故答案为:︒ −1C .【点评】本题主要考查了有理数的加减混合运算的应用,正确列出算式是解题的关键.3.90. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为【分析】把千分位上的数字6进行“四舍五入”即可.【解答】解:≈3.896 3.900.01)(精确到.故答案为:3.90.【点评】本题考查了近似数与精确度,熟练掌握精确度的定义是解答本题的关键.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.(3分)已知a ,a b ++−=b 满足|3|(2)02 +,则a b ()2023−的值是1.【分析】根据绝对值、偶次方的非负性求出a、b ,再根据有理数的乘方法则计算即可.a b 【解答】解:|3|(2)0++−=2∴+=a 30,,b −=20,∴=−a 3b =,2,∴+=−+=−a b ()(32)120232023,−故答案为:1.【点评】本题考查的是非负数的性质,熟记绝对值、偶次方具有非负性是解题的关键.14.(3分)已知轮船在逆水中前进的速度是a 时,水流的速度是5千米/千米/ 时,则这轮 a 船在顺水中前进的速度是+(10)/千米时.【分析】根据顺水速度=逆水速度+⨯2水流速度,把相关数值代入后化简即可.a +【解答】解:由题意得:船在静水中的速度为:5,∴a a ++=+这轮船在顺水中航行的速度是55(10)千米/时,a 故答案为:+(10).【点评】本题考查列代数式,解题的关键是顺水速度=逆水速度+⨯2水流速度.a a +−=15.(3分)已知102 a a 2,则代数式222021++的值是2023.a a +=【分析】根据题意得到12,再将代数式变形即可求值.a a 【解答】解:2+−=10∴+=a a 2,1,∴++=++=⨯+=a a a a 2220212()2021212021202322,故答案为:2023.【点评】本题考查了代数式求值,利用整体代入思想解决问题是解题关键.16.(3分)若k x −−=||4k (5)60−是关于x 的一元一次方程,则k−的值为5.【分析】直接利用一元一次方程的定义得出关于k 的方程求出答案.k x 【解答】解:(5)60−−=||4k −是关于x 的一元一次方程,∴−=k ||41k −≠50且,解得:k =−5.−5故答案为:.【点评】此题主要考查了一元一次方程的定义,正确把握未知数的系数与次数是解题关键.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)320232|23|2(1)−+−−⨯−.【分析】先求绝对值和乘方,再作乘法和加减即可.【解答】解:原式812(1)=−+−⨯−812=−++5=−.【点评】本题考查含乘方的有理数运算,掌握相关的运算法则和公式是解题的关键.18.(6分)解方程:2152163x x +−=−. 【分析】先去分母,再去括号,移项,合并同类项,系数化成1即可.【解答】解:2152163x x +−=−,去分母,得2162(52)x x +=−−, 去括号,得216104x x +=−+,移项,得210641x x +=+−,合并同类项,得129x =,系数化成1,得34x =. 【点评】本题考查了解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.19.(6分)先化简,再求值:,其中,.【分析】直接去括号,再合并同类项,把已知数据代入得出答案.【解答】解:原式2262466m m n m n =+−−+22m n =+,当3m =−,3n =时,原式2(3)23=⨯−+⨯66=−+0=.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.20.(8分)(1)已知有理数,,在数轴上对应的点如图所示,化简:; (2)已知,,求当时,求的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的意义化简,去括号合并即可得到结果;(2)先化简A B −,然后把1x =代入求值.【解答】解:(1)由数轴可得:0a b c <<<,且||||||a c b >>,0b a ∴−>,0a c −<,0c b −>, ||||||b a a c c b −+−−−()()()b a a c c b =−−−−−b a a c c b =−−+−+22a b =−+;(2)A B −322(5)(116)x x x x =−−−+3225116x x x x =−−+−326116x x x =−+−, 当1x =时,原式3216111160=−⨯+⨯−=.【点评】本题考查整式的加减−化简求值、数轴、绝对值,解题的关键是掌握绝对值性质.21.(8分)如图,在长为,宽为的长方形纸板上裁去一个边长为的正方形.(1)求剩余纸板的周长(用含,的代数式表示); (2)当,时,求的值.【分析】(1)根据长方形的周长公式进行解答即可;(2)把3a =,1b =代入求值即可.【解答】解:(1)剩余纸板的周长:222(12)a ab a ab +++−2222224a ab a ab =+++−2422a ab =−+;(2)把3a =,1b =代入得:243231232C =⨯−⨯⨯+=.【点评】本题主要考查了列代数式,整式加减的应用;解题的关键是熟练掌握整式加减混合运算法则,准确计算.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元千克收购,按9.5元千克进行苹果销售,运费及包装费等平均为2.5元千克,则李军该周销售苹果一共收入多少元?【分析】(1)根据表中数据计算即可;(2)根据表中数据计算即可;(3)根据(2)的数据计算即可.【解答】解:(1)13070200+=(千克),答:李军该周销售苹果最多的一天比最少的一天多200千克;(2)20007305070130205011014180⨯+−−+−++=(千克),答:李军该周实际销售苹果的总量是14180千克;(3)14180(9.55 2.5)28360⨯−−=(元),答:李军该周销售苹果一共收入28360元.【点评】本题主要考查正负数的计算,熟练掌握正负数的计算是解题的关键.23.(9分)已知关于的整式,整式,若是常数,且不含的一次项. (1)求的值;(2)若为整数,关于的一元一次方程的解是整数,求的值.【分析】(1)将A ,B 代入3A B −中计算后根据已知条件即可求得a 的值;(2)解方程并进行分类讨论后确定b 的值,然后将a ,b 的值代入5a b +中计算即可.【解答】解:(1)2332A x ax x =+−+,22422B x ax x =+−+,3A B ∴−223(332)(2422)x ax x x ax x =+−+−+−+2239962422x ax x x ax x =+−+−−+− 2(57)4x a x =+−+,3A B −不含x 的一次项,570a ∴−=,解得:75a =; (2)230bx x +−=,整理得:(2)3b x +=,原方程的解为整数,且b 为整数,1b ∴=±或3−或5−,当1b =时,75517185a b +=⨯+=+=;当1b =−时,75517165a b +=⨯−=−=; 当3b =−时,75537345a b +=⨯−=−=;当5b =−时,75557525a b +=⨯−=−=; 综上,5a b +的值为2或4或6或8.【点评】本题考查整式的化简求值及解一元一次方程,结合已知条件确定a ,b 的值是解题的关键.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = 1 ,a = ,b = ;(2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.【分析】(1)根据题干信息得出12a b =,21a b =,先方程20x m −=的解为12,求出1m =,即可得出答案;(2)先求出方程30x k +=的解为:3k x =−,在求出方程30x k +=的“美美与共”方程30kx +=的解为3x k=−,根据3k −和3k −都为整数,求出结果即可; (3)先求出方程12(21)x x −=−的解为:13x =,得出方程0ax b +=的解为13b x a =−=−,再求出方程0ax b +=的“美美与共”方程为0bx a +=,求出方程0bx a +=的解为:3a x b =−=−. 【解答】解:(1)21221||()0a b a b −+−=,120a b ∴−=,210a b −=,解得:12a b =,21a b =, 方程20x m −=的解为12,∴1202m ⨯−=,解得:1m =, ∴方程20x m −=与0ax b +=互为“美美与共”方程,2b ∴=,m a −=,1a ∴=−, 故答案为:1;1−;2;(2)存在;方程30x k +=的解为:3k x =−, 方程30x k +=的“美美与共”方程为:30kx +=,且其解为3x k=−, 关于x 的方程30x k +=与其“美美与共”方程的解都是整数, ∴3k −和3k−都为整数,3k ∴=±; (3)方程12(21)x x −=−的解为:13x =, 方程12(21)x x −=−的解也是方程0ax b +=的解,∴方程0ax b +=的解为13b x a =−=, 方程0ax b +=的“美美与共”方程为0bx a +=,∴方程0bx a +=的解为:3a x b=−=. 即方程0ax b +=的“美美与共”方程的解为3x =. 【点评】本题主要考查了方程的解,解一元一次方程,解题的关键是熟练掌握解方程的一般步骤准确计算.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t 秒,甲班的A 同学在数轴上位置C 拿到最后一棒接力棒时,记为0t =,此时乙班的B 同学已经位于数轴上数10的位置,A 同学以每秒8米向左运动,B 同学以每秒5米向左运动,两位同学到达D 点立即停止运动.(1)当0t =时,A 、B 同学相距 15 米;当1t =时,A 、B 同学在数轴上所表示的数为 、 .(2)①若t 秒后A 同学恰好追上B 同学,求t ;②当A 同学到达终点D 后,B 同学还要经过多少秒到达D 点.③分别取线段AC 、BD 中点为E 、F ,若在点A 、B 运动期间,4mEF nDA −始终保持不变(其中m ,n 为常数),求m n的值. 【分析】(1)根据数轴上两点间距离公式进行解答即可;(2)①根据t 秒后A 恰好追上B 时,A 同学的路程比B 同学的路程多15列方程求解即可; ②先求出A 到达D 所需要的时间,再求出B 到达D 所需要的时间,然后两个时间相减即可; ③分别用t 表示出E 、F 在数轴表示的数,然后求出线段653||2t EF −=,508DA t =−,进而求出6532t EF −=,然后代入4mEF nDA −并化简得出4(86)13050mEF nDA n m t m n −=−+−,根据4mEF nDA −为定值(其中m ,n 为常数)得出860n m −=,即可求解.【解答】解:(1)当0t =时,A 同学所在位置表示的数为25,B 表示的数为10, ∴此时A 、B 同学相距251015−=;当1t =时,A 同学在数轴上所表示的数为251817−⨯=,B 同学在数轴上所表示的数为10155−⨯=;故答案为:15;17;5;(2)解:①根据题意,得852510t t −=−,解得5t =; ②10(25)25(25)0.7558−−−−−=(秒), 答:当A 同学到达终点D 后,B 同学还要经过0.75秒到达D 点;③A 在数轴上所表示的数为258t −,B 在数轴上所表示的数为105t −,故258(25)508DA t t =−−−=−,E 在数轴上所表示的数为(258)252542t t −+=−, F 在数轴上所表示的数为(105)(25)15522t t −+−−−=, 线段长155653|254()|||22t t EF t −−−=−−=, 当B 同学运动到D 点时停止运动,所以总运动时间为10(25)75−−=(秒), ∴65302t −>,则6532t EF −=, 4mEF nDA ∴−,2(653)(508)m t n t =−−−(86)13050n m t m n =−+−,由于4mEF nDA −为定值,故860n m −=,解得43m n =. 【点评】本题主要考查的是数轴上两点之间的距离,一元一次方程的应用,熟练的利用方程思想解决数轴上的动点问题是解题的关键.。
广东省深圳市深圳实验学校初中部2024-2025学年第一学期七年级期中考试数学试卷
2024实验初中部期中数学卷一、选择题(每题3分)1. 如果a与-2024互为相反数, 那么a的值是( )A. -2024B.12024C.−12024D. 20242. 如图是某几何体的三视图,该几何体是( )A. 长方体B. 三棱锥C. 三棱柱D. 正方体3. 将下列各选项中的平面图形绕轴旋转一周,可得到图中所示的立体图形的是( )4. 今年6月,我国嫦娥六号探测器准确着陆于预定区域,实现了世界首次月球背面采样返回之旅,月球距离地球的平均距离为384000千米,数据384000用科学记数法表示为( )A.3.84×10⁶B.3.84×10⁵C.3.84×10⁴D.3.84×10³5. 下列运算错误的是( )A. -2+2=0B. 2-(+2)=0C.12−(−12)=1 D. (-5)×|-4|=206. 如图所示的A、B、C、D四个位置的某个正方形与实线部分的五个正方形组成的图形中不能拼成正方体的是位置( )A. A处B. B处C. C处D. D处7. 用一个平面截下列几何体,截面可能是三角形的是( )①正方体; ②球体; ③圆柱; ④圆锥A. ①B. ①②C. ①④D. ①③8. 下列结论: ①-2⁴的底数是-2;②若有理数a, b互为相反数, 那么a+b=0; ③正整数、负整数统称为整数;④若a为有理数,则a²+1不可能是负数; ⑤式子|a+2|+6的最大值是6:⑥在数轴上,一个数对应的点离原点越远,这个数越小. 其中正确的个数有( )A. 2个B. 3个C. 4个D. 5个9. 如图是一个正方体纸盒的外表面展开图,则这个正方体是( )10. 如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2024将与圆周上的数字( )重合.A. 3B. 0C. 1D. 2二、填空题 (每题3分)11、比较大小:−56()−6712、已知(x−1)²+|y+2|=0,z是最小的正整数,则x+2y+3z的值为13. 把数轴上的点A移动3个单位,恰好与表示-10的点重合,则点A 表示的数为 .14. 某立体图形是由相同的正方体拼成,该立体图形的三视图如图所示,则正方体共有个.15. 若x是不等于 1 的实数,我们把11−x 称为x的差倒数,如2 的差倒数为11−2=−1;−1的差倒数为11−(−1)=12.现知道x1=−13,x2是x₁的差倒数, x₃是x₂的差倒数, x₄是x₃的差倒数, ……, 以此类推. 则x1⋅x2⋅x3 …… x2024=.三、解答题(55分)16、计算(12分)①(-8)-(-15)+(-9)-(-12) ②−14+(−2)÷(−13)−|−9|③(−54)÷34×43÷(−32)④15−(+556)−(+337)+(−216)−(+647)17.(6分)有理数a,b,c表示的点在数轴上的位置如图所示:(1)|a|a +|b|b+|ab|ab的值为 .(2) 化简|a+c|−|c−b|−2|b+a|.18.(6分)上午出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下 (单位:千米) :+15,−4,+13,−10,−12,+3,−13,−17.(1) 最后一名老师送到目的地时,小王距出车地点的距离是多少?(2) 若汽车耗油量为0.4升/千米,这天上午汽车共耗油多少升?19. (6分) 用10个相同的小立方块搭成几何体. 从上面看到的几何体的形状图如图1所示. 其中小正方形中的数字表示在该位置的小立方块的个数.(1) 请在图2中画出从正面和左面看到的这个几何体的形状图;(2)如果现在你还有一些大小相同的小立方块,要求保持从正面和左面看到的形状图都不变,最多可以再添加个小立方块.20.(8分)观察下列两个等式: 2−13=2×13+1,5−23=5×23+1给出定义如下:我们称使等式a-b= ab+1成立的一对有理数“a,b”为“共生有理数对”,记为(a ,b),如:数对 (2,13),(5,23)都是“共生有理数对”.(1) 通过计算判断数对(1,2)是不是“共生有理数对”;(2)若(m,n)是“共生有理数对”, 则(-n,-m) “共生有理数对”(填“是”或“不是” );(3) 如果(m,n)是“共生有理数对”, 且m-n=4, 求(-5)mn的值.21. 某班综合实践小组开展“制作长方体形纸盒”的实践活动.【知识准备】(1) 如图①~⑥图形中,是正方体的表面展开图的有 (只填写序号).【制作纸盒】(2)综合实践小组利用边长为20cm 的正方形纸板,按以上两种方式制作长方体形盒子. 如图⑦,先在纸板四角剪去四个同样大小且边长为3cm 的小正方形,再沿虚线折合起来,可制作一个无盖长方体形盒子.如图⑧,先在纸板四角剪去两个同样大小边长为3cm 的小正方形和两个同样大小的小长方形,再沿虚线折合起来,可制作一个有盖的长方体形盒子. 则制作成的有盖盒子的体积是无盖盒子体积的 .【拓展探究】(3)若有盖长方体形盒子的长、宽、高分别为2.5,2,1.5,将它的表面沿某些棱剪开,展成一个平面图形.①请直接写出你剪开条棱;②当该长方体形盒子表面展开图的外围的周长最小时,求此时该长方体形盒子表面展开图的外围的最小周长.22. 已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2 (单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a,慢车头C在数轴上表示的数是b. 若快车AB以 6 个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以 2 个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b−16)²=0.(1) 求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确? 若正确,求出这个时间及定值;若不正确,请说明理由.。
武汉市东西湖区2024-2025学年度上学期期中考试七年级数学试卷
武汉市东西湖区2024-2025学年度上学期期中考试七年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)下列各题中有且只有一个正确答案,请在答题卡上将正确答案的标号抹黑.1.若水位升高5米记作+5米,则水位下降6米记作( )A.-6米B.-8米C.+6米D.6米2.一个数的相反数是它本身,则这个数( )A.0B.1C.-1D.不存在3.(-3)8的底数是( )A.3B.8C.-3D.-84.单项式-4a2b4的系数和次数分别是( )A.-4和6B.6和-4C.-4和2D.6和45.下列各式中正确的是( )A.-42=16B.(-4)2=16C.|-4|=-4D.|-(-4)|=-46.用代数式表示“a的2倍与b的差的平方”,正确的是( )A.2(a-b)2B.2a-b2C.(2a-b)2D.(a-2b)27.下列整式中,不是同类项的是( )A.m2n与-nm2B.1与-2C.3xy2和−13x2y D.13a2b与13b2a8.下列各对相关联的量中,不成反比例关系的是( )A.车间计划加工800个零件,加工时间与每天加工的零件个数B.社团共有50名学生,按各组人数相等的要求分组,组数与每组的人数C.圆柱的体积为6m3,圆柱的底面积与高D.计划用100元购买苹果和香蕉两种水果,购买苹果的金额与购买香蕉的金额9.若x2=9,|-y|=4,且x>y,则x+y的值是( )A.-1B.1C.-1或7D.-1或-710.图1是我国古代传说中的“洛书”,图2是洛书的数字表示.相传,大禹时,洛阳西洛宁县洛河中浮出神龟,背驮“洛书”,献给大禹.大禹依此治水成功,遂划天下为九州.又依此定九章大法,治理社会,流传下来收入《尚书》中,名《洪范》.《易·系辞上》说:“河出图,洛出书,圣人则之“.洛书是一个三阶幻方,就是将已知的9个数填入3×3的方格中,使每一横行、每一竖列以及两条斜对角线上的数字之和都相等.图3中:若A=a,B=2a-1,C=9a+7,整式F是( )A.-4a+5B.-4a-5C.-5a-4D.-5a+4二、填空题(共6小题,每小题3分,共18分)11.-2的相反数是________,倒数是__________,绝对值是__________.12.2024年6月2日6时23分,“嫦娥六号”着陆器在月球背面预定着陆区域成功着陆.月球与地球之间的距离约为380000千米,将380000用科学记数法表示为__________.13.比较大小:−56−−67.14.德国数学家莱布尼茨是世界上第一个提出二进制记数法的人.计算机和依赖计算机设备里都使用二进制,二进制数只使用数字0,1,计数的进位方法是“途二进一”,如,二进制数1101记为(1101),(1101)通过式子1×23+1×22+0×2+1可以转换为十进制数13,仿上面的转换,将二进制数(100111)转换为十进制数是______.15.在新年联欢会上,小明和小亮表演了一个扑克牌游戏:小明背对着小亮,让小亮把一副扑克牌按下列四个步骤操作:第一步,把部分扑克牌分发为左、中、右三堆,每堆不少于2张牌,且各堆牌的张数相同;第二步,从左边一堆中拿出两张,放入中间一堆;第三步,从右边一堆中拿出一张,放入中间一堆;第四步,从中间一堆中拿出与左边一堆张数相等的牌放入左边一堆.这时小明准确说出了中间一堆牌现有的张数,这个张数是__________.16.有下列说法:①若单项式2a3b(m+1)与-3anb3是同类项,则(-m)n=-8.②已知a,b,c是不为0的有理数且a<0,abc<0,则|a|a +|b|b+|c|c−3的值为-2或-6.③已知有理数a,b满足ab≠0,且|a-b|=4a-3b,则ab 的值为23.④若|a+3|=-3-a,|b-2|=b-2,则化简|b+3|-|a-2|的结果为a+b+1.其中正确的说法有_________.(请填写序号)三、解答题(共6小题,共72分)17.(本题满分8分)计算:(1)16+(-25)+24+(-35)(2)-12022×[2-(-)2]+3÷(3/4)18.(本题满分8分)先化简,再求值:x2-5xy-3x2-2(1-2xy-x2),其中x=−19,y=92.19.(本题满分8分)已知a,b互为相反数,c,d互为倒数,m是绝对值最小的数,且(x-2)2+|y-4|=0.求3(a+b)+6cd-5xy+m的值.20.(本题满分8分)如图是某居民小区的一块长为a米,宽为2b米的长方形空地为了美化环境,准备在这个长方形空地的四个顶点处修建一个半径为b米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花的费用为每平方米100元,种草的费用为每平方米50元.(1)求美化这块空地共需多少元?(用含有a,b,π的式子表示)(2)当a=7,b=2,π取3时,美化这块空地共需多少元?21.(本题满分8分)有理数a ,b ,c 在数轴上的位置如图所示.(1)用“>”“<”或“=”填空:a+b_______0,c-a______0,b+2______0.(2)化简:3|a+b|-2|c-a|-|b+2|.22.(本题满分10分)出租车司机刘师傅某天上午从A 地出发,在东西方向的公路上行驶营运,如表是每次行驶的里程(单位:千米)(规定向东走为正,向西走为负;×表示空载,〇表示载有乘客,且乘客都不相同).(1)刘师傅走完第6次里程后,他在A 地的什么方向?离A 地有多少千米?(2)已知出租车每千米耗油约0.08升,刘师傅开始营运前油箱里有8升油,若少于3升,则需要加油,请通过计算说明刘师傅这天上午中途是否可以不加油;(3)已知载客时3千米以内收费10元,超过3千米后每千米收费1.8元,问刘师傅这天上午走完6次里程后的营业额为多少元?次数123456里程-3-15+16-1+5-12载客×○O ×O O23.(本题满分10分)观察下面有规律排列的三行数:第一行数:-2,4,-8,16,-32,64,…,第二行数:1-3,3,-9,15,-33,63,…,第三行数:6,|-6,18,|-30,66,-126,…(1)第一行数中,第7个数是_____,第二行数中,第7个数是_____,第三行数中,第7个数是_____;(2)取每行数的第2024个数,计算这三个数的和是多少?(3)如图,在第二行、第三行数中,用两个长方形组成“阶梯形”方框,框住4个数,左右移动“阶梯形”方框,是否存在框住的4个数的和为-5118,若存在,求这四个数,若不存在,请说明理由.24.(本题满分12分)[阅读材料]在数轴上点A表示的数为a,B点表示的数为b,则点A到点B的距离记为AB,若a>b,线段AB的长度可以表示为AB=a-b;若a<b,线段AB的长度可以表示为AB=b-a.[问题探究](1)如图,点A在数轴上表示的数是8,点B在数轴上表示的数是-10,则AB=_____;(2)在(1)的条件下,动点P从点A出发,以每秒2个单位长度的速度沿数轴匀速向右运动;同时动点O从点B出发,以每秒4个单位长度的速度沿数轴匀速向右运动,设P,Q两点的运动时间为t秒,当PQ=10时,求t的值;(3)在(1)的条件下,动点M从点A出发,以每秒2个单位长度的速度向点B匀速运动;同时点N从点B出发,以每秒3个单位长度的速度向点A运动.当点M到达点B后,立即以原速返回,到达点A停止运动,当点N到达点A后,立即速度变为原速的一半返回,到达点B停止运动,请问:当点M运动时间为多少秒时,MN=7.。
2024年下学期期中考试七年级数学试卷(问卷)
2024年下学期期中考试七年级数学试卷(问卷)(考试时间120分钟满分120分)一、选择题(每小题3分,共30分)1.-2相反数和绝对值分别是( )A . -2,-2B .2,-2C .-2,2D . 2,22.2024年10月30日凌晨,神州十九号载人飞船在酒泉卫星发射中心点火发射.若火箭发射点前5秒记为秒,那么火箭发射点火后10秒应记为( )A .秒B .秒C .秒D .秒3.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是人一年的口粮.将用科学记数法表示为( )A . B .C .D .4.式子,,,,中,单项式有( )A .1个B .2个C .3个D . 4个5.下列变形正确的是( )A .B .C .D .6.将 按从小到大的顺序排列,正确的是( )A .B .C .D .7.如图,若数轴上的两点,表示的数分别为a ,b ,则下列结论正确的是( )A .B .C .D .8.下列说法中正确的有( )①一个数前面加上“﹣”号就是负数;②非负数就是正数;③0既不是正数,也不是负数;④正数和负数统称为有理数;⑤正整数与负整数统称为整数;⑥正分数与负分数统称为分数;⑦0是最小的整数;⑧最大的负数是.A .5个B .4个C .3个D .2个5-10+5-5+10-21000000021000000092.110⨯90.2110⨯82.110⨯72.110⨯2a +25b 2x 13x +8m 5(3)35+-=+8(5)9(5)89+-+=-++[6(3)]5[6(5)]3+-+=+-+1212(2)(2)3333⎛⎫⎛⎫+-++=+++ ⎪ ⎪⎝⎭⎝⎭()22313333----,,,()22313333-<-<-<-()23213333-<-<-<-()22313333-<-<-<-()22313333-<-<-<-A B 0a b ->0ab-<21a b +>-0ab >1-9. 当a <0时,下列等式①a 2023<0;②a 2023=-(-a )2023;③a 2024=(-a )2024;④a 2023=-a 2023中成立的有( )A .4个B .3个C .2个D .1个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2 023个图中共有正方形的个数为 ( )A .6067B .6061C .2024D .2023二、填空题(每小题3分,共24分)11.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款元.12.的次数是.13.把多项式按字母的降幂排列: .14.若,则.15.若单项式与单项式是同类项,则它们的和为.16.已知a 、b 互为相反数,c 、d 互为倒数,的绝对值是2024,则的值为.17.若多项式8x 2-3x +5与多项式x 3+mx 2-5x +7相减后,结果中不含x 2项,则常数m 的值是 .18.下列说法中,正确的是 .(请写出正确的序号)①若,则;②2-|x -2024|的最大值为2;③若,则是负数;④三点在数轴上对应的数分别是-2、x 、6,若相邻两点的距离相等,则;⑤若代数式的值与无关,则该代数式值为2024;⑥若,则的值为1.三、解答题(共66分)2235bc π-235632x x y x --+x |4||1|0a b -++=a b =32m x y 15n xy +-m 2321a bm cd m ++-+11a a=-0a <a b >()()a b a b +-A B C 、、2x =29312016x x x +-+-+x 0,0a b c abc ++=>b c a c a ba b c+++++19.(4分)把下列各数填在相应的集合里:,正数集合:{ }负数集合:{ }整数集合:{ }分数集合:{}20.(每小题4分,共8分)计算:(1)(2) 21.(8分)已知多项式.(1) 求;(2) 如果A + 2B + C = 0,求多项式C .22.(8分)在某次抗洪抢险中,人民解放军驾驶加满油的冲锋舟,沿着东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(向东记作正数,向西记作负数,单位:):+14,-9,+8,-7,13,-6,+12,-5.(1) 请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2) 若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?23. (8分)按照“双减”政策,为丰富课后托管服务内容,学校准备订购一批篮球和跳绳. 经过市场调查后发现篮球每个定价120元,跳绳每条定价20元.某体育用品商店提供A 、B 两种优惠方案:A 方案:买一个篮球送一条跳绳;B 方案:篮球和跳绳都按定价的付款.已知要购买篮球50个,跳绳x 条().(1) 若按A 方案购买,一共需付款 元;(用含x 的代数式表示),若按B 方案购买,一共需付款元;(用含x 的代数式表示)(2) 当时,请通过计算说明此时用哪种方案购买较为合算?(3) 当时,你能给出一种更为省钱的购买方案吗?请写出你的购买方案,并计算需付款多少元?6133,2,5.6,, 3.14,9,0,,475-------()12342637⎛⎫-+⨯- ⎪⎝⎭()24110.5124⎡⎤--÷⨯+-⎣⎦22324,23=-+-=--+A x x y xy B x x y xy 23A B -km 90%50x >150x =150x =24.(10分)已知有理数满足互为相反数,,.(1) 若,请在数轴上表示出有理数.(2) 若,用“”或“”填空:______0;______0;______0.(3) 若,化简式子:.25.(10分)观察下列各式:,,.(1) 猜想:______;(2) 用你发现的规律计算:;(3) 拓展:计算: .26.(10分)阅读材料∶我们知道,,类似地,我们把看成一个整体,则.“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1) 把 看成一个整体,化简 .(2) 已知 求的值.(3) 若,求代数式 的值。
2023-2024学年全国初中七年级上数学人教版期中试卷(含答案解析)
20232024学年全国初中七年级上数学人教版期中试卷一、选择题(每题2分,共20分)1.下列数中,哪个是整数?A. 3.14B. 5C. 2/3D. 0.252.一个等边三角形的每个内角是多少度?A. 60°B. 90°C. 120°D. 180°3.下列哪个是方程?A. 3x + 5 = 7B. x + y = 5C. 2x 3yD. 4x + 2y = 64.下列哪个数是负数?A. 0B. 3C. 5D. 25.一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 12B. 16C. 24D. 326.下列哪个数是质数?A. 4B. 6C. 7D. 97.下列哪个数是分数?A. 0B. 3C. 5/7D. 88.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?A. 24B. 30C. 32D. 349.下列哪个数是偶数?A. 3B. 5C. 8D. 910.一个正方形的边长是5厘米,它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、填空题(每题2分,共20分)1.一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?2.一个长方形的长是12厘米,宽是6厘米,它的面积是多少平方厘米?3.一个等腰三角形的底边长是10厘米,腰长是12厘米,它的周长是多少厘米?4.一个正方形的边长是8厘米,它的面积是多少平方厘米?5.一个等差数列的前三项分别是3,7,11,那么它的第四项是多少?6.一个长方形的长是15厘米,宽是5厘米,它的面积是多少平方厘米?7.一个等腰三角形的底边长是8厘米,腰长是10厘米,它的周长是多少厘米?8.一个正方形的边长是7厘米,它的面积是多少平方厘米?9.一个等差数列的前三项分别是1,5,9,那么它的第四项是多少?10.一个长方形的长是10厘米,宽是4厘米,它的面积是多少平方厘米?三、解答题(每题10分,共50分)1.解方程:2x 3 = 72.一个长方形的长是12厘米,宽是5厘米,求它的面积。
七年级期中考试数学试卷及答案
ACDB中考试 数学试卷一、选择题(3×10=30)1.在下图中, ∠1,∠2是对顶角的图形是( )2.下列图中,哪个可以通过左边图形平移得到( )3.如图, 不能推出a ∥b 的条件是.. )A.∠1=∠3 B 、∠2=∠4C.∠2=∠3 D 、∠2+∠3=1800 4.下列语句不是命题的是( )A. 明天有可能下雨B.同位角相等C.∠A 是锐角D. 中国是世界上人口最多的国家 5.下列长度的三条线段能组成三角形的是( )A、1, 2, 3 B、1, 7, 6 C、2, 3, 6 D.6, 8, 106.点C在轴的下方, 轴的右侧, 距离轴3个单位长度, 距离轴5个单位长度, 则点C的坐标为( ) A、(-3, 5) B、(3, -5) C、(5, -3) D、(-5, 3)7.一辆汽车在笔直的公路上行使, 两次拐弯后, 仍在原来的方向上平行前进, 那么两次拐弯的角度是( )A.第一次右拐50°, 第二次左拐130°B.第一次左拐50°, 第二次右拐50°C.第一次左拐50°, 第二次左拐130°D.第一次右拐50°, 第二次右拐50°8.如图,能表示点到直线(或线段)距离的线段有.. ) A. 2条 B.3条 C.4条 D.5条9.如图两条非平行的直线AB ,CD 被第三条直线EF.截,交点为PQ ,那么这条直线将所在平面分成..)A. 5个部分B.6个部分C.7个部分D. 8个部分 10.以下叙述正确的有. )①对顶角相等 ②同位角相等 ③两直角相等 ④邻补角相等⑤有且只有一条直线垂直于已知直线 ⑥三角形的中线把原三角形分 成面积相等的两个三角形A 2121B 21C 21D4 3 21 c b a 第3题A、2个 B、3个 C、4个 D、5个 二、填空题(3×10=30)11.如图直线AB、CD、EF相交于点O, ∠AOC的邻补角......________.若∠AOC=500,则∠COB.....0 12.剧院里5排2号可以用(5,2)表示,则7排4号..... 表示.13.两条平行线被第三条直线所截.如果同旁内角之比为1:3,则这两个角分别为________和________.14.两个角的两边互相平行, 其中一个角30°, 则是另一个角的度数....... 15.已知, xy ﹤0, 则点P在坐标平面的位置是第________象限 16.若直线a ⊥b,a ∥c,则c___b.17.一个等腰三角形的两条边长分别为8㎝和3㎝,那么它的周长为___________cm 18.点A距离每个坐标轴都是4个单位长度, 则点A的坐标为__________.19.如图, 天地广告公司为某商品设计的商品图案, 图中阴影部分是彩色, 若每个小长方形的面积都是1, 则彩色的面积为 。
七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试【含答案】
22.小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140 个,平均每天
生产 20 个,但由于种种原因,实际每天生产量与计划量相比有出入,下表是小明妈妈某周
的生产情况(超 产记为正、减产记为负):
星期 一 二 三 四 五 六 日
增减产值 +10 -12 -4 +8 -1 +6 0 (1)根据记录的数据求出小明妈妈星期三生产玩具的个数; (2)根据记录的数据求小明妈妈本周实际生产玩具多少个; (3)该厂实行“每周计件工资制”,每生产一个玩具可得工资 5 元,若超额完成任务,则超过部 分每个另奖 3 元;少生产一个则倒扣 3 元,那么小明妈妈这一周的工资总额是多少元? 23.已知有理数 a,b,c 在数轴上对应点的位置如图所示:
2024-2025 学年七年级数学上学期期中模拟卷
注意事项:
(考试时间:120 分钟 试卷满分:120 分)
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上. 2.回答选择题时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案 标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上
D. - 2m2n 的系数是 - 2
5
5
6.已知有理数 a,b 在数轴上的位置如图所示,则下列关系不正确的是( )
A. a + b < 0
B. a + b > 0
C. ab < 0
D. a - b < 0
试卷第 1 页,共 7 页
7.下列去括号正确的是( )
A. x - 4 y - 2 = x - 4 y - 2 C. x + y - 3 = x + y - 3
七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]
2024-2025学年七年级数学上学期期中模拟试卷(考试时间:120分钟,试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:华东师大版2024七年级上册第1章有理数~第2章整式及其加减.5.难度系数:0.68.第一部分(选择题 共30分)一、选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2024的相反数是( )A .2021B .2024-C .12024D .12024-2.下列四个式子中,计算结果最小的是( )A .2(32)--B .2(3)(2)-´-C .223(2)-¸-D .2332--3.下面合并同类项正确的是( )A . 235a b ab +=B .242pq pq pq -=-C .3343m m -=D .222729x y x y x y -+=- 4.数轴上表示数m ,n 的点的位置如图所示,则下列结论不正确的是( )A .0m n -<B .11m n -<-C .33m n-<-D .22m n <5.下列说法中正确的是( )A .312x p 的系数是12B .225y x y xy -+的次数是7C .4不是单项式D .2xy -与4yx 是同类项6.按下列图示的程序计算,若开始输入的值为3x =,则最后输出的结果是( )A .6B .21C .115D .2317.若5p =,3q =,且0pq >,则p q +的值为( )A .2B .8-C .2或2-D .8或8-8.一个多项式加上2345a a -+,再减去2262a a -+等于23a -,则这个多项式为( )A .2986a a ---B .2986a a -+-C .2946a a +-D .2986a a --9.0a <,则化简a a a a a a ++-的结果为( )A .2-B .1-C .0D .210.若代数式229(93)x ax y bx x y ++--++值与x y 、无关,则a b -+的值为( )A .0B .1-C .2-D .2第二部分(非选择题 共90分)二、填空题:本题共8小题,每小题3分,共24分.11.单项式243xy 的系数是 .12.用简便方法计算:131319151717-´-´= .13.已知212n x y -与3m x y 是同类项,则m n -= .14.化简:()3321a a ---=éùëû .15.对于有理数,a b ,定义2a b a b =-※,化简式子()()()3x y x y y éù-+-=ëû※※ .16.已知有理数a ,b ,c 在数轴上的位置如图所示,则化简2a c a b c b ++--+的结果是 .17.如果240a b ++-=,则ab 的值为 .18.一名同学在计算3A B +时,误将“3A B +”看成了“3A B -”,求得的结果是2658x x -+,已知2373B x x =++,则3A B +的正确答案为 .三、解答题:本题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)()()()852436-+´---´¸-;(2)()()()2.538419-´´-¸-;(3)12571839618æö-´--+-ç÷èø(4)()21141345éùæö----´¸-ç÷êúèøëû20.先化简,再求值:2211221323a a a a æöæö-+-++ç÷ç÷èøèø,其中5a =-.21.阅读下列材料:计算:1111243412æö¸-+ç÷èø解法一:原式11111111243244241224=¸-¸+¸=;解法二:原式14311212412121224124æö=¸-+=¸=ç÷èø;解法三:原式的倒数为11112143412241224æö-+¸=¸=ç÷èø,故原式14=.(1)上述得出的结果不同,肯定有错误的解法,则解法______是错误的;(2)请你运用合适的方法计算:113224261473æö-¸--+ç÷èø.22.一出租车一天下午2小时内 以鼓楼为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:公里)依先后次序记录如下:9+,3-,5-,4+,8-,6+.(1)该车2小时内最远时在鼓楼什么方向?离鼓楼多远?将最后一名乘客送到目的地,该车在出发地什么方向?离出发地多远?(2)若每公里收费为3元,且每百公里耗油10升,汽油价格每升6元,那么该司机这2小时除去汽油费后收入是多少?(3)司机每天还要向出租车公司上交180元的管理费,若一天按照工作8小时计算,一月安28天算,问该司机辛苦一个月后的收入约为多少元?23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.小马虎做一道数学题“两个多项式A ,B ,已知2236B x x -=+,试求2A B -的值”.小马虎将2A B -看成2A B +,结果答案(计算正确)为2529x x -+.(1)求多项式A ;(2)若多项式21C mx nx =-+,且满足A C -的结果不含2x 项和x 项,求m ,n 的值.25.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是_____;表示2-和1两点之间的距离是_____;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n -.(2)如果12x +=,那么x =______;(3)若34a -=,23b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是______,最小距离是_____.(4)若数轴上表示数a 的点位于3-与5之间,则35a a ++-=_____.(5)当a =_____时,154a a a -+++-的值最小,最小值是_____.1.B【分析】本题主要考查了相反数的定义,根据“只有符号不同的两个数互为相反数”即可解答,熟练掌握其定义是解决此题的关键.【详解】2024的相反数是2024-,故选:B .2.D【分析】本题主要考查有理数的乘方和有理数大小比较.原式各项计算得到结果,即可做出判断.【详解】解:22(32)(5)25--=-=;2(3)(2)(3)412-´-=-´=-;2293(2)944-¸-=-¸=-;23329817--=--=-,91712254-<-<-<.故选:D .3.B【分析】本题考查了合并同类项,系数相加字母部分不变是解题关键.根据合并同类项的法则,可得答案.【详解】A 、不是同类项不能合并,故A 错误;B 、系数相加字母部分不变,242pq pq pq -=-,故B 正确;C 、系数相加字母部分不变,33343m m m -=,故C 错误;D 、系数相加字母部分不变,222725x y x y x y -+=-,故D 错误;故选:B .4.C【分析】本题考查了点在数轴上的位置判断式子的正负,根据m 、n 在数轴上的位置可得m n <,根据不等式的性质逐一判断即可求解,熟练掌握数轴上点的特征和不等式的基本性质是解题的关键.【详解】解:由图得:m n <,A 、0m n -<,则正确,故不符合题意;B 、11m n -<-,则正确,故不符合题意;C 、33m n ->-,则错误,故符合题意;D 、22m n <则正确,故不符合题意.故选:C .5.D【分析】本题考查了同类项、单项式、多项式,根据单项式的定义,同类项的定义,多项式的次数,可得答案,熟记单项式的定义,同类项的定义,多项式的次数是解题关键.【详解】解:A 、312x p 的系数是12π,故选项不符合题意;B 、225y x y xy -+的次数是3,故选项不符合题意;C 、4是单项式,故选项不符合题意;D 、2xy -与4yx 是同类项,说法正确,故选项符合题意;故选:D .6.D【分析】观察图示我们可以得出关系式为:(1)2x x +,因此将x 的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值100>为止,即可得出y 的值.解答本题的关键就是弄清楚题图给出的计算程序.一要注意结果100>才可以输出,二是当<等于100是就是重新计算,且输入的就是这个数.【详解】解:依据题中的计算程序列出算式:由于(1)3(31)622x x +´+==,6100<Q \应该按照计算程序继续计算6(61)212´+=,21100<Q \应该按照计算程序继续计算21(211)2312´+=,\输出结果为231.故选:D .7.D 【分析】本题主要考查了绝对值、有理数乘法运算法则、代数式求值等知识,结合题意确定p q 、的值是解题关键.根据绝对值的性质可知5p =±,3q =±,再根据有理数乘法运算法则可得p q 、同号,即可确定p q 、的值,然后分别代入求值即可.【详解】解:∵5p =,3q =,∴5p =±,3q =±,又∵0pq >,即p q 、同号,∴5p =,3q =或5p =-,3q =-,当5p =,3q =时,538p q +=+=,当5p =-,3q =-时,(5)(3)8p q +=-+-=-,综上所述,p q +的值为8或8-.故选:D .8.B【分析】本题考查整式的加减运算,用23a -加上2262a a -+,再减去2345a a -+,即可得出结果.【详解】解:()2223262345a a a a a -+-+--+2223262345a a a a a =-+-+-+-2263224325a a a a a =++--+-+-2689a a +=--;故选:B .9.B【分析】本题主要考查了绝对值的意义,掌握负数的绝对值等于这个数的相反数是解题的关键.先根据已知条件化简绝对值,然后进行计算即可.【详解】解:∵0a <,∴()()()012a a a aa a a a a a a a a a a+-++=+=+=------.故选:B .10.D【分析】本题主要考查整式的加减运算,熟练掌握运算法则是解题的关键.先对代数式进行化简,根据题意求出a b 、的值,即可得到答案.【详解】解:229(93)x ax y bx x y ++--++22993x ax y bx x y =++-+--,2(1)(1)3b x a x =-++-,由于代数式229(93)x ax y bx x y ++--++值与x y 、无关,故10b -=且10a +=,解得1,1b a ==-,故112a b -+=+=,故选D .11.43【分析】本题考查了单项式的概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.【详解】解:单项式243xy 的系数是43.故答案为:43.12.26-【分析】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.根据乘法分配律计算即可求解.【详解】解:131319151717-´-´()13191517=-´+133417=-´26=-.故答案为:26-.13.1-【分析】本题考查了同类项的定义,根据同类项的定义“字母相同,相同字母的指数也相同”可求出m n ,的值,再代入计算即可求解,掌握同类项的定义是解题的关键.【详解】解:根据题意,32n m ==,,∴231m n -=-=-,14.1a -##1a -+【分析】本题考查了整式的加减.先去括号,再合并同类项,最后得出结果即可.【详解】解:()3321a a éù---ëû()3322a a =--+3322a a =-+-1a =-,故答案为:1a -.15.23x y -##32y x-+【分析】此题考查了整式的加减,利用题中的新定义计算即可求出值,熟练掌握运算法则是解本题的关键.【详解】解:()()()()()()323x y x y y x y x y y éùéù-+-=--+-ëûëû※※※()()33x y y =--※()()233x y y =---26323x y y x y =-+=-.故答案为:23x y -.16.a【分析】本题考查了根据有理数在数轴上的位置判断式子的符号,绝对值化简,整式的加减运算,正确地判断式子的符号化简绝对值是解题的关键.由数轴可知:0c b a <<<,c b >,c a >,进而可得出0a c +<,20a b ->,0c b +<,然后化简绝对值,最后再行进加减运算即可.【详解】解:由数轴可知:0c b a <<<,c b >,c a >,∴0a c +<,20a b ->,0c b +<,∴2a c a b c b++--+()()2a c a b c b =-++-++2a c a b c b=--+-++a =,17.8-【分析】此题考查了有理数的乘法及绝对值,根据绝对值的非负性求出a 与b 的值,即可求出ab 的值,正确理解绝对值的意义,熟练掌握运算法则是解题的关键.【详解】解:∵240a b ++-=,∴20a +=,40b -=,则2a =-,4b =,∴248ab =-´=-故答案为:8-.18.212914x x ++【分析】本题主要考查整式的加减.根据题意列出相应的式子,结合整式的加减的相应的法则进行运算即可.【详解】解:由题意得:23658A B x x -=-+,23658A x x B \=-++,2373B x x =++Q ,223658373A x x x x \=-++++29211x x =++,3A B\+229211373x x x x =+++++212914x x =++.故答案为:212914x x ++.19.(1)20-(2)20-(3)2(4)110-【分析】本题主要考查了有理数的混合计算:(1)先计算乘除法,再计算加减法即可;(2)根据有理数乘除法计算法则求解即可;(3)根据乘法分配律求解即可;(4)按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可.【详解】(1)解:原式()()810126=----¸-8102=---20=-;(2)解:原式()103819=´¸-()102=´-20=-;(3)解:原式()()()12571818181839618æö=-´---´+-´--´ç÷èø64157=+-+2=;(4)解:()21141345éùæö----´¸-ç÷êúèøëû()314145éùæö=----¸-ç÷êúèøëû()21445æö=---¸-ç÷èø()18145=--¸-9110=-+110=-.20.2a -+,7【分析】本题主要考查了整式加减的化简求值,先去括号,然后合并同类项化简,最后代值计算即可.【详解】解:2211221323a a a a æöæö-+-++ç÷ç÷èøèø22423a a a a =--+++2a =-+,当5a =-时,原式()527=--+=.21.(1)一;(2)114-.【分析】(1)根据题意,第一种解法是错误,除法运算没有这样的运算律,不能自己杜撰乱用致错.(2)选择适当且正确的方法解答即可.本题考查了除法的运算,乘法分配律,熟练掌握运算律是解题的关键.【详解】(1)解:根据题意,得第一种解法是错误的,故答案为:一.(2)解:原式的倒数为132216147342æöæö--+¸-ç÷ç÷èøèø()132********æö=--+´-ç÷èø791228=-++-14=-,故原式114=-.22.(1)该车2小时内最远在鼓楼的东方,离鼓楼有9公里,将最后一名乘客送到目的地,该车在鼓楼的东方,离出发点3公里(2)84元(3)4368元【分析】此题考查了有理数加减混合运算的应用,正数与负数,以及绝对值,弄清题意是解本题的关键.(1)将记录的数字相加得到结果,即可做出判断;(2)将记录的数字绝对值相加得到总路程数,算出总收入-汽油费,即可解答;(3)计算出司机的总收入-所交的管理费,即可解答.【详解】(1)解:送完第1名乘客,离出发地(鼓楼)的距离为9公里,第2名:()()936++-=(公里),第3名:()()651++-=(公里),第4名:145+=(公里),第5名:()583+-=-(公里),第6名:363-+=(公里),则,该车2小时内最远在鼓楼的东方,离鼓楼有9公里,将最后一名乘客送到目的地,该车在鼓楼的东方,离出发点3公里;(2)93548635++-+-+++-++=(公里),353105´=(元),1035621100´´=(元),1052184-=(元),答:该司机这2小时除去汽油费后收入是84元.(3)842828180284368¸´´-´=(元)答:该司机辛苦一个月后得收入约为4368元.23.(1)()24ab x -平方米(2)196平方米【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积;(2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.【详解】(1)解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.∴由图可得,阴影部分的面积是2(4)ab x -平方米;(2)解:当20a =,10b =,1x =时,24ab x -2201041=´-´2004=-196=(平方米),即阴影部分的面积是196平方米.24.(1)243+-x x (2)1m =,n =-4【分析】(1)根据题意,按照2A B +的结果为2529x x -+得到等式()222365922x x x A x +-=-++,由加法的含义列式计算即可得到答案;(2)先计算()()2144A C m x n x -=-++-,再根据A C -的结果不含2x 项和x 项建立方程求解即可得到答案.【详解】(1)解:Q 2236B x x -=+,22529A B x x =-++,\()225292236A x x x x =-+--+225294612x x x x =-+-+-243x x =+-;(2)∵243A x x =-+,21C mx nx =-+,∴()22431A C x x mx nx -=+---+22431x x mx nx =+--+-()()2144m x n x =-++-;∵A C -的结果不含2x 项和x 项,∴10m -=,40n +=,解得:1m =,n =-4.【点睛】本题考查的是整式的加减运算的应用,多项式不含某项的含义,掌握整式的加减运算的运算法则是解本题的关键.25.(1)1;3(2)1或3-(3)12;2(4)8(5)1,9【分析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据数轴上两点间的距离,分两种情况即可解答;(3)根据数轴上两点间的距离分别求出a ,b 的值,再分别讨论,即可解答;(4)根据35a a ++-表示数a 的点到3-与5两点的距离的和即可求解;(5)分类讨论,即可解答.【详解】(1)解:由数轴得数轴上表示3和2的两点之间的距离是:321-=;表示2-和1两点之间的距离是:()123--=;故答案:1;3.(2)解:由12x +=得,()12x --=,所以表示x 与1-距离为2,因为与1-距离为2的是1或3-,所以1x =或3x =-.故答案:1或3-.(3)解:由34a -=,23b +=得,34a -=,()23b --=,所以表示a 与3的距离为4,b 与2-的距离为3,,所以7a =或1-,1b =或5-,当7a =,=5b -时,则A 、B 两点间的最大距离是12,当1a =,1b =-时,则A 、B 两点间的最小距离是2,故答案:12,2.(4)解:35a a ++-()35a a --+-=所以表示a 与3-的距离加上a 与5的距离的和,因为表示数a 的点位于3-与5之间,所以583a a +-=+,故答案:8.(5)解:154a a a -+++-()154a a a =-+--+-,所以表示a 与1、5-、4的距离之和,①如图,当表示a 的点在4的右侧时,即4a >,由数轴得:154a a a -+++-()9334a =++-3=a ,所以a >312,所以15412a a a -+++->;②如图,当表示a 的点在1和4的之间时,即14a <<,由数轴得:154a a a -+++-()91a =+-因为10a ->,所以()919a +->,所以1549a a a -+++->;③如图,当表示a 的点在5-和1的之间时,即51a -<<,由数轴得:154a a a -+++-()91a =+-因为10a ->,所以()919a +->,所以1549a a a -+++->;④当表示a 的点在5-或1或4的点上时,即5a =-或1a =或4a =,如图,当1a =时,154369a a a -+++-=+=;如图,当4a =时,1543912a a a -+++-=+=;如图,当5a =-时,1546915a a a -+++-=+=;因为91215<<,所以当表示a 的点在5-或1或4的点上时,仅当1a =时,154a a a -+++-的最小值为9;综上所述:当1a =,154a a a -+++-的最小值为9.故答案: 1,9.【点睛】本题主要考查了绝对值的应用,数轴上用绝对值表示两点之间的距离,理解绝对值表示距离的意义,掌握距离的求法是解题的关键.。
七年级初中数学期中试卷
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-16C. πD. 0.1010010001…2. 下列各数中,无理数是()A. √25B. 0.3333…C. √4D. √-13. 下列各数中,整数是()A. 3.14B. -2C. √2D. 0.1111…4. 下列各数中,负数是()A. -3B. 2C. 0D. √95. 下列各数中,正数是()A. -2B. 0C. 3D. √-46. 下列各数中,偶数是()A. 3B. -2C. 4D. √27. 下列各数中,奇数是()A. -2B. 4C. 3D. √48. 下列各数中,互为相反数的是()A. 2和-2B. 3和0C. -3和3D. 0和√49. 下列各数中,互为倒数的是()A. 2和-2B. 0和2C. 3和1/3D. √2和√210. 下列各数中,同类二次根式是()A. √9和√16B. √9和√25C. √16和√25D. √9和√36二、填空题(每题5分,共25分)11. 一个数的绝对值是3,这个数是______和______。
12. 下列各数的平方根是()A. √4B. √9C. √16D. √2513. 下列各数的立方根是()A. √27B. √64C. √125D. √21614. 下列各数的倒数是()A. 1/2B. 1/3C. 1/4D. 1/515. 下列各数的绝对值是()A. 2B. 3C. 4D. 5三、解答题(每题10分,共40分)16. (1)计算:-5 + 3 - 2(2)计算:(-3) × (-2) × (-1)(3)计算:(2/3) ÷ (4/5)17. (1)将下列各数写成带分数的形式:a. 7.8b. 12.3c. 5.25(2)将下列各数写成假分数的形式:a. 5 1/3b. 7 2/5c. 8 3/418. (1)解方程:2x - 3 = 7(2)解方程:5x + 2 = 3x - 1(3)解方程:2(x + 3) - 3(x - 2) = 1119. (1)计算下列各式的值:a. (3 + 4i) × (2 - 3i)b. (5 - 2i) ÷ (1 + i)(2)化简下列各复数:a. (2 + 3i) + (4 - 5i)b. (1 - 2i) - (3 + 4i)注意:本试卷满分100分,考试时间60分钟。
2024-2025学年初中七年级上学期数学期中考及答案(人教版)
2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−2.在2−、1−、0、1这四个数中,最小的数是( )A.1B.0C.-1D.-23.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C° B.1C° C.17C−° D.1C−°4.水结成冰体积增大111,现有体积为a 水结成冰后体积为( )A 111a B.1211a C.1011a D.1112a 5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×6.李伯家有山羊m 2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1B.1− C.5D.5−8.已知表示有理数a ,b 的点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.29.如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或910.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()的.A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4C.20D.20−12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C.2021D.20202021二、填空题(每题4分,共计24分)13.计算:23−=____________. 14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.15.若()22430||a b ++−-=,则b =___________;a =___________.16.若220230x y −−=,则代数式202424x y −+的值是__________.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____.18.计算:111123344520132014++++=×××× ()三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004−非正数集合:{ …}; 非负数集合:{ …}; 非正整数集合:{ …}; 非负整数集合:{ …}.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 中点D 表示的数.22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c ,d 值:(2)试求代数式()()328b ac d −+−的值.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.24.先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=;的的的(2)若1x a x −++的最小值为4,求a 的值.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− . 请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).2024-2025学年人教版七年级数学上册期中考试检测试卷一、选择题(每题3分,共计36分)1.有关正负数的概念和运算法则的系统论述,记载于我国古代数学名著《九章算术》一书中,书中明确提出“正负数”,这是世界上至今发现的最早详细的记载.如果水位上升5米记作5+米,那么水位下降8米记作( )A.8− B.3C.13D.3−【答案】A 【解析】【分析】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.【详解】解:“正”和“负”相对,所以,如果水位上升5米记作5+米,那么水位下降8米记作8−米. 故选:A .2.在2−、1−、0、1这四个数中,最小的数是( )A 1 B.0C.-1D.-2【答案】D 【解析】【分析】本题考查有理数大小比较法则,熟练掌握此法则是解答此题的关键.由有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,即可判断.【详解】解:由有理数的大小比较法则,可得:2101−<−<<,∴在2−,1−,0,1这四个数中,最小的数是2−.故选:D .3.某市某天的最高气温为8C °,最低气温为9C −°,则最高气温与最低气温的差为( )A.17C ° B.1C° C.17C−° D.1C−°【答案】A 【解析】【分析】本题主要考查的是有理数的减法.用最高气温减去最低气温进行计算即可.【详解】解:()()8917C −−=°..故选:A .4.水结成冰体积增大111,现有体积为a 的水结成冰后体积为( )A.111a B.1211a C.1011a D.1112a 【答案】B 【解析】【分析】本题是基础题型,弄清冰的体积=(1+增长率)×水的体积是解题的关键.体积为a 的水结成冰后体积,冰的体积为1111a +.【详解】解:依题意有水结成冰后体积为11211111a a += .故选:B .5.截至目前中国森林面积达到175000000公顷,森林覆盖率为18.21%,人工林面积居世界首位,其中数字175000000用科学记数法表示为( ) A.717.510× B.81.7510× C.91.7510× D.90.17510×【答案】B 【解析】【分析】本题考查用科学记数法表示较大的数,一般形式为10n a ×,其中110a ≤<,n 可以用整数位数减去1来确定.用科学记数法表示数,一定要注意a 的形式,以及指数n 的确定方法.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:175000000用科学记数法表示为81.7510×. 故选:B .6.李伯家有山羊m 只,绵羊的数量比山羊的2倍多18只,绵羊的数量为( )A.18m + B.18m − C.218m − D.218m +【答案】D 【解析】【分析】本题考查列代数式,根据题意可知:绵羊的只数=山羊只数的2倍+18,根据此解答即可.【详解】∵李伯家有山羊m 只,∴绵羊的数量比山羊的2倍多18只,绵羊的数量为()218m +只,故选:D .7.“△”表示一种运算符号,其意义是:2a b a b =− ,那么13 等于( )A.1 B.1− C.5D.5−【答案】B 【解析】【分析】此题考查了有理数的混合运算,新定义运算的含义,熟练掌握运算法则是解本题的关键.根据新定义运算的运算法则先列式,再计算即可.【详解】解:∵2a b a b =− , ∴13213231=×−=−=− , 故选:B .8.已知表示有理数a ,b 点在数轴上的位置如图所示,则a ba b+的值是()A.2−B.1−C.0D.2【答案】C 【解析】【分析】本题考查了数轴和去绝对值,根据数轴分别判断0a <,0b >,然后去掉绝对值即可,解题的关键是结合数轴判断绝对值符号里面代数式的正负.【详解】由数轴可得,0a <,0b >,∴a b a b+a b a b=+−,110=−+=,故选:C .9. 如果13x +=,5y =,0yx−>,那么y x −的值是()A.2或0B.2−或0C.1−或3D.7−或9【答案】D 【解析】的【分析】本题考查了绝对值的意义,有理数的除法,有理数的减法.先根据绝对值的意义得出2x =或4x =−,5y =±,再根据有理数的除法法则得出x 和y 异号,最后进行分类讨论即可.【详解】解:∵13x +=, ∴13x +=±,解得:2x =或4x =−, ∵5y =, ∴5y =±, ∵0yx−>,∴0yx<,即x 和y 异号, ∴当2x =时5y =−,当4x =−时,5y =, ①当2x =,5y =−时,527y x −=−−=−,②当4x =−,5y =时,()549y x −=−−=,∴y x −的值是7−或9,故选:D .10.用8m 长的铝合金做成一个如图所示的长方形窗框,设长方形窗框的横条长度为m x ,则长方形窗框的面积为()A.()24m x x − B.()283m x x −C.234m 2x x −D.228m 3x x −【答案】C 【解析】【分析】本题考查了列代数式,要注意长方形窗框的横条有3条,观察图形求出长方形窗框的竖条长度是解答本题的关键.根据长方形窗框的横条长度求出长方形窗框的竖条长度,再根据长方形的面积公式计算即可求解.【详解】解:∵长方形窗框的横条长度为m x , ∴长方形窗框的竖条长度为8334m 22x x −=−,∴长方形窗框的面积为:234m 2x x −,故选∶C .11.如果()32a =−−,()33b =−,223c =−,那么a bc +的值为( )A.4− B.4 C.20 D.20−【答案】A 【解析】【分析】本题考查有理数的乘方,有理数的混合运算,求代数式的值,分别求出a 、b 、c 并代入a bc +计算即可.掌握相应的运算法则是解题的关键.【详解】解:∵()328a =−−=,()3327b =−=−, ∴()827481249a bc ×=−+=+=−, ∴a bc +的值为4−. 故选:A .12.小强根据学习“数与式”积累的经验,111111111111122232334344545=−=−=−=−×××× ,,,,,则111111223344520202021+++++××××× 的值为( ).A.2020B. 20212022C. 2021D.20202021【答案】D 【解析】【分析】本题考查了有理数的混合运算,利用拆项法解答即可求解,掌握拆项法是解题的关键.【详解】解:∵111111111111122232334344545=−=−=−=−×××× ,,,,, ∴111111223344520202021+++++×××××1111111111223344520202021=−+−+−+−++− ,112021=−,20202021=,故选:D .二、填空题(每题4分,共计24分)13.计算:23−=____________. 【答案】23【解析】【分析】本题考查求一个数的绝对值,根据负数的绝对值等于它的相反数,即可得出结果.【详解】解:23−=23;故答案为:23.14.对于有理数a b 、,若规定a b a ab ∗=−,则(2)5−∗的值为_______.【答案】12 【解析】根据新定义得到()(2)5225−∗=−−−×,再计算即可.【详解】解:由题意得,()(2)522512−∗=−−−×=,故答案为:12.15.若()22430||a b ++−-=,则b =___________;a =___________.【答案】①.3 ②. 2【解析】【分析】根据有理数的非负性解答即可.本题考查了有理数的非负性,熟练掌握性质是解题的关键.【详解】解:∵()22430||a b ++−-=, ∴20,30a b +=−=-,解得:3,2b a ==.故答案为:3,2.16.若220230x y −−=,则代数式202424x y −+的值是__________.【答案】2022−【解析】【分析】本题考查了代数式求值,整体代入是解题的关键.将202424x y −+变形为()202422x y −−,然后将22023x y −=代入求解即可. 【详解】解:∵220230x y −−=, ∴22023x y −=, 则()2024242024222024202322022x y x y −+=−−=−×=−,故答案为:2022−.17.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内的墨水的体积约占玻璃瓶容积的_____. 【答案】a ab +##a b a+【解析】【分析】本题考查了列代数式,第一个图形中下底面积为未知数,利用第一个图可得墨水的体积,利用第二个图可得空余部分的体积,进而可得玻璃瓶的容积,让求得的墨水的体积除以玻璃瓶容积即可,掌握知识点的应用是解题的关键.【详解】解:设第一个图形中下底面积为S .倒立放置时,空余部分的体积为bS ,正立放置时,有墨水部分的体积是aS ,因此墨水体积约占玻璃瓶容积的as a as bs a b=++,故答案为:a a b+.的18.计算:111123344520132014++++=×××× ()【答案】5031007【解析】【分析】本题主要考查了有理数的混合运算,解答此题关键是找出解题的规律.根据裂项相消的方法把原式化为1111111123344520132014−+−+−++− ,再计算即可.【详解】解:111123344520132014++++×××× 1111111123344520132014=−+−+−++− 1122014=−1007120142014−10062014=5031007=;故答案为5031007.三、解答题(19、20、21每题10分,22-26题每题12分,共计90分,写出必要的解答过程和步骤才给分)19.计算:(1)112712623 −−++−;(2)273132515858 ++−−−−+ .【答案】(1)10 (2)5【解析】【分析】本题主要考查有理数的加减混合运算;(1)先去括号,再把分数通分成分母相同的分数,最后根据有理数的加减混合运算法则即可求解;(2)先去括号,再运用加法结合律把分母相同的分数结合,最后根据有理数的加减混合运算法则即可求解.【小问1详解】 解:112712623−−++−112712623=++−71547666=++−71547666 =++−73=+10=;【小问2详解】 解:273132515858++−−−−+273132515858=−+−237135215588 =+−+94=−5=.20.把下列各数分别填入相应的集合里.1,0.20−,135,325,789−,0,23.13−,0.618,2004− 非正数集合:{ …};非负数集合:{ …};非正整数集合:{ …};非负整数集合:{ …}.【答案】0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0【解析】【分析】本题考查有理数的分类(正数和分数统称为有理数;有理数的分类:按整数、分数的关系分类;按正数、负数与零的关系分类),根据非正数(负数和零)、非负数(正数和零)、非正整数(负整数和零)和非负整数(正整数和零)的意义进行选取即可.准确理解相关概念的意义是解题的关键.【详解】解:非正数集合:{0.20−,789−,0,23.13−,2004−,…};非负数集合:{1,135,325,0,0.618,…};非正整数集合:{789−,0,2004−,…};非负整数集合:{1,325,0,…}.故答案为:0.20−,789−,0,23.13−,2004−;1,135,325,0,0.618;789−,0,2004−;1,325,0.21.如图,在一条数轴上,点O 为原点,点A 、B 、C 表示的数分别是1m +,2m −,94m −.(1)求AC 的长;(用含m 的代数式表示)(2)若5AB =,求BC 的中点D 表示的数.【答案】(1)58m −(2)2−【解析】【分析】本题考查了数轴的知识,代数式,正确认识数轴并理解数轴,能够表示数轴上两点的距离是解题的关键.(1)根据数轴上的两点间的距离公式求解即可;(2)首先由5AB =建立方程求解m ,再求解、B 、C 对应的数即可得到答案.【小问1详解】解: 点A 、C 表示数分别是1m +,94m −,∴()19458AC m m m =+−−=−;【小问2详解】()125AB m m =+−−=,∴()125m m +−−=,解得:3m =,∴2231m −=−=−,949123m −=−=−,∴当5AB =时,B 点表示的数是1−,C 点表示的数是3−,∴BC 的中点D 表示的数是()1322−+−=−. 22.已知:()21102a b −++=,c 是最小的自然数,d 是最大负整数. (1)求a ,b ,c,d 的值:的(2)试求代数式()()328b a c d −+−的值.【答案】(1)11,2a b ==−,0,1c d ==− (2)8−【解析】【分析】本题考查了非负数的性质和求代数式的值,解题关键是根据题意求出字母的值.(1)根据非负数的性质及有理数相关概念求出a 、b 、c 、d 的值即可;(2)将求出的a 、b 、c 、d 的值代入代数式求值即可.【小问1详解】解:()21102a b -++= , 110,02a b ∴-=+=, 11,2a b ∴==-, c 是最小的自然数,d 是最大负整数,0,1c d ∴==-;【小问2详解】 解:11,2a b ==- ,0,1c d ==− ()()328b a c d ∴-+-()32181012⎛⎫⎡⎤ ⎪=⎦⎡⎤⎢⎥⎢⎥⨯--+-- ⎪⎣⎝⎭⎣⎦18118⎛⎫ ⎪=⎪⎡⎤⎢⨯--+ ⎢⎝⎥⎥⎣⎦⎭ 9818⎛⎫ ⎪=⨯-+ ⎪⎝⎭()91=-+8=−.23.已知,如图,某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米.(1)请用代数式表示阴影部分的面积;(2)若长方形广场的长为20米,宽为10米,正方形的边长为1米,求阴影部分的面积.【答案】(1)()24ab x −平方米 (2)196平方米【解析】【分析】(1)根据图形中的数据,可以用含a 、b 、x 的代数式表示出阴影部分的面积; (2)将20a =,10b =,1x =代入(1)中的代数式,即可求得阴影部分的面积.本题考查列代数式、代数式求值,解答本题的关键是明确题意,列出相应的代数式,求出相应的代数式的值.小问1详解】解:∵某长方形广场的四角都有一块边长为x 米的正方形草地,若长方形的长为a 米,宽为b 米. ∴由图可得,阴影部分的面积是2(4)ab x −平方米;【小问2详解】解:当20a =,10b =,1x =时,24ab x −2201041×−×2004−196=(平方米), 即阴影部分的面积是196平方米.24. 先阅读下列解题过程,再解答问题:解方程:32x +=. 解:当30x +≥时,原方程可化为32x +=,解得1x =−;当30x +<时,原方程可化为32x +=−,解得 5.x =−所以原方程的解是1x =−或5x =−.(1)解方程:3150x −−=; (2)若1x a x −++的最小值为4,求a 的值.【答案】(1)2x =或43x =−; (2)3a =或5a =−.【【解析】【分析】本题考查了绝对值方程的解法,数轴上两点间的距离,熟练掌握绝对值的定义是解答本题的关键,对值等于一个正数的数有2个,它们是互为相反数的关系.(1)根据题中所给解法求解即可;(2)根据1x a x −++的最小值为4,得出表示a 的点与表示1−的点的距离为4,求解即可.【小问1详解】 解:3150x −−=, 移项,得315x −=, 当310x −≥,即13x ≥时,原方程可化为:315x −=,解得:2x =, 当310x −<,即13x <时,原方程可化为:315x −=−,解得43x =−. ∴原方程的解是:2x =或43x =−. 【小问2详解】 解:1x a x −++ 的最小值为4,∴表示a 的点与表示1−的点的距离为4,143−+= ,145−−=−,3a ∴=或5a =−.25.随着手机的普及,微信的兴起,许多人做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售,这不刚大学毕业的小明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日与计划量的差值4+3−5−14+8−21+6−(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)本周实际销售总量达到了计划数量没有?(3)若冬季每斤按8元出售,每斤冬枣的运费平均3元,那么小明本周一共收入多少元?【答案】(1)29 (2)达到了(3)3585元【解析】【分析】此题考查了正数与负数,有理数混合运算的应用,熟练掌握运算法则是解本题的关键.(1)根据最大正数和最小负数的差值得出结论即可;(2)根据所有差值的和的正负来判断即可;(3)根据售价﹣运费得出收入即可.【小问1详解】()21829−−=(斤),故答案为:29;【小问2详解】43514821617+−−+−+−=(斤),∴本周实际销售总量达到了计划数量;【小问3详解】()()100717833585×+×−=(元),答:小明本周一共收入3585元.26.阅读材料:求2342020122222++++++ 的值.解:设234201920201222222S =+++++++ ,将等式两边同时乘2,得 ,23452020202122222222S =+++++++将下式减上式,得2021221S S −=−,即 202121S =−, 即 2342020202112222221++++++=− .请你仿照此法计算:(1)23410122222++++++ ;(2)234133333n ++++++ (其中n 为正整数).【答案】(1)123410112222221++++++=− ;(2)()23411133333312n n +++++++=− . 【解析】【分析】本题考查的是探索运算规律题,根据已知材料中的方法,探索出运算规律是解决此题的关键.(1)设23410122222S =++++++ ,两边乘以2后得到关系式,与已知等式相减,变形即可求出所求式子的值;(2)设234133333n S =++++++ ,两边乘以3后得到关系式,与已知等式相减,变形即可求出所求式子的值.【小问1详解】设23410122222S =++++++ ,将等式两边同时乘2,得23410112222222S =++++++ ,将下式减上式,得 11221S S −−,即 1121S =−则123410112222221++++++=−【小问2详解】设 234133333,n S =++++++将等式两边同时乘3,得 23413333333,n n S +=++++++下式减上式,得1331n S S +−=−,即 ()11312n S +−,即 )234113333331n n +++++++=− .。
成都七中初中学校2023—2024学年度上七年级数学期中考试试卷附详细答案
成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.122.北京时间2022年11月21日0点,万众瞩目的卡塔尔世界杯全面打响,据统计在小组赛的赛程中,场均观看直播人数达到了70620000人,则70620000用科学记数法表示为( )A.7.062×104B.70.62×106C.0.7062×108D.7.062×1073.用一个平面去截一个正方体,截面的形状不可能是( )A.梯形B.五边形C.六边形D.七边形4.下列运算正确的是( )A.−5−5=0B.2×(−5)=−10C.(−13)2=−19D.(−2)÷12=−1 5.下列代数式:①a+1;②-3ab 7;③5;④−2a+5b ;⑤a ;⑥1a .其中单项式有( ) A.1个 B.2个 C.3个 D.4个6.已知2a x b 4与−a 2b y-1是同类项,则x y 的值为( )A.6B.−6C.−10D.107.下列变形,错误的是( )A.−(a −b)=−a+bB.−2(a+b)=−2a −2bC.−a −b=−(a −b)D.a −b=−(−a+b)8.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图中有7颗棋子,第③个图中有12颗棋子,…,按此规律,则第⑩个图中棋子的颗数是( )A.84B.99C.103D.122二、填空题(每小题4分,共20分)9.比较大小:−37____−38(填“<”或“>”). 10.如图是一个正方体的平面展开图,若该正方体相对两个面上的数相等,则a+b+c=____.11.多项式x 3−2x 2y 2+3y 2是____次____项式.12.如果4a −9与3a −5互为相反数,那么a 2−a+1的值等于____.13.某种T 形零件尺寸如图所示.用含有x 、y 的代数式表示阴影部分的周长是____.(结果要化简)三、解答题(共48分)14.计算或化简(每小题4分,共20分)(1)(−65)−7−(−3.2)+(−1) (2)(−60)×(34+56−12) (3)−36÷65×56÷(−5) (4)12×|−3|+(−12)2−(−1) (5)−22×[(2−8)÷6]−18÷(−3)215.(6分)已知|a −2|+(b +12)2=0,求a 2b −(3ab 2−a 2b)+2(2ab 2−a 2b)的值. 10题图a 13 -2 1+b c+10.5x ① ② ③ ④16.(6分)如图1,是一个用小正方体所搭几何体从上面看得到的平面图形,正方形中的数字表示在该位置小正方体的个数.请你在如图2方格纸中画出它从正面和从左面看到的平面图形.17.(6分)已知|x |=3,|y|=7.(1)若x y <0,求x +y 的值;(2)若|x −y|=x −y ,求2x +y 的值.18.(10分)杭州亚运会的举办,不仅提升了杭州的国际影响力,也为杭州的旅游业带来了巨大的发展机遇.随着亚运会的到来,杭州每月的游客人数较往年同期有明显增长,已知杭州2023年1月的游客人数为17.0百万人次,接下来7个月的游客人数变化情况如表:注:表中的数据为当月的游客人数相比前一个月游客人数的变化量.(1)杭州2023年4月份的游客人数是多少百万人次?(2)杭州2023年2月到8月,哪个月游客人数最多?最多是多少百万人次?哪个月游客人数最少?最少是多少百万人次?(3)假设杭州市每个月为旅游业建设支出50亿元,2023年前4个月每百万人次的游客能为杭州市旅游业带来收入10亿元,而随着亚运会的临近,5月到8月每百万人次的游客为杭州市旅游业带来的收入提升至20亿元,则2023年1月到8月杭州市34 32 1 图1 图2 从正面看 从左面看旅游业的总利润是多少亿元?B 卷(满分50分)一、填空题(每小题4分,共20分)19.已知a 2−2a=1,则多项式2023−2a 2+4a 的值是______.20.计算12+14+…+12100=______.21.一个小立方块的六个面分别标有字母A 、B 、C 、D 、E 、F ,从三个不同方向看到的情形如图所示,其中A 、B 、C 、D 、E 、F 分别代表数字−4、−2、0、1、2、4,则三个小立方块的下底面所标字母代表的数字的和为______.22.已知n 为正整数,n(n+1)(n+2)的末位数字记为f(n).如n=2时,f(2)=4,则f(1)+f(2)+f(3)+…+f(2023)的值为______.23.对于一个四位正整数M ,如果M 满足各数位上的数字均不为0,它的百位上的数字比千位上的数字大1,个位上的数字比十位上的数字大1,则称M 为“进步数”,如:1245就是一个进步数.对于一个“进步数”M 记为abcd̅̅̅̅̅̅,它的千位数字和百位数字组成的两位数为ab ̅̅̅,十位数字和个位数字组成的两位数为cd̅̅̅,将这两个两位数求和记作t ;它的千位数字和十位数字组成的两位数为ac ̅,它的百位数字和个位数字组成的两位数为bd̅̅̅̅,将这两个两位数求和记作s ,当s −t=36时,M 的最大值与最小值的和为______.二、解答题(共30分)24.(8分)已知A=3a 2−ab+2a+1,B=2a 2+ab −2.(1)若a=3,b=−1,求A −2B 的值.(2)若2A −3B 的值与a 无关,求b 的值.A B FA DE B D E25.(10分)请利用“数形结合”的数学方法解决下列问题.(1)有理数a 、b 、c 在数轴上的位置如图,化简:|b −c|−|a+b|+|c −a|.(2)请你找出所有符合条件的整数x ,使得|2+x |+|x −5|=11.(3)若m 、n 为非负整数,且(|m −2|+|m −6|)(|n −1|+|n+2|)=24,求m 、n 的值.26.(12分)如图,在数轴上点A 表示数a ,点B 表示b ,点C 表示数c.单项式−6x b y 次数是3,a 是这个单项式的系数,|c+1|=9.(1)a=______,b=______,c=________.(2)若点P 从点A 出发,以每秒2个单位的速度沿数轴向右运动,点Q 从点C 出发,以每秒1个单位的速度沿数轴向左运动.点P 与点Q 同时出发,经过多少秒后,线段PB 的中点M 到点Q 的距离为6.(3)在(2)的条件下,当点P 与点Q 相遇后,两点都立即掉头,速度不变,此时点N 开始从点B 出发,以每秒1个单位的速度向左运动,点P 运动的时间为t 秒,当PQ=4PN 时,求点P 在数轴上对应的数.成都七中初中学校2023—2024学年度上七年级期中质量检测数学(满分150分,120分钟完成)A 卷(共100分)一、选择题(每小题4分,共32分)1.−12的绝对值是( ) A.12 B.2 C.−2 D.12xb1.解:负数的绝对值是正数,两者之和为0,故选A 。
山西省晋中市榆次区2023-2024学年七年级上学期期中考试数学试卷(含解析)
榆次区2023-2024学年第一学期期中学业水平质量监测题(卷)一、选择题(在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 有理数的相反数是()A. B. C. 2 D.答案:C解析:解:的相反数是,故选:C2. 用一个平面去截如图所示的几何体,若截面形状是长方形,则被截几何体不可能是()A. B. C. D.答案:D解析:解:A、正方体的截面可以是长方形,不符合题意;B、棱柱的截面可以是长方形,不符合题意;C、圆柱的横截面或纵截面中有一个为长方形,不符合题意;D、圆锥有一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意.故选:D.3. 中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.公元3世纪,我国数学家刘徽在“正负术”的注文中指出“今两算得失相反,要令正、负以名之.”就是说,对两个得失相反的量,要以正、负加以区别.如果盈利120元记作元,那么亏本80元记作()A. 元B. 元C. 元D. 元答案:A解析:解:∵盈利120元记作元,∴亏本80元记作元,故选:A.4. 小明将“明”“德”“乐”“学”“尚”“美”六个字分别写在某个正方体的表面上,如图是它的一种展开图,则在原正方体中,与“德”字所在面相对的面上的汉字是()A. 乐B. 学C. 尚D. 美答案:B解析:解:由正方体的展开图可知,与“德”字所在面相对的面上的汉字是“学”,故选:B.5. 平遥牛肉是山西省平遥县特产,中国国家地理标志产品.现有4袋平遥原味一品香牛肉,每袋以为标准,超过的克数记为正数,不足的克数记为负数,以下数据是记录结果,其中最接近标准质量的是()A. B. C. D.答案:C解析:解:∵∴记录结果为的这袋实际克数最接近标准克数.故选C.6. 下列计算正确的是()A. B. C. D.答案:D解析:解:A、与不是同类项,所以不能合并,故本选项不合题意;B、,计算错误,故本选项不合题意;C、与不是同类项,不能合并,故本选项不合题意;D、,计算正确,符合题意;故选:D.7. 第19届亚洲运动会于2023年9月23日在杭州奥体中心体育场隆重开幕,杭州奥体中心体育场,又称“大莲花”,总建筑面积约21.6万平方米.数据“21.6万”用科学记数法表示为()A. B. C. D.答案:C解析:解:21.6万,小数点向左移动5位,得,因此21.6万.故选C.8. 下列说法中①棱柱的侧面可以是正方形,也可以是三角形;②棱柱的所有棱长都相等;③长方体、正方体都是四棱柱;④五棱锥共有6个面;⑤六棱柱有8个面,12条棱,12个顶点.正确的有()A. 1个B. 2个C. 3个D. 4个答案:B解析:解:根据棱柱的结构特征:棱柱的各个侧面都是平行四边形,不可能是三角形,故①错误;棱柱的所有侧棱长都相等,故②错误;长方体、正方体都是四棱柱,故③正确;五棱锥共有6个面,故④正确;六棱柱有8个面,18条棱,12个顶点,故⑤错误;所以正确的由2个.故选:B.9. 某商场书包原价为m元,在9月份开学之季,商家开展优惠活动,现售价为元,则下列说法中,符合题意的是()A. 原价减30元后再打8折B. 原价打8折后再减30元C. 原价打2折后再减30元D. 原价减30元后再打2折答案:B解析:解:原价为m元,而则代表在原有的基础之上乘了,即打了8折,代表在原有基础之上减少了30元,∴代表的是原价打8折后再减30元,故选:B.10. 近年来出现了二维码,二维码是一种黑白相间的图形,通常一个二维码有1000个小方格组成,将每个小方格分别涂成黑色或白色从而产生不同的二维码.每天会生成许多二维码,有人也许会问,二维码会有用尽的一天吗?同学们想想将一个二维码的每个小方格任意涂成黑色或白色,则可生成不同的二维码数量是()A. 种B. 种C. 种D. 种答案:D解析:解:由题意得:每个小方格都有种不同的涂法,故个小方格有种涂法.故可生成不同的二维码数量是种故选:D二、填空题11. 比较大小:-3___________-2(填“<”或“>”).答案:<解析:解:∵3>2,∴-3<-2.故答案为:<.12. 流星落下时,在天空留下充满幻想的线,其中蕴含的数学事实是______.答案:点动成线解析:解:流星落下时,在天空留下充满幻想的线,其中蕴含的数学事实是点动成线,故答案为:点动成线.13. 已知单项式与的和是单项式,则______.答案:解析:解:由题意得:,,∴,,故答案为:14. 若,则______.答案:9解析:解:,故答案为:15. “整体思想”是数学中的一种重要思想方法,它广泛应用于数学运算中.例如:已知,,则,利用上述思想方法计算:若,.则______.答案:解析:解:====,∵,,代入得,故答案为:.三、解答题(解答应写出文字说明,证明过程或演算步骤)16. 下面是小宇同学进行有理数运算的过程,请认真阅读并完成相应任务.解:…第一步…第二步…第三步.…第四步任务一:(1)填空:①以上运算步骤中,第一步依据的运算律是______;②第______步开始出现错误,错误的原因是______;任务二:(2)请直接写出正确的计算结果.答案:任务一:①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号;任务二:解析:解:任务一:(1)①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号故答案为:①乘法分配律②二;去括号时,括号前是负号,去括号后,括号内的项没有变号;任务二:原式17. 数学学习小组进行“几何体的拼搭”活动,其中勤学小组的同学用几个大小相同的小立块搭成如图所示的几何体,请同学们认真观察,在相应的网格中画出从正面和上面所看到的几何体的形状图.答案:见解析解析:解:根据题意可得:正面看、从上面看,分别如下图所示:18. 计算:(1)(2)(3)答案:(1)(2)(3)小问1解析:小问2解析:小问3解析:.19. 先化简,再求值.,其中,.答案:;解析:解:.当,时,原式20. “十一”黄金周期间,晋中某景区8天假期中每天游玩的人数变化如下表(用正数表示比前一天多的人数,用负数表示比前一天少的人数):日期29日30日1日2日3日4日5日6日变化/万人(1)若9月28日的游客人数为1万人,则9月30日的游客人数为______万人;(2)与9月28日相比,10月6日的游玩人数是减少了还是增多了?变化了多少?答案:(1)(2)10月6日的游玩人数增加了,增加了万人小问1解析:解:由表格可知:9月30日的游客人数为(万人)故答案为:小问2解析:解:(万人),答:与9月28日相比,10月6日的游玩人数增加了,增加了0.7万人21. 为了全面提高学生的综合素养,启迪学生的数学思维,某校初一年级开展了“数学思维导图”评比活动,设立一、二、三等奖共50人,其中二等奖人数比一等奖人数的2倍多10人.设一等奖的人数为x人.(1)请用含x的代数式表示:二等奖人数是______人,三等奖人数是______人(结果化为最简);(2)若一等奖奖品的单价为18元,二等奖奖品的单价为16元,三等奖奖品的单价为12元,请用含x的代数式表示该校本次购买所有奖品需要的总费用,并将结果化为最简;(3)在(2)基础上,若一等奖的人数为10人,则该校本次购买所有奖品共花费多少元?答案:(1),(2)(3)780元小问1解析:一等奖的人数为人.一、二、三等奖共50人,二等奖人数比一等奖人数的2倍多10人,二等奖有人,三等奖有人,故答案为:,;小问2解析:由题意可得,购买50件奖品所需的总费用为:元,即购买50件奖品所需的总费用为元;小问3解析:当时,,答:该校购买50件奖品共花费780元.22. 请仔细阅读小明的数学日记,并按要求完成相应任务.x年x月x日晴整式的加减我们已经学过整式的加减,知道整式的加减可以归结为合并同类项,而合并同类项实际就是合并同类项的系数.因此,进行整式的加减,关键就是把各同类项的系数进行加减.今天在课外阅读时我又学习了一种新的解决整式加减问题的方法.具体做法如下:如果把两个整式的各同类项对齐,我们就可以像小学列竖式进行加减法一样,来进行整式的加减运算了.怎样把同类项对齐呢?其实,只要将参加运算的整式按同一字母进行降幂排列(按同一字母的指数从大到小的顺序排列),凡缺项则留出空位或添零,然后让常数项对齐(即右对齐)即可.例如:计算时,可以用下列竖式计算:∴.我尝试用上述方法计算:.∴.任务:(1)上述小明同学的尝试过程出现了错误,错误的原因是______;(2)请帮助小明写出正确的尝试过程.答案:(1)列竖式时没有将同类项对齐(2)见解析小问1解析:解:列竖式时没有将同类项对齐;小问2解析:解:;∴.23. 数学家华罗庚说过“数缺形时少直观,形少数时难入微”.数轴帮助我们把数和点对应起来,体现了数形结合思想,借助它可以解决我们数学中的许多问题,请同学们和“创新小组”的同学一起利用数轴进行以下探究活动:(1)如图1,在数轴上点A表示的数是______,点B表示的数是______,A,B两点的距离是______;(2)在数轴上,若将点B移动到距离点A两个单位长度的点C处,则移动方式为______;(3)如图2,小明将刻度尺放在了图1的数轴下面,使刻度尺上的刻度0对齐数轴上的点A,发现此时点B 对应刻度尺上的刻度,点E对应刻度,则数轴上点E表示的数是______.答案:(1);5;8(2)将点B向左移动6个单位长度或向左移动10个单位长度(3)小问1解析:解:由数轴得:点A表示的数是,点B表示的数是5,则A,B两点的距离为:,故答案为:;5;8.小问2解析:将点B向左移动6个单位长度或10个单位长度,故答案为:将点B向左移动6个单位长度或向左移动10个单位长度.小问3解析:由(1)得:,(),则数轴上1个单位长度对应刻度尺为,,点E距离点A两个单位长度,故点E所表示的有理数为:,故答案为:.。
辽宁省盘锦市第一完全中学2024—2025学年上学期七年级期中考试数学试卷
辽宁省盘锦市第一完全中学2024—2025学年上学期七年级期中考试数学试卷一、单选题1.若向东走60米记作60-米,则向西走50米可记作()A .60-米B .60米C .50-米D .50米2.在式子π,2x ,1x ,2ab a +,21x +,0,31m -+中,属于整式的有多少?()A .6个B .5个C .7个D .4个3.列式表示“x 的2倍与y 的差的平方”,正确的是()A .()22x y -B .()22x y -C .22x y -D .()22x y -4.已知32x a b 与2y a b -是同类项,则x y -=()A .1B .1-C .5D .5-5.若()1140mm x +-+=是关于x 的一元一次方程,则m 的值为()A .1±B .1C .1-D .任何实数6.下列说法正确的是()A .用四舍五入法把1.804精确到百分位,得到的近似数是1.8B .多项式2223721a b a b ab -+-+是四次三项式C .单项式225xy -的系数是25-,次数是3D .身高增加2m 和体重减少2kg 是具有相反意义的量7.若a b =,则下列等式变形不正确的是()A .2323a b=B .a b m m=C .2323a b -=-D .2211a bm m =++8.定义新运算“⊗”,规定:2||a b a b ⊗=-,则(2)(1)-⊗-的运算结果为()A .5-B .3-C .5D .39.下面是小芳做的一道运算题,但她不小心把一滴墨水滴在了上面:222221131542222x xy y x xy y x⎛⎫--⎛⎫+ ⎪⎝⎭+---=- ⎪⎝⎭2y +,阴影部分即为墨迹,那么被墨水遮住的一项应是()A .xy+B .xy-C .9xy+D .7xy-10.计算大长方形面积时(如图),下面右边竖式中虚线框这一步计算()A.长方形甲的面积B.长方形乙的面积C.长方形甲和乙的面积差D.长方形甲和乙的面积和二、填空题a-=,则a=.11.若712.2024年1月17日,国家统计局公布的数据显示,2023年全年社会消费品零售总额超47万亿元,达到471495亿元,比上年增长72.%,请将471495亿元用科学记数法表示元.-+=.13.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a b c14.在边长为10米的正方形地里,有纵横两条小路,路宽都为1米,其余地上种草,种草部分面积是平方米.15.你吃过“手拉面”吗?拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条(假设在拉的过程中面条没有断),第一次捏合后,得到2根面条,第二次捏合后,得到4根面条,第三次捏合后,得到8根面条,如图所示,经过n次捏合后,可以拉出根细面条.(用含n的式子表示)三、解答题16.计算(1)()()()()152028137+---+--+;(2)733.584⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;(3)()7511303659612⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦;(4)()2211002333⎡⎤÷-⨯--⎣⎦;(5)()()210020141110.5333⎡⎤---⨯⨯--⎣⎦;(6)()32113823222⎡⎤--÷-+-+÷⨯⎢⎥⎣⎦.17.先化简,再求值:()()2222232233y x x xy x y -+--+,其中12x +与2(1)y -互为相反数.18.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:b c a b c a -++--.19.小刚在做一道题“已知两个多项式A ,B ,计算A B -”时,误将A B -看成A B +,求得的结果是542x mx -++,已知1B mx x =--.(1)求整式A ;(2)若2A B -的值与x 无关,求m 的值.20.怀化市在创建全国文明过程中,建设中建造了一批道路,建设完工之后,将极大的方便当地群众出行.某公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米):10+,9-,7+,15-,3-,11+,6-,8-,5+,6+(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为每千米0.5升,则这次养护共耗油多少升?21.已知某品牌运动鞋每双进价120元,为确定一个合适的销售价格进行了4天的试销,试销情况如表:第1天第2天第3天第4天售价x /(元/双)150200250300销售量y /双40302420(1)用式子表示y 与x 的关系,y 与x 成什么比例关系?(2)若单价定为240元,每天的销售利润为多少?22.【知识呈现】我们可把()()()()52328242x y x y x y x y ---+---中的“2x y -”看成一个字母a ,使这个代数式简化为5384a a a a -+-,“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.在数学中,常常用这样的方法把复杂的问题转化为简单问题.【解决问题】(1)上面【知识呈现】中的问题的化简结果为;(用含x 、y 的式子表示)(2)若代数式21x x ++的值为3,求代数式2225x x +-的值为;【灵活运用】应用【知识呈现】中的方法解答下列问题:(3)已知27a b -=,2b c -的值为最大的负整数,求()3423a b b c +-+的值.23.已知数轴上两点A ,B 表示的数分别为3-,1,点P 为数轴上任意一点,其表示的数为x .(1)点A 与点B 之间的距离为______;(2)若点P 在点A 与点B 之间,则点P 到点A 的距离为______,点P 到点B 的距离为______,化简:13x x -++=;(3)若点P 以每秒4个单位长度的速度从点A 沿着数轴向右运动,同时点Q 以每秒2个单位长度的速度从点B 沿着数轴向右运动,同时点M 以每秒1个单位长度的速度从点B 沿着数轴向右运动,①经过几秒,点P 与点Q 关于原点对称;②求经过___________________秒,点P 、点Q 、点M 这三点中的任意两点关于另外一点对称.(请直接写出答案)。
七年级数学期中模拟卷-2024-2025学年初中上学期期中模拟考试[含答案]
2024-2025学年七年级数学上学期期中模拟卷(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:北京版2024七年级上册第一章-第二章.5.难度系数:0.85.第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算13--的结果是( )A .-2B .2C .-4D .42.下列方程中是一元一次方程的是( )A .5x =-B .242x x x -=+C .231x x -=-D .10.254x x +=+3.如图,数轴上被墨水遮盖的点表示的数可能是( )A .1-B . 1.5-C .3-D .5-4.在31-.,0,+2,(7)--,15--,π2-,3(2)-中,负有理数有( )A .2个B .3个C .4个D .5个5.若a 、b 互为相反数,则下列等式:①0a b +=;②0a b +=;③0a b -=;④0a b ´=其中一定成立的个数为( )A .1B .2C .3D .46.某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则可列方程是( )A .2025m m -=B .2023m m -=C .2057m m -=D .2035m m -=7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简b a a c b c --+--的结果是( )A .0B .2bC .2cD .2a-第Ⅱ卷二、填空题:本题共8小题,每小题2分,共16分.9. 2.78- 425-.(填“>”“<”或“=”)10.如果方程1320m x ++=是关于x 的一元一次方程,那么m 的值是 .11.中国古代著作《九章算术》在世界数学史上首次正式引入负数,如果盈利80元记作80+元,那么亏本70元记作 元.12.规定图形表示运算a b c -+,图形表示运算x z y w +--,则+= .(直接写出答案)13.在边长为9cm 的正方形ABCD 中,放置两张大小相同的正方形纸板,边EF 在AB 上,点K ,I 分别在BC ,CD 上,若区域I 的周长比区域Ⅱ与区域Ⅲ的周长之和还大6cm ,则正方形纸板的边长为 cm .14.在解关于y 的方程21132y y a -+=-时,小明在去分母的过程中,右边的“1-”漏乘了公分母6,因而求得方程的解为4y =,则方程正确的解是 .15.若关于x 的一元一次方程3x k +=和123x k x k --=的解互为相反数,则k = .16.已知一个长方形的周长为36cm ,若长方形的长减少1cm ,宽扩大为原来的2倍后成为一个正方形,设原来长方形的长为x cm ,则可列方程 .三、解答题:本题共12小题,共68分.解答应写出文字说明、证明过程或演算步棸.17.一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?18.解方程:43(2)x x -=-.19.计算:()2311154éù--´--ëû20.一个两位数,个位上的数字与十位上的数字之和是6,若把个位上的数字与十位上的数字调换位置,那么所得的新数比原数的三倍多6,求原来的两位数.21.在给出的数轴上,把下列各数表示出来,并用“>”连接各数.22-, 1.5-,122-,0,()2--,5-22.有甲、乙两个粮仓,已知乙仓原有粮食35 吨.如果从甲仓取出 15 吨粮食放入乙仓,这时乙仓的存粮是甲仓的 25,则甲仓原有粮食多少吨?23.下列数阵是由50个偶数按照5×10排成的,框内有四个数.(1)猜测:图中框内四个数之和与数字4有什么关系?(2)在数阵中任意做一类似于(1)中的框,设左上角的数为x ,那么其他3数怎样表示?(3)任意移动这个框,是否都能得到(1)的结论?你能证明这个结论吗?24.如图,每个图形都由同样大小的小正方形按一定规律组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学期中考试试卷
一、选择题(每小题3分,共30分)
1、下列四个数中,是负数的是( )
A、|-2| B、()2
2- C、2- D、
()22-
2、64-的立方根是( )
A、-8 B、±8 C、±2 D、-2
3、某种生物孢子的直径为0.000063m,用科学计数法,表示此正确的为( ) A、41063.0-⨯ B、5103.6-⨯ C、61063-⨯ D、4103.6-⨯
4、如果a 是2012的算术平方根,则
100
2012
的平方根是( ) A、10a B、10a - C、10a ± D、100
a ±
5、若a y a x +<+,且ay ax >,则下列正确的是( ) A、0,><a y x B、0,<<a y x C、0,>>a y x D、0,<>a y x
6、若不等式组⎩⎨⎧>+<-00
a x
b x 的解集为32<<x ,则b a ,的值分别为( )
A、-2,3 B、2,-3 C、3,-2 D、-3,2
7、已知不等式组⎩⎨⎧>>-a x x 5
12的解集为3>x ,则a 的取值范围是( )
A、3>a B、3<a C、3≥a D、3≤a 8、13+m x 可以写成:( ) A、()
1
3
+m x B、()
13
+m
x C、x x m ⋅3
D、()
x x m ⋅3
9、已知()82
=-n m ,()22
=+n m ,则22n m +=( )
A、10 B、5 C、6 D、3
10、在式子○
1()2
12--y ○2()()1212+---y y ○3()()1212++-y y ○4()2
12-y ○
5()2
12+y 中相等的是( ) A、○
1○5 B、○2○3 C、○1○4 D、○2 ○4 二、填空题(每小题4分,共24分)
11、请写出一个解集为1-≤x 的一元一次不等式
12、a 、b 是两个连续的自然数,若b a <<17,则b a +的平方根是 13、如果a 的平方根是±2,那么a =
14、已知13223>-+k x ,关于的一元一次不等式,则k = 15、已知()
132
=-+x x ,则整数x 的值是
16、将边长分别为1、2、3、4、……19、20的正方形如图中方
式叠放,则按图示规律排列的所有阴影部分的面积之和为
三、解答题
17、计算(每小题5分,共15分)
○
1()(
)
2
23216
1|2|---+--- ○
2()()()2
3
2
2643xy y x ÷-⋅
○
3()()22242b ab a b a +-+
18、利用乘法公式计算(每小题5分,共10分)
○1120011999+⨯ ○2222012402420132013+⨯-
19、(6分)求不等式组⎪⎩⎪
⎨⎧>+-≤-x x x x 21131425的整数解
20、(7分)先化简再求值()()()2y y x y x y x x --+-+其中201320124,25.0==y x 21、(8分)某大型超市进了某种水果1000kg ,进价为7元/kg ,销售价定为11元/kg ,销售完一半后,为了尽快卖完,准备打折出售,如果要总利润不低于2900元,那么余下的水果至少可按原销售定价的几折出售?
22、(10分)○1已知0432=-+y x ,求y x 279⋅的值
○2若200102=a ,1510-=b ,求b a 39÷的值
23、(10分)某同学在计算()()131322++⨯时,把2写成()13-后,发现可以连续运用平方差公式,计算()()()()()()()801313131313131313242222=-=+-=++-=++ 请借鉴该同学的经验计算 ○
1()()()()12121212842++++ ○2158422
1211211211211+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+。