函数零点问题的几种常见题型

合集下载

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

函数零点的题型总结

函数零点的题型总结

函数零点的题型总结例题及解析考点一函数零点存在性定理的应用【例1】已知函数f(x)=(12)x-13x,那么在下列区间中含有函数f(x)零点的是( )(A)(0,13) (B)(13,12)(C)(12,23) (D)(23,1)解析:f(0)=1>0,f(13)=(12)13-(13)13>0,F(12)=(12)12-(12)13<0,f(13)f(12)<0,所以函数f(x)在区间(13,12)内必有零点,选B.【跟踪训练1】已知函数f(x)=2x-log3x,在下列区间中包含f(x)零点的是( )(A)(0,1) (B)(1,2) (C)(2,3) (D)(3,4)解析:由题意,函数f(x)=2x-log3x为单调递减函数,且f(2)= 22-log32=1-log32>0,f(3)= 23-log33=-13<0,所以f(2)·f(3)<0,所以函数f(x)=2x-log3x在区间(2,3)上存在零点,故选C.【教师备用巩固训练1】设函数f(x)=ln (x+1)+a(x2-x),若f(x)在区间(0,+∞)上无零点,则实数a的取值范围是( )(A)[0,1] (B)[-1,0](C)[0,2] (D)[-1,1]解析:f(1)=ln 2>0,当a=-1时,f(2)=ln 3-2<0,所以f(x)在(1,2)上至少有一个零点,舍去B,D;当a=2时,f(12)=ln 32-12<0,所以f(x)在(12,1)上至少有一个零点,舍去C.因此选A.考点二函数零点的个数考查角度1:由函数解析式确定零点个数【例2】 (1)函数f(x)=xcos(x2-2x-3)在区间[-1,4]上的零点个数为( )(A)5 (B)4 (C)3 (D)2(2)已知f(x)=2xx +x-2x,则y=f(x)的零点个数是( )(A)4 (B)3 (C)2 (D)1解析:(1)由题意可知x=0或cos(x2-2x-3)=0,又x∈[-1,4],所以x2-2x-3=(x-1)2-4∈[-4,5],当cos(x2-2x-3)=0时,x2-2x-3=kπ+π2,k ∈Z,在相应的范围内,k只有-1,0,1三个值可取,所以总共有4个零点,故选B.解析:(2)令2xx +x-2x=0,化简得2|x|=2-x2,画出y=2|x|,y=2-x2的图象,由图可知,图象有两个交点,即函数 f(x)有两个零点.故选C.考查角度2:根据函数零点个数确定参数范围 【例3】 (1)已知函数f(x)= 24,1,ln 1,1,x x a x x x ⎧-+⎪⎨+≥⎪⎩<若方程f(x)=2有两个解,则实数a 的取值范围是( ) (A)(-∞,2) (B)(-∞,2] (C)(-∞,5) (D)(-∞,5] (2)已知函数f(x)= 3,2,1e ,20x xa x x a x x ⎧--≤-⎪⎪+⎨⎪--⎪⎩<<恰有3个零点,则实数a 的取值范围为( )(A)(-1e ,-13) (B)(-1e ,-21e) (C)[-23,-21e ) (D)[-23,-13)解析:(1)可知x ≥1时,f(x)=2必有一解,x=e,所以只需x<1时f(x)=2有一解即可,即x 2-4x+a=2有解,设g(x)=x 2-4x+a-2,由于该函数的对称轴为直线x=2,故只需g(1)=-3+a-2<0,即a<5,故实数a 的取值范围是(-∞,5).选C. 解析:(2)-1x x +-3a=-111x x +-+-3a=1x x +-1-3a,在(-∞,-2]上单调递减.若a≥0,则e x -a x在(-2,0)上递增,那么零点个数至多有一个,不符合题意,故a<0.故需f(x)当x ≤-2时,-1-3a>0,a<-13,且121-+-1-3a ≤0,a ≥-23,使得第一段有一个零点,故a ∈[-23,-13).对于第二段,e x -a x=e xx a x -,故需g(x)=xe x -a 在区间(-2,0)有两个零点,g ′(x)=(x+1)e x ,故g(x)在(-2,-1)上递减,在(-1,0)上递增,所以(2)0,(1)0,(0)0,g g g -⎧⎪-⎨⎪⎩><>解得-22e >a>-1e.综上所述,a ∈(-1e ,-13).故选A.【题组通关】1.若函数f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为( C ) (A)(0,4) (B)(0,+∞)(C)(3,4) (D)(3,+∞)解析:如图,若f(x)=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a ∈(3,4),故选C.2.已知偶函数f(x)= 4log,04,(8),48,x x f x x ⎧≤⎪⎨-⎪⎩<<<且f(x-8)=f(x),则函数F(x)=f(x)-12x在区间[-2 018,2 018]的零点个数为( A )(A)2 020 (B)2 016 (C)1 010 (D)1 008解析:依题意,当4<x<8时,f(x)=f(8-x)对称轴为直线x=4,由f(x-8)=f(x)可知,函数f(x)的周期T=8. 令F(x)=0,可得f(x)=12x,求函数F(x)=f(x)-12x的零点个数,即求偶函数f(x)与函数y=12x图象交点个数,当0<x<8时,函数f(x)与函数y=12x图象有4个交点,2 018=252×8+2由f(2)=|log 42|=12>212=14知, 当0<x<2时函数f(x)与函数y=12x图象有2个交点.故函数F(x)的零点个数为(252×4+2)×2=2 020, 故选A.3.已知函数f(x)= 31,1,,1,x xx x ⎧≥⎪⎨⎪⎩<若关于x 的方程f(x)=k 有两个不同零点,则k 的取值范围是 . 解析:作出f(x)=31,1,,1x xx x ⎧≥⎪⎨⎪⎩<的函数图象如图所示.方程f(x)=k 有两个不同零点,即y=k 和f(x)= 31,1,1x x x x ⎧≥⎪⎨⎪⎩<的图象有两个交点,由图可得k 的取值范围是(0,1). 答案:(0,1)【教师备用 巩固训练2】 已知函数f(x)=32233,2,4(56),2,x x x x x x ⎧-+⎪⎨--+≥⎪⎩<则函数f(f(x))的零点个数为( ) (A)6 (B)7 (C)8 (D)9 解析:画出函数的图象,如图所示,令f(x)=t,因为f(f(x))=0则f(t)=0,由图象可知,f(t)=0有四个解,分别为t 1=2,t 2=3,-1<t 3<0,1<t 4<2, 由图象可知,当t 1=2时,f(x)=2有两个根,即函数f(f(x))有2个零点; 由图象可知,当t 2=3时,f(x)=3有一个根,即函数f(f(x))有1个零点;由图象可知,当-1<t 3<0时,f(x)=t 有三个根,即函数f(f(x))有3个零点;由图象可知,当1<t 4<2时,f(x)=t 有两个根,即函数f(f(x))有2个零点;综上所述,函数f(f(x))有8个零点. 考点三 函数零点的性质考查角度1:求零点的代数式的取值或取值范围 【例4】 (1)已知函数f(x)=122log ,022,0,x x x x x ⎧⎪⎨⎪++≤⎩>函数F(x)=f(x)-b 有四个不同的零点x 1,x 2,x 3,x 4,且满足:x 1<x 2<x 3<x 4,则43x x -2213232x x x x +的取值范围是( )(A)(2,+∞) (B)(174,25716] (C)[2,174) (D)[2,+∞) (2)已知函数f(x)是定义域为R 的偶函数,且满足f(12+x)=f(32-x),当x ∈[-1,0]时,f(x)=-x.若函数F(x)=f(x)+412x x +-,则在区间[-9,10]上的所有零点之和为 . 解析:(1)f(x)=122log ,0,22,0x x x x x ⎧⎪⎨⎪++≤⎩>=122log ,0,(11,0x x x x ⎧⎪⎨⎪++≤⎩>), 由二次函数的对称性可得x 1+x 2=-2,由12log x 3=-12log x 4可得x 3x 4=1,函数F(x)=f(x)-b 有四个不同的零点,等价于y=f(x)的图象与y=b 的图象有四个不同的交点,画出y=f(x)的图象与y=b 的图象,由图可得1<b ≤2,所以1<12log x 3≤2⇒x 3∈[14,12),所以43x x -2123()2x x x +=43x x +23x =231x+23x , 令t=23x ∈[116,14), 所以1t +t ∈(174,25716],故选B. 解析:(2)因为满足f(12+x)=f(32-x), 所以f(x)=f(2-x), 又因函数f(x)为偶函数,所以f(x)=f(-x)=f(2+x),即f(x)=f(2+x),所以T=2,令F(x)=0,f(x)=421x x +-,即求f(x)与y=421x x +-交点横坐标之和.y=421x x +-=12+9221x -, 作出图象如图所示.由图象可知有10个交点,并且关于(12,12)中心对称, 所以其和为102=5. 答案:(1)B (2)5考查角度2:隐性零点的性质 【例5】已知函数f(x)= ln(1),0,11,0,2x x x x +⎧⎪⎨+≤⎪⎩>若m<n,且f(m)=f(n),则n-m 的取值范围为( )(A)[3-2ln 2,2) (B)[3-2ln 2,2] (C)[e-1,2) (D)[e-1,2]解析:作出函数f(x)的图象,如图所示,若m<n,且f(m)=f(n),则当ln(x+1)=1时,得x+1=e,即x=e-1, 则满足0<n ≤e-1, -2<m ≤0,则ln(n+1)=12m+1,即m=2ln(n+1)-2,则n-m=n+2-2ln(n+1), 设h(n)=n+2-2ln(n+1),0<n ≤e-1,则h ′(n)=1-21n +=11n n -+, 当h ′(n)>0,解得1<n ≤e-1,当h ′(n)<0,解得0<n<1,当n=1时,函数h(n)取得最小值h(1)=1+2-2ln(1+1)=3-2ln 2,当n=0时,h(0)=2-2ln 1=2;当n=e-1时,h(e-1)=e-1+2-2ln(e-1+1)=e-1<2,所以3-2ln 2≤h(n)<2,即n-m的取值范围是[3-2ln 2,2),故选A.【题组通关】1.已知a>1,方程12e x+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则21x+22x+2x1x2的取值范围为( A ) (A)(1,+∞) (B)(0,+∞)(C)(12,+∞) (D)(12,1)解析:方程12e x+x-a=0的根,即y=12e x与y=a-x图象交点的横坐标,方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标, 而y=12e x与y=ln 2x的图象关于直线y=x对称,如图所示.所以x1+x2=a,所以21x +22x +2x 1x 2=(x 1+x 2)2=a 2,又a>1,所以21x +22x +2x 1x 2>1,故选A2.已知函数f(x)= 42log ,04,1025,4,x x x x x ⎧≤⎪⎨-+⎪⎩<>若a,b,c,d 是互不相同的正数,且f(a)=f(b)=f(c)=f(d),则abcd 的取值范围是( A ) (A)(24,25) (B)(18,24) (C)(21,24) (D)(18,25)解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.考点四 函数零点的应用【例6】 (1)已知α,β分别满足α·e α=e 2,β(ln β-2)=e 4,则αβ的值为( )(A)e (B)e 2 (C)e 3 (D)e 4 (2)已知f(x)=9x-t ·3x,g(x)=2121x x -+,若存在实数a,b 同时满足g(a)+g(b)=0和f(a)+f(b)=0,则实数t 的取值范围是 . 解析:(1)因为α·e α=e 2,所以e α=2e α, 因为β(ln β-2)=e 4,所以ln β-2=4e β,所以ln β-ln e 2=4e β,所以ln 2e β=4e β=22e e β. 所以α,2e β分别是方程ex=2e x ,ln x=2e x的根,因为点(α,2e α)与点(2e β,4e β)关于直线y=x 对称, 所以α=4e β,所以αβ=e 4.故选D.解析:(2)因为g(-x)=2121x x ---+=1212xx-+=-2121x x -+=-g(x),所以函数g(x)为奇函数, 又g(a)+g(b)=0,所以a=-b. 所以f(a)+f(b)=f(a)+f(-a)=0有解, 即9a -t ·3a +9-a -t ·3-a =0有解, 即t=9933a a aa--++有解.令m=3a+3-a(m ≥2),则9933a aa a--++=22m m-=m-2m ,因为ϕ(m)=m-2m 在[2,+∞)上单调递增,所以ϕ(m)≥ϕ(2)=1.所以t ≥1.故实数t 的取值范围是[1,+∞). 答案:(1)D 答案:(2)[1,+∞)【跟踪训练2】函数f(x)的定义域为D,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊆D 使得f(x)在[a,b]上的值域为[2a ,2b ],则称函数f(x)为“成功函数”.若函数f(x)=log m (m x +2t)(其中m>0,且m ≠1)是“成功函数”,则实数t 的取值范围为( ) (A)(0,+∞) (B)(-∞,18] (C)[18,14) (D)(0,18] 解析:无论m>1还是0<m<1,f(x)=log m (m x +2t)都是R 上的单调增函数,故应有(),2(),2a f a b f b ⎧=⎪⎪⎨⎪=⎪⎩则问题可转化为求f(x)=2x ,即f(x)=log m (m x +2t)=2x,即m x+2t=12x m在R上有两个不相等的实数根的问题,令λ=12x m (λ>0),则m x+2t=12x m可化为2t=λ-λ2=-(λ-12)2+14,结合图形可得t∈(0,18].故选D.。

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

高考数学函数零点问题3类题型4种方法讲解!你觉得零点问题难吗?

函数零点问题的4种解题方法一 、 依据概念 化为方程求根对于函数y=f(x),我们把f(x)=0使的实数x叫做函数y=f(x)的零点,因此,该方法就是将函数的零点问题转化为方程f(x)=0的问题来解答。

二 、由数到形实现零点交点的互化函数y=f(x)的零点,即函数y=f(x)的图像与x轴的交点的横坐标。

因此,求函数的零点问题可转化为函数y=f(x)图像与x轴的交点的横坐标,或将方程f(x)=0整理成f1(x)=f2(x)形式,然后在同一直角坐标系下,画出两函数的图像,交点的横坐标即为函数的零点,交点的个数即为函数的零点个数。

注:在解题中,若遇到函数形式复杂难以作图时,则不妨先整理表达式,一般以所涉及的函数能作其图像为整理要求。

接着在同一坐标系下,规范作图,然后确定交点的位置或个数,特别在部分区间上是否存在交点,要细心对待,有时还需计算相关的函数值(函数值的趋势)来确定是否有交点。

三 、依存定理 凭号而论如果函数y=f(x)在区间[a,b]上的图像时联系不断的一条曲线,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)内有零点。

即存在c∈(a,b),使得f(c)=0。

通常将此论述称为零点存在性定理。

因此,该解题策略就是将函数零点分布问题转化为判断不等式f(a)f(b)<0是否成立。

四、借助单调 确定问题如果函数y=f(x)在区间[a,b]上的图像时连续不断的一条具有单调性曲线,并且有f(a)f(b) <0,那么函数y=f(x)在区间(a,b)内有唯一零点,即存在唯一的c∈(a,b),使得f(c)=0。

通常将此论述称为零点唯一性定理。

因此,该策略解题需要考虑两个条件:条件一是f(a)f (b)<0是否成立;条件二是否具有单调性。

题型一:已知零点个数求参数范围题型二:求零点所在区间题型三:求零点个数。

函数零点的题型归纳与解题技巧

函数零点的题型归纳与解题技巧

函数零点的题型归纳与解题技巧函数零点是指函数取值为零的点,即f(x)=0的解。

在高中数学、大学数学以及各类数学竞赛中,函数零点常见的题型有很多种,这里我们将从题型归纳与解题技巧两方面进行探讨。

一、题型归纳1. 求解一元函数零点:例如求解f(x) = x^3-2x^2-x+2=0的零点。

2. 求解二元函数零点:例如求解f(x,y) = x^2+y^2-1=0的零点。

3. 求解多项式方程零点:例如求解f(x) = x^3-x^2+2x-2=0的零点。

4. 求解参数方程零点:例如求解x(t) = t^2-t+2,y(t) =t^3-t^2+2t-2,求解当f(x,y)=0时对应的参数t。

5. 利用零点求解函数的性质:例如已知f(x)的零点及其性质,求解f'(x)或f''(x)的零点。

6. 证明存在或不存在零点:例如证明函数f(x)在区间(a,b)上存在唯一零点。

二、解题技巧1. 分类讨论:对于不同的函数类型,采用不同的方法求解零点。

例如线性函数、二次函数、三次函数、对数函数等,都有相应的求解方法。

2. 利用代数方法:通过代数运算,将原方程转化为容易求解的方程。

例如将原方程化为因式分解的形式,利用韦达定理等。

3. 利用几何方法:将方程与几何图形进行关联,求解图形的相交点即为零点。

例如将方程与直线、圆、椭圆、抛物线等几何图形关联起来。

4. 利用数学分析方法:利用微积分知识,如导数、二分法、牛顿法等,求解零点。

例如,求解f'(x)=0的零点,可以找到函数的拐点;二分法则多用于求解逼近零点。

5. 利用数值方法:通过计算机进行数值逼近求解零点。

例如求解非线性方程组零点时,可以采用牛顿法、拟牛顿法等。

6. 利用泰勒展开:对于非常复杂的函数,可以考虑将其在某一点附近进行泰勒展开,将高次函数近似为低次函数(如线性、二次),再求解零点。

7. 利用解析几何方法:通过解析几何知识,求解平面或空间上的几何问题。

高中函数零点问题精选题型

高中函数零点问题精选题型

零点问题与数形结合题型一、直接做图1 函数 ()1|1|f x x =--‖ 的图像与直线 y k = 有且仅有四个不同的交点, 则实数 k 的取值范围是_________2 已知函数 ()22x f x =- 与 y b = 有两个交点, 则实数 b 的取值范围是_________3 已知函数 ||()2||,x f x x =+ 若关于 x 的方程 ()f x k = 有两个不同的实根, 则实数k 的取值范围是_________.已知函数 ()|lg |,f x x = 若 0a b << 且 ()(),f a f b = 则 2a b + 的范围是_________4 设函 21,0(),1,0x x f x x x ⎧-=⎨+<⎩ 若函数 ()a f x = 有两个实根 ()1212,,x x x x < 则 12x x + 的取值范围是_________5 若关于 x 的不等式 23344a x xb -+ 的解集恰好是 [a, b],则 a b +=_________6 关于 x 的不等式 201x px q ++ 的解集为 [3,4], 则 p q +=_________7 已知函数 22,||3(),6,||3x x f x x x ⎧-⎪=⎨->⎪⎩ 若 0,m n << 且 ()(),f m f n = 则 2n m +的取值范围是_________题型二、变形后做图1 直线 1y = 与曲线 2||y x x a =-+ 有 4 个交点, 则 a 的取值范围 是_________2 若关于 x 的方程 2||2x kx x =+ 有 4 个不同的实数解, 则实数 k 的范围为_________3 已知函数 21(),()32f x x h x =+= 解关于 x 的方程 433log (1)24f x ⎡⎤--=⎢⎥⎣⎦22log ()log (4)h a x h x ---。

高中数学零点问题经典题型

高中数学零点问题经典题型

高中数学零点问题经典题型1、 设()ln sin ,f x x x =+找出一个0(0,),x ∈+∞使得()00f x <。

2、 已知1()ln ,1x f x x x +=--找出一个0(0,1),x ∈使得()00f x >。

3、 已知230,(),a f x x a x>=+-找出一个0(,0)x ∈-∞使得()00f x >。

4、 设110,()e ,e x a f x ax x<<=-找出一个0(0,),x ∈+∞使得()00.f x <5、 设110,()(1)e ,e x a f x a x x<<=--找出一个0(0,)x ∈+∞使得()00.f x <6、 已知2(0,1),()(2),xx a f x ae a e x ∈=+--找出一个0(,0),x ∈-∞使得()00f x >。

7、 已知230,(),a f x x a x>=+-找出一个0(,0),x ∈-∞使得()00.f x <8、 设0,(),xa f x xe a >=-找出一个0(0,),x ∈+∞使得()00f x >9、 已知()(2)(1)2ln f x a x x =---在10,2⎛⎫ ⎪⎝⎭上无零点,求实数a 的取值范围。

10、 (2016江苏)若01,a b <<<函数()2x xg x a b =+-有且只有一个零点,求ab 的值。

11、(2018江苏19)若存在0x ∈满足()()()()0000,,f x g x fx g x ''==则称0x 为()f x 与()g x 的一个S “点”。

(I)若函数2()1,()ln f x ax g x x =-=存在“S 点”,求a ;(II)已知函数2e (),(),xb f x x a g x x=-+=对任意的0,a >判断是否存在0,b >使函数()f x 与()g x 在(0,)+∞内存在“S 点",并说明理由。

导数中的零点问题

导数中的零点问题

导数中的零点问题题型一:零点的基本解法1、已知函数$f(x)=2\ln x-x+mx,x\in[2e,+\infty)$,求实数$m$的取值范围。

2、已知函数$f(x)=x\mathrm e^x-a(x+1)^2/2,x\in[0,+\infty)$有两个零点,求实数$a$的取值范围。

1) 若$a=\mathrm e$,求函数$f(x)$的极值。

2) 若函数$f(x)$有两个零点,求实数$a$的取值范围。

3、已知函数$f(x)=a\mathrm e^{2x}+(a-2)\mathrm e^x-x$。

1)讨论$f(x)$的单调性。

2)若$f(x)$有两个零点,求$a$的取值范围。

4、已知函数$f(x)=-(2ax+ax+(x-2)\mathrm e^x)/2,a>0$。

1)求函数$f(x)$的单调区间。

2)若函数$f(x)$存在$3$个零点,求$a$的取值范围。

题型二:切线与零点关系1、曲线在点$(1,1)$处的切线方程为;过点$(1,1)$处的切线方程为。

2、已知函数$f(x)=\frac{1}{2}x^3+mx+n(m,n\in\mathbb{R})$。

1)若$f(x)$在$x=1$处取得极大值,求实数$m$的取值范围。

2)若$f(1)=\frac{1}{2}$,且过点$p(2,1)$有且只有两条直线与曲线$y=f(x)$相切,求实数$m$的值。

3、已知函数$f(x)=ax^2+bx-3x$在$x=\pm 1$处取得极值。

1)求函数$f(x)$的解析式。

2)若过点$A(1,m)$可作曲线$y=f(x)$的三条切线,求实数$m$的取值范围。

题型三:极值与零点关系1、已知函数$f(x)=x^3-6x^2+3x+t(t\in\mathbb{R})$。

1)求函数$f(x)$的单调区间。

2)设函数$g(x)=f(x)$有三个不同的极值点,求$t$的取值范围。

3)设函数$g(x)=\mathrm e^{f(x)}$有三个不同的极值点,求$t$的取值范围。

高中数学:关于函数零点的几种常见题型

高中数学:关于函数零点的几种常见题型

⾼中数学:关于函数零点的⼏种常见题型
(许兴华⽂摘)
[题型⼀]函数零点个数的求解
【题后⼩结】在解决函数与⽅程问题中的函数的零点问题时,要学会掌握转化与化归思想的运⽤.如本题直接根据已知函数求函数的零点个数难度很⼤,也不是初等数学能轻易解决的,所以遇到此类问题的第⼀反应就是转化已知函数为熟悉的函数,再利⽤数形结合求解.
[题型⼆]由函数零点的情况求参数范围
【题后⼩结】利⽤函数零点的情况求参数值或取值范围的⽅法
(1)利⽤零点存在的判定定理构建不等式求解.
(2)分离参数后转化为函数的值域(最值)问题求解.
(3)转化为两熟悉的函数图象的上、下关系问题,从⽽构建不等式求解.
[题型三]⽤导数及函数的图像研究零点问题
【题后⼩结】好好思考之后,这第三种题型的“题后⼩结”由同学们⾃⼰来完成?可以做到吧?。

函数零点的7种问题及解法

函数零点的7种问题及解法

函数零点的7种问题及解法1.若x0是方程lgx+x=2的解,则x0属于区间()a.(0,1) b.(1,1.25)c.(1.25,1.75) d.(1.75,2)解析:设f(x)=lg x +x-2,则f(1.75)=f74=lg 74-,f(2)=lg 20.答案:d2.函数f(x)=x2+2x-3,x0,-2+lnx,x0的零点个数为()a.0个 b.1个 c.2个 d.3个解析::x0时由x2+2x-3=0x=-3;x0时由-2+lnx=0x=e2.答案:c3.设函数f(x)=x2-x+a(a0),若f(m)0,则()a.f(m-1)0b.f(m-1)0c.f(m-1)=0d.f(m-1)与0的'大小不能确定解析:融合图象极易推论.答案:a4.函数f(x)=ex+x-2的零点所在的一个区间就是()a.(-2,-1) b. (-1,0)c. (0,1) d.(1,2)解析:因为f(0)=-10,f(1)=e-10,所以零点在区间(0,1)上,选c.答案:c5.函数f(x)=4x-2x+1-3的零点是________解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.答案:log236.函数f(x)=(x-1)(x2-3x+1)的零点就是__________.解析:利用定义可求解.答案:1,7.若函数y=x2-ax+2有一个零点为1,则a等于__________.解析:由零点定义可以解.答案:38.未知函数f(x)=logax+x-b(a0且a1),当时,函数f(x)的零点为x0(n,n+1)(nn*),则n=________.解析:根据f(2)=loga2+2-blogaa+2-3=0,f(3)=loga3+3-blogaa+3-4=0,x0(2,3),故n=2.答案:29.证明:方程x2x=1至少有一个小于1的正根.证明:令f(x)=x2x-1,则f(x)在区间(-,+)上的图象是一条连续不断的曲线.当x=0时,f(x)=-10.当x=1时,f(x)=10.f(0)f(1)0,故在(0,1)内至少有一个x0,当x=x0时,f(x)=0.即至少有一个x0,满足01,且f(x0)=0,故方程x2x=1至少有一个小于1的正根.。

函数零点的题型总结

函数零点的题型总结
根据函数零点个数确定参数范围的方法:(1)直接解方程f(x)=0,根据该方程的解,得出符合零点个数要求的参数值满足的不等式解得参数范围;(2)数形结合,把f(x)=0分拆为g(x)=h(x),已知的零点个数即为函数y=g(x)的图象与函数y=h(x)的图象交点的个数,据此得出参数值满足的不等式解得参数范围;(3)研究函数的单调性和极值点等,利用函数零点的存在性定理得出参数满足的不等式解得参数范围.
【题组通关】
1.已知a>1,方程 ex+x-a=0与ln 2x+x-a=0的根分别为x1,x2,则 + +2x1x2的取值范围为( A )
(A)(1,+∞)(B)(0,+∞)
(C)( ,+∞)(D)( ,1)
解析:方程 ex+x-a=0的根,即y= ex与y=a-x图象交点的横坐标,
方程ln 2x+x-a=0的根,即y=ln 2x与y=a-x图象交点的横坐标,
(A)(24,25)(B)(18,24)
(C)(21,24)(D)(18,25)
解析:由题意可知,ab=1,c+d=10,所以abcd=cd=c(10-c),4<c<5,所以取值范围是(24,25),故选A.
考点四 函数零点的应用
【例6】 (1)已知α,β分别满足α·eα=e2,β(ln β-2)=e4,则αβ的值为( )
所以函数f(x)在区间( , )内必有零点,选B.
利用方程根的存在性定理判断函数零点所在区间的步骤:①先移项使方程右边为零,再令方程左边为函数 f(x);②求区间(a,b)两端点的函数值f(a),f(b);③若函数在该区间上连续且f(a)·f(b)<0,则方程在该区间内必有根.

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

热点2-4 函数的图象与函数的零点10大题型(解析版)

热点2-4 函数的图象与函数的零点10大题型(解析版)

热点2-4 函数的图象与函数的零点10大题型函数图象问题依旧以考查图象识别为重点和热点,难度中档,也可能考查利用函数图象解函数不等式等。

函数的零点问题一般以选择题与填空题的形式出现,有时候也会结合导数在解答题中考查,此时难度偏大。

一、函数图象辨识的方法步骤图象辨识题的主要解题思想是“对比选项,找寻差异,排除筛选”1、求函数定义域(若各选项定义域相同,则无需求解);2、判断奇偶性(若各选项奇偶性相同,则无需判断);3、找特殊值:①对比各选项,计算横纵坐标标记的数值;②对比各选项,函数值符号的差别,自主取值(必要时可取极限判断符号);4、判断单调性:可取特殊值判断单调性.二、作函数图象的一般方法1、直接法:当函数表达式是基本函数或函数图象是解析几何中熟悉的曲线时,就可根据这些函数或曲线的特征直接作出.2、转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象.3、图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称变换得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换的顺序对变换单位及解析式的影响.4、如何制定图象变换的策略(1)在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下:①若变换发生在“括号”内部,则属于横坐标的变换;②若变换发生在“括号”外部,则属于纵坐标的变换.例如:()=+:可判断出属于横坐标的变换:有放缩与平移两个步骤.31y f x()2=-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标y f x的为平移变换.(2)多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:①横坐标的变换与纵坐标的变换互不影响,无先后要求;②横坐标的多次变换中,每次变换只有x发生相应变化.三、零点个数的判断方法1、直接法:直接求零点,令()0=f x,如果能求出解,则有几个不同的解就有几个零点.2、定理法:利用零点存在定理,函数的图象在区间[],a b上是连续不断的曲线,且()()0f a f b,⋅<结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.3、图象法:(1)单个函数图象:利用图象交点的个数,画出函数()f x的f x的图象,函数()图象与x轴交点的个数就是函数()f x的零点个数;(2)两个函数图象:将函数()g x的差,根据f x拆成两个函数()h x和()()()()f x的零点个数就是函数()y h x和=f x h xg x,则函数()=⇔=()y g x的图象的交点个数=4、性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数四、已知零点个数求参数范围的方法1、直接法:利用零点存在的判定定理构建不等式求解;2、数形结合法:将函数的解析式或者方程进行适当的变形,把函数的零点或方程的根的问题转化为两个熟悉的函数图象的交点问题,再结合图象求参数的取值范围;3、分离参数法:分离参数后转化为求函数的值域(最值)问题求解.【题型1 函数图象的画法与图象变换】【例1】(2022秋·甘肃白银·高三校考阶段练习)作出下列函数图象(1)12xy ⎛⎫= ⎪⎝⎭(2)()2log 1y x =+【答案】(1)答案见解析;(2)答案见解析【解析】(1)因为1()2xy f x ⎛⎫== ⎪⎝⎭,所以11()()22xxf x f x -⎛⎫⎛⎫-=== ⎪⎪⎝⎭⎝⎭, 所以函数为偶函数,关于y 轴对称,因此只需要画0x >时的函数图形即可,11()==22xxf x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,再利用对称性即可得解.(2)将函数 2log y x = 的图象向左平移 1个单位,再将 x 轴下方的部分沿 x 轴翻折上去, 即可得到函数()2log 1y x =+ 的图象,如图所示.【变式1-1】(2022秋·广东广州·高三广东实验中学校考阶段练习)为了得到函数()2ln e y x =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的2e 倍B .纵坐标不变,横坐标缩短为原来的21e C .向下平移两个单位长度 D .向上平移两个单位长度 【答案】BD【解析】()22ln e ln e ln ln 2y x x x ===++,可将函数ln y x =的图象向上平移两个单位长度得到ln 2y x =+, 可将函数ln y x =的图象纵坐标不变,横坐标缩短为原来的21e 得到()2ln e y x =.故选:BD【变式1-2】(2022秋·重庆·高三统考阶段练习)已知函数()f x 的图象如图1所示,则图2所表示的函数是( )A .()1f x -B .()2f x --C .()1f x --D .()1f x -- 【答案】C【解析】由图知,将()f x 的图象关于y 轴对称后再向下平移1个单位即得图2,又将()f x 的图象关于y 轴对称后可得函数()y f x =-, 再向下平移1个单位,可得()1y f x =--所以解析式为()1y f x =--,故选:C.【变式1-3】(2022秋·北京·高三首都师范大学附属中学校考阶段练习)函数12xy -=的图像可看作是把函数2xy =经过以下哪种变换得到( )A .把函数2x y =向右平移一个单位B .先把函数2x y =的图像关于x 轴对称,然后把所得函数图像向左平移一个单位C .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像向左平移一个单位D .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像上各点的纵坐标变为原来的2倍,横坐标不变 【答案】D【解析】选项A :函数2xy =向右平移一个单位得到12x y -=;选项B :先把函数2xy =的图像关于x 轴对称得到2x y =-,然后向左平移一个单位得到12x y +=-;选项C :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后向左平移一个单位得到(1)122x x y -+--==;选项D :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后把各点的纵坐标变为原来的2倍,横坐标不变得到1222x xy --=⨯=;故选:D【变式1-4】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)定义在R 上的函数()f x 满足()()22f x f x -=+,且在()2,+∞单调递增,()40f =,()4g x x =,则函数()()2y f x g x =+的图象可能是( )A .B .C .D .【答案】B【解析】()()22f x f x -=+,所以()f x 的图象关于直线2x =对称,则()2f x +的图象关于直线0x =即y 轴对称,()2f x +是偶函数,()4g x x =为偶函数,图象关于y 轴对称,所以()()2y f x g x =+是偶函数,图象关于y 轴对称,排除AD 选项.()()()()4222200f f f f =+=-==,由于()f x 在()2,+∞上递增,在(),2-∞上递减, 所以()f x 有且仅有2个零点:0和4,另外有()30f <,所以()2f x +有且仅有2个零点:2-和2,()g x 有唯一零点:0, 所以()()2y f x g x =+有且仅有3个零点:2-、0和2. 当1x =时,()110g =>,()()()()121310y f g f g =+⋅=⋅<, 从而排除C 选项,故B 选项正确.故选:B【变式1-5】(2022秋·北京海淀·高三统考期中)已知函数()f x .甲同学将()f x 的图象向上平移1个单位长度,得到图象1C ;乙同学将()f x 的图象上所有点的横坐标变为原来的12(纵坐标不变),得到图象2C .若1C 与2C 恰好重合,则下列给出的()f x 中符合题意的是( )A .()12log f x x = B .()2log f x x = C .()2x f x =D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B【解析】对于A ,()112:1log 1C f x x +=+,()211112222:2log 2log log 2log 1C f x x x x ==+=-,A 错误;对于B ,()12:1log 1C f x x +=+,()22222:2log 2log log 2log 1C f x x x x ==+=+,B 正确;对于C ,()1:121x C f x +=+,()22:224x xC f x ==,C 错误;对于D ,()11:112x C f x ⎛⎫+=+ ⎪⎝⎭,()2211:224x xC f x ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,D 错误.故选:B.【题型2 由复杂函数解析式选择图象】【例2】(2022·四川资阳·统考二模)函数()32cos e ex x x xf x -=+在区间[]2π,2π-上的图象大致为( )A .B .C .D .【答案】B【解析】∵()()()()332cos 2cos e e e ex xx x x x x xf x f x -----==-=-++, ∴()f x 为奇函数,图象关于原点对称,C 、D 错误;又∵若(]0,2πx ∈时,320,e e 0x xx ->+>,当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,cos 0x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,cos 0x <,∴当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,()0f x <,A 错误,B 正确;故选:B.【变式2-1】(2022秋·江西·高三九江一中校联考阶段练习)函数()sin 2xf x =的大致图像是( )A .B .C .D .【答案】A【解析】注意到()sin 2xf x =过点()0,1,故可排除C ,D 选项.因2xy =在R 上单调递增,sin x 在π0,2⎛⎫⎪⎝⎭上单调递增, 则由复合函数单调性相关知识点可知,()sin 2xf x =在π0,2⎛⎫⎪⎝⎭上单调递增,故排除B 选项.故选:A【变式2-2】(2022·河南·安阳一中校联考模拟预测)函数()3sin 3291x x x f x π⎛⎫+ ⎪⎝⎭=-图像大致为( )A .B .C .D .【答案】B【解析】易得函数定义域为()(),00,-∞⋃+∞,已知函数()3sin 3cos329133x xx xx x f x π-⎛⎫+ ⎪⎝⎭==--,()()()cos 3cos33333x x x x x xf x f x ----===---,∴函数()f x 为奇函数,排除A 选项;当0x +→时,0cos31x <<,31x >,31x -<,则330x x -->, 所以()0f x >,排除C 选项;当x →+∞时,1cos31x -≤≤,3x →+∞,30x -→,则33x x --→+∞, 所以()0f x →,排除D 选项;故选:B.【变式2-3】(2022秋·江苏南京·高三南京师大附中校考期中)函数()2e2xf x x=的图象大致为( )A .B .C .D .【答案】A【解析】由()2e 2xf x x=,则其定义域为()()00-∞∞,,+,因为()()()22ee22xxf x f x xx --===-,故函数为偶函数, ()222e ,0e 22e ,02xx x x x f x x x x -⎧>⎪⎪==⎨⎪<⎪⎩,()()()33e 2,02e 2,02x x x x x f x x x x -⎧->⎪⎪=⎨--<'⎪⎪⎩,令()0f x '=,解得2x =±,可得下表:x(),2-∞-2-()2,0-()0,22()2,+∞()f x ' -+-+()f x极小值极小值故选:A.【变式2-4】(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)函数()()ln 0sin ax x f x a x+=在[2π-,2π]上的大致图像可能为( )A .B .C .D .【答案】ABC【解析】①当0a =时,()ln sin x f x x=,()()ln sin x f x f x x-=-=-,函数()f x 为奇函数,由0x →时()f x →∞,1x =±时()0f x =等性质可知A 选项符合题意; ②当a<0时,令()ln ||,()g x x h x ax ==-,作出两函数的大致图象,由图象可知在(1,0)-内必有一交点,记横坐标为0x ,此时0()0f x =,故排除D 选项;当02πx x -<<时,()()0g x h x ->,00x x <<时,()()0g x h x -<, 若在(0,2π)内无交点,则()()0g x h x -<在(0,2π)恒成立, 则()f x 图象如C 选项所示,故C 选项符合题意;若在(0,2π)内有两交点,同理得B 选项符合题意.故选:ABC.【题型3 根据函数图象选择解析式】【例3】(2022秋·福建南平·高三校考期中)已知函数()y f x =的部分图象如图所示,则下列可能是()f x 的解析式的是( )A .()cos f x x x =+B .()cos f x x x =-C .()cos xf x x= D .()cos xf x x=【答案】B【解析】A. ()010f =>,故错误;B.因为()010f =-<,且()1sin 0f x x '=+≥,则()f x 在R 上递增,故正确;C.()f x 的定义域为{}|0x x ≠关于原点对称, 又 ()()()cos cos x xf x f x x x--===---,则()f x 是奇函数,图象关于原点对称,故错误;D. ()f x 的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭关于原点对称,又()()()cos cos x xf x f x x x---===--,则()f x 是奇函数,图象关于原点对称,故错误;故选:B【变式3-1】(2022秋·湖北宜昌·高三校联考期中)已知函数()f x 的图象如图所示,则该函数的解析式为( )A .2()e e x x xf x -=+ B .()3e e x x f x x -+= C .2()e ex x x f x -=-D .()2e e x xf x x -+=【答案】D【解析】由题图:()f x 的定义域为(,0)(0,)-∞+∞,排除A ;当333e e e e e e (),()()()x x x x x xf x f x f x x x x ---+++=-==-=--,故3e e ()x xf x x -+=是奇函数,排除B.当()()()()222,e e e e e e x x x x x x x x x f x f x f x ----=-==-=----,故2()e ex x x f x -=-是奇函数,排除C.故选:D【变式3-2】(2022秋·广西桂林·高三校考阶段练习)已知函数()y f x =的图象如图所示,则此函数的解析式可能是( )A .()()2211x f x x x -=- B .()2211x f x x x -=- C .()22211x f x x x -=- D .()()22211x f x x x -=-【答案】B【解析】根据图像可得:所求函数为奇函数,且当()0,1x ∈时,()0f x <;对CD :定义域关于原点对称,且都有()()f x f x =-,均为偶函数,故错误;对A :当()0,1x ∈时,()0f x >,故错误;故选:B.【变式3-3】(2022秋·江苏扬州·高三期末)已知函数()f x 的部分图像如图,则函数()f x 的解析式可能为( )A .()()e e sin x xf x x -=- B .()()e e sin x x f x x -=+C .()()e e cos x x f x x -=-D .()()e e cos x xf x x -=+【答案】B【解析】由于图像关于原点对称,所以()f x 为奇函数,对于A :由()()e e sin x xf x x -=-得:()()()()()e e sin e e sin x x x x f x x x f x ---=--=-=,()f x 为偶函数,故可排除A ;对于D :由()()e e cos x xf x x -=+得:()()()()()e e cos e e cos x x x x f x x x f x ---=+-=+=,()f x 为偶函数,故可排除D ;由图知()f x 图象不经过点π,02⎛⎫⎪⎝⎭,而对于C :ππ22ππe e cos 022f -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故可排除C ;故选:B【变式3-4】(2022秋·湖北·高三枣阳一中校联考期中)已知函数()sin f x x =,()g cos x x =,()p x x =,则图像为下图的函数可能是( )A .()()2p x y f x =+B .()()2y g f x x =+C .()()2p x y f x =+D .()()2p x y f x =+【答案】D【解析】对于A ,2sin xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故A 不符合; 对于B ,sin 2cos xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故B 不符合; 对于C ,2sin x y x=+由于[]sin 1,1x ∈-,所以02sin x y x=≥+,由于已知图象y 的值域中存在负值,故C 不符合; 对于D ,2sin xy x=+不是奇函数,[]sin 1,1x ∈-,所以R y ∈,故D 图象符合.故选:D.【题型4 根据实际问题作函数图象】【例4】(2022·北京·人大附中校考模拟预测)如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为( )A .B .C .D .【答案】C【解析】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =; 当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =; 当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =, 结合选项C 满足“速度差函数”解析式,故选:C.【变式4-1】(2022·四川泸州·统考模拟预测)如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B【解析】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B ,故选B .【变式4-2】(2022秋·安徽合肥·高三校考期中)(多选)水滴进玻璃容器,如图所示(单位时间内进水量相同),则下列选项匹配正确的是( )A .()2a -B .()3b -C .()4c -D .()1d - 【答案】AB【解析】在a 中,容器是圆柱形的,水高度的变化速度应是直线型,与(2)对应,故A 正确;在b 中,容器下粗上细,水高度的变化先慢后快,与(3)对应,故B正确;在c 中,容器为球型,水高度的变化为快—慢—快,与(1)对应,故C 错误;在d 中,容器上粗下细,水高度的变化为先快后慢,与(4)对应,故D 错误.故选:AB.【变式4-3】(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A【解析】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ;在区间ππ⎛⎫⎪⎝⎭,2上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B ,又由当12x x π+=时,有()12()f x f x =-,()f x 的图象关于点(,0)π2对称,排除D ,故选:A【变式4-4】(2022·全国·高三专题练习)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD △的面积为()f x ,则()f x 的图象大致为()A .B .C .D .【答案】A【解析】作PQ BC ⊥于点Q ,作QR BD ⊥于点R ,连接到PR ,由已知可得,PQ AB QR CD ∥∥,且AB ⊥平面BCD , 所以PQ ⊥平面BCD ,又BD ⊂平面BCD ,所以PQ BD ⊥,,,,QR BD PQ QR Q PQ QR ⊥=⊂平面PQR ,BD ∴⊥平面PQR ,PR ⊂平面PQR ,BD PR ∴⊥,设1,AB BD CD ===3AC ∴=,133PQ PQ =∴, 33133QR BQ x x QR BC --==∴222332233333x x PR x x ⎛⎫-⎛⎫∴=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭故23()22336f x x x =-+其函数图像是关于直线3x 对称的图像且开口上,故选项B,C,D 错误.故选:A .【题型5 函数零点所在区间问题】【例5】(2022秋·湖南长沙·高三长郡中学校考阶段练习)函数()()52lg 21f x x x =--+零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4 【答案】C【解析】因为函数()()52lg 21f x x x =--+在1(,)2-+∞上单调递减,所以函数()f x 最多只有一个零点, 因为(0)(1)5(52lg3)5(3lg3)0f f ⋅=--=->,(1)(2)(52lg3)(54lg5)(3lg3)(1lg5)0f f ⋅=----=-->, (2)(3)(52lg3)(56lg7)(3lg3)(1lg7)0f f ⋅=----=---<, (3)(4)(56lg7)(58lg9)(1lg7)(3lg9)0f f ⋅=----=---->,所以函数()()52lg 21f x x x =--+零点所在的区间是()2,3.故选:C【变式5-1】(2022秋·广东深圳·高三红岭中学校考阶段练习)函数81()log 3f x x x=-的一个零点所在的区间是( )A .(1,2)B .(2,3)C .(3,3.5)D .(3.5,4) 【答案】A【解析】因为函数81log ,3y x y x==-在()0,∞+上单调递增, 所以,81()log 3f x x x =-在()0,∞+上单调递增, 因为()()8811111log 1,2log 23366f f =-=-=-=,()()120f f ⋅<, 所以,函数只有一个零点,且位于()1,2区间内.故选:A .【变式5-2】(2022秋·辽宁辽阳·高三统考阶段练习)若函数()lg f x a x x =++()110x <<有零点,则a 的取值范围为( )A .()10,1--B .()1,10C .()1,11D .()11,1-- 【答案】D【解析】因为函数y x a =+与lg y x =均在()1,10上单调递增,所以()lg f x a x x =++在()1,10上单调递增.要使函数()lg f x a x x =++()110x <<有零点,则只需要()()10100f f ⎧<⎪⎨>⎪⎩即可, 即10110a a +<⎧⎨+>⎩,解得111a -<<-.故选:D.【变式5-3】(2022秋·上海浦东新·高三上海市实验学校校考阶段练习)已知()23e x f x x =-,函数()f x 的零点从小到大依次为,12i x i =、、,若[),1(i x m m m ∈+∈Z ),请写出所有的m 所组成的集合___________.【答案】{}1,0,3-【解析】()f x 的零点可以转化为函数e x y =和23y x =图象交点的横坐标,图象如右所示,由图可知共三个零点,()1130f --=->e ,()010f =-<,所以在[)1,0-上存在一个零点; ()130f =->e ,则在[)0,1上存在一个零点;()33270f =->e ,()44480f =-<e ,则在[)3,4上存在一个零点;所以{}1,0,3m ∈-.【变式5-4】(2022秋·安徽·高三合肥一六八中学校联考阶段练习)(多选)已知函数()e 1x f x a x b =-+,若()f x 在区间[]1,222a b +( )A .1eB eC .2eD .1 【答案】BCD【解析】设()f x 在区间[]1,2上零点为m ,则e 10m a m b -+=,所以点(),P a b 在直线e 10m x y m --=上,()()222200a b a b OP +-+-,其中О为坐标原点.又()2220e 10ee 11m m mmm OP ⋅-+-≥=-+,记函数()2e m m g m =,[]1,2m ∈,()2222211122e e e e m m m mg m m m'==⎛⎫ -⎪⎝⎭- 因为[]1,2m ∈,所以()g m 在[]1,2m ∈上单调递增 所以()g m 最小值为()11g e=,所以221e a b +≥,故选:BCD.【题型6 函数的零点与零点个数问题】【例6】(2022秋·上海杨浦·高三同济大学第一附属中学校考阶段练习)若函数(),R y f x x =∈,满足()()2f x f x +=,且(]1,1x ∈-时,()f x x =,则函数()f x 的图像与函数4log y x =的图像的交点的个数为( ) A .3 B .4 C .6 D .8 【答案】C【解析】由题意得()f x 的周期为2,作出()y f x =与4log y x =的函数图象,数形结合得共有6个交点,故选:C【变式6-1】(2022·天津河西·统考二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为( )A .3B .4C .5D .6 【答案】B【解析】由(2)()0f x f x -+=知()f x 的图象关于(1,0)对称,由(2)()0f x f x ---=知()f x 的图象关于=1x -对称,作出()f x 与||1()()2x g x =在[3-,3]上的图象:由图可知函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为4.故选:B .【变式6-2】(2022秋·上海闵行·高三上海市七宝中学校考期中)定义域为R 的函数()f x 的图象关于直线1x =对称,当[]0,1x ∈时,()f x x =,且对任意x ∈R 只有()()2f x f x +=-,()()()2025,0log ,0f x x g x x x ⎧≥⎪=⎨--<⎪⎩,则方程()()0g x g x --=实数根的个数为( )A .2024B .2025C .2026D .2027 【答案】D【解析】由于函数()f x 的图象关于直线1x =对称,当[0x ∈,1]时,()f x x =,对任意x ∈R 都有(2)()f x f x +=-,得()()()(4)(2)=f x f x f x f x +=-+--=, 所以函数()f x 在[0,)∞+上以4为周期,()()2f x f x +=-, 做出函数()f x 一个周期[0,4]的图象:当0x >时,0x -< ,由()()g x g x =-得:()2025=log f x x - 令2025log 1x -=-,则2025x =,因为202545061=⨯+,而在第一个周期有3个交点,后面每个周期有2个交点,所以共有505231013⨯+=个交点,当0x <时,0x -> ,由()()g x g x =-得:()()2025=log f x x ---,令x t -=,得()2025=log f t t -,由上述可知,()2025=log f t t -有505231013⨯+=个交点,故()()2025=log f x x ---有505231013⨯+=个交点,又0x =时,(0)(0)g g =,所以方程()()0g x g x --=实数根的个数为210131=2027⨯+.故选:D .【变式6-3】(2022秋·河北·高三期中)函数21()cos sin 14f x x x x x =+--零点的个数为( )A .0B .1C .2D .3 【答案】D 【解析】()()()()()2211()cos sin 1cos sin 144f x x x x x x x x x f x -=-+-----=+--=, ()f x ∴是R 上的偶函数,1()cos 2f x x x ⎛⎫'=- ⎪⎝⎭,①当[]0,2πx ∈时,令()0f x '>,得π03x <<或5π2π3x <≤, 令()0f x '<,得π5π33x <<.()f x ∴在π0,3⎛⎫⎪⎝⎭和5π,2π3⎛⎤ ⎥⎝⎦上单调递增,在π5π,33⎛⎫ ⎪⎝⎭上单调递减.()()22π5π5π315π100,0,2ππ0333432f f f f ⎛⎛⎫⎛⎫⎛⎫>==⨯-⨯-<=-< ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭ 0π5π,33x ⎛⎫∴∃∈ ⎪⎝⎭,使得()00,()f x f x =∴在[]0,2π上有两个零点.②当(2,)x π∈+∞时,2211()cos sin 1044f x x x x x x x =+--<-<,()f x ∴在()2π,+∞上没有零点,由①②及()f x 是偶函数可得()f x 在R 上有三个零点.故选:D.【变式6-4】(2022秋·江苏南京·高三期末)若函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+- ,(1)0(0)(2)1f f f -===, ,则曲线|()|y f x =与2log y x =的交点个数为( )A .2B .3C .4D .5 【答案】B【解析】由题意函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,令1y =,则[]()(1)(1)()(1)1(1())f x f x f x f f x f f ++-==+-,令1x =,则2(2)(0)(1)f f f +=,即2(1)2f =,令2x =,则(3)(1)(2)(1)f f f f +=,即(3)0f =, 令3x =,则(4)(2)(3)(1)f f f f +=,即(4)1f =-, 令4x =,则(5)(3)(4)(1)f f f f +=,即(5)(1)f f =-,令5x =,则(6)(4)(5)(1)f f f f +=,即2(6)1(1),(6)1f f f -=-∴=-,令6x =,则(7)(5)(6)(1)f f f f +=,即(7)(1)(1),(7)0f f f f -=-∴=, 令7x =,则(8)(6)(7)(1)f f f f +=,即(8)10,(8)1f f -=∴=, 依次类推,可发现此时当Z x ∈,且x 依次取0,1,2,3,时,函数|()|y f x =的值依次为, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(2,1); 令=1x -,则(0)(2)(1)(1)0,(2)1f f f f f +-=-=∴-=-, 令2x =-,则(1)(3)(2)(1)(1),(3)(1)f f f f f f f -+-=-=-∴-=-,令3x =-,则2(2)(4)(3)(1)(1),(4)1f f f f f f -+-=-=-∴-=-,令4x =-,则(3)(5)(4)(1)(1),(5)0f f f f f f -+-=-=-∴-=, 令5x =-,则(4)(6)(5)(1)0,(6)1f f f f f -+-=-=∴-=, 令6x =-,则(5)(7)(6)(1)(1),(7)(1)f f f f f f f -+-=-=∴-=,令7x =-,则2(6)(8)(7)(1)(1),(8)1f f f f f f -+-=-=∴-=,依次类推,可发现此时当Z x ∈,且x 依次取1,2,3---,时,函数|()|y f x =的值依次为0,121,0121,0,,,,,, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(1,0),(2,1)--;故综合上述,曲线|()|y f x =与2log y x =的交点个数为3,故选:B【题型7 根据函数零点个数求参数范围】【例7】(2022秋·广东中山·高三小榄中学校考阶段练习)已知函数()2ln ,045,0x x f x x x x ⎧>⎪=⎨-+≤⎪⎩,若方程()0f x a -=有4个不同的实数解,则实数a 的取值范围为_________. 【答案】(1,5]【解析】由题知:方程()0f x a -=有4个不同的实数解,即()f x a =有4个不同的实数解.作出()f x 图像(如图所示),即直线y a =与曲线()y f x =有4个公共点. 易知:15a <≤.【变式7-1】(2022秋·新疆喀什·高三新疆维吾尔自治区喀什第二中学校考阶段练习)已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a的取值范围是( )A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞ 【答案】B【解析】令()()0g x f x x a =+-=,即()f x x a +=,令()()x f x x ϕ=+,当0x ≤时,()33x x x ϕ=-,()233x x ϕ'=-,令()0x ϕ'>得:1x >或1x <-,结合0x ≤,所以1x <-,令()0x ϕ'<得:11x -<<,结合0x ≤得:10-<≤x ,所以()x ϕ在=1x -处取得极大值,也是最大值,()()max 12x ϕϕ=-=,当x →-∞时,()x ϕ→-∞,且()00ϕ=,当0x >时,()ln x x x ϕ=+,则()110x xϕ'=+>恒成立,()ln x x x ϕ=+单调递增,且当0x →时,()x ϕ→-∞,当x →+∞时,()x ϕ→+∞,画出()x ϕ的图象,如下图:要想()()g x f x x a =+-有3个零点,则[)0,2a ∈故选:B【变式7-2】(2022·江西南昌·南昌市八一中学校考三模)定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1x f x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫ ⎪⎝⎭ C .e 1e 1,86--⎛⎫ ⎪⎝⎭D .()0,e 1- 【答案】B【解析】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数,故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解, 则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<.故选:B.【变式7-3】(2022秋·北京顺义·高三牛栏山一中校考期中)若函数()2,,,.x x a f x x x a ≤⎧=⎨>⎩满足存在t R ∈使()f x t =有两个不同的零点,则a 的取值范围是______. 【答案】()(),00,1-∞⋃【解析】如图所示,画出函数()2,,x x af x x x a ≤⎧=⎨>⎩的图象.结合图象可知,()(),00,1a ∈-∞⋃【变式7-4】(2023·全国·高三专题练习)已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦【解析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点, 即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦.【题型8 复合函数的零点问题】【例8】(2022秋·贵州黔东南·高三校考阶段练习)已知函数()()1ln 1,121,1x x x f x x -⎧->⎪=⎨+≤⎪⎩,则函数()()1y f f x =+的零点个数为______. 【答案】2【解析】先由函数画出草图如图,∴函数()f x 的零点为=2x ,令()1=2f x +,得()=1f x ,∴函数()()1y f f x =+的零点个数就是方程()=1f x 解的个数,也就是函数()f x 的图像与直线=1y 交点的个数,由图可知函数()f x 的图像与直线=1y 有两个不同的交点A ,B ,∴()()1y f f x =+的零点个数为2,【变式8-1】(2022秋·上海普陀·高三曹杨二中校考期中)已知函数()||1f x x =-,关于x 的方程2()|()|0f x f x k -+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有3个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为( )A .①②③B .①②④C .①③④D .②③④ 【答案】C【解析】设||1t x =-,则1t-,当1t =-时,0x =,当1t >-时,x 有两解.则原方程等价为2||0t t k -+=,即2211||(||)24k t t t =-+=--+.画出||1t x =-以及211(||)24k t =--+的图象, 由图象可知,(1)当0k <时,1t >,此时方程恰有2个不同的实根; (2)当0k =时,1t =或0=t 或1t =-, 当1t =时,x 有两个不同的解, 当0=t 时,x 有两个不同的解,当1t =-时,x 只有一个解,所以此时共有5个不同的解.(3)当104k <<时,112t -<<-或102t -<<或102t <<或112t <<,此时对应着8个解.(4)当14k =时,12t =-或12t =.此时每个t 对应着两个x ,所以此时共有4个解.综上正确的是①③④.故选:C【变式8-2】(2022秋·湖北·高三校联考阶段练习)已知函数()π4sin sin 3f x x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)若2,63ππx ⎡⎤∈⎢⎥⎣⎦,讨论函数()()()()21g x f x m f x m =-++⎡⎤⎣⎦的零点个数. 【答案】(1)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈;(2)答案详见解析 【解析】(1)()134sin sin cos 22x f x x x ⎛⎫=+⎪ ⎪⎝⎭1cos 23sin 2x x =-+π2sin 216x ⎛⎫=-+ ⎪⎝⎭, 由πππ2π22π262k x k -+≤-≤+,Z k ∈, 解得ππππ63k x k -+≤≤+,Z k ∈,故()f x 递增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈. (2)π2,π63x ⎡⎤∈⎢⎥⎣⎦,则ππ72,π666x ⎡⎤-∈⎢⎥⎣⎦,则π1sin 2,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()π2sin 21[0,3]6f x x ⎛⎫=-+∈ ⎪⎝⎭,画出()f x 在区间π2,π63⎡⎤⎢⎥⎣⎦上的图象如下图所示,令()f x t =,则()()()()211g x t m t m t t m =-++=--,[]0,3t ∈,由()()10t t m --=,结合()f x 图象得:①当1m =时,()0g t ≥,1t =,即()1f x =,此时零点唯一; ②当23m ≤<时,1t =或()1t m f x =⇔=或()f x m =,此时三个零点; ③当3m =时,1t =或t m =⇔()1f x =或()3f x =,此时两个零点; ④当3m >时,1t =或t m =⇔()1f x =或()f x m =(无解),此时只有一个零点;⑤当0m =时,1t =或t m =⇔()1f x =或()0f x =,此时两个零点; ⑥当01m <<,12m <<时,1t =或t m =⇔()1f x =或()f x m =,此时有两个零点;⑦当0m <时,1t =或t m =⇔()1f x =或()f x m =(无解),此时有一个零点;综上所述:当()(){},03,1m ∈-∞⋃+∞⋃时,只有一个零点;[)(){}0,11,23m ∈⋃⋃时,只有两个零点;[]2,3m ∈,有三个零点.【变式8-3】(2022秋·河南焦作·高三统考期中)已知函数()()12,024,24x x f x x f x x ⎧+-<≤⎪=⎨⎪-<<⎩,方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=(其中0θπ<<)有6个不同的实根,则θ的取值范围是( )A .π0,6⎛⎫ ⎪⎝⎭B .π2π0,,π33⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .50ππ,,66π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .π0,3⎛⎫⎪⎝⎭ 【答案】C【解析】因为当24x <<时,有()()4f x f x =-,故()f x 在()0,2上图象与在()2,4上的图象关于2x =对称,故()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 下面仅在()0,2上讨论()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=的解.因为()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=,故()1f x =或()sin f x θ=, 当()1f x =时,则有:12102x x x ⎧+-=⎪⎨⎪<<⎩,解得x . 因为方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 故()sin f x θ=在()0,2上有2个不同的实数根且与x 相异,故12sin 02π2x x x θθ⎧+-=⎪⎪<<⎨⎪⎪≠⎩有两个不同的解,整理得到()22sin 1002π2x x x θθ⎧⎪-++=⎪<<⎨⎪⎪≠⎩有两个不同的解.设()2(2sin )10g x x x θ=-++=,则2(0)0(2)02sin 022(2sin )40g g θθ>⎧⎪>⎪⎪⎨+<<⎪⎪+->⎪⎩,解得10sin 2θ<<,故π5π0,,π66θ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式8-4】(2022秋·江西抚州·高三金溪一中校考阶段练习)已知函数()()()2,0,2ln ,0,x x f x g x x x x x ⎧==-⎨>⎩,若方程()()()0f g x g x m +-=的所有实根之和为4,则实数m 的取值范围是( )A .1m >B .1mC .1m <D .1m 【答案】C【解析】令(),0t g x t =≥,当1m =时,方程为()10f t t +-=,即1f t t ,作出函数()y f t =及1y t =-的图象, 由图象可知方程的根为0=t 或1t =, 即()20x x -=或()21x x -=, 作出函数()()2g x x x =-的图象,结合图象可得所有根的和为5,不合题意,故BD 错误; 当0m =时,方程为()0f t t +=,即()f t t =-, 由图象可知方程的根01t <<,即()()20,1x x t -=∈, 结合函数()()2g x x x =-的图象,可得方程有四个根, 所有根的和为4,满足题意,故A 错误.故选:C.【题型9 函数零点的大小与范围】【例9】(2022秋·河北保定·高三校联考阶段练习)已知0x >,函数()25xf x x =+-,()24g x x x =+-,()2log 3h x x x =+-的零点分别为a ,b ,c ,则( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】C【解析】因为()25xf x x =+-单调递增,且()()551.6 1.65555(1.6)2 3.42 3.4256454.354240,f =-=-=-<()24250,f =+->由零点的存在性定理可知()f x 有唯一零点a 且1.62a <<;因为()24g x x x =+-在()0+∞,单调递增, 且()211140,(1.6) 1.6 2.4 2.56 2.40g g =+-<=-=->,由零点的存在性定理可知()g x 有唯一零点b 且1 1.6b <<;因为()2log 3h x x x =+-在()0+∞,单调递增,且()21230h =+-=, 由零点的存在性定理可知()h x 有唯一零点2c =,所以b a c <<.故选:C.【变式9-1】(2022·全国·高三专题练习)已知函数()()()222,log 2,32x x f x x g x x x h x x =+=+=+的零点分别为,,a b c ,则,,a b c 的( )A .b c a >>B .b a c >>C .c a b >>D .a b c >> 【答案】A【解析】由题可得,,a b c 即为2y x =-的图象分别与2xy =,2log y x =,3x y =的交点的横坐标,如图,画出函数图象,由图可得,b c a >>.故选:A.【变式9-2】(2022·全国·模拟预测)已知函数()g x 的定义域为R ,()1g x +为奇函数,()g x 为偶函数,当01x ≤≤时,()()221g x x =--,则方程()11g x x =-,在区间[-5,7]上所有解的和为( )A .10B .8C .6D .4 【答案】B【解析】第一步:判断函数()g x 与11y x =-的图象的特征并作出图象 ∵()1g x +为奇函数,∴()()11g x g x -=-+,即()()2g x g x -=-, ∴()g x 的图象关于点(1,0)对称. 又()()()42222g x g x g x +=++=--=⎡⎤⎡⎤⎣⎦⎣⎦()()()222g x g x g x ---=-+=---=⎡⎤⎣⎦()()()g x g x g x ---=-=⎡⎤⎣⎦,∴()g x 是周期为4的周期函数,显然,函数11y x =-的图象关于点(1,0)对称,在同一直角坐标系中,分别作出函数()g x 与函数11y x =-的图象如图所示.(画出函数图象,注意“草图不草”)第二步:确定交点个数,进而求解 由可知,函数()g x 与11y x =-的图象在[-5,7]上共有8个交点,且两两关于点(1,0)对称,∴方程()11g x x =-在[-5,7]上所有解的和为428⨯=.故选:B【变式9-3】(2022秋·全国·高三校联考阶段练习)已知函数ln ,0<2,()=ln(4),2<<4,x x f x x x ≤-⎧⎪⎨⎪⎩若直线=y m 与()f x 的图像有四个交点,且从左到右四个交点的横坐标依次为1234,,,x x x x ,则()123412++4+=x x x x x x ( )A .12B .16C .18D .32 【答案】C【解析】作出函数()f x 的图像如图所示:()f x 的图像关于直线=2x 对称.由图可知:1423+=+=4x x x x ,且12340<<1<<2<<3<<4x x x x .所以341<4<2,0<4<1x x --.由12ln ln x x =可得:12ln ln x x -=,所以121x x =. 同理可得()()34441x x --=,所以()3434=4+15x x x x -.于是()()()1234123412++4+=1+4+15+4+x x x x x x x x x x -()()1423=4++4+14x x x x -=18.故选:C【变式9-4】(2022·全国·高三专题练习)(多选)已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x < D .122322+≥+x x 【答案】ABD【解析】令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=,令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标, 作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=,所以12(1)(1)1x x --=,即()12120x x x x -+=,所以12111x x +=,故B 正确;因为12122x x x x +≥,所以()121212122x x x x x x x x -+≤-,即121220x x x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误;()2112121212211223322x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=,当且仅当21122x x x x =,即212x x =时,取等号,故D 正确.故选:ABD.【变式9-5】(2022秋·天津武清·高三校考阶段练习)已知函数()2log ,02{12,22x x f x x x <<=-+≥,如果互不相等的实数,,a b c ,满足()()()f a f b f c ==,则实数abc 的取值范围_____. 【答案】(2,4)【解析】()2log ,0212,22x x f x x x ⎧<<⎪=⎨-+≥⎪⎩,画出函数图象,如图所示:不妨设a b c <<,其中22log log a b -=,故1ab =,且()2,4c ∈,所以abc 的取值范围是(2,4).【题型10 二分法及其应用】【例10】(2022·陕西西安·西安中学校考模拟预测)某同学用二分法求函数()237x f x x =+-的零点时,计算出如下结果:()()1.50.33, 1.250.87f f ==-,()()()()1.3750.26, 1.43750.02, 1.40650.13, 1.4220.05f f f f =-==-=-,下列说法正确的有( )A .1.4065是满足精度为0.01的近似值.B .1.375是满足精度为0.1的近似值C .1.4375是满足精度为0.01的近似值D .1.25是满足精度为0.1的近似值 【答案】B【解析】()()1.43750.020, 1.40650.130f f =>=-<,又1.4375 1.40650.0310.01-=>,A 错误;()()1.3750.260, 1.43750.020f f =-<=<,又1.4375 1.3750.0620.1-=<, ∴满足精度为0.1的近似值在()1.375,1.4375内,则B 正确,D 错误;()()1.4220.050, 1.43750.020,1.4375 1.4220.01550.01f f =-<=>-=>,C 错误.故选:B.【变式10-1】(2022·全国·高三专题练习)在用二分法求方程32100x x +-=在(1,2)上的近似解时,构造函数()3210x f x x =+-,依次计算得()150f =-<,()230f =>,()1.50f <,()1.750f >,()1.6250f <,则该近似解所在的区间是( )A .()11.5, B .()1.51.625, C .()1.6251.75, D .()1.752, 【答案】C【解析】根据已知()150f =-<,()1.50f <,()1.6250f <,()1.750f >,()230f =>,根据二分法可知该近似解所在的区间是()1.625,1.75.故选:C.【变式10-2】(2022·全国·高三专题练习)用二分法求如图所示的函数()f x 的零。

数学 函数零点的求法及零点的个数

数学 函数零点的求法及零点的个数

函数零点的求法及零点的个数题型1:求函数的零点。

[例1]求函数2223+--=x x x y 的零点.[解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根[解析]令32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。

[反思归纳]函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2]求函数f(x)=lnx+2x -6的零点个数.[解题思路]求函数f(x)=lnx+2x -6的零点个数就是求方程lnx+2x -6=0的解的个数[解析]方法一:易证f(x)=lnx+2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)=lnx+2x -6只有一个零点。

方法二:求函数f(x)=lnx+2x -6的零点个数即是求方程lnx+2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。

画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。

题型3:由函数的零点特征确定参数的取值范围[例3](2007·广东)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论[解析]若0a =,()23f x x =-,显然在[]1,1-上没有零点,所以0a ≠.令()248382440a a a a ∆=++=++=,解得372a -±=①当372a --=时,()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。

高考复习专题:函数零点的求法及零点的个数

高考复习专题:函数零点的求法及零点的个数

函数零点的求法及零点的个数题型1:求函数的零点。

[例1] 求函数2223+--=x x x y 的零点. [解题思路]求函数2223+--=x x x y 的零点就是求方程02223=+--x x x 的根[解析]令32220x x x --+=,∴2(2)(2)0x x x ---=∴(2)(1)(1)0x x x --+=,∴112x x x =-==或或即函数2223+--=x x x y 的零点为-1,1,2。

[反思归纳] 函数的零点不是点,而是函数函数()y f x =的图像与x 轴交点的横坐标,即零点是一个实数。

题型2:确定函数零点的个数。

[例2] 求函数f(x)=lnx +2x -6的零点个数. [解题思路]求函数f(x)=lnx +2x -6的零点个数就是求方程lnx +2x -6=0的解的个数 [解析]方法一:易证f(x)= lnx +2x -6在定义域(0,)+∞上连续单调递增,又有(1)(4)0f f ⋅<,所以函数f(x)= lnx +2x -6只有一个零点。

方法二:求函数f(x)=lnx +2x -6的零点个数即是求方程lnx +2x -6=0的解的个数即求ln 62y x y x =⎧⎨=-⎩的交点的个数。

画图可知只有一个。

[反思归纳]求函数)(x f y =的零点是高考的热点,有两种常用方法:①(代数法)求方程0)(=x f 的实数根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图像联系起来,并利用函数的性质找出零点。

题型3:由函数的零点特征确定参数的取值范围 [例3] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,假如函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点找寻关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行探讨[解析] 若0a = , ()23f x x =- ,明显在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=, 解得32a -=①当a =时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点。

方程的根与函数的零点题型及解析

方程的根与函数的零点题型及解析

方程的根与函数的零点题型及解析1.求下列函数的零点1fx=x3+1;2fx=;3y=﹣x2+3x+4;4y=x2+4x+4.分析:根据函数零点的定义解fx=0,即可得到结论.解:1由fx=x3+1=0得x=﹣1,即函数的零点为﹣1;2由fx==0得x2+2x+1=0得x+12=0,得x=﹣1,即函数的零点为﹣1.3由y=﹣x2+3x+4=0,可得x﹣4x+1=0,所以函数的零点为4,﹣1;4y=x2+4x+4,可得x+22=0,所以函数的零点为﹣2.2.①求函数fx=2x+x﹣3的零点的个数;②求函数fx=log2x﹣x+2的零点的个数;③求函数的零点个数是多少分析:①由题意可判断fx是定义域上的增函数,从而求零点的个数;②由题意可得,函数y=log2x的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数y=lnx的图象与函数y=的图象只有一个交点,可得函数fx=lnx-1/x的零点个数.解:①∵函数fx=2x+x﹣3单调递增,又∵f1=0,故函数fx=2x+x﹣3有且只有一个零点②函数fx=log2x﹣x+2的零点的个数,即函数y=log2x的图象和直线y=x﹣2的交点个数,如图所示:故函数y=log2x的图象红色部分和直线y=x﹣2蓝色部分的交点个数为2,即函数fx=log2x﹣x+2的零点的个数为2;③函数fx=lnx-1/x的零点个数就是函数y=lnx的图象与函数y=1/x的图象的交点的个数,由函数y=lnx的图象与函数y=1/x的图象只有一个交点,如图所示,可得函数fx=lnx-1/x的零点个数是13.①已知方程x2﹣3x+a=0在区间2,3内有一个零点,求实数a的取值范围②已知a是实数,函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,求a的取值.③已知函数fx=x2﹣2ax+4在区间1,2上有且只有一个零点,求a的取值范围分析:①由已知,函数fx在区间2,3内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可;②若函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,则f0<0,f1>0,f2>0,f4<0,解得答案;③若函数fx=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数fx=x2﹣2ax+4有两个零点,进而f1f2<0,解得答案解:①若函数fx=﹣x2+ax﹣3在区间0,1与2,4上各有一个零点,则f0<0,f1>0,f2>0,f4<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈4,19/4;②∵令fx=x2﹣3x+a,它的对称轴为x=3/2,∴函数fx在区间2,3单调递增,∵方程x2﹣3x+a=0在区间2,3内有一个零点,∴函数fx在区间2,3内与x轴有一个交点,根据零点存在性定理得出:f2<0,f3>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数fx=x2﹣2ax+4只有一个零点,则△=4a2﹣16=0,解得:a=±2,此时函数的零点为±2不在区间1,2上,即函数fx=x2﹣2ax+4有两个零点,则f1f2<0,即5﹣2a8﹣4a<0,解得:a∈2,5/24.已知函数fx的图象是连续不断的,观察下表:函数fx在区间﹣2,2上的零点至少有几个分析:看区间端点值,只要在区间两端点处函数值异号,由零点存在性定理即可解决问题.解:由题中表得,f﹣2<0,f﹣1>0,f0<0,f1<0,f2>0,由零点存在性定理可得fx在区间﹣2,﹣1,﹣1,0,1,2上个有一个零点,故函数fx在区间﹣2,2上的零点至少有3个5.已知y=fx是定义在R上的函数,下列命题正确的是A.若fx在区间a,b上的图象是一条连续不断的曲线,且在a,b内有零点,则有fafb<0B.若fx在区间a,b上的图象是一条连续不断的曲线,且有fafb>0,则其在a,b内没有零点C.若fx在区间a,b上的图象是一条连续不断的曲线,且有fa fb<0,则其在a,b内有零点D.如果函数fx在区间a,b上的图象是一条连续不断的曲线,且有fafb<0,则其在a,b内有零点分析:据函数零点的定义,函数零点的判定定理,运用特殊函数判断即可.解:①y=x2,在﹣1,1内有零点,但是f﹣1f1>0,故A不正确,②y=x2,f﹣1f1>0,在﹣1,1内有零点,故B不正确,③若fx在区间a,b上的图象是一条连续不断的曲线,fa=﹣1,fb=1,在a,b恒成立有fx>0,可知满足fafb<0,但是其在a,b内没有零点.故C不正确.所以ABC不正确,故选D6.若y=fx在区间a,b上的图象为连续不断的一条曲线,则下列说法正确的是A.若fafb<0,不存在实数c∈a,b,使得fc=0;B.若fafb<0,存在且只存在一个实数c∈a,b,使得fc=0;C.若fafb>0,不存在实数c∈a,b,使得fc=0;D.若fafb>0,有可能存在实数c∈a,b,使得fc=0分析:画满足条件的函数图象排除不正确的选项解:首先,设函数y=fx在区间a,b上的图象如左图:图中满足fa·fb<0,有可能存在实数c ∈a,b使得fc=0,故A,B错误;其次,设函数y=fx在区间a,b上的图象如右图:图中满足fa·fb>0,有可能存在实数c∈a,b使得fc=0,故C错误;D正确.7.已知函数fx=mx2﹣3x+1的图象上其零点至少有一个在原点右侧,求实数m的取值范围分析:根据题意,二次函数的图象与x轴的交点至少有一个在原点的右侧,有两种情况,一是只有一个在右侧,二是两个都在右侧,分类讨论即可.解:1当m=0时,fx=﹣3x+1,直线与x轴的交点为1/3,0,即函数的零点为1/3,在原点右侧,符合题意;2当m≠0时,∵f0=1,∴抛物线过点0,1;若m<0时,fx的开口向下,如图所示;∴二次函数的两个零点必然是一个在原点右侧,一个在原点左侧,满足题意;若m>0,fx的开口向上,如图所示,要使函数的零点在原点右侧,当且仅当△=9﹣4m≥0,且>0即可,如图所示,解得0<m≤;综上,m的取值范围是﹣∞,9/48.函数y=fx的图象在a,b内是连续的曲线,若fafb>0,则函数y=fx在区间a,b内A.只有一个零点B.至少有一个零点C.无零点D.无法确定分析:可列举适当的函数图象,看图象与x轴的交点个数,将选项逐个排除,即可得到正确答案.解:如图1,有fafb>0,但函数y=fx的图象与x轴无交点,所以fx在区间a,b内无零点,可排除A,B,如图2,有fafb>0,但函数y=fx的图象与x轴只有一个交点,所以fx在区间a,b内有且只有一个零点,可排除C,综上知,函数y=fx在区间a,b内的零点个数无法确定.故答案为D9.若二次函数fx=x2+mx+3+2m1若函数fx有两个零点,其中一个零点小于0,另一零点大于5,求m的取值范围;2fx在区间1,7上有最大值22,求m的取值范围.分析:1利用二次函数的性质,函数的零点,列出不等式,即可求解m的范围.2利用二次函数的对称轴以及函数的最值,列出不等式求解即可.解:1二次函数fx=x2+mx+3+2m,开口向上,由图象可知则m<﹣4即m∈﹣∞,﹣4;2由题意可知或可得m=-10/3。

导数中的零点问题

导数中的零点问题

导数中的零点问题题型一:零点的基本解法(两种)1、已知函数],1[,ln 2)(22e ex mx x x x f ∈+-=有两个零点,求实数m 的取值范围.2、已知函数()()21+-=x a xe x f x (1)若e a =,求函数)(x f 的极值;(2)若函数)(x f 有两个零点,求实数a 的取值范围.3、已知函数()()x e a ae x f x x --+=22(1)讨论()x f 的单调性:(2)若()x f 有两个零点,求a 的取值范围。

4、已知函数()())0(2212>-++-=a e x ax ax x f x (1)求函数()x f 的单调区间;(2)若函数()x f 存在3个零点,求a 的取值范围。

1、曲线3x y =在点()1,1处的切线方程为 ;过点()1,1处的切线方程为 。

2、已知函数),()(23R n m nx mx x x f ∈++=. (1)若()x f 在1=x 处取得极大值,求实数m 的取值范围;(2)若0)1(='f ,且过点)1,0(p 有且只有两条直线与曲线)(x f y =相切,求实数m 的值.3、已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)求函数()x f 的解析式;(2)若过点),1(m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围.1、已知函数)(36)(23R t t x x x x f ∈++-=.(1)求函数()x f 的单调区间;(2)设函数)()(x f x g =有三个不同的极值点,求t 的取值范围.(3)设函数)()(x f e x g x =有三个不同的极值点,求t 的取值范围.题型四:隐藏零点问题1.(直接观察)求证:1ln -≤x xx2.已知0ln )1(>--a x x 恒成立,求实数a 的取值范围.【名师点睛】如果导函数存在零点,但是令导数为零后,出现超越方程,直接求解比较困难,此时可先用特殊值试探出方程的一个根,再通过二次求导研究其单调性,并证明是唯一的.一般地,导函数式含有ln x 时,可试根1,e 或1e等,当导函数式含有x e 时可试根0或1. 3.(虚设零点)设函数)0()1ln(1)(>++=x x x x f ,若1)(+>x k x f 恒成立,求正整数k 的最大值.变式1已知函数x x x f ln )(=.若k 为正整数,且k x k x f -->)1()(对任意1x >恒成立,求k 的最大值.3.已知函数x x ax ax x f ln )(2--=,且0)(≥x f .(1)求a ;(2)证明:()x f 存在唯一的极大值点0x ,且2022)(--<<x f e4.已知)2ln()(+-=x e x f x ,求证:0)(>x f 恒成立.变式2. 已知函数)(ln )(R x m x x x f ∈--=.(1)若函数有两个零点,求m 的取值范围;(2)关于x 的不等式0)2()(<-+x e x f x f 在⎥⎦⎤⎢⎣⎡121,上恒成立, 求m 能取到的最小整数。

函数零点问题的题型归类及解题策略

函数零点问题的题型归类及解题策略

函数零点问题的题型归类及解题策略一、函数零点问题的题型归类在数学中,函数零点问题是一个常见的题型,通常是要求求出一个函数的零点或根。

根据不同的函数形式和解法,可以将这些题型分为以下几类:1. 多项式函数的零点问题:多项式函数是指由一系列单项式相加或相减而成的函数,例如f(x) = 2x^3 - 3x^2 + 4x - 5就是一个三次多项式函数。

对于多项式函数而言,求解它的零点通常使用因式分解、配方法、牛顿迭代法等方法。

2. 三角函数的零点问题:三角函数包括正弦、余弦、正切等等,例如f(x) = sin(x) - x就是一个三角函数。

对于三角函数而言,求解它的零点通常使用周期性、奇偶性等特征来进行简化。

3. 指数和对数函数的零点问题:指数和对数函数包括指数、自然对数等等,例如f(x) = e^x - x就是一个指数和对数函数。

对于指数和对数函数而言,求解它们的零点通常需要使用到特殊技巧如换底公式、取对数等方法。

4. 分段定义的复合函数的零点问题:分段定义的复合函数是指一个函数在不同的区间内采用不同的定义方式,例如f(x) = {x^2 + 1, x < 0; x - 1, x >= 0}就是一个分段定义的复合函数。

对于这类函数,求解它们的零点通常需要将其分成不同的部分进行讨论。

二、解题策略针对以上不同类型的函数零点问题,我们可以采用以下几种解题策略:1. 因式分解法因式分解法是一种常见的求多项式函数零点的方法。

对于一个多项式函数f(x),我们可以先将其进行因式分解,然后再求出每个因子的零点。

例如f(x) = x^3 - 3x^2 + 2x可以写成f(x) = x(x-1)(x-2),然后再求出每个因子的零点即可得到f(x)在实数范围内所有的零点。

2. 配方法配方法也是一种常见的求多项式函数零点的方法。

对于一个二次或三次多项式函数,我们可以通过配方将其转化为完全平方或完全立方形式,然后再根据完全平方或完全立方公式来求解它们的零点。

考点14函数的零点与方程的解(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型新高考版

考点14函数的零点与方程的解(3种核心题型)(学生版) 2025年高考数学大一轮复习核心题型新高考版

考点14函数的零点与方程的解(3种核心题型+基础保分练+综合提升练+拓展冲刺练)【考试提醒】1.理解函数的零点与方程的解的联系.2.理解函数零点存在定理,并能简单应用.3.了解用二分法求方程的近似解.【知识点】1.函数的零点与方程的解(1)函数零点的概念对于一般函数y =f (x ),我们把使 的实数x 叫做函数y =f (x )的零点.(2)函数零点与方程实数解的关系方程f (x )=0有实数解⇔函数y =f (x )有 ⇔函数y =f (x )的图象与有公共点.(3)函数零点存在定理如果函数y =f (x )在区间[a ,b ]上的图象是一条连续不断的曲线,且有 ,那么,函数y =f (x )在区间 内至少有一个零点,即存在c ∈(a ,b ),使得,这个c也就是方程f (x )=0的解.2.二分法对于在区间[a ,b ]上图象连续不断且 的函数y =f (x ),通过不断地把它的零点所在区间 ,使所得区间的两个端点逐步逼近,进而得到零点近似值的方法叫做二分法.常用结论1.若连续不断的函数f (x )是定义域上的单调函数,则f (x )至多有一个零点.2.连续不断的函数,其相邻两个零点之间的所有函数值保持同号【核心题型】题型一 函数零点所在区间的判定确定函数零点所在区间的常用方法(1)利用函数零点存在定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(2)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.【例题1】(2024·贵州贵阳·模拟预测)设方程33log 1xx ×=的两根为1x ,()212x x x <,则A .101x <<,23x >B .121x x >C .1201x x <<D .124x x +>【变式1】(2023·河北·模拟预测)已知函数()36xf x x =+-有一个零点0x x =,则0x 属于下列哪个区间( )A .1,12æöç÷èøB .31,2æöç÷èøC .3,22æöç÷èøD .52,2æöç÷èø【变式2】(2023·海南·模拟预测)函数()123x f x x -=+-的零点所在的区间是( )A .()1,0-B .()0,1C .()1,2D .()2,3【变式3】(2023·辽宁葫芦岛·一模)请估计函数()26log f x x x=-零点所在的一个区间 .题型二 函数零点个数的判定求解函数零点个数的基本方法(1)直接法:令f (x )=0,方程有多少个解,则f (x )有多少个零点;(2)定理法:利用定理时往往还要结合函数的单调性、奇偶性等;(3)图象法:一般是把函数拆分为两个简单函数,依据两函数图象的交点个数得出函数的零点个数.【例题2】(2024·天津·二模)已知函数()22sin 2sin cos cos f x x x x x =+-,关于()f x 有下面四个说法:①()f x 的图象可由函数()2g x x =的图象向右平行移动π8个单位长度得到;②()f x 在区间ππ,44éù-êúëû上单调递增;③当ππ,62x éùÎêúëû时,()f x的取值范围为;④()f x 在区间[]0,2π上有3个零点.以上四个说法中,正确的个数为( )A .1B .2C .3D .4【变式1】(2024·湖南·模拟预测)已知函数()f x 满足()()8f x f x +=,()()80f x f x +-=,当[)0,4x Î时,()πln 1sin 4f x x æö=+ç÷èø,则函数()()()3F x f x f x =-在()0,8内的零点个数为A .3B .4C .5D .6【变式2】.(2024·青海西宁·二模)记()x t 是不小于x 的最小整数,例如()()()1.22,22, 1.31t t t ==-=-,则函数()()128x f x x x t -=--+的零点个数为.【变式3】(2024·北京西城·一模)关于函数()sin cos2f x x x =+,给出下列三个命题:①()f x 是周期函数;②曲线()y f x =关于直线π2x =对称;③()f x 在区间[)0,2π上恰有3个零点.其中真命题的个数为( )A .0B .1C .2D .3题型三 函数零点的应用根据函数零点的情况求参数的三种常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中画出函数的图象,然后数形结合求解.命题点1 根据零点个数求参数【例题3】(多选)(2024·全国·模拟预测)已知函数()()()22e 21e 2x xf x a x a a x =-+++(其中e 为自然对数的底数),则下列结论正确的是( )A .a $ÎR ,使函数()f x 恰有1个零点B .a $ÎR ,使函数()f x 恰有3个零点C .a "ÎR ,函数()f x 都有零点D .若函数()f x 有2个零点,则实数a 的取值范围为()e 2,e -【变式1】(2024·安徽黄山·二模)若函数()()14f x k x =--有两个零点,则实数k 的取值范围是.【变式2】(2024·陕西西安·模拟预测)若方程2ln 0ax x -=在()1,+¥上有两个不同的根,则a 的取值范围为( )A .10,2e æöç÷èøB .1,e æö-¥ç÷èøC .()1,e D .(),2-¥【变式3】(2024·上海徐汇·二模)已知函数()y f x =,其中122()log 2xf x x +=-.(1)求证:()y f x =是奇函数;(2)若关于x 的方程()12()log f x x k =+在区间[3,4]上有解,求实数k 的取值范围.命题点2 根据函数零点的范围求参数【例题4】(2024·陕西安康·模拟预测)已知函数()()πcos 04f x x w w æö=+>ç÷èø在区间π,π3æöç÷èø上单调递减,且()f x 在区间()0,π上只有1个零点,则w 的取值范围是( )A .10,4æùçúèûB .13,24æùçúèûC .13,44æùçúèûD .15,44æùçúèû【变式1】(2024·四川巴中·一模)若函数()2231f x ax x =+-在区间()1,1-内恰有一个零点,则实数a 的取值集合为( )A .{}|12a a -<<B .9{|8a a =-或12}a -<<.C .{|12}a a -££D .9{|8a a =-或12}a -££.【变式2】(2023·河南·模拟预测)已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为 .【变式3】(2023·全国·模拟预测)将函数()(0)f x x w w =>的图像向右平移3w p 个单位长度得到函数()g x 的图像.若()g x 在区间π5π,36æöç÷èø内有零点,无极值,则w 的取值范围是 .【课后强化】基础保分练一、单选题1.(2023·浙江宁波·一模)已知函数32221()2log ,()log ,()log 2xxf x xg x xh x x x æö=+=-=+ç÷èø的零点分别为,,a b c ,则( )A .a b c >>B .b a c >>C .c a b>>D .b c a>>2.(2023·贵州毕节·模拟预测)若函数()()224424e e x x f x x x a --=-++有唯一零点,则实数=a ( )A .2B .12C .4D .13.(23-24高三下·四川雅安·开学考试)已知函数()24xf x =,若存在12x x <,使得()()120f x f x <,则下列结论不正确的是( )A .11<x B .21x >C .()f x 在()12,x x 内有零点D .若()f x 在121,2x x x +æöç÷èø内有零点,则1202x x f +æö>ç÷èø4.(2024·北京海淀·一模)已知()()3,0lg 1,0x x f x x x ì£ï=í+>ïî,函数()f x 的零点个数为m ,过点(0,2)与曲线()y f x =相切的直线的条数为n ,则,m n 的值分别为( )A .1,1B .1,2C .2,1D .2,25.(2024·全国·模拟预测)已知函数()()ππ2sin 222f x x j j æö=+-<<ç÷èø的图像关于点π,03æöç÷èø中心对称,将函数()f x 的图像向右平移π3个单位长度得到函数()g x 的图像,则下列说法正确的是( )A .()f x 在区间ππ36æö-ç÷èø,上的值域是(]12-,B .()2sin2g x x=-C .函数()g x 在π5π1212éù-êúëû,上单调递增D .函数()g x 在区间[]ππ-,内有3个零点二、多选题6.(2024·甘肃定西·一模)已知函数()()221,42x f x a g x x x a =--=-+-,则( )A .当()g x 有2个零点时,()f x 只有1个零点B .当()g x 有3个零点时,()f x 只有1个零点C .当()f x 有2个零点时,()g x 有2个零点D .当()f x 有2个零点时,()g x 有4个零点7.(2023·安徽马鞍山·三模)已知函数2()()e ln x f x x x x =++的零点为0x ,下列判断正确的是( )A .012x <B .01ex >C .00e ln 0x x +<D .00ln 0x x +<三、填空题8.(2024·重庆·模拟预测)若12πw <£,则关于x 的方程sin x x w =的解的个数是 .9.(2023·河北·模拟预测)已知1e ln ()2x x xxf x +-=,0x 是该函数的极值点,定义x 表示超过实数x 的最小整数,则()0f x 的值为.四、解答题10.(2023·四川成都·一模)已知函数()2cos sin 1f x ax x x x =-+-.(1)若1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若1a =时,求函数()f x 的零点个数;(3)若对于任意π0,2x éùÎêúëû,()12³-f x a 恒成立,求a 的取值范围.11.(2024·福建福州·模拟预测)已知函数()πsin (03)4f x x w w æö=-<<ç÷èø,π8x =是()f x 的零点.(1)求w 的值;(2)求函数π1π828y f x f x æöæö=-++ç÷ç÷èøèø的值域.12.(2023·四川绵阳·模拟预测)函数()()()222f x x m x m =+-+.(1)若()f x 为奇函数,求实数m 的值;(2)已知()f x 仅有两个零点,证明:函数()3y f x =-仅有一个零点.综合提升练一、单选题1.(2023·吉林长春·一模)方程3log 2x x +=的根所在区间是( )A .()0,1B .()1,2C .()2,3D .()3,42.(2023·全国·模拟预测)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,设x ÎR ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如[]2.12=,[]33=,[]1.52-=-,设0x为函数()33log 1f x x x =-+的零点,则[]0x =( )A .2B .3C .4D .53.(2023·宁夏银川·三模)函数()22log f x x x m =++在区间()2,4上存在零点,则实数m 的取值范围是( )A .(),18-¥-B .(5,)+¥C .(5,18)D .()18,5--4.(2024·湖北武汉·模拟预测)若函数()()ππ3cos 022f x x w j w j æö=+<-<<ç÷èø,的最小正周期为π,在区间ππ,66æö-ç÷èø上单调递减,且在区间π0,6æöç÷èø上存在零点,则j 的取值范围是( )A .ππ,62æöç÷èøB .3π,2πæù--çúèûC .ππ,32éö÷êëøD .π0,3æùçúèû5.(2023·内蒙古赤峰·二模)记函数()()sin 0,02f x x p w j w j æö=+><<ç÷èø的最小正周期为T .若()f T =,6x p =为()f x 的零点,则w 的最小值为( )A .2B .3C .4D .66.(2024·安徽芜湖·二模)在数列{}n a 中,n S 为其前n 项和,首项11a =,且函数()()31sin 211n n f x x a x a x +=-+++的导函数有唯一零点,则5S =( )A .26B .63C .57D .257.(2023·四川南充·模拟预测)函数()ln 1f x x x =-的零点为1x ,函数()()e 1e xg x x =--的零点为2x ,则下列结论正确的是( )A .221e ln ex x ×=B .2111e2x x -+>C .12ln 1x x -=D .21121ln x x +£+8.(2024·山西吕梁·模拟预测)用[a ]表示不大于实数a 的最大整数,如[1.68]=1,设12,x x 分别是方程24x x +=及ln(1)4x x +-=的根,则12[]x x += ( )A .2B .3C .4D .5二、多选题9.(2024·甘肃陇南·一模)已知函数()324f x x x ax =++-有3个不同的零点123,,x x x ,且23122x x x =,则( )A .4a =-B .()0f x <的解集为()1,2-C .7y x =-是曲线()y f x =的切线D .点()1,0-是曲线()y f x =的对称中心10.(2023·河北唐山·模拟预测)已知函数()()()0f x x w +j w >的最小正周期πT <,1π5f æö=ç÷èø,且()f x 在π10x =处取得最大值.下列结论正确的有( )A .sin j =B .w 的最小值为152C .若函数()f x 在ππ,204æöç÷èø上存在零点,则w 的最小值为352D .函数()f x 在13π11π,2015æöç÷èø上一定存在零点11.(2023·江西·模拟预测)已知函数2(e 21)xax x f x -+=,则下列结论正确的是( )A .对于任意的a ÎR ,存在偶函数()g x ,使得e ()()x y f x g x =+为奇函数B .若()f x 只有一个零点,则1a =C .当1a =时,关于x 的方程()f x m =有3个不同的实数根的充要条件为340e m <<D .对于任意的a ÎR ,()f x 一定存在极值三、填空题12.(2023·广东深圳·一模)定义开区间(),a b 的长度为b a -.经过估算,函数()1312x f x x =-的零点属于开区间 (只要求写出一个符合条件,且长度不超过16的开区间).13.(2024·河南南阳·一模)已知函数()()232ln 13f x x x a x =-+-+在区间()1,2上有最小值,则整数a 的一个取值可以是.14.(2023·山西阳泉·模拟预测)已知函数()e 2x f x x =+-的零点为1x ,函数()2ln g x x x =--的零点为2x ,给出以下三个结论:①12e e 2e x x +>;②1234x x >;③2112ln ln 0x x x x +<.其中所有正确结论的序号为 .四、解答题15.(2023·全国·模拟预测)已知函数()||f x x a =-.(1)若不等式()()1f x f x m -+£恒成立,求实数m 的最大值;(2)若函数1()()g x f x a=+有零点,求实数a 的取值范围.16.(2024·全国·模拟预测)已知函数()()ln R f x x x ax a =+Î.(1)求函数()f x 的单调区间;(2)当1a =-时,方程()f x m =有两个解,求参数m 的取值范围.17.(2023·江苏·三模)将函数()sin f x x =的图象先向右平移π4个单位长度,再将所得函图象上所有点的横坐标变为原来的1w(ω>0)倍(纵坐标不变),得到函数()y g x =的图象.(1)若2w =,求函数()y g x =在区间ππ,44éù-êúëû上的最大值;(2)若函数()y g x =在区间ππ,42æöç÷èø上没有零点,求ω的取值范围.18.(2024·全国·模拟预测)已知函数()()()21321e 2316x af x x x x x -=-+-++.(1)当2a =时,求曲线()y f x =在点()()1,1f 处的切线方程.(2)设函数()()2131e 3x g x f x x ax -=-+,若()g x 有两个零点,求实数a 的取值范围.19.(2023·福建福州·模拟预测)设1a >-,函数()()()1ln 11f x x x a x =++-+.(1)判断()f x 的零点个数,并证明你的结论;(2)若0a ³,记()f x 的一个零点为0x ,若11sin x a x +=,求证:10ln 0x x -£.拓展冲刺练一、单选题1.(2024·山西晋城·二模)将函数π()2sin 34f x x æö=+ç÷èø的图象向右平移j (0j >)个单位长度,得到函数()g x 的图象,若函数()g x 在区间(0,)j 上恰有两个零点,则j 的取值范围是( )A .5π3π,124éö÷êëøB .3π13π,412éö÷êëøC .5π3π,124æùçúèûD .3π13π,412æùçúèû2.(2024·全国·模拟预测)设函数()πcos 4f x x w æö=+ç÷èø在区间π0,2æöç÷èø上恰有3个零点、2个极值点,则w 的取值范围是( )A .79,22æùçúèûB .911,22æùçúèûC .913,22æùçúèûD .713,22æùçúèû3.(2023·北京·模拟预测)已知函数()e e x xf x -=-,下列命题正确的是( )①()f x 是奇函数;②方程()22f x x x =+有且仅有1个实数根;③()f x 在R 上是增函数;④如果对任意()0,x Î+¥,都有()f x kx >,那么k 的最大值为2.A .①②④B .①③④C .①②③D .②③④4.(2023·四川南充·一模)已知函数2()ln 2f x x m x=-+-(03m <<)有两个不同的零点1x ,2x (12x x <),下列关于1x ,2x 的说法正确的有( )个①221e m x x < ②122x m >+ ③121x x >A .0B .1C .2D .35.(23-24高三下·湖南·阶段练习)设方程22log 1x x ×=的两根为1x ,()212x x x <,则( )A .101x <<,22x >B .121x x >C .1201x x <<D .123x x +>二、多选题6.(2024·江苏扬州·模拟预测)设函数()1cos cos2,02f x x x x w w w w =->,则下列结论正确的是( )A .()()0,1,f x w "Î在ππ,64éù-êúëû上单调递增B .若1w =且()()122f x f x -=,则12min πx x -=C .若()1f x =在[]0,π上有且仅有2个不同的解,则w 的取值范围为54,63éö÷êëøD .存在()0,1w Î,使得()f x 的图象向左平移π6个单位长度后得到的函数为奇函数7.(2024·全国·模拟预测)已知函数()()24,0,log 2,0x x x f x x x ì+>ï=íï--<î的图象与直线y a =的交点的横坐标分别为()12341234,,,x x x x x x x x <<<,则( )A .4a >B .124x x =C .344x x =D .341x a x æö+ç÷èø8.(2023·河南焦作·模拟预测)已知函数()(),0e ln ,0424,4x xx xf x x x f x x ì£ïïï=<£íï->ïïî,则下列说法正确的是( )A .函数()f x 在()*(44e)k k k +ÎN ,上单调递增B .函数()f x 在()*(4e 44)k k k ++ÎN ,上单调递减C .若方程()(1)f x a x =<有两个实数根1x ,2x ,则12x a x =D .当方程()(08)f x bx x =££的实数根最多时,b 的最小值为ln 28三、填空题9.(2024·全国·模拟预测)已知()()4sin sin 1f x x x x =+相邻的两个零点分别为12,x x ,则12cos x x -=.10.(2024·四川成都·三模)若函数()2e x f x kx =-大于0的零点有且只有一个,则实数k 的值为 .四、解答题11.(2024·全国·模拟预测)已知函数()x f x e =,()a g x x =.(1)当1a =时,求()()f x g x -的最小值;(2)讨论函数()y f x =和()y g x =的图象在(0,)+¥上的交点个数.12.(2024·重庆·模拟预测)已知函数()()()23e ln R ,x f x x a x a x æö=-++Îç÷èø(1)若过点()2,0的直线与曲线()y f x =切于点()()1,1f ,求a 的值;(2)若()f x 有唯一零点,求a 的取值范围.。

导数专题:利用导数研究函数零点的4种常见考法(原卷版)

导数专题:利用导数研究函数零点的4种常见考法(原卷版)

导数专题:利用导数研究函数零点的4种常见考法一、函数零点问题常规求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x 轴(或y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图象;第三步:结合图象判断零点或根据零点分析参数。

二、利用导数确定函数零点的常用方法1、图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需要使用极限);2、利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数。

三、利用函数的零点求参数范围的方法1、分离参数(a=g(x))后,将原问题转化为y=g(x)的值域(最值)问题或转化为直线y=a 与y=g(x)的图象的交点个数问题(优先分离、次选分类)求解;2、利用函数零点存在定理构造不等式求解;3、转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解。

四、导函数的零点不可直接求时的应对策略1、“特值试探法”:当导函数的零点不可求时,可尝试利用特殊值试探,此时特殊值的选取应遵循一下原则:①当含有ln x 的函数中,通常选取k x e =,特别的,选当0k =时,1x =来试探;②在含有x e 的函数中,通常选取ln x k =,特别的,选取当1k =时,0x =来试探,在探得导函数的一个零点后,结合导函数的单调性,确定导函数在零点左右的符号,进而确定原函数的单调性和极值,使问题得到解决。

2、“虚设和代换法”:当导函数()f x '的零点无法求出显性的表达式时,我们可以先证明零点的存在,再虚设为0x ,接下来通常有两个方向:①由0()0f x '=得到一个关于0x 的方程,再将这个关于0x 的方程的整体或局部代入0()f x ,从而求得0()f x ,然后解决相关的问题;②根据导函数()f x '的单调性,得出0x 两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解。

有关函数零点的几种题型及其解法

有关函数零点的几种题型及其解法

龙源期刊网
有关函数零点的几种题型及其解法
作者:赵大藏
来源:《新课程·教育学术》2011年第03期
函数的零点是教材新增的内容,它沟通了函数、方程、不等式以及算法等内容,是高考重点考查的内容。

因此要重视对函数零点的复习。

下面归纳了关于函数零点的几种题型及其解法。

一、直接解出函数的零点
例1.(2010年福建卷)函数f(x)=x2+2x-3,x≤0lnx-2,x>0的零点个数为()
A.0
B.1
C.2
D.3
解析:当x≤0时,由x2+2x-3=0解得x=-3;
当x>0时,由lnx-2=0解得x=e2,所以已知函数有两个零点,故选C。

例2.(2009福建文)若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是()
注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档