波导法测量介电常数PPT共32页
(实验室装置)波导法测量介电常数--PPT
同轴探针法测量介电常数
Coaxial probe permittivity measurement system
Coaxial probe permittivity measurement system
Coaxial probe permittivity measurement system
Wave-guide method dielectric constant measuring system
Vector Network Analyzers
Coaxial Waveguide Coaxial Converter
The Parts in the Wave-guide method dielectric constant measuring system
物质在静电场中(无电磁波时)的介电常数是一 个标量,实数 物质在交变电场中(有电磁波时)的介电常数是 一个复数
j
'
"
介电常数的虚部反映波传播的损耗,实部反映波 传播时状态的改变,如相位,相速,波阻抗等的 改变。
介电常数测量方法
传输线法-如波导法,同轴线,带状线
将被测介质作为传输线的一部分,测量 负载(被测介质)在传输线(传输系统)上 的行驻波分布,测量其驻波系数,波节点位 置(相位),以此计算负载的反射系数,阻 抗,网络参量等,进而实现其介电常数的反 演
样品端面S参数到介电常数的计算
2 c (1 Td2 ) Td (1 c ) s11 s22 s21 s12 2 2 2 2 1 cTd 1 c Td
Td 表示待测样品的传输系数 c 表示待测样品的反射系数
s11、s22、s21、s12表示待测样品的s参数
介电常数的测定 (3)
实验题目:介电常数的测定 89实验目的:本实验要求学生了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。
实验原理:1. 介电体(又称电介质)最基本的物理性质是它的介电性,对介电性的研究不但在电介质材料的应用上具有重要意义,而且也是了解电介质的分子结构和激化机理的重要分析手段之一,探索高介电常数的电介质材料,对电子工业元器件的小型化有着重要的意义。
介电常数(又称电容率)是反映材料特性的重要参量,电介质极化能力越强,其介电常数就越大。
测量介电常数的方法很多,常用的有比较法,替代法,电桥法,谐振法,Q 表法,直流测量法和微波测量法等。
各种方法各有特点和适用范围,因而要根据材料的性能,样品的形状和尺寸大小及所需测量的频率范围等选择适当的测量方法。
2.介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: SCd r 00εεεε==(1)式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120-⨯=ε,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。
一、替代法当实验室无专用测量电容的仪器,但有标准可变电容箱或标准可变电容器时,可采用替代法设计一简易的电容测试仪来测量电容。
这种方法的优点是对仪器的要求不高,由于引线参数可以抵消,故测量精度只取决于标准可变电容箱或标准可变电容器读数的精度。
若待测电容与标准可变电容的损耗相差不大,则该方法具有较高的测量精度。
替代法参考电路如图2.2.6-1(a)所示,将待测电容C x (图中R x 是待测电容的介电损耗电阻),限流电阻R 0(取1k Ω)、安培计与信号源组成一简单串联电路。
合上开关K 1,调节信号源的频率和电压及限流电阻R 0,使安培计的读数在毫安范围恒定(并保持仪器最高的有效位数),记录读数I x 。
微波法测介电常数
反射式速调管的结构原理图
反射式速调管K-27的结构和管座图
阴极发射电子经直流加速电压加速,以初速度v。通 过谐振腔栅网间隙驰向反射极。因反射极对阴极为负电 压,所以使电子减速,最后将发射电子折返穿过谐振腔 栅网。由于热扰动等原因,谐振腔栅网存在一高频交变 场,初速为v。的电子穿过栅网时将因受高频电场作用而 加速或减速,如图所示。
原理:
当把小样品放到谐振腔中时,会引起谐振腔的谐振腔 的谐振频率和品质因数的变化。如果样品很小,可以看成 一个微拢,假设:
1、放进样品后所引起的相对变化很小。令空腔的谐振频 率为 f0 放进样品后腔的谐振频率为 f ,有 | f f0 | 1 2、放进样品后,除样品所在处的电磁场发生变化外,腔 内其它其它的地方的电磁场保持不变,则可得不到谐振腔 的微拢公式:
当高频电场为正时,穿过栅网的
电子① 受到加速;高频场为负时,
穿过栅网电子③ 受到减速;而高
频场为零时,穿过栅网的电子② 速度不变,这就是速度调制。当电子群回到谐振腔栅网 间隙的时候,遇到腔内减速高频场就可把能量交给高频 场,从而使速调管维持振荡。当群聚中心电子从穿出栅
网到返回栅网的渡越时间满足式τ0=(n+3/4)T (n =0,1,2,3,···)时,发生最强的振荡,式中T为高
三、观察波导管的工作状态
一般说,波导管中存在入射波和反射波。描述波导管中匹配和反 射程度的物理量是驻波比或反射系数。由于终端情况不同,波导管中 电磁场的分布情况也不同,可以把波导管的工作状态归结为三种状态; 匹配状态、驻波状态和混波状态,它们的电场分布曲线分别如图a、b、 c所示。
材料微波介电常数和磁导率测量
材料微波介电常数和磁导率测量材料的微波介电常数和磁导率是描述材料对微波信号的响应的重要参数。
测量这些参数可以帮助我们了解材料的电磁特性,并为微波技术的应用提供依据。
本文将介绍材料微波介电常数和磁导率的测量方法和原理,并讨论一些常见的测量技术和仪器。
首先,我们来简单介绍一下微波介电常数和磁导率的概念。
微波介电常数是材料在微波频率下的相对介电常数,它描述了材料对电磁波的响应能力。
而微波磁导率则描述了材料对磁场的响应能力。
这两个参数的大小和频率有关,通常在频率范围内都会有变化。
下面我们将介绍一些常见的测量方法和技术。
1.微波谐振腔法:这是一种常用的测量微波介电常数和磁导率的方法。
它基于材料在谐振腔中的反射和透射特性来测量参数。
通过调整腔体的尺寸,可以使谐振频率与待测样品的特性参数相吻合,从而测量其介电常数和磁导率。
2.微波光纤法:这是一种用光纤作为传输介质的测量方法。
通过将光纤与待测材料接触,测量光纤中微波信号的传输特性,可以得到材料的介电常数和磁导率。
3.微波传输线法:这种方法是通过测量待测样品中微波信号传输的衰减和相位变化来获得所需参数。
通过测量微波信号在传输线上的传播特性,可以得到材料的介电常数和磁导率。
4.谐振法:这是一种通过测量材料的谐振特性来获得微波介电常数和磁导率的方法。
通过测量材料在谐振频率附近的谐振响应,可以计算材料的参数。
以上只是一些常见的测量方法和技术,随着科研和技术的发展,新的测量方法和技术也在不断涌现。
当然,不同的测量方法和技术适用于不同的材料和频率范围,需要根据具体的应用需求进行选择。
目前,商业化的仪器和设备也可用于材料微波介电常数和磁导率的测量。
这些设备通常具有较高的测量精度和可靠性,并可适用于不同的材料和频率范围。
一些常见的商业化设备包括矢量网络分析仪、磁场扫描仪、研磨杆和衰减杆等。
总之,材料微波介电常数和磁导率的测量是研究材料电磁特性和应用微波技术的重要手段。
通过合适的测量方法和技术,可以获得准确的参数值,并提供科学研究和工程应用的数据支持。
介电常数的测量方法
介电常数的测量方法
介电常数的测量方法主要有以下几种:
1.电容法:利用平行板电容器的原理,通过测量介质中的电容值和真空中的电容值,可以计算出介电常数。
这种方法简单易行,适用于常见的固体和液体介质。
2.微波法:利用微波在介质中传播的速度和波长与介电常数的关系,可以测量介电常数。
这种方法可以用于测量高频介质的介电常数,如聚合物材料和生物组织。
3.频率法:利用介电常数随频率变化的规律,通过测量不同频率下的介电常数,可以得到介电常数与频率的函数关系。
这种方法适用于介质中有极性分子的情况,如水和酒精。
介电常数测试方法
介电常数测试方法
介电常数测试方法
一、介电常数的定义:
介电常数是一种物理特性,它衡量介质(如空气、水、液体或固体)中电磁波的传播率。
它的反映了电磁波在特定介质中传播的速度,即介质中电磁波传播的能力。
介电常数用ε表示,单位是度(F/m),它是不同物质的电磁波传播率的比较数值,值越高表示物质中电磁波传播的能力越强。
二、介电常数测试原理:
介电常数测试是采用微波吸收谱法(MAS)来测量介电常数的,即在实验室中采用MAS法测量样品的介电常数。
MAS法是在一定的物理条件下,通过测量微波激入样品的功率和样品反射出去的功率的比值来测量介电常数的。
三、介电常数测试方法:
(1)准备样品
用于测试介电常数的样品是根据测试要求准备的,要求样品尺寸应根据介质的介电常数的测量原理准备,通常,样品尺寸不应超过
1/10波长。
(2)设置测试系统
测试介电常数的系统由微波激发器、反射器、发射器和接收器等主要部分组成,在测试系统中,激发的微波将由发射器发射到样品上,样品上部分的微波被反射回发射器,另一部分微波穿过样品,最后由
接收器接收到。
(3)测试介电常数
在测试介电常数之前,要确定介质的频率,以及激发器的功率,然后发射微波到样品上,测量样品反射出去的功率,计算反射系数,最后把反射系数代入定义式,计算介电常数。
第一章 光波导基本理论ppt课件
Evanescent wave
1
c
1
TIR
(c)
sin nn 1 ac nd total internal reflection (TIR).
2 c
1
[2.1-4]
11
▪ 思考:一只鱼或一个潜水员在水下仰望天空, 大概是什么样的?
12
鱼眼看天空
全反射
water
13
水下的天空
▪ 为什么图片中天空是这样的
1-d potential well (particle in a well)
• 离散能级 (能态) • 势阱越深将支持更多的能级
69
硅片上的条形波导
x Single-crystal Silicon
Silicon oxide cladding Silicon substrate
n Unfortunately quantum
tan
12
p
思考:κ和β分别具有什么物理意义?
k0n1 sin
k0n1 cos
65
思考:波导芯层厚 度对解的数量有什
么影响?
思考:波导芯层折
射率n1对解的数量 有什么影响?
h k0n1h cos
思考:解的数量还和什 么因素有关?
还需满足解出的θ大于临界角
sin c
n2 n1
66
影响平板波导本征解数量的因素
Helmholtz equation:
[2x k02n2 2 ]U ( x) 0
Schrödinger equation:
[
1 2m
2x
V
E]
(x)
0
x
nclad
V
? ncore
电介质介电常数的测量PPT课件
【仪器和用具】
5、十进频率计
频率计是测量交变信 号振动快慢的仪器。被 测信号从HF INPUT口输 入,RESOLUTION中对应 10Hz的键按下,显示器 上显示的值即为频率值, 单位为kHz,有指示灯 指示。
第10页/共23页
【仪器和用具】
6、游标卡尺
游标卡尺是用来精确测量物体长度的计量器具,可测量一般物体的长度、圆形 物体的外径、内径、容器或孔的深度。测量圆片的直径时,按图中的方位,先移动 副尺使卡口增大,放入被测物体,移动副尺使卡口卡住被测物体(用力适当),读 数时先确定副尺零刻度所对主尺的读数,再确定与主尺对齐的副尺刻度,副尺刻度 每一小格是0.02mm,副尺属于游标刻度,所以不能估读,将主尺和副尺的值相加即 为最终测量值。游标卡尺使用前应进行零位校准,即将副尺推到底,使两卡口接触, 记录主副尺刻度,该读数作为测量值的零位修正值。
【实验原理】
其中: 实验中保持
C0
0S
D
C串
t
εr ε0 S εr (D-t)
C边1 C边2 C分1 C分2
得:
C串 C2 C1 C0
固体电介质介电常数:
εr
ε0
C串 t S C串 (D t)
第3页/共23页
【实验原理】
2、用回归计算法测空气介电常数和分布电容:
空气介电常数近似为真空介电常数0 ,在平行板电容
【实验内容】
3、频率法测液体电介质的介电常数
按图连接仪器,首先电极放在玻璃杯中,并且以空气为介 质。打开介电常数测试仪和频率ቤተ መጻሕፍቲ ባይዱ的电源,频率计应有指示, 5分钟后开始测量频率。
测量电极上开关的 当前位置默认为“1”, 连接电极电容C1,记录 此时的频率为f01。切换 开关至“2”,连接电极 电容C2 ,记录此时的频 率为f02。
介电常数和磁导率的测量
介电常数和磁导率的测量介电常数和磁导率是物质的两个基本性质。
它们在研究光电材料、电磁波传播和电磁现象等领域都有重要的应用。
本文将介绍介电常数和磁导率的测量方法与实验技术。
首先,介电常数的测量是研究材料电介质特性的重要手段之一。
介电常数是材料对电场响应的度量,也可以理解为材料中电荷分布的指标。
在实验中,可以通过测量材料中的电容值和几何尺寸等参数来计算介电常数。
常用的测量方法有电容法、差量法和短路共振法等。
电容法是一种简单且常用的测量介电常数的方法。
它利用电容器中的电场分布来测量介电常数。
首先,将被测材料放置在电容器的两个电极之间,然后通过外部电源施加电压,使电场在材料中形成,测量电容器的电容值。
根据电容公式C=εA/d,其中C为电容值,ε为介电常数,A为电极面积,d为电极间距,可以计算得到介电常数。
差量法是一种比较研究材料的测量方法。
它利用两个相同的电容器,一个装有被测材料,另一个作为参照。
在测量时,分别对两个电容器施加相同的电压,然后测量两个电容器的电容值。
通过比较两个电容器的变化,可以得到被测材料的介电常数。
短路共振法是一种通过测量电容器与电感器串联后的共振频率来计算介电常数的方法。
在实验中,首先将电容器和电感器串联,并通过信号源施加交变电压,然后调节电感器的值使整个电路达到共振状态。
此时,通过测量共振频率和电容器、电感器的参数,可以计算得到介电常数。
除了介电常数的测量,磁导率的测量也是许多研究领域的关键环节。
磁导率是材料对磁场的响应程度,也可以视为磁场中磁矩形成的强度。
磁导率的测量方法比较复杂,常用的有磁深法、磁力计法和自感法等。
磁深法是一种测量材料磁导率的非接触方法。
它利用交变磁场的渗透深度与磁导率之间的关系来计算磁导率。
在实验中,通过高频电源产生交变磁场,然后将被测材料放置在磁场中,并测量磁场强度在材料中的衰减情况。
根据磁深公式δ=√(2/πfμσ),其中δ为磁深度,f为频率,μ为磁导率,σ为电导率,可以得到磁导率。
课件:波导)
22
在这情况下,我们可以用电路方程解决实际 问题,而不必直接研究场的分布。
3
在高频情况下,场的波动性显著,集中的电容、 电感等概念已不能适用,而且整个线路上的电流不 再是一个与位置x无关的量,而是和电磁场相应地具 有波动性质,此外,电压的概念亦失去确切的意义。 因此,在高频情况下,电路方程逐渐失效,我们必 须直接研究场和线路上的电荷电流的相互作用,解 出电磁场,然后才能解决电磁能量传输问题.
§5 波 导
1
1.高频电磁能量的传输
近代无线电技术:如雷达、 电视和定向通讯等,都广泛地利 用到高频电磁波,因此,需要研 究高频电磁能量的传输问题。
2
高频电磁能量的传输与低频 相比有显著不同的特点.
在所有情况下,包括恒定电流情况下,能量都是在 场中传播的。但是在低频情况下,由于场与线路中 电荷和电流的关系比较简单,因而场在线路中的作 用往往可以通过线路的一些参数(电压、电流、电 阻、电容和电感等)表示出来。
在这情形下,电磁场不再是沿波导传播的波,
而是沿z轴方向振幅不断衰减的电磁振荡能够在
波导内传播的波的最低频率c称为该波模的截
止频率。(m,n)型的截止角频率为
c,mn
m
2
n
2
a b
对 a>b,则TE10 波有最低截止频率
1
2
c ,10
2a止频率为 c/2a,相应的截止波长为
Ey
Ez
0,
E x x
0 , x
0 , a
Ex
Ez
0,
E y y
0,y
0 , b
由x=0和y=0面上的边界条件可得
Ex Ey
A1 A2
coskx si nkx
介电常数的测量的讲义
液体与固体介电常数的测量实验目的:运用比较法粗测固体电介质的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。
实验原理:介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系:SCdr 00εεεε==式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120-⨯=ε,S为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1 kHz 时的电容量C 。
比较法:比较法的电路图如下图所示。
此时电路测量精度与标准电容箱的精度密切相关。
实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。
图一:比较法电路图谐振法:1、交流谐振电路:在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由振荡。
若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。
RLC 串联谐振电路如下图所示:图二:RLC 串联谐振电路其中电源和电阻两端接双踪示波器。
电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电容C 两端的电压2π ,落后于电感两端的电压2π,如图三所示。
图三:电阻R 、电容C 和电感L 的电压矢量图L V →-RV →电路总阻抗:Z==回路电流:VIZ==电流与信号源电压之间的位相差:1arctaniLCRωωϕ⎛⎫-⎪=- ⎪⎪⎝⎭在以上三个式子中,信号源角频率2fωπ=,容抗1CZCω=,感抗LZ Lω=。
ϕi<0,表示电流位相落后于信号源电压位相;ϕi>0,则表示电流位相超前。
各参数随ω变化的趋势如图2所示。
ω很小时,电路总阻抗Z→ϕi→π/2,电流的位相超前于信号源电压位相,整个电路呈容性。
波导法介电常数国标
波导法介电常数国标波导法测量介质介电常数的方法是一种常用的测量方法,其国标规定主要涉及以下几个方面:1、波导器的选择:根据测量的频率范围和精度要求,选择合适的波导器。
常用的波导器有矩形波导、圆波导和椭圆波导等。
在选择波导器时,应考虑其截止频率、工作模式、频带宽度、插入损耗等因素。
2、样品准备:根据测量要求,制备不同形状和尺寸的样品。
样品应具有代表性,且无气泡、杂质和裂缝等缺陷。
同时,样品的尺寸和形状应与波导器相匹配,以确保测量结果的准确性。
3、测量系统搭建:根据波导器的类型和测量要求,搭建相应的测量系统。
测量系统应包括信号源、功率计、接收机、校准装置等部分。
在搭建测量系统时,应确保各部分之间的连接稳定可靠,以减小误差。
4、校准与标定:为了确保测量结果的准确性,需要对测量系统进行校准和标定。
校准和标定的方法有开路法、短路法、匹配法和功率反射法等。
通过校准和标定,可以消除系统误差,提高测量精度。
5、测量步骤:按照国标规定,测量步骤包括以下几项:(1)将波导器安装在校准装置上,调整波导器的位置,使其与样品保持平行;(2)将样品放置在波导器中,确保样品与波导器紧密接触;(3)调整信号源的频率,使波导器的工作模式与测量要求相匹配;(4)记录测量数据,包括信号源的频率、功率计的读数、接收机的读数等;(5)根据测量数据计算介电常数。
6、测量数据处理:根据测量数据,计算介电常数。
常用的计算方法有传输线理论、电磁场理论和数值计算等。
在数据处理时,应考虑样品的形状、尺寸和填充因子等因素对介电常数的影响。
7、误差分析与精度提高:根据测量结果,分析误差来源,采取相应措施提高测量精度。
误差来源可能包括信号源的不稳定、功率计的读数误差、接收机的灵敏度、样品的不均匀性等。
在提高精度时,可采用高精度的测量仪器、多次测量取平均值等方法减小误差。
综上所述,波导法测量介质介电常数的国标规定涉及多个方面。
在实际操作中,应根据具体要求和实际情况进行相应的调整和优化。
材料介电常数的测试和分析
4.3 待测数据
实验号 固体介质1 固体介质2 固体介质3 实验号 液体介质1 液体介质2 f01 f02 f1 f2 D t S C0 C1 C2
5 注意事项
• 用电桥法测定固体介电常数时需要选择合适的频率,每改变一 次频率范围时都要重新进行一次清零校正。 • 用电桥法测定固体介电常数时,手要尽量不在样品周围晃动, 以免有感应影响测量结果。 • 本实验所提供的塑料电容器可用于电容器油和变压器油两种介 质的分组实验。 • 每次测完一组液体介电常数时,都要把塑料电容器擦拭干净, 以免影响下一组数据的测量。
(5)
(C2 − C1 + C0 )t 由(4)(5)可得: ε r = (6) ε 0 S − (C2 − C1 + C0 )(D-t)
2.2 液体介质相对介电常数的测定
介电常数 测试仪
示波器
C02
ε rC01
图2
ε r C02
C01 液体介质测试装置
液体测试槽中已装有空气电容器(两个槽中为不同容量的空气电容器)。 其原理为:我们知道RC振荡器频率为
f =
1 2π RC
k= 1 2π R
1 k C= = 2π Rf f
C01 + C分布
C02 + C分C02 − C01 = − f 02 f 01
当介质为液体时
k k ε r ( C02 − C01 ) = − f 2 f1
1 1 − f2 f1 εr = 1 1 − f 02 f 01
(3)将待测样品完全放入平行板电容器内,保持其高度 不变,测出有介质时平行板电容器的电容量C2。 (4)测出待测样品的厚度t、上表面面积S、平行板电容 器的极间距离D,由公式(6)算出电介质的相对介电 常数。
介电常数测量原理
介电常数测量原理
介电常数测量是指测量材料的介电常数,也称为相对介电常数或电容率。
介电常数是材料对电场的响应能力的度量,反映了材料中电场的传播速度和能量储存能力的大小。
一种常用的测量介电常数的方法是使用介电恒压法。
该方法基于平行板电容器的原理,利用电容器的电场分布和存储电荷的能力来确定介电常数。
在实验中,首先将待测材料作为绝缘板插入平行板电容器中。
然后,通过连接电源,施加恒定的电压使电容器充电至一定电势差。
接下来,测量电容器的电荷量和电场强度,从而计算出材料的介电常数。
该方法的原理是电场在电介质中的形成。
当电场作用于电介质时,电介质内的电荷会重新分布,形成电介质的极化。
电介质的极化导致了电容器的电场分布发生变化,从而影响了电容器的电容量和储能能力。
通过测量电容器的电荷量和电场强度,可以确定电介质的介电常数。
需要注意的是,在进行介电常数测量时应控制其他因素的影响,例如温度、湿度等。
另外,不同频率下的电场对材料的极化方式也会不同,因此在测量时需要选择合适的频率。
通过介电常数的测量,可以对材料的电学性质进行评估和比较。
此外,介电常数在电磁场分析、电路设计和电磁波传播等领域中也具有重要的应用价值。