2-3函数与方程及函数的实际应用
[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)
[全]高考数学解题技巧:函数与方程思想的八类应用(附例题详解)1.函数的思想函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。
函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。
经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等。
2.方程的思想方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。
方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系。
3.函数思想与方程思想的联系函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f(x)=0,就是求函数y=f(x)的零点,解不等式f(x)>0(或f(x)<0),就是求函数y=f(x)的正负区间,再如方程f(x)=g(x)的交点问题,也可以转化为函数y=f(x)-g(x)与x轴交点问题,方程f(x)=a有解,当且公当a 属于函数f(x)的值域,函数与方程的这种相互转化关系十分重要。
4.函数方程思想的几种重要形式(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。
函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y=f(x)的零点;(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;(4)函数f(x)=nbax)((n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。
函数的反函数与参数方程
函数的反函数与参数方程1. 引言在数学中,函数是一种特殊的关系,它将一个集合的元素映射到另一个集合的元素。
函数有许多不同的性质和特点,其中一个重要的概念就是反函数。
反函数是指将函数的输出值作为输入,并将函数的输入值作为输出的函数。
本文将探讨函数的反函数以及与之相关的参数方程。
2. 函数的反函数函数的反函数是指在原函数的定义域和值域上,将函数的输入与输出交换的一种特殊函数。
换句话说,如果函数f将元素x映射到y,那么反函数f^(-1)将元素y映射到x。
反函数表达了函数的相反方向的映射关系。
3. 反函数的性质反函数具有以下性质:- 反函数是原函数的逆转。
即原函数将x映射到y,那么反函数将y 映射回x。
- 函数与其反函数互为逆操作。
即先应用原函数再应用反函数,或者先应用反函数再应用原函数,结果都应该保持不变。
- 反函数的定义域和值域与原函数相互交换。
4. 反函数的例子考虑一个简单的函数f(x) = 2x + 3,它将输入值x映射到输出值2x + 3。
我们可以通过解方程来确定它的反函数。
首先,令y = 2x + 3,然后解方程得到x = (y - 3) / 2。
这样,我们就获得了反函数f^(-1)(x) = (x - 3) / 2。
例如,当x = 4时,原函数的输出为f(4) = 2 * 4 + 3 = 11,而反函数的输出为f^(-1)(11) = (11 - 3) / 2 = 4。
可以看到,原函数和反函数的输入输出相互对应,它们实际上是相互逆转的。
5. 参数方程与反函数的关系在数学中,参数方程是一种使用参数来表示变量之间关系的方程。
它可以通过参数的不同取值来表达一条曲线或者曲面。
参数方程与函数之间存在一种特殊的联系。
考虑一个简单的参数方程:x = 2 + t,y = 3 - 2t。
我们可以看到,这个参数方程实际上描述了一个直线。
将这个参数方程转化为函数形式,我们可以得到y = 3 - 2(x - 2) = -2x + 7。
二次函数与实际问题
二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。
本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。
二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。
2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。
(4)零点:即方程ax²+bx+c=0的解。
当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。
3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。
(2)常数函数y=c是一个水平直线,其值始终为c。
(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。
三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。
2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。
可以使用求根公式或配方法等方式来求解。
3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。
例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。
由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。
由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。
三角函数的微分方程与应用题解析
三角函数的微分方程与应用题解析在数学中,微分方程是描述自变量与其导数之间关系的方程。
而三角函数是描述角度与其对应比值关系的函数。
本文将探讨三角函数的微分方程及其在应用题中的解析方法。
一、三角函数的微分方程1. 正弦函数的微分方程正弦函数是最常见的三角函数之一,其公式为f(x) = sin(x)。
我们可以通过求正弦函数的导数来得到其微分方程。
求sin(x)的导数可得:f'(x) = cos(x)因此,正弦函数的微分方程为:f'(x) + f(x) = 02. 余弦函数的微分方程余弦函数是另一个常见的三角函数,其公式为f(x) = cos(x)。
同样地,我们可以通过求余弦函数的导数来得到其微分方程。
求cos(x)的导数可得:f'(x) = -sin(x)因此,余弦函数的微分方程为:f'(x) + f(x) = 03. 正切函数的微分方程正切函数是三角函数中较为特殊的一个,其公式为f(x) = tan(x)。
同样地,我们可以通过求正切函数的导数来得到其微分方程。
求tan(x)的导数可得:f'(x) = sec^2(x)因此,正切函数的微分方程为:f'(x) - sec^2(x)f(x) = 0二、三角函数微分方程的应用题解析1. 震动问题三角函数的微分方程在描述振动系统中起到重要作用。
例如,考虑一个弹簧振子,假设其振动规律可以由正弦函数描述。
设弹簧振子的位移函数为y(t),其微分方程可以表示为:y''(t) + ky(t) = 0其中,y''(t)表示位移函数的二阶导数,k为弹簧的劲度系数。
通过求解该微分方程,我们可以得到弹簧振子的运动规律。
2. 电路问题三角函数微分方程还可以用于解决电路中的问题。
考虑一个简单的电容电路,可以利用余弦函数描述电压的变化。
设电容电路中电压的函数为V(t),其微分方程可以表示为:V'(t) + RC * V(t) = 0其中,V'(t)表示电压函数的导数,R为电阻的阻值,C为电容的电容值。
【获奖课件】2-3函数与方程及函数的实际应用 40张 2
[解析]
函数f(x)=ex-2x+a有零点,即方程f(x)=0有
《 走 向 高 考 》 二 轮 专 题 复 习 · 数 学 新 课 标 版
实根,也就是a=-ex+2x有解 令g(x)=-ex+2x g(x)的值域就是a的取值范围 ∵g′(x)=-ex+2=0的根为x=ln2
且当x∈(-∞,ln2)时,g′(x)>0,g(x)是增函数
专题二
函数、导数及其应用
《 走 向 高 考 》 二 轮 专 题 复 习 · ( ) 数 学 新 课 标 版
专题二
函数、导数及其应用
《 走 向 高 考 》 二 轮 专 题 复 习 · ( ) 数 学 新 课 标 版
专题二
函数、导数及其应用
1.结合二次函数的图像,了解函数的零点与方程根的
联系. 2.根据具体函数的图像,能够用二分法求相应方程的 近似解. 3 . (1) 了解指数函数、对数函数以及幂函数增长特征,
《 走 向 高 考 》 二 轮 专 题 复 习 · ( 数 学 新 课 标 版
知道直线上升、指数增长、对数增长等不同函数类型增长
的含义. (2)了解函数模型(如指数函数、对数函数、幂函数、分 段函数在社会生活中普遍使用的函数模型)的广泛应用.
)
专题二
函数、导数及其应用
《 走 向 高 考 》 二 轮 专 题 复 习 · ( ) 数 学 新 课 标 版
当x∈(ln2,+∞)时,g′(x)<0,g(x)是减函数
( )
ቤተ መጻሕፍቲ ባይዱ
∴g(x)max=g(ln2)=2ln2-2
∴a的取值范围是(-∞,2ln2-2).
专题二
函数、导数及其应用
(2010· 福建理,4)函数 零点个数为( A.0 C.2 )
2023年高考数学总复习历年真题题型归纳与模拟预测2-3函数与方程、不等式带讲解
☆注:请用Microsoft Word2016以上版本打开文件进行编辑,.第二章 函数2.3 函数与方程、不等式高考对函数应用的考查主要是函数零点个数的判断、零点所在的区间.近几年全国卷考查函数模型及其应用较少,但也要引起重视.题型一.函数零点的个数1.(2015•安徽)下列函数中,既是偶函数又存在零点的是( )A .y =cos xB .y =sin xC .y =lnxD .y =x 2+1【解答】解:对于A ,定义域为R ,并且cos (﹣x )=cos x ,是偶函数并且有无数个零点;对于B ,sin (﹣x )=﹣sin x ,是奇函数,由无数个零点;对于C ,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D ,定义域为R ,为偶函数,都是没有零点;故选:A .2.(2013•天津)函数f (x )=2x |log 0.5x |﹣1的零点个数为( )A .1B .2C .3D .4【解答】解:函数f (x )=2x |log 0.5x |﹣1,令f (x )=0,在同一坐标系中作出y =(12)x .与y =|log 0.5x |,如图,由图可得零点的个数为2.故选:B .3.(2019•新课标Ⅲ)函数f (x )=2sin x ﹣sin2x 在[0,2π]的零点个数为( )A .2B .3C .4D .5【解答】解:函数 f (x )=2sin x ﹣sin2x 在[0,2π]的零点个数,即方程2sin x ﹣sin2x =0 在区间[0,2π]的根个数,即2sin x =sin2x =2sin x cos x 在区间[0,2π]的根个数,即sin x =0 或 cos x =1 在区间[0,2π]的根个数,解得x =0或 x =π 或 x =2π.所以函数f (x )=2sin x ﹣sin2x 在[0,2π]的零点个数为3个.故选:B .4.(2016•新课标Ⅱ)已知函数f (x )(x ∈R )满足f (x )=f (2﹣x ),若函数y =|x 2﹣2x ﹣3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑ m i=1x i =( )A .0B .mC .2mD .4m【解答】解:∵函数f (x )(x ∈R )满足f (x )=f (2﹣x ),故函数f (x )的图象关于直线x =1对称,函数y =|x 2﹣2x ﹣3|的图象也关于直线x =1对称,故函数y =|x 2﹣2x ﹣3|与 y =f (x ) 图象的交点也关于直线x =1对称,不妨设x 1<x 2<…<x m ,则点(x 1,y 1)与点(x m ,y m ),点(x 2,y 2)与点(x m ﹣1,y m ﹣1),…都关于直线x =1对称,所以x 1+x m =x 2+x m ﹣1=…=x m +x 1=2,由倒序相加法可得∑ m i=1x i =12×2m =m , 故选:B .5.(2012•辽宁)设函数f (x )(x ∈R )满足f (﹣x )=f (x ),f (x )=f (2﹣x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos (πx )|,则函数h (x )=g (x )﹣f (x )在[−12,32]上的零点个数为( )A .5B .6C .7D .8 【解答】解:因为当x ∈[0,1]时,f (x )=x 3.所以当x ∈[1,2]时2﹣x ∈[0,1],f (x )=f (2﹣x )=(2﹣x )3,当x ∈[0,12]时,g (x )=x cos (πx ),g ′(x )=cos (πx )﹣πx sin (πx ); 当x ∈[12,32]时,g (x )=﹣x cos πx ,g ′(x )=πx sin (πx )﹣cos (πx ). 注意到函数f (x )、g (x )都是偶函数,且f(0)=g(0),f(1)=g(1)=1,f(−12)=f(12)=18,f(32)=(2−32)3=18,g(−12)=g(12)=g(32)=0,g(1)=1,g′(1)=1>0,根据上述特征作出函数f(x)、g(x)的草图,函数h(x)除了0、1这两个零点之外,分别在区间[−12,0],[0,12],[12,1],[1,32]上各有一个零点.共有6个零点,故选:B.题型二.已知函数零点求参1.(2018•新课标Ⅲ)已知函数f(x)={e x,x≤0lnx,x>0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.2.(2019•天津)已知函数f (x )={2√x ,0≤x ≤1,1x,x >1.若关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( )A .[54,94]B .(54,94]C .(54,94]∪{1}D .[54,94]∪{1} 【解答】解:作出函数f (x )={2√x ,0≤x ≤1,1x,x >1.的图象,以及直线y =−14x 的图象,关于x 的方程f (x )=−14x +a (a ∈R )恰有两个互异的实数解,即为y =f (x )和y =−14x +a 的图象有两个交点,平移直线y =−14x ,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得a =94或a =54,考虑直线与y =1x 在x >1相切,可得ax −14x 2=1,由△=a 2﹣1=0,解得a =1(﹣1舍去),综上可得a 的范围是[54,94]∪{1}. 故选:D .3.(2016•天津)已知函数f (x )={x 2+(4a −3)x +3a ,x <0log a (x +1)+1,x ≥0(a >0,且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2﹣x 恰好有两个不相等的实数解,则a 的取值范围是( )A .(0,23]B .[23,34]C .[13,23]∪{34}D .[13,23)∪{34} 【解答】解:y =log a (x +1)+1在[0,+∞)递减,则0<a <1,函数f(x)在R上单调递减,则:{3−4a 2≥00<a <102+(4a −3)⋅0+3a ≥log a (0+1)+1;解得,13≤a ≤34; 由图象可知,在[0,+∞)上,|f (x )|=2﹣x 有且仅有一个解,故在(﹣∞,0)上,|f (x )|=2﹣x 同样有且仅有一个解,当3a >2即a >23时,联立|x 2+(4a ﹣3)x +3a |=2﹣x ,则△=(4a ﹣2)2﹣4(3a ﹣2)=0,解得a =34或1(舍去),当1≤3a ≤2时,由图象可知,符合条件,综上:a 的取值范围为[13,23]∪{34}, 故选:C .4.(2016•山东)已知函数f (x )={|x|,x ≤m x 2−2mx +4m ,x >m,其中m >0,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是 (3,+∞) .【解答】当m >0时,函数f (x )={|x|,x ≤mx 2−2mx +4m ,x >m的图象如下:∵x >m 时,f (x )=x 2﹣2mx +4m =(x ﹣m )2+4m ﹣m 2>4m ﹣m 2,∴y 要使得关于x 的方程f (x )=b 有三个不同的根,必须4m ﹣m 2<m (m >0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).5.(2021•濂溪区校级开学)已知f (x )={−sin π2x ,−2≤x ≤0,|lnx|,x >0,若关于x 的方程f (x )=k 有四个实根x 1,x 2,x 3,x 4.(其中x 1<x 2<x 3<x 4)则x 1+x 2+x 3+2x 4的取值范围是( )A .(0,2e +1e −2)B .(0,e +1e −2)C .(1,e +1e −2)D .(1,2e +1e −2) 【解答】解:关于x 的方程f (x )k 有四个实根,则y =f (x )与y =k 有四个交点,横坐标为x 1,x 2,x 3,x 4.则x 1+x 2=﹣2,1e <x 3<1<x 4<e ,且ln |x 3|=ln |x 4|,即x 3x 4=1, ∴x 1+x 2+x 3+2x 4=−2+x 3+2x 4=x 3+2x 3−2, 令g(x)=x +2x −2,x ∈(1e ,1),则g′(x)=1−2x 2<0,所以g (x )在(1e ,1)上单调递减, ∴1<g(x)<2e +1e −2,即x 1+x 2+x 3+2x 4的取值范围为(1,2e +1e −2).故选:D .6.(2017•新课标Ⅲ)已知函数f (x )=x 2﹣2x +a (e x ﹣1+e ﹣x +1)有唯一零点,则a =( )A .−12B .13C .12D .1【解答】解:f (x )=x 2﹣2x +a (e x ﹣1+e﹣x +1)=(x ﹣1)2+a (e x ﹣1+e ﹣x +1)﹣1, 令t =x ﹣1,则y =t 2+a (e t +e ﹣t )﹣1为偶函数,图象关于t =0对称,若y =0有唯一零点,则根据偶函数的性质可知当t =0时,y =﹣1+2a =0,所以a =12.故选:C .题型三.函数与不等式1.(2014•新课标Ⅲ)设函数f (x )={e x−1,x <1x 13,x ≥1,则使得f (x )≤2成立的x 的取值范围是 x ≤8 . 【解答】解:x <1时,e x ﹣1≤2,∴x≤ln2+1,∴x<1;x ≥1时,x 13≤2,∴x ≤8,∴1≤x ≤8,综上,使得f (x )≤2成立的x 的取值范围是x ≤8.故答案为:x ≤8.2.(2018•新课标Ⅲ)设函数f (x )={2−x ,x ≤01,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(﹣∞,﹣1] B .(0,+∞)C .(﹣1,0)D .(﹣∞,0) 【解答】解:函数f (x )={2−x ,x ≤01,x >0,的图象如图: 满足f (x +1)<f (2x ),可得:2x <0<x +1或2x <x +1≤0,解得x ∈(﹣∞,0).故选:D .3.(2013•新课标Ⅲ)已知函数f (x )={−x 2+2x ,x ≤0ln(x +1),x >0,若|f (x )|≥ax ,则a 的取值范围是( ) A .(﹣∞,0] B .(﹣∞,1] C .[﹣2,1] D .[﹣2,0]【解答】解:由题意可作出函数y =|f (x )|的图象,和函数y =ax 的图象,由图象可知:函数y =ax 的图象为过原点的直线,当直线介于l 和x 轴之间符合题意,直线l 为曲线的切线,且此时函数y =|f (x )|在第二象限的部分解析式为y =x 2﹣2x ,求其导数可得y′=2x﹣2,因为x≤0,故y′≤﹣2,故直线l的斜率为﹣2,故只需直线y=ax的斜率a介于﹣2与0之间即可,即a∈[﹣2,0]故选:D .4.(2014•辽宁)已知f (x )为偶函数,当x ≥0时,f (x )={cosπx ,x ∈[0,12]2x −1,x ∈(12,+∞),则不等式f (x ﹣1)≤12的解集为( ) A .[14,23]∪[43,74]B .[−34,−13]∪[14,23]C .[13,34]∪[43,74]D .[−34,−13]∪[13,34]【解答】解:当x ∈[0,12],由f (x )=12,即cosπx =12, 则πx =π3,即x =13,当x >12时,由f (x )=12,得2x ﹣1=12,解得x =34, 则当x ≥0时,不等式f (x )≤12的解为13≤x ≤34,(如图)则由f (x )为偶函数,∴当x <0时,不等式f (x )≤12的解为−34≤x ≤−13, 即不等式f (x )≤12的解为13≤x ≤34或−34≤x ≤−13,则由13≤x ﹣1≤34或−34≤x ﹣1≤−13,解得43≤x ≤74或14≤x ≤23,即不等式f (x ﹣1)≤12的解集为{x |14≤x ≤23或43≤x ≤74},故选:A .1.已知函数f(x)={|lnx|,x >0−2x(x +2),x ≤0,则函数y =f (x )﹣3的零点个数是( )A .1B .2C .3D .4【解答】解:因为函数f(x)={|lnx|,x >0−2x(x +2),x ≤0,且x ≤0时f (x =﹣2x (x +2)=﹣2(x +1)2+2; 所以f (x )的图象如图,由图可得:y =f (x )与y =3只有两个交点; 即函数y =f (x )﹣3的零点个数是2; 故选:B .2.已知函数f (x )=log 2(x +1)+3x +m 的零点在区间(0,1]上,则m 的取值范围为( ) A .(﹣4,0)B .(﹣∞,﹣4)∪(0,+∞)C .(﹣∞,﹣4]∪(0,+∞)D .[﹣4,0)【解答】解:因为f (x )=log 2(x +1)+3x +m 在区间(0,1]上是单调递增, 函数f (x )=log 2(x +1)+3x +m 的零点在区间(0,1]上, 所以{f(0)<0f(1)≥0,即{m <0log 22+3+m ≥0,解得﹣4≤m <0.故选:D .3.设偶函数f (x )(x ∈R )满足f (x )=f (2﹣x ),且当x ∈[0,1]时,f (x )=x 2.又函数g (x )=|cos (πx )|,则函数h (x )=g (x )﹣f (x )在区间[−12,32]上的零点个数为( ) A .5B .6C .7D .8【解答】解:∵f (x )=f (2﹣x ),故f (x )的图象关于x =1对称, 又函数f (x )是R 上的偶函数,∴f (x +2)=f (﹣x )=f (x ),∴f(x)是周期函数,T=2,当x∈[﹣1,0]时,f(x)=f(﹣x)=x2.令h(x)=0,则f(x)=g(x),在同一坐标系中作y=f(x)和y=g(x)在区间[−12,32]上的图象,由图象可得y=f(x)和y=g(x)有5个交点,故函数h(x)=f(x)﹣g(x)的零点个数为5.故选:A.4.已知函数f(x)={ax+1,x<0lnx,x>0若函数f(x)的图象上存在关于坐标原点对称的点,则实数a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[−12,0]D.(12,1]【解答】解:函数f(x)={ax+1,x<0lnx,x>0若函数f(x)的图象上存在关于坐标原点对称的点,可得x>0时,ax﹣1=lnx,有解;可得a=lnx+1x,令g(x)=lnx+1x,g′(x)=−lnxx2,所以x∈(0,1)时,g′(x)>0,函数是增函数,x>1时,g′(x)<0,函数g(x)是减函数,所以g(x)的最大值为:g(1)=1,所以a≤1.故选:B.5.已知函数f(x)=lnxx,g(x)=xe﹣x,若存在x1∈(0,+∞),x2∈R,使得f(x1)=g(x2)=k(k<0)成立,则x1x2的最小值为()A.﹣1B.−2e C.−2e2D.−1e【解答】解:g(x)=xe﹣x=xe x=lnexe x=f(e x),函数f(x)定义域{x|x>0},f′(x)=1−lnx x2,当x∈(0,e)时,f′(x)>0,f(x)单调递增,当x=1时,f(1)=0,所以x∈(0,1)时,f(x)<0;x∈(1,e)时,f(x)>0;当x∈(e,+∞)时,f′(x)<0,f(x)单调递减,此时f(x)>0,所以若存在x 1∈(0,+∞),x 2∈R ,使得f (x 1)=g (x 2)=k (k <0)成立, 则0<x 1<1且f (x 1)=g (x 2)=f (e x 2),所以x 1=ex 2,即x 2=lnx 1,所以x 1x 2=x 1 lnx 1,x 1∈(0,1), 令h (x )=xlnx ,x ∈(0,1), h ′(x )=lnx +1,当x ∈(1e ,1)时,h ′(x )>0,h (x )单调递增,当x ∈(0,1e)时,h ′(x )<0,h (x )单调递减,所以当x =1e时,h (x )min =h (1e)=1e ln 1e =−1e.故选:D .6.(多选)已知函数f (x )=e x +x ﹣2的零点为a ,函数g (x )=lnx +x ﹣2的零点为b ,则下列不等式中成立的是( ) A .e a +lnb >2B .e a +lnb <2C .a 2+b 2<3D .ab <1【解答】解:由f (x )=0,g (x )=0得e x =2﹣x ,lnx =2﹣x ,函数y =e x 与y =lnx 互为反函数, 在同一坐标系中分别作出函数y =e x ,y =lnx ,y =2﹣x 的图象, 如图所示,则A (a ,e a ),B (b ,lnb ),由反函数性质知A ,B 关于(1,1)对称,则a +b =2,e a+lnb =2,ab <(a+b)24=1,∴A 、B 错误,D 正确.∵f '(x )=e x +1>0.∴f (x )在R 上单调递增,且f (0)=﹣1<0,f(12)=√e −32>0, ∴0<a <12.∵点A (a ,e a )在直线y =2﹣x 上,即e a =2﹣a =b , ∴a 2+b 2=a 2+e 2a <14+e <3.C 正确.故选:CD .。
高一数学目录-人教版
第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修一必修一第一章第一章 集合与函数概念集合与函数概念 1.1 集合集合1.2 函数及其表示函数及其表示 1.3 函数的基本性质函数的基本性质实习作业实习作业 小结小结复习参考题复习参考题第二章第二章 基本初等函数(Ⅰ)基本初等函数(Ⅰ) 2.1 指数函数指数函数 2.2 对数函数对数函数 2.3 幂函数幂函数 小结小结 复习参考题复习参考题第三章第三章 函数的应用函数的应用 3.1 函数与方程函数与方程 3.2 函数模型及其应用函数模型及其应用 实习作业实习作业 小结小结 复习参考题复习参考题 必修二必修二第一章第一章 空间几何体空间几何体 1.1 空间几何体的结构空间几何体的结构1.2 空间几何体的三视图和直观图空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积空间几何体的表面积与体积 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系置关系2.2 直线、直线、平面平行的判定及其性平面平行的判定及其性质2.3 直线、直线、平面垂直的判定及其性平面垂直的判定及其性质 小结小结 复习参考题复习参考题第三章第三章 直线与方程直线与方程3.1 直线的倾斜角与斜率直线的倾斜角与斜率 3.2 直线的方程直线的方程3.3 直线的交点坐标与距离公式直线的交点坐标与距离公式 小结小结 复习参考题复习参考题 必修三必修三第一章第一章 算法初步算法初步 1.1 算法与程序框图算法与程序框图 1.2 基本算法语句基本算法语句 1.3 算法案例算法案例 阅读与思考阅读与思考 割圆术割圆术 小结小结 复习参考题复习参考题第二章第二章 统计统计2.1 随机抽样随机抽样阅读与思考阅读与思考 一个著名的案例一个著名的案例阅读与思考阅读与思考 广告中数据的可靠性广告中数据的可靠性 阅读与思考阅读与思考 如何得到敏感性问题的诚实反应的诚实反应2.2 用样本估计总体用样本估计总体 阅读与思考阅读与思考 生产过程中的质量控制图制图2.3 变量间的相关关系变量间的相关关系 阅读与思考阅读与思考 相关关系的强与弱相关关系的强与弱 实习作业实习作业 小结小结 复习参考题复习参考题第三章第三章 概率概率3.1 随机事件的概率随机事件的概率阅读与思考阅读与思考 天气变化的认识过程天气变化的认识过程 3.2 古典概型古典概型 3.3 几何概型几何概型阅读与思考阅读与思考 概率与密码概率与密码 小结小结 复习参考题复习参考题 必修四第一章 三角函数 1.1 任意角和弧度制 1.2 任意角的三角函数 1.3 三角函数的诱导公式1.4 三角函数的图象与性质 1.5 函数y=Asin (ωx+ψ) 1.6 三角函数模型的简单应用 小结 复习参考题第二章 平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算 2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积 2.5 平面向量应用举例 小结 复习参考题第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换 小结 复习参考题 必修五必修五第一章第一章 解三角形解三角形1.1 正弦定理和余弦定理正弦定理和余弦定理探究与发现探究与发现 解三角形的进一步讨论1.2 应用举例应用举例阅读与思考阅读与思考 海伦和秦九韶海伦和秦九韶 1.3 实习作业实习作业 小结小结 复习参考题复习参考题第二章第二章 数列数列2.1 数列的概念与简单表示法数列的概念与简单表示法 阅读与思考阅读与思考 斐波那契数列斐波那契数列 阅读与思考阅读与思考 估计根号下2的值的值 2.2 等差数列等差数列2.3 等差数列的前n 项和项和 2.4 等比数列等比数列2.5 等比数列前n 项和项和 阅读与思考阅读与思考 九连环九连环 探究与发现探究与发现 购房中的数学购房中的数学 小结小结 复习参考题复习参考题第三章第三章 不等式不等式3.1 不等关系与不等式不等关系与不等式 3.2 一元二次不等式及其解法一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题的线性规划问题阅读与思考阅读与思考 错在哪儿错在哪儿信息技术应用 用Excel解线性规信息技术应用划问题举例划问题举例3.4 基本不等式基本不等式小结小结复习参考题复习参考题必修三实用性和适用性在高一作用不大,所以高一上学期学必修一二,下学期学必修四五,跳过必修三学期学必修四五,跳过必修三。
函数与方程式的关系
函数与方程式的关系一、引言函数与方程式是高中数学中的重要概念,对于学生理解它们之间的关系和应用具有重要意义。
本教案主要介绍函数与方程式的关系,并通过实际例子展示其实际应用。
通过本课的学习,学生将能够深入理解函数与方程式之间的联系,并能够应用它们进行问题的求解。
二、函数与方程式的定义及关系1. 函数的定义:函数是一种关系,它将一个集合中的每个元素都与另一个集合中的唯一元素相对应。
函数可以用来描述不同变量之间的依赖关系。
2. 方程式的定义:方程式是一个等式,其中包含了一个或多个未知数。
方程式表示了一种平衡关系或者相等关系。
3. 函数与方程式的关系:函数可以通过方程式来表示。
一个方程式被称为函数的解,当且仅当它满足该函数的定义。
三、函数与方程式的实际应用1. 函数与图像:函数可以通过图像来表示,图像的每一个点都表示了一个函数的解。
通过观察函数的图像,我们可以获得更多关于函数性质的信息。
2. 函数与实际问题:函数可以用来描述实际问题中的关系。
例如,利用函数可以描述物体的运动轨迹、销售额的增长等等。
3. 方程式的应用:通过解方程式,我们可以求得函数的解,进而解决实际问题。
例如,求解一元二次方程可以确定抛物线上的点的横坐标。
四、函数与方程式的解法1. 方程式的解法:通过一系列数学变换和运算,可以解得方程式的解。
例如,对于一元一次方程式,可以通过移项等操作求解;对于一元二次方程式,可以通过配方法、求根公式等方法求解。
2. 函数的解法:函数的解是函数的自变量取某个值时,函数的值。
对于一元函数,我们可以通过代入自变量的值来求得函数的值。
五、实例展示通过一些实际问题的例子,我们来演示函数与方程式的关系和应用。
1. 例子1:某公司生产的产品每天的销售量可以用函数y = 2x + 5来表示,其中x表示天数,y表示销售量。
请问第10天的销售量是多少?解:将x = 10代入函数中,得到y = 2*10 + 5 = 25。
所以第10天的销售量为25。
2023学年人教版高一数学上学期同步知识点讲义2-3 二次函数与一元二次方程、不等式 (解析版)
二次函数与一元二次方程、不等式一元二次不等式及其解法①二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:(以下均以a>0为例)②二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系,可充分利用二次函数图像去理解;③ 求解一元二次不等式时,利用二次函数图像思考,需要确定二次函数的开口方向,判别式,两根的大小与不等式的解集有关,而对称轴是不会影响解集的.【例】填表解析【练1】二次不等式ax 2+bx +c <0的解集是R 的条件是( ) A .{a >0△>0B .{a >0△<0C .{a <0△>0D .{a <0△<0解析 由题意可知二次不等式ax 2+bx +c <0,对应的二次函数y =ax 2+bx +c 开口向下,所以a <0 二次不等式ax 2+bx +c <0的解集是R ,所以△<0. 故选:D . 【练2】解不等式(1) x 2−x −6≤0 (2) x 2−3x +4<0 (3) x 2−4x +4>0 解析 (1) −2≤x ≤3 (2) ∅ (3)x ≠2 3 一元二次不等式的应用 (1) 分式不等式的解法解分式不等式可等价为有理整式不等式(组)求解.由于a b>0与ab >0均意味a,b 同号,故ab>0与ab >0等价的;ab<0与ab <0均意味a,b 异号,故ab <0与ab <0等价的; 可得① f (x )g(x)>0⇒f (x )g (x )>0,f (x )g(x)≥0⇒f (x )g (x )≥0且g (x )≠0. 比如x−1x−2>0⇒(x −1)(x −2)>0 ; x−1x−2≥0⇒(x −1)(x −2)≥0且x −2≠0. ② f (x )g(x)<0⇒f (x )g (x )<0,f (x )g(x)≤0⇒f (x )g (x )≤0且g (x )≠0.比如x−1x−2<0⇒(x −1)(x −2)<0 ; x−1x−2≤0⇒(x −1)(x −2)≤0且x −2≠0. 【例】解不等式x+1x−2<0的解集是 .解析 不等式x+1x−2<0,等价于(x +1)(x −2)≤0,解得−1<x <2. 【练】解不等式x−1x−3≤0的解集是 .解析 不等式x−1x−3≤0,等价于{(x −1)(x −3)≤0x −3≠0,解得1≤x <3. .【题型1】二次函数、一元二次方程与一元二次不等式的关系 【典题1】 解下列不等式:(1) −12x 2+72x −5<0;(2) 4x 2+18x +814>0;(3) x−2x+3≥2.解析(1) 二次项系数化为1得:x 2−7x +10>0, 十字相乘得:(x −2)(x −5)>0,解得x >5或x <2. (2) 4x 2+18x +814>0⇔(2x +92)2>0,结合二次函数图像易得不等式解集是{x|x ≠−94}. (3)不等式x−2x+3≥2⇔x−2x+3−2≥0⇔−x−8x+3≥0⇔x+8x+3≤0,等价于{(x +8)(x +3)≤0x +3≠0,解得−8≤x <−3.点拨1.求解不等式ax 2+bx +c >0(或<0),其中a >0,有个口诀:大于取两边、小于取中间;这结合二次函数图像也很好理解;2.求解分式不等式时,等价过程中要注意严谨.【典题2】若不等式2kx 2+kx −38≥0的解集为空集,则实数k 的取值范围是( ) A .(−3,0) B .(),3-∞- (−∞,−3) C .(−3,0] D .(−∞,−3)∪(0,+∞) 解析 由题意可知2kx 2+kx −38<0恒成立,当k =0时成立,当k ≠0时需满足{k <0Δ<0,代入求得−3<k <0,所以实数k 的取值范围是(−3,0].点拨 注意二次系数是否为0,涉及到一元二次不等式可理解二次函数图像进行分析.【典题3】 若不等式ax 2+2x +c <0的解集是(−∞,−13)∪(12,+∞),则不等式cx 2−2x +a ≤0的解集是( )A .[−12,13]B .[−13,12]C .[−2,3]D .[−3,2]解析 不等式ax 2+2x +c <0的解集是(−∞,−13)∪(12,+∞), ∴−13和12是方程ax 2+2x +c =0的两个实数根,由韦达定理得{−13+12=−2a−13×12=c a,解得a =−12,c =2,故不等式cx 2−2x +a ≤0,即2x 2−2x −12≤0,解得−2≤x ≤3, 所以所求不等式的解集是[−2,3], 故选:C . 【巩固练习】1.下列不等式的解集是空集的是 ( )A .x 2−x +1>0B .−2x 2+x +1>0C .2x −x 2>5D .x 2+x >2 答案 C2.若不等式kx 2+2kx +2<0的解集为空集,则实数k 的取值范围是( )A .0<k <2B .0≤k <2C .0≤k ≤2D .k >2答案 C 解析 当k =0时,满足题意;当k >0时,△=4k 2−8k ≤0,解得0<k ≤2; ∴实数k 的取值范围是0≤k ≤2.故选:C .3.关于x 的不等式x 2+ax −3<0,解集为(−3,1),则不等式ax 2+x −3<0的解集为 . 答案 {x|−32<x <1}解析由题意知,x=−3,x=1是方程x2+ax−3=0的两根,可得−3+1=−a,解得a=2;所以不等式为2x2+x−3<0,即(2x+3)(x−1)<0,解得−32<x<1,所以不等式的解集为{x|−32<x<1}.4.不等式2x2−x−3>0的解集为.答案{x|x>32或x<−1}解析2x2−x−3>0⇒(2x−3)(x+1)>0⇒x>32或x<−1.5.不等式x2x−1>1的解集为.答案{x|12<x<1}解析原不等式等价于x2x−1−1>0,即x−(2x−1)2x−1>0,整理得x−12x−1<0,不等式等价于(2x−1)(x−1)<0,解得12<x<1.6.若不等式ax2+5x−2>0的解集是{x|12<x<2}(1)求不等式ax2−5x+a2−1>0的解集.(2)已知二次不等式ax2+bx+c<0的解集为{x|x<13或x>12},求关于x的不等式cx2−bx+a>0的解集.答案(1){x|−3<x<12}(2){x|−3<x<−2}解析(1)因为等式ax2+5x−2>0的解集是{x|12<x<2},所以12和2是一元二次方程ax2+5x−2=0的两根,∴12×2=−2a,解得a=−2,∴不等式ax2−5x+a2−1>0可化为−2x2−5x+3>0,即2x2+5x−3<0,∴(2x−1)(x−3)<0,解得−3<x<12,所以不等式ax2−5x+a2−1>0的解集为{x|−3<x<12};(2)由(1)知a=−2,∴二次不等式−2x2+bx+c<0的解集为{x|x<13或x>12},∴13和12是一元二次方程−2x 2+bx +c =0的两根,∴13+12=−b−2,13×12=−c 2,解得b =53,c =−13,所以不等式cx 2−bx +a >0可化为:−13x 2−53x −2>0, 即x 2+5x +6<0,解得−3<x <−2.所以关于x 的不等式cx 2−bx +a >0的解集为{x|−3<x <−2}. 【题型2】求含参一元二次不等式(选学)角度1 按二次项的系数a 的符号分类,即a >0 ,a =0 ,a <0; 解不等式ax 2+(a +2) x +1>0. 解析(不确定不等式对应函数y =ax 2+(a +2) x +1是否是二次函数,分a =0与a ≠0讨论) (1) 当a =0时,不等式为2x +1>0,解集为{x | x >−12} ; (2) 当a ≠0时,∵Δ=(a +2)2−4a =a 2+4>0 (二次函数y =ax 2+(a +2) x +1与x 轴必有两个交点) 解得方程ax 2+(a +2) x +1=0两根x 1=−a−2−√a 2+42a,x 2=−a−2+√a 2+42a;(二次函数的开口方向与不等式的解集有关,分a >0与a <0讨论) (i)当a >0时,解集为{x | x >−a−2+√a 2+42a或x <−a−2−√a 2+42a};(ii)当a <0时, 解集为{x |−a−2+√a 2+42a<x <−a−2−√a 2+42a}.(注意x 1,x 2的大小)综上,当a =0时,解集为{x | x >−12}; 当a >0时,解集为{x | x >−a−2+√a 2+42a或x <−a−2−√a 2+42a};当a <0时, 解集为{x |−a−2+√a 2+42a<x <−a−2−√a 2+42a}.角度2 按判别式的符号分类解不等式x 2+ax +4>0. 解析 ∵Δ=a 2−16(此时不确定二次函数y =x 2+ax +4是否与x 轴有两个交点,对判别式进行讨论) ∴①当−4<a <4,即Δ<0时,解集为R ; ②当a =±4,即Δ=0时,解集为{x | x ≠−a2};③当a>4或a<−4,即Δ>0时,此时两根为x1=−a+√a2−162 ,x2=−a−√a2−162,显然x1>x2,∴不等式的解集为{x | x>−a+√a2−162或x<−a−√a2−162}.综上,当−4<a<4时,解集为R;当a=±4时,解集为{x | x≠−a2};当a>4或a<−4时,解集为{x | x>−a+√a2−162或x<−a−√a2−162}.角度3 按方程的根大小分类解不等式:x2−(a+1a)x+1<0 (a≠ 0).解析原不等式可化为:(x−a)(x−1a)<0 ,令(x−a)(x−1a )=0,得x1=a ,x2=1a;(因式分解很关键,此时确定y=(x−a)(x−1a)与x轴有交点,x1 ,x2的大小影响不等式解集)∴(i)当x1=x2时,即a=1a⇒a=±1时,解集为ϕ;(ii)当x1<x2时,即a<1a ⇒a<−1 或0<a<1时,解集为{x | a<x<1a};(iii)当x1>x2时,即a>1a ⇒−1<a<0或a>1时,解集为{x |1a<x<a}.综上,当a=±1时,解集为ϕ;(ii)当a<−1 或0<a<1时,解集为{x | a<x<1a};(iii)当−1<a<0或a>1时,解集为{x |1a<x<a}.点拨①当求解一元二次不等式时,它是否能够因式分解,若可以就确定对应的二次函数与x轴有交点,就不需要考虑判别式.常见的形式有x2−(a+1)x+a=(x−1)(x−a) ,x2−(a+1a )x+1=(x−a)(x−1a),ax2+(a+1)x+1=(ax+1)(x+1)等,若判别式Δ是一个完全平方式,它就能做到“较好形式的十字相乘”,当然因式分解也可以用公式法求解;②在求解含参的一元二次不等式,需要严谨,多从二次函数的开口方向、判别式、两根大小的比较三个角度进行分类讨论,利用图像进行分析.【巩固练习】1.解关于x的不等式:12x2−ax−a2<0.解析方程12x2−ax−a2=0∴(4x+a)(3x−a)=0,即方程两根为x1=−a4,x2=a3,(1)当a>0时,x2>x1,不等式的解集是{x∣−a4<x<a3};(2)当a=0时,x1=x2,不等式的解集是ϕ;(3)当a<0时,x1<x2,不等式的解集{x∣a3<x<−a4}2.解关于x的不等式 x2+2x+a>0.解析方程x2+2x+a=0中△=4−4a=4(1−a),①当1−a<0即a>1时,不等式的解集是R,②当1−a=0,即a=1时,不等式的解集是{x|x≠−1},③当1−a>0即a<1时,由x2+2x+a=0解得:x1=−1−√1−a,x2=−1+√1−a,∴a<1时,不等式的解集是{x|x>−1+√1−a或x<−1−√1−a},综上,a>1时,不等式的解集是R,a=1时,不等式的解集是{x|x≠−1},a<1时,不等式的解集是{x|x>−1+√1−a或x<−1−√1−a}.3.若a∈R,解关于x的不等式ax2+(a+1)x+1>0.解析当a=0时,x>−1.当a≠0时,a(x+1a)(x+1)>0.。
2-3隐函数导数和由参数方程确定的函数的导数
3(4)解一:
y=-sec2 xsecx+1-tanxsec xtanx
=secx tanx-tan2x-sec2x
3(4)解二:
y= sec x-tanxsecx
=sec xtanx-sec3 x - tan2xsecx
=secx tanx-sec2x-tan2x
由复合函数及反函数的求导法则得
dy dx
dy dt
dt dx
dy dt
1
dx
(t) (t)
dt
dy
即
dy dx
dt dx
dt
14
例5求摆线
x
y
a(t sin t) a(1 cost)
在t
2
处的切线方程
dy
解 dy dt a 1 cost a sin t sin t dx dx a t sin t a a cos t 1 cos t
切线斜率为
dt
k
dy dx
t 2
sin
1
2
cos
1.
2
当t
时,
x
a(
1),
y a.
所求切线方程为
2
2
y a x a( 1) 即 x y a(2 ) 0
2
2
15
练习
求曲线
xy
t2 1 t t3
在
t
1处的切线方程
y的导数 dy , dy dx dx
人教版高中数学目录
3 . 1 指数与指数函数 3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ)
必修二
第一章 立体几何初步
1. 1 空间几何体 1 .2 点、线、面之间的位置关系
第二章 平面解析几何初步
2 . 1 平面真角坐标系中的基本公式 2 .2 直线方程 2 .3 圆的方程 2 .4 空间直角坐标系
3
人教版高的复合与二阶矩阵的乘 法
选修 3-3
第一讲 从欧氏几何看球面
第三讲 逆变换与逆矩阵
第四讲 向量
变换的不变量与矩阵的特征
第二讲 球面上的距离和角 第三讲 球面上的基本图形
选修 4-3
第四讲 球面三角形
选修 4-4
第五讲 球面三角形的全等
第一讲 坐标系
第六讲 球面多边形与欧拉公式
第三章 不等式
3.1 不等关系与不等式 3.2 一元二次不等式及其解法 3.3 二元一次不等式(组)与简单的线性规划问题 3.3.1 二元一次不等式(组)与平面区域
1
3.3.2 简单的线性规划问题 3.4 基本不等式
人教版高中数学目录
第二章 推理与证明 2. 1 合情推理与演绎证明
选修 1-1
第一章 常用逻辑用语
必修 3
第一章 算法初步
1 . 1 算法与程序框图 1 .2 基本算法语句 1 .3 算法案例
阅读与思考 割圆术
第二章 统计
2 . 1 随机抽样 阅读与思考 一个著名的案例 阅读与思考 广告中数据的可靠性 阅读与思考 如何得到敏感性问题的诚实反应
2 . 2 用样本估计总体 阅读与思考 生产过程中的质量控制图
第一章 统计案例 第二章 推理与证明 第三章 数系的扩充与复数的引入 第四章 框图
北师大版高中数学目录
北师大版高中数学目录篇一:高中数学目录——北师大版北师大版高中数学必修一· 第一章集合· 1、集合的基本关系· 2、集合的含义与表示· 3、集合的基本运算· 第二章函数· 1、生活中的变量关系· 2、对函数的进一步认识· 3、函数的单调性· 4、二次函数性质的再研究· 5、简单的幂函数· 第三章指数函数和对数函数· 1、正整数指数函数· 2、指数概念的扩充· 3、指数函数· 4、对数· 5、对数函数· 6、指数函数、幂函数、对数函数增· 第四章函数应用· 1、函数与方程· 2、实际问题的函数建模北师大版高中数学必修二· 第一章立体几何初步· 1、简单几何体· 2、三视图· 3、直观图· 4、空间图形的基本关系与公理· 5、平行关系· 6、垂直关系· 7、简单几何体的面积和体积· 8、面积公式和体积公式的简单应用· 第二章解析几何初步· 1、直线与直线的方程· 2、圆与圆的方程· 3、空间直角坐标系北师大版高中数学必修三· 第一章统计· 1、统计活动:随机选取数字· 2、从普查到抽样· 3、抽样方法· 4、统计图表· 5、数据的数字特征· 6、用样本估计总体· 7、统计活动:结婚年龄的变化· 8、相关性· 9、最小二乘法· 第二章算法初步· 1、算法的基本思想· 2、算法的基本结构及设计· 3、排序问题· 4、几种基本语句· 第三章概率· 1、随机事件的概率· 2、古典概型· 3、模拟方法――概率的应用北师大版高中数学必修四· 第一章三角函数· 1、周期现象与周期函数· 2、角的概念的推广· 3、弧度制· 4、正弦函数· 5、余弦函数· 6、正切函数· 7、函数的图像· 8、同角三角函数的基本关系· 第二章平面向量· 1、从位移、速度、力到向量· 2、从位移的合成到向量的加法· 3、从速度的倍数到数乘向量· 4、平面向量的坐标· 5、从力做的功到向量的数量积· 6、平面向量数量积的坐标表示· 7、向量应用举例· 第三章三角恒等变形· 1、两角和与差的三角函数· 2、二倍角的正弦、余弦和正切· 3、半角的三角函数· 4、三角函数的和差化积与积化和差· 5、三角函数的简单应用北师大版高中数学必修五· 第一章数列· 1、数列的概念· 2、数列的函数特性· 3、等差数列· 4、等差数列的前n项和· 5、等比数列· 6、等比数列的前n项和· 7、数列在日常经济生活中的应用· 第二章解三角形· 1、正弦定理与余弦定理正弦定理· 2、正弦定理· 3、余弦定理· 4、三角形中的几何计算· 5、解三角形的实际应用举例· 第三章不等式· 1、不等关系· 1.1、不等式关系· 1.2、比较大小2,一元二次不等式· 2.1、一元二次不等式的解法· 2.2、一元二次不等式的应用· 3、基本不等式3.1 基本不等式· 3.2、基本不等式与最大(小)值 4 线性规划· 4.1、二元一次不等式(组)与平面区· 4.2、简单线性规划· 4.3、简单线性规划的应用选修1-1第一章常用逻辑用语1命题2充分条件与必要条件2.1充分条件2.2必要条件2.3充要条件3全称量词与存在量词3.1全称量词与全称命题3.2存在量词与特称命题3.3全称命题与特称命题的否定 4逻辑联结词“且或…?非4.1逻辑联结词“且4.2逻辑联结词“或4.3逻辑联结词??非第二章圆锥曲线与方程1椭圆1.1椭圆及其标准方程1.2椭圆的简单性质2抛物线2.1抛物线及其标准方程2.2抛物线的简单性质3 曲线3.1双曲线及其标准方程3.2双曲线的简单性质第三章变化率与导数1变化的快慢与变化率2导数的概念及其几何意义2.1导数的概念2.2导数的几何意义3计算导数4导数的四则运算法则4.1导数的加法与减法法则4.2导数的乘法与除法法则第四章导数应用4.1导数的加法与减法法则4.2导数的乘法与除法法则选修1-2第一章统计案例1 回归分析1.1 回归分析1.2相关系数1.3可线性化的回归分析2独立性检验2.1条件概率与独立事件2.2 独立性检验2.3独立性检验的基本思想2.4独立性检验的应用第二章框图1 流程图2结构图第三章推理与证明1 归纳与类比1.1归纳推理1.2类比推理2 数学证明3 综合法与分析法3.1综合法3.2分析法4反证法第四章数系的扩充与复数的引入 1 数系的扩充与复数的引入1.1数的概念的扩充1.2复数的有关概念2复数的四则运算2.1复数的加法与减法2.2复数的乘法与除法选修2-1第一章常用逻辑用语1 命题2 充分条件与必要条件3 全称量词与存在量词4 逻辑联结词“且”“或”“非”&…&…(第二章空间向量与立体几何 1 从平面向量到空间向量2 空间向量的运算3 向量的坐标表示和空间向量基本定理4 用向量讨论垂直与平行5 夹角的计算6 距离的计算第三章圆锥曲线与方程1 椭圆1.1 椭圆及其标准方程1.2 椭圆的简单性质2 抛物线2.1 抛物线及其标准方程2.2 抛物线的简单性质3 双曲线3.1 双曲线及其标准方程3.2 双曲线的简单性质4 曲线与方程4.1 曲线与方程4.2 圆锥曲线的共同特征4.3 直线与圆锥曲线的交点选修2-2第一章推理与证明1 归纳与类比2 综合法与分析法3 反证法4 数学归纳法第二章变化率与导数1 变化的快慢与变化率篇二:北师大版高中数学详细教材目录4.1二次函数的图像北师大版高中数学详细教材目录4.2二次函数的性质 5 简单的幂函数《数学1》(必修)阅读材料函数概念的发展课题学习个人所得税的计算全书共分四章:第一章集合;第二章函数;第三章指数函数和对数函数;第四章函数的应用第三章指数函数和对数函数1 正整数指数函数2 指数扩充及其运算性质2.1指数概念的扩充全书目录:2.2指数运算的性质 3 指数函数第一章集合3.1指数函数的概念3.2指数函数y=2*x和y=(1/2)*2的图1 集合的含义与表示像和性质3.3指数函数的图像和性质2 集合的基本关系4 对数 4.1对数及其运算 4.2换底公式5 对数函数 5.1对数函数的概念5.2对数函数y=log2x的图像和性质 5.3对数函数的图像和性质6 指数函数、幂函数、对数函数增长的比较阅读材料历史上数学计算方面的三大发明第四章函数应用 1 函数与方程1.1利用函数性质判定方程解的存在13 集合的基本运算 3.1交集与并集 3.2全集与补集阅读材料康托与集合论第二章函数1 生活中的变量关系2 对函数的进一步认识 2.1函数概念2.2函数的表示方法 2.3映射阅读材料生活中的映射 3 函数的单调性4 二次函数性质的再研究1.2利用二分法求方程的近似解 2 实际问题的函数建模2.1实际问题的函数刻画 2.2用函数模型解决实际问题 2.3 函数建模案例阅读材料函数与中学数学探究活动同种商品不同型号的价格问题《数学2》(必修)本书是根据《普通高中数学课程标准(实验)》编写的,包括两部分内容:第一部分是立体几何初步,第二部分是解析几何初步。
备战高考数学二轮专题复习 专题1第3讲函数、方程及函数的应用课件 文 新人教版
第3讲 │ 主干知识整合
二、二分法 1.二分法的条件:函数 y=f(x)在区间[a,b]上的图 象是连续不断的一条曲线,并且 f(a)f(b)<0. 2.二分法的思想:通过二等分,无限逼近. 3.二分法的步骤:其中给定精确度 ε 的含义是区间 (a,b)长度|a-b|<ε,不能认为是函数零点近似值的精度.
第3讲 │ 要点热点探究
【解答】 (1)设相遇时小艇的航行距离为 S 海里,则 S= 900t2+400-2·30t·20-cos90°-30° = 900t2-600t+400 = 900t-132+300. 故当 t=13时 Smin=10 3,v=101 3=30 3,
3 即小艇以 30 3海里/小时的速度航行,相遇时小艇的航行 距离最小.
第3讲 │ 要点热点探究
【点评】 关于解决函数的实际应用问题,首先要在阅 读上下功夫,一般情况下,应用题文字叙述比较长,要耐心、 细心地审清题意,弄清各量之间的关系,再建立函数关系式, 然后借助函数的知识求解,解答后再回到实际问题中去.本 题中弄清“销量”、“售价”、“生产成本”、“促销费”、 “利润”等词的含义后列出函数关系式是解决本题的关键.
(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的 大小应为多少?
(2)为保证小艇在 30 分钟内(含 30 分钟)能与轮船相遇,试 确定小艇航行速度的最小值;
(3)是否存在 v,使得小艇以 v 海里/小时的航行速度行驶, 总能有两种不同的航行方向与轮船相遇?若存在,试确定 v 的 取值范围;若不存在,请说明理由.
又 t=0 时,x=1. ∴3-1=0+k 1,解得 k=2. ∴x 与 t 的关系式是 x=3-t+2 1(t≥0).
第3讲 │ 要点热点探究
基本初等函数、函数与方程及函数的应用(题型归纳)
基本初等函数、函数与方程及函数的应用【考情分析】1.考查特点:基本初等函数作为高考的命题热点,多考查指数式与对数式的运算、利用函数的性质比较大小,难度中等;函数的应用问题多体现在函数零点与方程根的综合问题上,题目有时较难,而与实际应用问题结合考查的指数、对数函数模型也是近几年考查的热点,难度中等.2.关键能力:逻辑思维能力、运算求解能力、数学建模能力、创新能力.3.学科素养:数学抽象、逻辑推理、数学建模、数学运算.【题型一】基本初等函数的图象与性质【典例分析】【例1】(2021•焦作一模)若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则函数log ||a y x =的图象大致是()A .B .C .D .【答案】B【解析】若函数||(0,1)x y a a a =>≠的值域为{|1}y y ,则1a >,故函数log ||a y x =的图象大致是:故选:B .【例2】(2021·陕西西安市·西安中学高三模拟)若1(,1)x e -∈,ln a x =,ln 1()2xb =,ln 2xc =,则a ,b ,c 的大小关系为()A .c b a >>B .b a c >>C .a b c >>D .b c a>>【答案】D【解析】因1(,1)x e -∈,且函数ln y x =是增函数,于是10a -<<;函数2x y =是增函数,1ln 0ln 1x x -<<<-<,而ln ln 1()22xx -=,则ln 11()22x <<,ln 1212x<<,即1122c b <<<<,综上得:b c a >>故选:D【例3】(2021·湖南长沙长郡中学高三模拟)若函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,则实数m 的取值范围为()A .[)3,0-B .[)1,0-C .[)0,1D .[)3,-+∞【答案】A【解析】因函数f (x )在(1,+∞)上单调递增,且f (2)=0,即f (x )在(1,+∞)上有一个零点,函数()()4log 1,13,1x x x f x m x ⎧->=⎨--≤⎩存在2个零点,当且仅当f (x )在(-∞,1]有一个零点,x≤1时,()03x f x m =⇔=-,即函数3x y =-在(-∞,1]上的图象与直线y =m 有一个公共点,在同一坐标系内作出直线y =m 和函数3(1)x y x =-≤的图象,如图:而3x y =-在(-∞,1]上单调递减,且有330x -≤-<,则直线y =m 和函数3(1)x y x =-≤的图象有一个公共点,30m -≤<.故选:A【提分秘籍】1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如求f(x)=ln(x 2-3x+2)的单调区间,易只考虑t=x 2-3x+2与函数y=ln t 的单调性,而忽视t>0的限制条件.3.指数、对数、幂函数值的大小比较问题的解题策略:(1)底数相同,指数不同的幂用指数函数的单调性进行比较.(2)底数相同,真数不同的对数值用对数函数的单调性进行比较.(3)底数不同、指数也不同,或底数不同、真数也不同的两个数,常引入中间量或结合图象比较大小.【变式演练】1.【多选】(2021·山东省实验中学高三模拟)已知函数()2121x x f x -=+,则下列说法正确的是()A .()f x 为奇函数B .()f x 为减函数C .()f x 有且只有一个零点D .()f x 的值域为[)1,1-【答案】AC【解析】()2121x x f x -=+ ,x ∈R ,2121x=-+2112()()2112x xx xf x f x ----∴-===-++,故()f x 为奇函数,又()21212121x x xf x -==-++ ,()f x ∴在R 上单调递增,20x> ,211x ∴+>,20221x∴<<+,22021x∴-<-<+,1()1f x ∴-<<,即函数值域为()1,1-令()21021x x f x -==+,即21x =,解得0x =,故函数有且只有一个零点0.综上可知,AC 正确,BD 错误.故选:AC2.(2021·山东潍坊市·高二一模(理))设函数()322xxf x x -=-+,则使得不等式()()2130f x f -+<成立的实数x 的取值范围是【答案】(),1-∞-【解析】函数的定义域为R ,()()322xx f x x f x --=--=-,所以函数是奇函数,并由解析式可知函数是增函数原不等式可化为()()213f x f -<-,∴213x -<-,解得1x <-,∴x 的取值范围是(),1-∞-.【题型二】函数与方程【典例分析】【例4】(2021·宁夏中卫市·高三其他模拟)函数3()9x f x e x =+-的零点所在的区间为()A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【解析】由x e 为增函数,3x 为增函数,故3()9x f x e x =+-为增函数,由(1)80f e =-<,2(2)10f e =->,根据零点存在性定理可得0(1,2)x ∃∈使得0()0f x =,故选:B.【例5】(2021·北京高三一模)已知函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,则常数t 的一个取值为______.【答案】2(不唯一).【解析】由220x x +=可得0x =或2x =-由ln 0x =可得1x =因为函数22,,()ln ,x x x t f x x x t⎧+=⎨>⎩(0)t >有2个零点,且过点(,1)e ,所以1e t >≥,故答案为:2(不唯一)【提分秘籍】1.判断函数零点个数的方法直接法直接求零点,令f(x)=0,则方程解的个数即为函数零点的个数定理法利用零点存在性定理,利用该定理只能确定函数的某些零点是否存在,必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点数形结合法对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题2.利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.【变式演练】1.(2021·湖北十堰市高三模拟)函数()()()23log 111f x x x x =+->-的零点所在的大致区间是()A .()1,2B .()2,3C .()3,4D .()4,5【答案】B【解析】易知()f x 在()1,+∞上是连续增函数,因为()22log 330f =-<,()33202f =->,所以()f x 的零点所在的大致区间是()2,3.故选:B2.(2021·天津高三二模)设函数2,1()4()(2),1x a x f x x a x a x ⎧-<=⎨--≥⎩,若1a =,则()f x 的最小值为______;若()f x 恰有2个零点,则实数a 的取值范围是__________.【答案】1-112a ≤<或2a ≥【解析】当1a =时,()()211()4(1)(2)1x x f x x x x ⎧-<⎪=⎨--≥⎪⎩,1x <,()211xf x =-<,1≥x ,()()()234124112f x x x x ⎛⎫=--=--≥- ⎪⎝⎭所以()f x 的最小值为1-.设()f x 的零点为1x 、2x ,若()1,1x ∈-∞,[)21x ∈+∞,,则20012a a a a->⎧⎪>⎨⎪<≤⎩,得112a ≤<若[)12,1,x x ∈+∞,则0201a a a >⎧⎪-≤⎨⎪≥⎩,得2a ≥,综上:112a ≤<或2a ≥.故答案为:1-;112a ≤<或2a ≥.【题型三】函数的实际应用【典例分析】1.(2021·北京高三二模)20世纪30年代,里克特制定了一种表明地震能量大小的尺度,就是使用地震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为0lg lg M A A =-,其中A 是被测地震的最大振幅,0A 是标准地震的振幅,2008年5月12日,我国四川汶川发生了地震,速报震级为里氏7.8级,修订后的震级为里氏8.0级,则修订后的震级与速报震级的最大振幅之比为()A .0.210-B .0.210C .40lg39D .4039【答案】B【解析】由0lg lg M A A =-,可得01AM gA =,即10M A A =,010M A A =⋅,当8M =时,地震的最大振幅为81010A A =⋅,当7.8M =时,地震的最大振幅为7.82010A A =⋅,所以,修订后的震级与速报震级的最大振幅之比是887.80.2017.82010101010A A A A -⋅===⋅.故选:B.2.为加强环境保护,治理空气污染,某环保部门对辖区内一工厂产生的废气进行了监测,发现该厂产生的废气经过过滤后排放,过滤过程中废气的污染物数量(mg /L)P 与时间(h)t 的关系为0ktP P e -=.如果在前5个小时消除了10%的污染物,那么污染物减少19%需要花的时间为()A .7小时B .10小时C .15小时D .18小时【答案】B【解析】因为前5个小时消除了10%的污染物,所以()50010.1kP P P e -=-=,解得ln 0.95k =-,所以ln 0.950tP P e =,设污染物减少19%所用的时间为t ,则()0010.190.81P P -=()()ln 0.92ln 0.955500000.90.9t t t P P e P eP ====,所以25t=,解得10t =,故选:B 3.(2021·山东滕州一中高三模拟)为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒,出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为100.1,0101,102ta t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩(a 为常数),函数图象如图所示.如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是A .9:40B .9:30C .9:20D .9:10【答案】9:30【解析】根据函数的图象,可得函数的图象过点(10,1),代入函数的解析式,可得1121a-⎛⎫⎪⎝⎭=,解得1a =,所以1100.1,0101,102t t t y t -≤≤⎧⎪=⎨⎛⎫>⎪ ⎪⎝⎭⎩,令0.25y ≤,可得0.10.25t ≤或11020.251t -⎛⎝≤⎫⎪⎭,解得0 2.5t <≤或30t ≥,所以如果商场规定10:00顾客可以进入商场,那么开始喷洒药物的时间最迟是9:30.故选:B.【提分秘籍】1.构建函数模型解决实际问题的失分点:(1)不能选择相应变量得到函数模型;(2)构建的函数模型有误;(3)忽视函数模型中变量的实际意义.2.解决新概念信息题的关键:(1)依据新概念进行分析;(2)有意识地运用转化思想,将新问题转化为我们所熟知的问题.【变式演练】(2020·湖北黄冈市·黄冈中学高三模拟)“百日冲刺”是各个学校针对高三学生进行的高考前的激情教育,它能在短时间内最大限度激发一个人的潜能,使成绩在原来的基础上有不同程度的提高,以便在高考中取得令人满意的成绩,特别对于成绩在中等偏下的学生来讲,其增加分数的空间尤其大.现有某班主任老师根据历年成绩在中等偏下的学生经历“百日冲刺”之后的成绩变化,构造了一个经过时间()30100t t ≤≤(单位:天),增加总分数()f t (单位:分)的函数模型:()()1lg 1kPf t t =++,k 为增分转化系数,P 为“百日冲刺”前的最后一次模考总分,且()1606f P =.现有某学生在高考前100天的最后一次模考总分为400分,依据此模型估计此学生在高考中可能取得的总分约为()(lg 61 1.79≈)A .440分B .460分C .480分D .500分【答案】B【解析】由题意得:()1601lg 61 2.796kP kP f P ===+, 2.790.4656k ∴≈=;∴()0.465400186186100621lg1011lg100lg1.013f ⨯==≈=+++,∴该学生在高考中可能取得的总分约为40062462460+=≈分.故选:B.1.(2021·江苏金陵中学高三模拟)函数()2ln 1xf x x =+-的零点所在的区间为().A .31,2⎛⎫⎪⎝⎭B .3,22⎛⎫⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】D【解析】函数()2ln 1xf x x =+-为()0,∞+上的增函数,由()110f =>,1311112ln 21ln 21ln 2ln 0222222f e ⎛⎫=-<--=-<-=⎪⎝⎭,可得函数()f x 的零点所在的区间为1,12⎛⎫⎪⎝⎭.故选:D.2.(2021·山东潍坊一中高三模拟)若函数()1af x x x =+-在(0,2)上有两个不同的零点,则a 的取值范围是()A .1[2,]4-B .1(2,)4-C .1[0,]4D .1(0,)4【答案】D【解析】函数()1a f x x x=+-在(0,2)上有两个不同的零点等价于方程10ax x +-=在(0,2)上有两个不同的解,即2a x x =-+在(0,2)上有两个不同的解.此问题等价于y a =与2(02)y x x x =-+<<有两个不同的交点.由下图可得104a <<.故选:D.3.(2021·长沙市·湖南师大附中高三三模)已知函数()()()ln 2ln 4f x x x =-+-,则().A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+-函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增,在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A4.(2021·辽宁本溪高级中学高三模拟高三模拟)设函数2ln(1)ln(1)()1x x f x x +--=-,则函数的图象可能是()A .B .C .D .【答案】D【解析】2ln(1)ln(1)()1x x f x x +--=-,定义域为()1,1-,且()()f x f x -=-,故函数为奇函数,图象关于原点对称,故排除A,B,C ,故选:D.5.(2021·新安县第一高级中学高三模拟)被誉为信息论之父的香农提出了一个著名的公式:2log 1S C W N ⎛⎫=+ ⎪⎝⎭,其中C 为最大数据传输速率,单位为bit /s :W 为信道带宽,单位为Hz :SN为信噪比.香农公式在5G 技术中发挥着举足轻重的作用.当99SN=,2000Hz W =时,最大数据传输速率记为1C ;在信道带宽不变的情况下,若要使最大数据传输速率翻一番,则信噪比变为原来的多少倍()A .2B .99C .101D .9999【答案】C【解析】当99S N =,2000Hz W =时,()1222log 12000log 1994000log 10S C W N ⎛⎫=+=+= ⎪⎝⎭,由228000log 102000log 1S N ⎛⎫=+⎪⎝⎭,得224log 10log 1S N ⎛⎫=+ ⎪⎝⎭,所以9999S N =,所以999910199=,即信噪比变为原来的101倍.故选:C .6.(2021·浙江温州市·瑞安中学高三模拟)已知函数()f x 是定义在R 上的奇函数,满足()()2f x f x +=-,且当[]0,1x ∈时,()()2log 1f x x =+,则函数()3y f x x =-的零点个数是()A .2B .3C .4D .5【答案】B【解析】由()()2f x f x +=-可得()f x 关于1x =对称,由函数()f x 是定义在R 上的奇函数,所以()()[]2()(2)(2)f x f x f x f x f x +=-=-=---=-,所以()f x 的周期为4,把函数()3y f x x =-的零点问题即()30y f x x =-=的解,即函数()y f x =和3y x =的图像交点问题,根据()f x 的性质可得如图所得图形,结合3y x =的图像,由图像可得共有3个交点,故共有3个零点,故选:B.7.(2021·珠海市第二中学高三模拟)设21()log (1)f x x a=++是奇函数,若函数()g x 图象与函数()f x 图象关于直线y x =对称,则()g x 的值域为()A .11(,)(,)22-∞-+∞ B .11(,22-C .(,2)(2,)-∞-+∞D .(2,2)-【答案】A【解析】因为21()log (1)f x x a=++,所以1110x a x a x a+++=>++可得1x a <--或x a >-,所以()f x 的定义域为{|1x x a <--或}x a >-,因为()f x 是奇函数,定义域关于原点对称,所以1a a --=,解得12a =-,所以()f x 的定义域为11(,)(,)22-∞-+∞ ,因为函数()g x 图象与函数()f x 图象关于直线y x =对称,所以()g x 与()f x 互为反函数,故()g x 的值域即为()f x 的定义域11(,)(,)22-∞-+∞ .故选:A .8.(2021·浙江杭州高级中学高三模拟)已知函数22log ,0,()44,0.x x f x x x x ⎧>=⎨--+<⎩若函数()()g x f x m =-有四个不同的零点1234,,,x x x x ,则1234x x x x 的取值范围是()A .(0,4)B .(4,8)C .(0,8)D .(0,)+∞【答案】A【解析】函数()g x 有四个不同的零点等价于函数()f x 的图象与直线y m =有四个不同的交点.画出()f x 的大致图象,如图所示.由图可知(4,8)m ∈.不妨设1234x x x x <<<,则12420x x -<<-<<,且124x x +=-.所以214x x =--,所以()()212111424(0,4)x x x x x =--=-++∈,则3401x x <<<,因为2324log log x x =,所以2324log log x x -=,所以12324log log x x -=,所以341x x ⋅=,所以123412(0,4)x x x x x x ⋅⋅⋅=∈⋅.故选:A9.(2021·天津南开中学高三模拟)若函数()1x f x e =-与()g x ax =的图象恰有一个公共点,则实数a 可能取值为()A .2B .1C .0D .1-【答案】BCD【解析】函数()1x f x e =-的导数为()x f x e '=;所以过原点的切线的斜率为1k =;则过原点的切线的方程为:y x =;所以当1a 时,函数()1x f x e =-与()g x ax =的图象恰有一个公共点;故选BCD10.(2021·广东佛山市·高三模拟)函数()()()ln 1ln 1xxf x e e =+--,下列说法正确的是()A .()f x 的定义域为(0,)+∞B .()f x 在定义域内单调递増C .不等式(1)(2)f m f m ->的解集为(1,)-+∞D .函数()f x 的图象关于直线y x =对称【答案】AD【解析】要使函数有意义,则10(0,)10x xe x e ⎧+>⇒∈+∞⎨->⎩,故A 正确;()()12()ln 1ln 1ln ln(111x xxx x e f x e e e e +=+--==+--,令211xy e =+-,易知其在(0,)+∞上单调递减,所以()f x 在(0,)+∞上单调递减,故B 不正确;由于()f x 在(0,)+∞上单调递减,所以对于(1)(2)f m f m ->,有1020(1,)12m m m m m ->⎧⎪>⇒∈+∞⎨⎪-<⎩,故C 不正确;令()ln(211x y f x e +=-=,解得11ln()11y xy y y e e e x e e ++=⇒=--,所以()f x 关于直线y x =对称,故D 正确.故选:AD11.(2021·福建厦门市高三模拟)某医药研究机构开发了一种新药,据监测,如果患者每次按规定的剂量注射该药物,注射后每毫升血液中的含药量y (微克)与时间t (小时)之间的关系近似满足如图所示的曲线.据进一步测定,当每毫升血液中含药量不少于0.125微克时,治疗该病有效,则()A .3a =B .注射一次治疗该病的有效时间长度为6小时C .注射该药物18小时后每毫升血液中的含药量为0.4微克D .注射一次治疗该病的有效时间长度为31532时【答案】AD【解析】由函数图象可知()4(01)112t at t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,当1t =时,4y =,即11()42a-=,解得3a =,∴()34(01)112t t t y t -<⎧⎪=⎨⎛⎫≥ ⎪⎪⎝⎭⎩,故A 正确,药物刚好起效的时间,当40.125t =,即132t =,药物刚好失效的时间31()0.1252t -=,解得6t =,故药物有效时长为131653232-=小时,药物的有效时间不到6个小时,故B 错误,D 正确;注射该药物18小时后每毫升血液含药量为140.58⨯=微克,故C 错误,故选:AD .12.(2021·辽宁省实验中学高三模拟)(多选题)已知函数()f x ,()g x 的图象分别如图1,2所示,方程(())1f g x =,(())1g f x =-,1(())2g g x =-的实根个数分别为a ,b ,c ,则()A .a b c +=B .b c a+=C .b a c=D .2b c a+=【答案】AD【解析】由图,方程(())1f g x =,1()0g x -<<,此时对应4个解,故4a =;方程(())1g f x =-,得()1f x =-或者()1f x =,此时有2个解,故2b =;方程1(())2g g x =-,()g x 取到4个值,如图所示:即2()1g x -<<-或1()0g x -<<或0()1g x <<或1()2g x <<,则对应的x 的解,有6个,故6c =.根据选项,可得A ,D 成立.故选AD .13.(2021·山东淄博实验中学高三模拟)如果函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上的最大值是14,则a 的值为________.【答案】3或13【解析】令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈1,a a ⎡⎤⎢⎥⎣⎦,又函数y =(t +1)2-2在1,a a ⎡⎤⎢⎥⎣⎦上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈1a a ⎡⎤⎢⎥⎣⎦,,又函数y =(t +1)2-2在1a a ⎡⎤⎢⎥⎣⎦,上单调递增,则y max =211a ⎛⎫+ ⎪⎝⎭-2=14,解得a =13(负值舍去).综上,a =3或a =13.14.(2021·北京高三一模)已知函数22,1,()log ,1,x x f x x x ⎧<=⎨-⎩则(0)f =________;()f x 的值域为_______.【答案】1(),2-∞【解析】0(0)2=1=f ;当1x <时,()()20,2=∈xf x ,当1x ≤时,()2log 0=-≤f x x ,所以()f x 的值域为(),2-∞故答案为:1;(),2-∞.15.(2021·重庆南开中学高三模拟)已知定义域为[4,4]-的函数()f x 的部分图像如图所示,且()()0f x f x --=,函数(lg )1f a ≤,则实数a 的取值范围为______.【答案】1,1010⎡⎤⎢⎥⎣⎦【解析】由题意知()()f x f x -=,且函数()f x 的定义域为[4,4]-,所以()f x 是偶函数.由图知()11f =,且函数()f x 在[0,4]上为增函数,则不等式(lg )1f a ≤等价于(|lg |)(1)f a f ≤,即|lg |1a ≤,所以1lg 1a -≤≤,解得11010a ≤≤.故实数a 的取值范围为1,1010⎡⎤⎢⎥⎣⎦.故答案为:1,1010⎡⎤⎢⎥⎣⎦16.(2021·湖南长沙市·长沙一中高三其他模拟)设函数()222,034,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是__________.【答案】41,3⎛⎤ ⎥⎝⎦【解析】作出函数()f x 图像如下互不相等的实数1x ,2x ,3x 满足()()()123f x f x f x ==不妨设123x x x <<,则23,x x 关于1x =对称,所以232x x +=根据图像可得1213x -<≤-所以123413x x x <++≤,所以123x x x ++的取值范围为41,3⎛⎤ ⎥⎝⎦。
1-1-3函数与方程及函数的实际应用
上有零点2和3,却有f(1)·f(4)>0.
数学(理) 第7页
新课标· 高考二轮总复习
3.由于函数y=f(x)的零点就是方程f(x)=0的根,所以在
研究方程的有关问题时,如比较方程根的大小、确定方程根 的分布、证明根的存在性等,都可以将方程问题转化为函数 问题,借助函数的零点,结合函数的图象加以解决.
数学(理) 第9页
新课标· 高考二轮总复习
(3)根据函数的零点与相应方程的根的关系可知,求函数
的零点与求相应方程的根是等价的.对于求方程f(x)=g(x)的
根,可以构造函数F(x)=f(x)-g(x),函数F(x)的零点即为方 程f(x)=g(x)的根. 5.解决实际问题的解题过程: (1)对实际问题进行抽象概括:研究实际问题中量与量之
数学(理) 第11页
新课标· 高考二轮总复习
(4)解析并回答实际问题.
这些步骤用框图表示如下:
数学(理) 第12页
新课标· 高考二轮总复习
高频考点
类型一 【例1】 函数的零点及其应用 (2011· 山东)已知函数f(x)=logax+x-
b(a>0,且a≠1),当2<a<3<b<4时,函数f(x)的零点x0∈ (n,n+1),n∈N*,则n=________.
数学(理) 第31页
新课标· 高考二轮总复习
4.(2011· 西安地区八校联考)函数 f(x)=
x2+2x-3,x≤0 -2+lnx,x>0
的零点个数为( B.1 D.3
)
A.0 C.2
解析:当x≤0时,f(x)的零点为x=-3;当x>0时,f(x)的 零点为x=e2.故共有两个零点.
x f′(x) f(x)
2023年中考数学专项突破之函数的实际应用课件(共50张PPT)
方法点拨
解决这类问题一般遵循这样的方法:
返回主目录
三
二次函数的实际应用
(1)运用转化的思想.由于函数与几何结合的问题都具有较强的综合性,因此在解决这
类问题时,要善于把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把
“抽象”的问题转化为“具体”的问题,把“复杂”的问题转化为“简单”的问题.
返回主目录
三
二次函数的实际应用
题型讲解
二次函数在中考数学中常常作为压轴题,具有一定的综合性和较大的难度,学生往往
因缺乏思路,感到无从下手,难以拿到分数.事实上,我们只要理清思路,方法得当,稳步
推进,力争少失分、多得分,同时需要心态平和,切忌急躁,当思维受阻时,要及时调整
思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又
解:∵a=0.1时,s=500,
k
∴500= ,解得k=50.
0.1
则该轿车可行驶的总路程s与平均耗油量a之间的函数解析式是s=
50
.a返回主目录源自(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
50
50
解:将a=0.08代入s= ,得s=
=625.
a
0.08
答:当平均耗油量为0.08升/千米时,该轿车可以行驶625千米.
提高1元,则每天少售出40本乙种笔记本,为使每天获取的利润更多,店主决定把两种笔
记本的价格都提高x元,在不考虑其他因素的条件下,当x定为多少元时,才能使该文具
若y是x的反比例函数,其图象如图所示:
(1)求y与x的函数解析式;
分析:用待定系数法确定反比例函数解析式.
k
解析:设y与x的函数关系式为y= (k≠0),
函数与方程的思想方法在解题中的应用
函数与方程的思想方法在解题中的应用何登文数列、解析几何、立体几何、不等式及实际应用问题是高中数学的几个重要内容,在高考试题中占了较大的比例,能否顺利的解答这几类问题,直接影响到学生的高考成绩。
函数与方程思想从某些方面来说,给我们指出了解决这些问题的思路和方法。
将这些问题转化为相应的函数或方程,我们就可以应用函数和方程的性质来解决问题了。
下面,我们通过例题来说明它们的应用。
一、利用函数与方程的思想解答数列问题例1、已知数列的通项公式n a =-2n +6n+2,这个数列的最大项的值是多少?从第几项起以后的项均为负值?分析:数列是以自然数n 为变量的点列函数,因此,我们在处理数列问题是,往往将其转化函数问题,利用相应函数的性质来求解。
解:∵ n a =-2n +6n+2,∴n a 可以看作是关于n 的二次函数,利用二次函数的性质,当n=-62--=3时,n a 有最大值11。
令-2n +6n+2≤0 解得 n ≥7∴从第七项起以后的项均为负值。
此题利用了数列的函数特性求解,使得问题简单化,使用了化未知为已知的思维方法。
例2、已知数列﹛n a ﹜是等差数列,若n s =10,2n s =50,求3n s 。
分析:本题我们可以用“等差数列中,依次取每k 项作和,其和仍成等差数列”的性质来求解,即ns、2ns-ns、3ns-2ns成等差数列,此时公差d=50-20=30,所以3ns=2ns-ns+2ns+d=50-10+50+30=120.这样很直接。
另外,在等差数列中211()22()22n d dn d d n n n n a s a +-==+-是关于n 的一次函数,因此,我们可以利用一次函数的点共线的性质求解。
解:∵﹛n a ﹜是等差数列,∴n n s ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭也是等差数列,是关于n 的一次函数,∴ 23,,2,,3,23n n n n n n n n n s s s ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭三点共线,∴35010102323n n n n n n n n n s --=-- 解得3n s =120。
函数与方程及函数的综合应用课件——高三数学一复习
2
x 1
品售价为50万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
解析 (1)当0<x<50时,L(x)=50x- 1 x 2 10 x -200=- 1 x2+40x-200,
6
4 3
3 2
6
2
函数f(x)的一个零点位于 , 内,即x0∈ , .故选C.
6 4
答案 C
6 4
考法二 已知函数有零点(方程有根)求参数值(或取值范围)
1.直接法:利用零点构建关于参数的方程(组)或不等式(组),直接求解.
2.参数分离法:将参数与自变量分离,转化为求函数的最值或值域.
2
2
当x≥50时,L(x)=50x-52x- 7 200 +1 200-200=1 000- 2 x 7 200 ,
x 1
1 2
x 40 x 200,0 x 50,
所以L(x)= 2
1 000 2 x 7 200 , x 50.
3.5专题三、函数与方程及
函数的综合应用
知识梳理
基础篇
考点一 函数的零点
1.函数的零点
1)函数零点的定义:对于一般函数y=f(x),把使f(x)=0的实数x叫做函数y=
f(x)的零点.
注意:零点不是点,是满足f(x)=0的实数x.
2)三个等价关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题2 第3讲 函数与方程及函数的实际应用一、选择题1.(2011·合肥质检)函数f (x )=ln x +2x -1零点的个数为( ) A .0 B .1 C .2 D .3[答案] B[解析] 作出函数y =ln x 和y =1-2x 的图像,可看出交点只有一个.故选B.2.(2011·南昌调研)用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0,可得其中一个零点x 0∈__________,第二次应计算__________.以上横线上应填的内容为( )A .(0,0.5),f (0.25)B .(0,1),f (0.25)C .(0.5,1),f (0.75)D .(0,0.05),f (0.125) [答案] A[解析] 由f (0)<0,f (0.5)>0.则在(0,0.5)内必有一个零点,故在下一次应计算f (0.25),故选A.3.(2010·上海理,17)若x 0是方程⎝⎛⎭⎫12x =x 13的解,则x 0属于区间( ) A.⎝⎛⎭⎫23,1 B.⎝⎛⎭⎫12,23 C.⎝⎛⎭⎫13,12 D.⎝⎛⎭⎫0,13 [答案] C[解析] 令f (x )=⎝⎛⎭⎫12x -x 13,f (1)=12-1=-12<0, f ⎝⎛⎭⎫12=⎝⎛⎭⎫1212-⎝⎛⎭⎫1213<0, f ⎝⎛⎭⎫13=⎝⎛⎭⎫1213-⎝⎛⎭⎫1313>0,f ⎝⎛⎭⎫23=⎝⎛⎭⎫1223-⎝⎛⎭⎫2313=⎝⎛⎭⎫1413-⎝⎛⎭⎫2313<0, ∴f (x )在区间⎝⎛⎭⎫13,12内有零点.4.(2011·北京理,6)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16[答案] D[解析] 依题意:当x ≤A 时,f (x )单调递减;当x ≥A 时,f (x )恒为常数. 因此,c 4=30,cA=15,解得:c =60,A =16,故选D. 5.(文)(2011·海淀期末)函数f (x )=|x -2|-ln x 在定义域内零点的个数为( ) A .0 B .1 C .2 D .3[答案] C[解析] 由题意知,所求零点的个数即函数y 1=|x -2|的图像与函数y 2=ln x 的图像交点的个数,y 1、y 2的图像如图所示,显然二者有两个交点,故选C.(理)(2011·陕西二检)方程sin x =|lg x |的根的个数是( ) A .5 B .4 C .3 D .2 [答案] B[解析] 如图,分别画出函数y =sin x 和y =|lg x |的图像,显然,当0<x <1时,函数y =sin x 与y =|lg x |的图像有一个交点;当x >1时,因为y =sin x ∈[-1,1],故可只考虑函数y =|lg x |在区间[1,10]上的图像,由图可知,在区间[1,10]上这两个函数的图像有三个公共点.综上所述,两个函数图像有四个公共点,即方程sin x =|lg x |有四个不同的实根,故选B.6.(2011·襄阳一调)利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4000,则每吨的成本最低时的年产量为( )A .240B .200C .180D .160[答案] B[解析] 依题意得每吨的成本是y x =x 10+4000x -30,则yx≥2x 10·4000x-30=10,当且仅当x 10=4000x ,即x =200时取等号,因此当每吨的成本最低时,相应的年产量是200吨,选B.7.(2011·山东济宁)已知函数f (x )=log 2(a -2x )+x -2,若f (x )存在零点,则实数a 的取值范围是( )A .(-∞,-4]∪[4,+∞)B .[1,+∞)C .[2,+∞ )D .[4,+∞)[答案] D[解析] 由题意知,log 2(a -2x )=2-x 有解, 即a -2x =22-x 有解,也即a =2x +4·2-x ,∵2x +4·2-x ≥4,∴a ≥4.故选D.8.(2011·绍兴模拟)已知函数f (x )=ax 2+bx -1(a ,b ∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则a -b 的取值范围为( )A .(-∞,-1)B .(-1,+∞)C .(-∞,1)D .(-1,1)[答案] B[解析] 函数f (x )=ax 2+bx -1(a >0)有两个零点,其中一个零点在区间(1,2)内,结合二次函数的图像知⎩⎪⎨⎪⎧ f (1)<0f (2)>0,即满足⎩⎪⎨⎪⎧a +b -1<04a +2b -1>0,所以a -b 的取值范围即为:满足可行域⎩⎪⎨⎪⎧a >0a +b -1<04a +2b -1>0内的点P (a ,b )的目标函数z =a -b 的取值范围,作出可行域如图:当b =a -z 的一族平行线经过可行域时,目标函数z =a -b 在点(0,1)处取得最小值-1,最大值趋向正无穷,故答案选B.二、填空题9.(2011·芜湖模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围________.[答案] (0,1)[解析] 函数f (x )的图像如图所示:当0<m <1时,直线y =m 与函数f (x )的图像有三个交点.10.关于x 的方程cos 2x -sin x +a =0在(0,π2]上有解,则a 的取值范围为________.[答案] (-1,1][解析] 原方程可化为a =sin x -cos 2x , 令y =sin x -cos 2x ,则y =sin 2x +sin x -1=(sin x +12)2-54,∵x ∈(0,π2],∴0<sin x ≤1,∴-1<y ≤1.因为方程有解,所以a ∈(-1,1].11.(2010·浙江文,16)某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________.[答案] 20[解析] 本题考查了不等式的实际应用.由题意列出不等式:3860+500+2[500(1+x %)+500(1+x %)2]≥7000 (x >0) 整理可得:x 2+300x -6400≥0,解之得,x ≥20. ∴x 的最小值为20.12.若抛物线y =-x 2+mx -1和两端点为A (0,3)、B (3,0)的线段AB 有两个不同的交点,则m 的取值范围为________.[答案] (3,103][解析] 线段AB 的方程为y =-x +3(0≤x ≤3).由⎩⎪⎨⎪⎧y =-x 2+mx -1,y =-x +3(0≤x ≤3)消去y 得x 2-(m +1)x +4=0(0≤x ≤3). ∵抛物线与线段AB 有两个不同的交点, ∴x 2-(m +1)x +4=0在[0,3]上有两个不同的解. 设f (x )=x 2-(m +1)x +4,则f (x )的图像在[0,3]上与x 轴有两个不同的交点,∴⎩⎪⎨⎪⎧Δ=(m +1)2-16>0,0<m +12<3,f (0)=4>0,f (3)=9-3(m +1)+4≥0,解得3<m ≤103.三、解答题13.如图所示是函数y =(12)x 和y =3x 2图像的一部分,其中x =x 1,x 2(-1<x 1<0<x 2)时,两函数值相等.(1)给出如下两个命题: ①当x <x 1时,(12)x <3x 2;②当x >x 2时,(12)x <3x 2,试判断命题①②的真假并说明理由; (2)求证:x 2∈(0,1). [解析] (1)当x =-8时, (12)-8=28=256,3×(-8)2=192, 此时(12)-8>3×(-8)2,故命题①是假命题.又当x ∈(0,+∞)时,y =(12)x 是减函数,y =3x 2是增函数,故命题②是真命题.(2)证明:令f (x )=3x 2-(12)x ,则f (0)=-1<0,f (1)=52>0,∴f (x )在区间(0,1)内有零点,又∵函数f (x )=3x 2-(12)x 在区间(0,+∞)上单调递增,∴x 2∈(0,1).14.(2011·佛山质检)桑基鱼塘是广东省珠江三角洲一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块占地1800平方米的矩形地块,中间挖成三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,如图所示,池塘所占面积为S 平方米,其中a :b =1:2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值各为多少? [解析] (1)由题可得:xy =1800,b =2a , 则y =a +b +6=3a +6, S =(x -4)a +(x -6)b =(3x -16)a =(3x -16)·y -63=1832-6x -163y .(2)S =1832-6x -163y ≤1832-26x ·163y =1832-480=1352,当且仅当6x =163y ,即x =40米,y =45米时,S 取得最大值1352平方米.15.(2011·湖北理,17)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(1)当0≤x ≤200时,求函数v (x )的表达式;(2)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x ·v (x )可以达到最大,并求出最大值.(精确到1辆/小时)[解析] (1)由题意:当0≤x ≤20时,v (x )=60; 当20≤x ≤200时,设v (x )=ax +b ,再由已知得⎩⎪⎨⎪⎧200a +b =0,20a +b =60,解得⎩⎨⎧a =-13,b =2003.故函数v (x )的表达式为v (x )=⎩⎪⎨⎪⎧60, 0≤x <20,13(200-x ), 20≤x ≤200.(2)依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧60x , 0≤x <20,13x (200-x ), 20≤x ≤200.当0≤x ≤20时,f (x )为增函数,故当x =20时,其最大值为60×20=1200; 当20≤x ≤200时,f (x )=13x (200-x )≤13[x +(200-x )2]2=100003, 当且仅当x =200-x ,即x =100时,等号成立.所以,当x =100时,f (x )在区间[20,200]上取得最大值100003.综上,当x =100时,f (x )在区间[0,200]上取得最大值100003≈3333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.。