高考数学二轮复习小题专题练
2022年高考数学二轮复习高考小题集训(二)
高考小题集训(二)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.[2021·全国乙卷理]设2(z +z )+3(z -z )=4+6i ,则z =( ) A .1-2i B .1+2i C .1+i D .1-i2.[2021·湖南长郡十五校联考]已知集合P ={x |x 2-5x -6≤0},Q ={x |3x ≥1},则P ∩Q =( )A .{x |-1≤x ≤0}B .{x |0≤x ≤1}C .{x |0≤x ≤6}D .{x |-6≤x ≤0}3.已知抛物线x 2=2py (p >0)上一点M (m ,1)到焦点的距离为32,则其焦点坐标为( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫12,0C .⎝⎛⎭⎫14,0D .⎝⎛⎭⎫0,14 4.密位制是度量角的一种方法.把一周角等分为6 000份,每一份叫做1密位的角.以密位作为角的度量单位,这种度量角的单位制,叫做角的密位制.在角的密位制中,采用四个数码表示角的大小,单位名称密位二字可以省去不写.密位的写法是在百位数与十位数字之间画一条短线,如密位7写成“0-07”,478密位写成“4-78”,1周角等于6 000密位,记作1周角=60-00,1直角=15-00.如果一个半径为2的扇形,它的面积为76π,则其圆心角用密位制表示为( )A .12-50 B. 17-50 C. 21-00 D. 35-00 5.如图所示,在正方体ABCD -A 1B 1C 1D 1中,S 是棱A 1B 1上任意一点,四棱锥S -ABCD 的体积与正方体ABCD -A 1B 1C 1D 1的体积之比为( )A .12B .13C .14D .不确定6.高铁是当代中国重要的一类交通基础设施,乘坐高铁已经成为人们喜爱的一种出行方式,已知某市市郊乘车前往高铁站有①,②两条路线可走,路线①穿过市区,路程较短但交通拥挤,所需时间(单位为分钟)服从正态分布N (50,100);路线②走环城公路,路程长,但意外阻塞较少,所需时间(单位为分钟)服从正态分布N (60,16),若住同一地方的甲、乙两人分别有70分钟与64分钟可用,要使两人按时到达车站的可能性更大,则甲乙选择的路线分别是( )A .①②B .②①C .①①D .②②7.[2021·河北衡水中学调研]已知函数f (x )=x 2,设a =log 54,b =log 15 13,c =215 ,则f (a ),f (b ),f (c )的大小关系为( )A .f (a )>f (b )>f (c )B .f (b )>f (c )>f (a )C .f (c )>f (b )>f (a )D .f (c )>f (a )>f (b )8.[2021·山东烟台二模]已知函数f (x )是定义在区间(-∞,0)∪(0,+∞)上的偶函数,且当x ∈(0,+∞)时,f (x )=⎩⎪⎨⎪⎧2|x -1|,0<x ≤2f (x -2)-1,x >2 ,则方程f (x )+18 x 2=2根的个数为( )A .3B .4C .5D .6二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某鱼业养殖场新进1 000尾鱼苗,测量其体长(单位:毫米),将所得数据分成6组,则下列说法正确的是( )A .m =250B .鱼苗体长在[90,100)上的频率为0.16C .鱼苗体长的中位数一定落在区间[85,90)内D .从这批鱼苗中有放回地连续抽取50次,每次一条,则所抽取鱼苗体长落在区间[80,90)上的次数的期望为3010.[2021·广东珠海一模]已知三棱柱ABC -A 1B 1C 1的底面是边长为3的等边三角形,侧棱与底面垂直,其外接球的表面积为16π,下列说法正确的是( )A .三棱柱ABC -A 1B 1C 1的体积是932B .三棱柱ABC -A 1B 1C 1的表面积是18C .直线AB 1与直线A 1C 1所成角的余弦值是31326D .点A 到平面A 1BC 的距离是13211.[2021·新高考Ⅱ卷]已知直线l :ax +by -r 2=0与圆C :x 2+y 2=r 2,点A (a ,b ),则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离 C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切 12.[2021·河北秦皇岛二模]已知()2-3x 6=a 0+a 1x +a 2x 2+…+a 6x 6,则下列选项正确的是( )A .a 3=-360B .(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=1C .a 1+a 2+…+a 6=(2-3 )6D .展开式中系数最大的为a 2三、填空题:本题共4小题,每小题5分,共20分.13.[2021·新高考Ⅱ卷]已知双曲线x 2a 2 -y 2b2 =1(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为________________.14.函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=a (x +1)-2x ,则f (f (3))=________.15.在△ABC 中,AB =4,∠ABC =30°,D 是边BC 上的一点,若AD → ·AB → =AD → ·AC →,则AD → ·AB →的值为________.16.[2021·全国甲卷文]已知函数f (x )=2cos (ωx +φ)的部分图象如图所示,则f ⎝⎛⎭⎫π2 =________.1.解析:设z =a +b i (a ,b ∈R ),则z =a -b i ,代入2(z +z )+3(z -z )=4+6i ,可得4a +6b i =4+6i ,所以a =1,b =1,故z =1+i.故选C.答案:C2.解析:集合P ={x |x 2-5x -6≤0}={x |-1≤x ≤6}, Q ={x |3x ≥1}={x |x ≥0}, ∴P ∩Q ={x |0≤x ≤6}. 故选C. 答案:C3.解析:∵抛物线x 2=2py (p >0)上一点M (m ,1)到焦点的距离为32,∴由抛物线的定义知y M +p 2 =32 ,即1+p 2 =32 ,所以p =1,所以p 2 =12 ,∴抛物线的焦点坐标为⎝⎛⎭⎫0,12 . 故选A. 答案:A4.解析:设扇形所对的圆心角为α,α所对的密位为n ,则12 α×22=76 π,解得α=712π,由题意可得n 6 000 =712π2π ,解得n =724×6 000=1 750,因此,该扇形圆心角用密位制表示为17-50. 故选B. 答案:B5.解析:设正方体的棱长为a ,则正方体的体积V =a 3, 易知四棱锥S -ABCD 的高为S 点到底面的距离,即侧棱长,所以四棱锥S -ABCD 体积为V ′=13 S ABCD ·AA 1=13 a 2·a =a 33,所以V ′∶V =13,故四棱锥S -ABCD 的体积与正方体ABCD -A 1B 1C 1D 1的体积之比为13.故选B. 答案:B6.解析:对于甲,若有70分钟可走,走第一条线路赶到的概率为P (X ≤70)=Φ⎝⎛⎭⎫70-5010 =Φ(2),走第二条线路赶到的概率为P (X ≤70)=Φ⎝⎛⎭⎫70-604 =Φ(2.5),∵Φ(2)<Φ(2.5),所以甲应走线路②;对于乙,若有64分钟可走,走第一条线路的概率为P (X ≤64)=Φ⎝⎛⎭⎫64-5010 =Φ(1.4),走第二条线路赶到的概率为P (X ≤64)=Φ⎝⎛⎭⎫64-604 =Φ(1),∵Φ(1.4)>Φ(1),所以乙应走线路①.故选B. 答案:B7.解析:∵函数f (x )=x 2在[0,+∞)上是增函数,b =log 15 13=log 53<a =log 54<1,∴c =215>20=1,∴c >a >b >0,∴f (c )>f (a )>f (b ). 故选D. 答案:D8.解析:方程f (x )+18 x 2=2根的个数⇔函数y =f (x )与函数y =-18x 2+2的图象交点个数,图象如下:由图象可知两函数图象有6个交点.故选D. 答案:D9.解析:对于A ,因为[95,100)分组对应小矩形的高为0.01,组距为5, 所以[95,100)分组对应的频率为0.01×5=0.05,n =1 000×0.05=50, 则m =1 000-100-100-350-150-50=250,故选项A 正确;对于B ,鱼苗体长在[90,100)上的频率为150+501 000=0.2,故选项B 错误;对于C ,因为鱼的总数为1 000,100+100+250=450,100+100+250+350=800, 所以鱼苗体长的中位数一定落在区间[85,90)内,故选项C 正确;对于D ,由表中的数据可知,鱼苗体长落在区间[80,90)上的概率为P =250+3501 000=0.6,设所抽取鱼苗体长落在区间[80,90)上的次数为X , 则X 服从二项分布,即X ~B (50,0.6), 则E (X )=50×0.6=30,故选项D 正确. 故选ACD. 答案:ACD 10.解析:如图所示,三棱柱的上下底面正三角形中心分别为D 1,D ,因为三棱柱ABC -A 1B 1C 1的底面是边长为3的等边三角形,侧棱与底面垂直, 所以其外接球的球心O 为高DD 1的中点, 设外接球半径为R ,由4πR 2=16π得R =2,又因为BD =23 ×32×3=3 ,故OD =1,所以DD 1=2,所以三棱柱的体积V =34 ·32·2=932.三棱柱的表面积S =3×3×2+2×34 ×32=18+932.因为AC ∥A 1C 1,所以∠B 1AC 是AC 与AB 1成的角也就是A 1C 1与AB 1成的角,因为AB 1=B 1C =13 ,AC =3,所以cos ∠B 1AC =B 1A 2+AC 2-B 1C 22B 1A ·AC =31326,所以直线AB 1与直线A 1C 1所成角的余弦值是31326.设A 到平面A 1BC 的距离是h ,由VA -A 1BC =VA 1-ABC 得13 ×h ×12 ×432 ×3=13×2×34×32,解得h =612943.故选AC. 答案:AC11.解析:圆心C (0,0)到直线l 的距离d =r 2a 2+b2 ,若点A (a ,b )在圆C 上,则a 2+b 2=r 2,所以d =r 2a 2+b2 =|r |,则直线l 与圆C 相切,故A 正确;若点A (a ,b )在圆C 内,则a 2+b 2<r 2,所以d =r 2a 2+b2 >|r |,则直线l 与圆C 相离,故B 正确;若点A (a ,b )在圆C 外,则a 2+b 2>r 2,所以d =r 2a 2+b2 <|r |,则直线l 与圆C 相交,故C 错误;若点A (a ,b )在直线l 上,则a 2+b 2-r 2=0即a 2+b 2=r 2,所以d =r 2a 2+b 2=|r |,直线l 与圆C 相切,故D 正确.故选ABD. 答案:ABD12.解析:(2-3 x )6展开式通项公式为:T k +1=C k 6 ·26-k ·(-3 x )k , 对于A ,令k =3,则a 3=C 36 ×23×(-3 )3=-4803 ,A 错误; 对于B ,令x =1,则a 0+a 1+…+a 6=(2-3 )6; 令x =-1,则a 0-a 1+a 2-…+a 6=(2+3 )6;∴(a 0+a 2+a 4+a 6)2-(a 1+a 3+a 5)2=(a 0+a 1+a 2+…+a 6)(a 0-a 1+a 2-…+a 6)=[]()2-3×()2+3 6=1,B 正确;对于C ,令x =0得:a 0=26,∴a 1+a 2+…+a 6=()2-3 6-26,C 错误; 对于D ,∵a 0,a 2,a 4,a 6为正数,a 1,a 3,a 5为负数,又a 0=26=64,a 2=C 26 ×24×3=720,a 4=C 46 ×22×32=540,a 6=33=27, ∴展开式中系数最大的为a 2,D 正确. 故选BD.答案:BD13.解析:因为双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的离心率为2,所以e =c 2a 2 =a 2+b 2a 2 =2,所以b 2a2 =3,所以该双曲线的渐近线方程为y =±bax =±3 x .答案:y =±3 x14.解析:f (0)=a -1=0,a =1,当x <0时,-x >0,f (-x )=-x +1-2-x =-f (x ),即f (x )=x -1+2-x,f (x )=⎩⎪⎨⎪⎧x +1-2x,x >00,x =0x -1+2-x ,x <0,f (3)=4-23=-4,f (-4)=-5+24=11,f (f (3))=11.答案:11 15.解析:因为AD → ·AB → =AD → ·AC → ,所以AD → ·(AB → -AC → )=AD → ·CB →=0, 所以AD ⊥CB ,由题得AD =2,∠BAD =60°,所以AD → ·AB →=2×4×cos 60°=4. 答案:416.解析:解法一(五点作图法) 由题图可知34 T =13π12 -π3 =3π4(T 为f (x )的最小正周期),即T =π,所以2πω=π,即ω=2,故f (x )=2cos (2x +φ).点⎝⎛⎭⎫π3,0 可看作“五点作图法”中的第二个点,故2×π3 +φ=π2 ,得φ=-π6,即f (x )=2cos ⎝⎛⎭⎫2x -π6 , 所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-3 . 解法二(代点法) 由题意知,34 T =13π12 -π3 =3π4 (T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.又点⎝⎛⎭⎫π3,0 在函数f (x )的图象上,所以2cos ⎝⎛⎭⎫2×π3+φ =0,所以2×π3 +φ=π2 +k π(k ∈Z ),令k =0,则φ=-π6,所以f (x )=2cos ⎝⎛⎭⎫2x -π6 ,所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-2cos π6=-3 . 解法三(平移法) 由题意知,34 T =13π12 -π3 =3π4(T 为f (x )的最小正周期),所以T =π,2πω=π,即ω=2.函数y =2cos 2x 的图象与x 轴的一个交点是⎝⎛⎭⎫π4,0 ,对应函数f (x )=2cos (2x +φ)的图象与x 轴的一个交点是⎝⎛⎭⎫π3,0 ,所以f (x )=2cos (2x +φ)的图象是由y =2cos 2x 的图象向右平移π3 -π4 =π12个单位长度得到的,所以f (x )=2cos (2x+φ)=2cos 2⎝⎛⎭⎫x -π12 =2cos ⎝⎛⎭⎫2x -π6 ,所以f ⎝⎛⎭⎫π2 =2cos ⎝⎛⎭⎫2×π2-π6 =-2cos π6=-3 . 答案:-3。
高考数学二轮复习专练三高档小题(一)
高档小题(一)1.运行如图所示的程序,若结束时输出的结果不小于3,则t 的取值范围为( )A .t ≥14B .t ≥18C .t ≤14D .t ≤182.设函数y =x sin x +cos x 的图象上的点(x 0,y 0)处的切线的斜率为k ,若k =g (x 0),则函数k =g (x 0)的图象大致为( )3.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4x +3, x ≤0-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)4.若点P 是以A (-10,0)、B (10,0)为焦点,实轴长为22的双曲线与圆x 2+y 2=10的一个交点,则|P A |+|PB |的值为( ) A .2 2 B .4 2 C .4 3 D .6 2 5.(2013·云南省昆明市高三调研测试)在平面直角坐标系xOy 中,抛物线C :y 2=2px (p >0)的焦点为F ,M 是抛物线C 上的点,若△OFM 的外接圆与抛物线C 的准线相切,且该圆面积为9π,则p =( ) A .2 B .4 C .6 D .86.已知log 12(x +y +4)<log 12(3x +y -2),若x -y <λ恒成立,则λ的取值范围是( )A .(-∞,10]B .(-∞,10)C .[10,+∞)D .(10,+∞)7.(2013·合肥市高三第二次教学质量检测)过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F (-c ,0)(c >0),作倾斜角为π6的直线FE 交该双曲线右支于点P ,若OE →=12(OF →+OP →),且OE →·EF →=0,则双曲线的离心率为( )A.105B.3+1C.102D. 28.设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b =⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b ,a ∨b =⎩⎪⎨⎪⎧b ,a ≤b ,a ,a >b .若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则( ) A .a ∧b ≥2,c ∧d ≤2 B .a ∧b ≥2,c ∨d ≥2 C .a ∨b ≥2,c ∧d ≤2 D .a ∨b ≥2,c ∨d ≥29.(2013·嘉兴市高中学科基础测试)设函数f (x )=⎩⎪⎨⎪⎧x -[x ],x ≥0f (x +1),x <0,其中[x ]表示不超过x 的最大整数,如[-1.3]=-2,[1.3]=1,则函数y =f (x )-14x -14不同零点的个数为( )A .2B .3C .4D .510.抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p =( )A.316B.38C.233D.433 11.(2013·山西省高三上学期诊断考试)已知三棱锥P -ABC 的各顶点均在一个半径为R 的球面上,球心O 在AB 上,PO ⊥平面ABC ,ACBC=3,则三棱锥与球的体积之比为________.12.(2012·高考课标全国卷)设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M+m =________.13.设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________. 14.(2013·湖南省五市十校高三第一次联合检测)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1)b 3是数列{a n }中的第________项; (2)b 2k =________(用k 表示). 备选题 1.(2013·福建省普通高中毕业班质量检测)定义两个实数间的一种新运算“*”:x *y =lg(10x +10y ),x ,y ∈R .对任意实数a ,b ,c ,给出如下结论:①(a *b )*c =a *(b *c );②a *b =b *a ;③(a *b )+c =(a +c )*(b +c ). 其中正确结论的个数是( ) A .0 B .1 C .2 D .3 2.已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,c n =a m (n -1)+1·a m (n-1)+2·…·a m (n -1)+m (m ,n ∈N *),则以下结论一定正确的是( ) A .数列{b n }为等差数列,公差为q m B .数列{b n }为等比数列,公比为q 2m C .数列{c n }为等比数列,公比为qm 2D .数列{c n }为等比数列,公比为qm m 3.(2013·辽宁省五校高一联合体高三年级考试)设函数f (x )的定义域为D ,如果存在正实数k ,使对任意x ∈D ,都有x +k ∈D ,且f (x +k )>f (x )恒成立,则称函数f (x )为D 上的“k 型增函数”.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-2a ,若f (x )为R 上的“2 013型增函数”,则实数a 的取值范围是____________. 4.(2013·安徽省“江南十校”高三联考)已知△ABC 的三边长分别为AB =5,BC =4,AC =3,M 是AB 边上的点,P 是平面ABC 外一点.给出下列四个命题: ①若P A ⊥平面ABC ,则三棱锥P -ABC 的四个面都是直角三角形;②若PM ⊥平面ABC ,且M 是AB 边的中点,则有P A =PB =PC ;③若PC =5,PC ⊥平面ABC ,则△PCM 面积的最小值为152;④若PC =5,P 在平面ABC 上的射影是△ABC 的内切圆的圆心,则点P 到平面ABC 的距离为23.其中正确命题的序号是________.(把你认为正确命题的序号填上)答案:高档小题(一)1.【解析】选B.逐次计算结果是n =2,x =2t ,a =1;n =4,x =4t ,a =3;n =6,x =8t ,a=3,此时输出38t ,因为38t ≥3,所以t ≥18.2.【解析】选A.由题意可得y ′=x cos x ,k =g (x 0)=x 0cos x 0,由于它是奇函数,所以排除B ,C ;又在y 轴附近g (x 0)左侧为负,右侧为正,所以选A.3.【解析】选B.作出函数f (x )的图象,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4.所以不等式的解集为(-1,4). 4.【解析】选D.根据对称性,设点P 在第一象限,则|P A |-|PB |=22,点P 在圆x 2+y 2=10上,则P A ⊥PB ,所以|P A |2+|PB |2=40,把|P A |-|PB |=22平方后代入上述结果得|P A |·|PB |=16,所以(|P A |+|PB |)2=40+32=72,所以|P A |+|PB |=6 2. 5.【解析】选B.依题意得,△OFM 的外接圆半径为3,△OFM 的外接圆圆心应位于线段OF 的垂直平分线x =p 4上,圆心到准线x =-p 2的距离等于3,即有p 4+p2=3,由此解得p =4,故选B.6.【解析】选C.已知不等式等价于不等式x +y +4>3x +y -2>0,即⎩⎪⎨⎪⎧x <33x +y -2>0,其表示的平面区域如图中的阴影部分(不含区域边界)所示.设z =x -y ,根据其几何意义,显然在图中的点A 处,z 取最大值,由⎩⎪⎨⎪⎧x =33x +y -2=0得,A (3,-7),故z <3-(-7)=10,所以λ≥10.7.【解析】选B.由OE →=12(OF →+OP →)可知点E 是线段FP 的中点,由OE →·EF →=0,可知OE →⊥EF →,再结合∠PFO =30°,令|OE |=m ,则有|PF ′|=2m (F ′为双曲线的右焦点),|OF |=2m ,|FP |=2|FE |=23m ,再由双曲线的定义可知2a =|FP |-|PF ′|=2(3-1)m ,2c =2|OF |=4m ,所以离心率e =2c 2a =4m2(3-1)m=3+1.8.【解析】选C.根据题意知,a ∧b 表示a ,b 中较小的,a ∨b 表示a ,b 中较大的.因为⎝⎛⎭⎫a +b 22≥ab ≥4,所以a +b ≥4.又因为a ,b 为正数,所以a ,b 中至少有一个大于或等于2,所以a ∨b ≥2.因为c +d ≤4,c ,d 为正数,所以c ,d 中至少有一个小于或等于2,所以c ∧d ≤2.9.【解析】选B.在同一坐标系中作出函数y =f (x ),y =14x +14的图象如图,由图可知,两个函数有3个不同的交点,即函数有3个不同的零点,故选B.10.【解析】选D.∵双曲线C 2:x23-y 2=1,∴右焦点为F (2,0),渐近线方程为y =±33x .抛物线C 1:y =12p x 2(p >0),焦点为F ′(0,p2).设M (x 0,y 0),则y 0=12p x 20.∵k MF ′=k FF ′,∴12p x 20-p 2x 0=p 2-2.①又∵y ′=1p x ,∴y ′|x =x 0=1p x 0=33.②由①②得p =433.11.【解析】依题意,AB =2R ,又ACBC=3,∠ACB =90°,因此AC =3R ,BC =R ,三棱锥P -ABC 的体积V P ABC =13PO ·S △ABC =13×R ×(12×3R ×R )=36R 3.而球的体积V 球=4π3R 3,因此V P ABC ∶V 球=36R 3∶4π3R 3=38π.【答案】38π12.【解析】f (x )=(x +1)2+sin x x 2+1=1+2x +sin xx 2+1,设g (x )=2x +sin xx 2+1,则g (-x )=-g (x ),∴g (x )是奇函数.由奇函数图象的对称性知g (x )max +g (x )min =0, ∴M +m =[g (x )+1]max +[g (x )+1]min =2+g (x )max +g (x )min =2. 【答案】213.【解析】∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1,∴a n =(-1)n a n -(-1)n -1a n -1+12n .当n 为偶数时,a n -1=-12n ,当n 为奇数时,2a n +a n -1=12n ,∴当n =4时,a 3=-124=-116.根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128,a 2=122,a 4=124,a 6=126,a 8=128.∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…,∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-(12+122+123+…+12100)=(12+123+…+1299)-(12+122+…+12100) =13(12100-1). 【答案】(1)-116 (2)13(12100-1)14.【解析】依题意得,a n =n (n +1)2,b 1=4(4+1)2=a 4,b 2=5(5+1)2=a 5,b 3=9(9+1)2=a 9,故b 3是数列{a n }中的第9项,由归纳推理可知,数列{a n }中项数被5除余4和被5整除的项满足数列{b n },当数列{b n }的项数为偶数的时候,恰好是数列{a n }中能被5整除的项,所以b 2k =5k (5k +1)2.【答案】(1)9 (2)5k (5k +1)2备选题 1.【解析】选D.因为(a *b )*c =[lg(10a +10b )]*c =lg(10lg(10a +10b )+10c )=lg(10a +10b +10c ),a *(b *c )=a *[lg(10b +10c )]=lg(10a +10lg(10b +10c ))=lg(10a +10b +10c ),所以(a *b )*c =a *(b *c ),即①对;因为a *b =lg(10a +10b ),b *a =lg(10b +10a ),所以a *b =b *a ,所以②对;(a *b )+c =lg(10a +10b )+c =lg[(10a +10b )×10c ]=lg(10a +c +10b +c )=(a +c )*(b +c ),即③对.故选D.2.【解析】选C.b n =a 1q m (n -1)+a 1q m (n -1)+1+…+a 1q m (n -1)+m -1=a 1q m (n -1)(1+q +…+q m -1)=a 1q m (n -1)·1-q m 1-q,∴b n +1b n =a 1q mn·1-q m 1-q a 1q m (n -1)·1-q m 1-q=q m, ∴{b n }是等比数列,公比为q m .c n =a 1q m (n -1)·a 1q m (n -1)+1·…·a 1q m (n -1)+m -1=a m 1qm 2(n -1)+m (m -1)2, ∴c n +1c n =a m 1qm 2(n +1-1)+m (m -1)2a m 1qm 2(n -1)+m (m -1)2=qm 2. ∴{c n }是等比数列,公比为qm 2.3.【解析】由题意,当x >0时,f (x )=⎩⎪⎨⎪⎧x -3a (x ≥a )-x -a (x <a ),当a ≥0时,函数f (x )的图象如(1)所示,考虑极大值f (-a )=2a ,令x -3a =2a ,得x =5a ,所以只需满足5a -(-a )=6a <2 013,即0≤a ≤6712;当a <0时,函数f (x )的图象如图(2)所示,且f (x )为增函数,因为x +2 013>x ,所以满足f (x +2 013)>f (x ),综上可知,a <6712.【答案】(-∞,6712)4.【解析】对于①,如图①,因为P A ⊥平面ABC ,所以P A ⊥AC ,P A ⊥AB ,P A ⊥BC .又BC ⊥AC ,所以BC ⊥平面P AC ,所以BC ⊥PC ,故四个面都是直角三角形; 对于②,当PM ⊥平面ABC 时,P A 2=PM 2+MA 2,PB 2=PM 2+BM 2,PC 2=PM 2+CM 2.又M 是AB 的中点,所以BM =AM =CM . 故P A =PB =PC ;对于③,当PC ⊥平面ABC 时,S △PCM =12PC ·CM =12·5·CM .又CM 的最小值是C 到边AB 的垂线段,长度为125.所以S △PCM 的最小值是12×5×125=6;对于④,设△ABC 内切圆的圆心是O ,则PO ⊥平面ABC , 则有PO 2+OC 2=PC 2,又内切圆半径r =12(3+4-5)=1,所以OC =2,PO 2=PC 2-OC 2=25-2=23. 故PO =23.综上,正确的命题有①②④. 【答案】①②④。
高考数学二轮复习专练二中档小题(三)
中档小题(三)1.(2013·江西省高三上学期七校联考)若集合P ={x |3<x ≤22},非空集合Q ={x |2a +1≤x <3a -5},则能使Q ⊆(P ∩Q )成立的所有实数a 的取值范围为( )A .(1,9)B .[1,9]C .[6,9)D .(6,9] 2.(2013·荆州市质量检测)设a 为实数,函数f (x )=x 3+ax 2+(a -2)x 的导数是f ′(x ),且f ′(x )是偶函数,则曲线y =f (x )在原点处的切线方程为( )A .y =-2xB .y =3xC .y =-3xD .y =4x3.(2013·南昌市第一次模拟测试)双曲线x 2b 2-y 2a 2=-1(a >0,b >0)与抛物线y =18x 2有一个公共焦点F ,双曲线上过点F 且垂直实轴的弦长为233,则双曲线的离心率等于( )A .2 B.233C.322D. 3 4.(2013·长春市第一次调研测试)若x ∈(1,4),设a =x 12,b =x 23,c =ln x ,则a 、b 、c 的大小关系为( )A .c >a >bB .b >a >cC .a >b >cD .b >c >a 5.(2013·郑州市第二次质量检测)已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在向量CD →上的投影为( )A.105B.2105C.3105D.41056.(2013·安徽省“江南十校”联考)已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 013=( )A. 2 012-1B. 2 013-1C. 2 014-1D. 2 014+17.(2013·广州市调研测试)在区间[1,5]和[2,4] 上分别取一个数,记为a ,b ,则方程x 2a2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆的概率为( ) A.12 B.1532 C.1732 D.3132 8.(2013·郑州市第一次质量检测)把70个面包分五份给5个人,使每人所得成等差数列,且使较大的三份之和的16是较小的两份之和,则最小的一份为( )A .2B .8C .14D .209.(2013·高考北京卷)设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m <0,y -m >0,表示的平面区域内存在点P (x 0,y 0),满足x 0-2y 0=2,求得m 的取值范围是( )A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)10.(2013·东北三校第一次联合模拟考试)已知函数y =A sin(ωx +φ)+k (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( )A .y =4sin(4x +π6)B .y =2sin(2x +π3)+2C .y =2sin(4x +π3)+2D .y =2sin(4x +π6)+211.(2013·安徽省“江南十校”联考)从某校高中男生中随机抽取100名学生,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).若要从身高在[60,70),[70,80),[80,90]三组内的男生中,用分层抽样的方法选取6人组成一个活动队,再从这6人中选2人当正副队长,则这2人的身高不在同一组内的概率为________.12.(2013·武汉市武昌区联合考试)已知某几何体的三视图的正视图和侧视图是全等的等腰梯形,俯视图是两个同心圆,如图所示,则该几何体的全面积为________.13.(2013·高考课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.14.(2013·武汉市高中毕业生调研测试)从圆C :x 2+y 2-6x -8y +24=0外一点P 向该圆引切线PT ,T 为切点,且|PT |=|PO |(O 为坐标原点),则(1)|PT |的最小值为________;(2)|PT |取得最小值时点P 的坐标为________. 备选题 1.(2013·洛阳市统一考试)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =23,AB =1,AC =2,∠BAC =60°,则球O 的表面积为( )A .4πB .12πC .16πD .64π2.(2013·海淀区第二学期期中练习)抛物线y 2=4x 的焦点为F ,点P (x ,y )为该抛物线上的动点,又点A (-1,0),则|PF ||P A |的最小值是( )A.12B.22C.32D.232 3.(2013·高考安徽卷)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.4.(2013·湖南省五市十校联合检测)设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ⊗b =(a 1b 1,a 2b 2),已知向量m =(2,12),n =(π3,0),点P (x ,y )在y =sin x 的图象上运动.Q是函数y =f (x )图象上的点,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则函数y =f (x )的值域是________.答案:1.【解析】选D.依题意, P ∩Q =Q ,Q ⊆P ,于是⎩⎪⎨⎪⎧2a +1<3a -52a +1>33a -5≤22,解得6<a ≤9,即实数a 的取值范围是(6,9].2.【解析】选A.由已知得f ′(x )=3x 2+2ax +a -2为偶函数,∴a =0,∴f (x )=x 3-2x ,f ′(x )=3x 2-2.又f ′(0)=-2,f (0)=0,∴y =f (x )在原点处的切线方程为y =-2x .3.【解析】选B.双曲线与抛物线x 2=8y 的公共焦点F 的坐标为(0,2),由题意知点(33,2)在双曲线上,∴⎩⎪⎨⎪⎧a 2+b 2=413b 2-4a 2=-1,得a 2=3,故e =c a =233. 4.【解析】选B.由于x >1,所以x 23>x 12>1,即b >a >1.又1<x <4,所以1<x <2,0<ln x <1,所以b >a >c .5.【解析】选B.依题意得AB →=(2,2),CD →=(-1,3),|CD →|=10,AB →·CD →=-2+6=4,向量AB →在向量CD →上的投影等于410=2105.6.【解析】选C.由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 013=a 1+a 2+a 3+…+a 2 013=(2-1)+(3-2)+(4-3)+…+( 2 014-2 013)= 2 014-1.7.【解析】选 B.方程x 2a 2+y 2b 2=1表示焦点在x 轴上且离心率小于32的椭圆,故⎩⎪⎨⎪⎧a 2>b2e =c a =a 2-b 2a <32, 即⎩⎨⎧a 2>b 2a 2<4b 2,化简得⎩⎨⎧a >ba <2b,又a ∈[1,5],b ∈[2,4],画出满足不等式组的平面区域,如图阴影部分所示,求得阴影部分的面积为154,故所求的概率P =S 阴影2×4=1532.8.【解析】选A.由题意知,中间一份为14,设该等差数列的公差为d (d >0),则这五份分别是14-2d ,14-d ,14,14+d ,14+2d .又16(14+14+d +14+2d )=14-2d +14-d ,解得d =6.故14-2d =2.9.【解析】选C.当m ≥0时,若平面区域存在,则平面区域内的点在第二象限,平面区域内不可能存在点P (x 0,y 0)满足x 0-2y 0=2,因此,m <0.如图所示的阴影部分为不等式组表示的平面区域.要使可行域内包含y =12x -1上的点,只需可行域边界点(-m ,m )在直线y =12x -1的下方即可,即m <-12m -1,解得m <-23.10.【解析】选D.由函数y =A sin(ωx +φ)+k 的最大值为4,最小值为0,可知k =2,A=2,由函数的最小正周期为π2,可知2πω=π2,可得ω=4,由直线x =π3是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π6,k ∈Z ,故满足题意的是y =2sin(4x +π6)+2.11.【解析】身高在[60,70)的男生人数为0.030×10×100=30,同理[70,80)的人数为20,[80,90]的人数为10,所以按分层抽样选取6人,各小组依次选3人,2人,1人,分别记为a ,b ,c ;A ,B ,M ;从这6人中选取2人共有15种结果,其中身高不在同一组内的结果有11种.故概率P =1115.【答案】111512.【解析】由三视图知该几何体为上底直径为2,下底直径为6,高为23的圆台,则几何体的全面积S =π×1+π×9+π×(4+12)=26π.【答案】26π13.【解析】当n =1时,S 1=23a 1+13,∴a 1=1.当n ≥2时,a n =S n -S n -1=23a n +13-(23a n -1+13)=23(a n -a n -1), ∴a n =-2a n -1,即a na n -1=-2,∴{a n }是以1为首项的等比数列,其公比为-2,∴a n =1×(-2)n -1,即a n =(-2)n -1.【答案】(-2)n -1 14.【解析】圆C 的标准方程为:(x -3)2+(y -4)2=1,设P (x ,y ),由|PT |=|PO |得(x -3)2+(y -4)2-1=x 2+y 2,得3x +4y -12=0,P 的轨迹为直线:3x +4y -12=0,当圆心C到直线的距离最小时,切线PT 取最小值,|PT |min =125,此时P 点坐标为(3625,4825).【答案】(1)125 (2)(3625,4825)备选题 1.【解析】选C.取SC 的中点E ,连接AE 、BE ,依题意,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3,∴AC 2=AB 2+BC 2,即AB ⊥BC .又SA ⊥平面ABC ,∴SA ⊥BC ,又SA ∩AB =A ,∴BC ⊥平面SAB ,BC ⊥SB ,AE =12SC =BE ,∴点E 是三棱锥S -ABC 的外接球的球心,即点E 与点O 重合,OA =12SC =12SA 2+AC 2=2,球O 的表面积为4π×OA 2=16π.2.【解析】选B.依题意知x ≥0,则焦点F (1,0),|PF |=x +1,|P A |=(x +1)2+y 2=(x +1)2+4x ,当x =0时,|P A ||PF |=1;当x >0时,1<|P A ||PF |=1+4x(x +1)2≤1+4x (2x )2=2(当且仅当x =1时取等号).因此当x ≥0时,1≤|P A ||PF |≤2,22≤|PF ||P A |≤1,|PF ||P A |的最小值是22.3.【解析】设C (x ,x 2),由题意可取A (-a ,a ),B (a ,a ), 则CA →=(-a -x ,a -x 2),CB →=(a -x ,a -x 2),由于∠ACB =π2,所以CA →·CB →=(-a -x )(a -x )+(a -x 2)2=0,整理得x 4+(1-2a )x 2+a 2-a =0, 即y 2+(1-2a )y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.【答案】[1,+∞) 4.【解析】令Q (c ,d ),由新的运算可得OQ →=m ⊗OP →+n =(2x ,12sin x )+(π3,0)=(2x +π3,12sin x ),⎩⎨⎧c =2x +π3d =12sin x,消去x 得d =12sin(12c -π6),所以y =f (x )=12sin(12x -π6),易知y =f (x )的值域是[-12,12].【答案】[-12,12]。
小题专练24-2021届高考数学二轮复习新高考版含解析
【答案】A
6.(考点:双曲线,★★)已知直线y=2b与双曲线 - =1(a>0,b>0)的渐近线在第一象限交于点C,双曲线的左、右焦点分别为F1,F2,若tan∠CF2F1= ,则双曲线的离心率为().
D.直四棱柱的外接球的体积为
10.(考点:椭圆,★★)过椭圆C: + =1(a>b>0)的右焦点F2作x轴的垂线,交椭圆C于A,B两点,直线l过椭圆C的左焦点和上顶点,以AB为直径的圆与l相切,则下列结论正确的是().
A.直线l的斜率为2
B.椭圆C的长轴长为短轴长的 倍
C.椭圆C的离心率为
D.|AF2|与点A到直线x= 的距离之比为
D.f(x)在 的值域为[-1,1]
【解析】根据题意,-1=2sinφ,∴φ=- ,∴f(x)=2sin ,平移后的函数解析式为g(x)=2sin =2sin ,∴ωπ=2kπ,∴ω=2k,k∈Z,又 - ≤ = ,∴ω≤ ,故ω=2,∴f(x)=2sin ,故A正确;令2x- =kπ+ ,k∈Z,得x= + ,k∈Z,当 + = 时,k无整数解,故B错误;令2x- =kπ,k∈Z,得x= + ,k∈Z,∵-π≤ + ≤π,k∈Z,∴k=-2,-1,0,1,故C正确;∵x∈ ,2x- ∈ ,∴f(x)∈[-1,2],故D错误.
A.3B.1C.-1D.-3
【解析】根据诱导公式,sin =cos =sin ,所以原式= = = ,
分子、分母同时除以cosαcos ,得出原式= =-3.
2023高考数学二轮复习专项训练《一次函数与二次函数》(含解析)
2023高考数学二轮复习专项训练《一次函数与二次函数》一 、单选题(本大题共12小题,共60分) 1.(5分)关于x 的不等式1x +4x a⩾4在区间[1,2]上恒成立,则实数a 的取值范围为( )A. (0,43] B. (1,43] C. [1,43] D. [167,43] 2.(5分)若函数f(x)=x 2+2x +m ,x ∈R 的最小值为0,则实数m 的值是()A. 9B. 5C. 3D. 13.(5分)函数y=x2-2x ,x ∈[0,3]的值域为( )A. [0,3]B. [1,3]C. [-1,0]D. [-1,3]4.(5分)函数y =x 2−8x +2的增区间是()A. (−∞,−4]B. [−4,+∞)C. (−∞,4]D. [4,+∞)5.(5分)二次函数y =x 2−2x −3在x ∈[−1,2]上的最小值为( )A. 0B. −3C. −4D. −56.(5分)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对A 种产品征收销售额的x%的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70.x%1−x%元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于万元,则x 的最大值是( )A. 2B. 6.5C. 8.8D. 107.(5分)函数y =−x 2+2x −3在闭区间[0,3]上的最大值、最小值分别为()A. 0,−2B. −2,−6C. −2,−3D. −3,−68.(5分) 函数f(x)=|x 2−3x +2|的单调递增区间是( )A. [1,32]和[2,+∞)B. [32,+∞)C. (−∞,1]和[32,2]D. (−∞,32]和[2,+∞)9.(5分)下列命题正确的是( )A. 命题“∃x ∈R ,使得2x <x 2”的否定是“∃x ∈R ,使得2x ⩾x 2”B. 若a >b ,c <0,则ca >cbC. 若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k ⩽2D. “x >3”是“x 2−5x +6>0”的充分不必要条件10.(5分)已知函数y=b+a x2+2x(a,b是常数,且0<a<1)在区间[−32,0]上有最大值3,最小值52,则ab的值是()A. 1B. 2C. 3D. 411.(5分)已知f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则实数a的范围是()A. (−∞,−2]B. [−2,+∞)C. [−6,+∞)D. (−∞,−6]12.(5分)函数f(x)=ln x+12x2−ax(x>0)在区间[12,3]上有且仅有一个极值点,则实数a的取值范围是()A. (52,3] B. [52,103)C. (52,103] D. [2,103]二、填空题(本大题共6小题,共30分)13.(5分)设b>0,二次函数y=ax2+bx+a2−1的图象为下列图象之一:则a的值为______.14.(5分)已知f(x)=m(x−2m)(x+m+3),g(x)=2x−2,若对任意x∈R有f(x)<0或g(x)<0,则m的取值范围是____.15.(5分)函数y=x2+2ax+1在区间[2,+∞)上是增函数,那么实数a的取值范围是______ .16.(5分)函数f(x)=log2(4−x2)的值域为__________________.17.(5分)若不等式−1<ax2+bx+c<1的解集为(−1,3),则实数a的取值范围为_______.18.(5分)f(x)=x2−ax+3a−1在(3,+∞)上是增函数,实数a的范围是 ______ .三、解答题(本大题共6小题,共72分)19.(12分)求函数f(x)=x2+2ax+3在[-5,5]上的最大值和最小值.20.(12分)已知关于x的一元二次方程(m2−1)x2+(2m−1)x+1=0(m∈R)的两个实根是x1、x2.(1)求1x1+1x2的取值范围;(2)是否存在m,使得|x1−x2|=11−m2若存在,求m的值;若不存在,说明理由.21.(12分)已知函数f(x)=x2+bx+c,且f(1)=0.(1)若函数f(x)是偶函数,求f(x)的解析式;(2)在(1)的条件下,求函数f(x)在区间[t,t+1]上的最小值.22.(12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值.(2)当a∈R时,求函数f(x)在区间[-5,5]上的最值.23.(12分)某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x−12x2,0⩽x⩽400 80000,x>400,其中x是仪器的月产量.(总收益=总成本+利润.)(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?24.(12分)平阳木偶戏又称傀偏戏、木头戏,是浙江省温州市的传统民间艺术之一.平阳木偶戏是以提线木偶为主,活跃于集镇乡村、广场庙会,演绎着古今生活百态.其表演形式独特,活泼多样,具有浓厚的地方色彩和很高的观赏性与研究价值.现有一位木偶制作传人想要把一块长为4dm(dm是分米符号),宽为3dm的矩形木料沿一条直线MN切割成两部分来制作不同的木偶部位.若割痕MN(线段)将木料分为面积比为1:λ的两部分(含点A的部分面积不大于含点C的部分面积,M,N可以和矩形顶点重合),有如下三种切割方式如图:①M点在线段AB上,N点在线段AD上;②M点在线段AB上,N点在线段DC上;③M点在线段AD上;N点在线段BC上.设AM=xdm,割痕MN(线段)的长度为ydm,(1)当λ=1时,请从以上三种方式中任意选择一种,写出割痕MN的取值范围(无需求解过程,若写出多种以第一个答案为准);(2)当λ=2时,判断以上三种方式中哪一种割痕MN的最大值较小,并说明理由.四、多选题(本大题共6小题,共30分)25.(5分)已知函数f(x)={ln(x+1),x⩾0x2−2ax+1,x<0,其中实数a∈R,则下列关于x的方程f2(x)−(1+a)⋅f(x)+a=0的实数根的情况,说法正确的有()A. a取任意实数时,方程最多有5个根B. 当−1−√52<a<1+√52时,方程有2个根C. 当a=−1−√52时,方程有3个根D. 当a⩽−4时,方程有4个根26.(5分)若二次函数f(x)=ax2+bx+c满足f(2+x)=f(2-x),则下列结论错误的是()A. b=cB. 2a+b=0C. 4a=-bD. a+b=027.(5分)已知函数f(x)=e2x-2e x-3,则()A. f(ln3)=0B. 函数f(x)的图象与x轴有两个交点C. 函数f(x)的最小值为-4D. 函数f(x)的单调增区间是[0,+∞)28.(5分)设a,b均为正数,且2a+b=1,则下列结论正确的是()A. ab有最大值18B. √2a+√b有最小值√2C. a2+b2有最小值15D. a−12a−1−4bb有最大值1229.(5分)已知函数f(x)=x,g(x)=√x,则下列说法正确的是()A. 函数y=1f(x)+g(x)在(0,+∞)上单调递增B. 函数y=1f(x)−g(x)在(0,+∞)上单调递减C. 函数y=f(x)+g(x)的最小值为0D. 函数y=f(x)−g(x)的最小值为−1430.(5分)已知f(x)是定义域为R的奇函数,x>0时,f(x)=x(1−x),若关于x的方程f[f(x)]=a有5个不相等的实数根,则实数a的可能取值是()A. 132B. 116C. 18D. 14答案和解析1.【答案】A;【解析】由1x +4xa⩾4,分离变量a得1a⩾−14(1x−2)2+1,由x∈[1,2]求得1x∈[12,1],则−14(1x−2)2+1∈[716,3 4 ].∴1a ⩾34,由此求得实数a的取值范围.该题考查了函数恒成立问题,考查了数学转化思想方法,属于中档题.解:由1x +4xa⩾4,得4xa⩾4−1x=4x−1x,即1a⩾4x−14x2=−14(1x)2+1x=−14(1x−2)2+1,∵x∈[1,2],∴1x ∈[12,1],则−14(1x−2)2+1∈[716,34].∴1a ⩾34,则0<a⩽43.∴实数a的取值范围为(0,43].故选:A.2.【答案】D;【解析】解:由题知y=(x+1)2+m−1,易知当x=−1时,f(x)min=m−1=0,故m=1即为所求.故选:D.将二次函数配方,易求得最小值,据此求解.此题主要考查利用配方法求二次函数的最值.3.【答案】D;【解析】解:∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为 3,故函数的值域为[-1,3],故选D.4.【答案】D;【解析】解:函数y=x2−8x+2=(x−4)2−14,对称轴为x=4,则函数的增区间为[4,+∞).故选:D.求出二次函数的对称轴,结合二次函数的图象和性质,即可得到所求增区间.此题主要考查二次函数的单调区间的求法,注意结合二次函数的对称轴,属于基础题.5.【答案】C;【解析】此题主要考查了二次函数在闭区间上的最值,属于基础题.解:∵y=x2−2x−3=(x−1)2−4,x∈[−1,2],∴x=1时,函数取得最小值为−4.故选C.6.【答案】D;【解析】由已知有,第二年的年销售收入为(%2070%20+%2070x%%20%20)(11.8%20−%20x)万元,商场对该商品征收1%20−%20x%%20的管理费记为y,y%20=%20(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20(x%20%3E%200)1%20−%20x%%20,则y⩾14,所以(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20%20⩾%2014,1%20−%20x%%20化简得x2−12x+20⩽0,所以2⩽x⩽10,故x得最大值为10,选D.7.【答案】B;【解析】此题主要考查二次函数的最值的求法,属于简单题.解:函数y=−x2+2x−3的开口向下,对称轴为x=1,结合图象可得当x=3是y有最小值−6,当x=1时,y有最大值−2,所以本题选B.8.【答案】A; 【解析】此题主要考查函数的单调性和函数的单调区间,考查函数图象的应用,考查数形结合思想,属于基础题.由题函数f(x)=|x 2−3x +2|={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,利用数形结合即可得到答案.解:由题可知函数f(x)=|x 2−3x +2|, 等价于f(x)={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,画图可得如下图所示:∴函数的单调递增区间是[1,32]和[2,+∞) ,故选A.9.【答案】D;【解析】解:对于A ,命题“∃x ∈R ,使得2x <x 2”的否定是“∀x ∈R ,使得2x ⩾x 2”,故A 错误;对于B ,由条件知,比如a =2,b =−3,c =−1,则ca=−12<cb=13,故B 错误;对于C ,若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k 2⩽1或k2⩾4,故k ⩽2或k ⩾8,故C 错误;对于D ,x 2−5x +6>0的解集为{ x |x <2或x >3},故“x >3”是“x 2−5x +6>0”的充分不必要条件,正确. 故选:D.A 由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B 由条件,注意举反例,即可判断;C 由二次函数的图象,即可判断;D 先求出不等式x 2−5x +6>0的解集,再由充分必要条件的定义,即可判断. 此题主要考查函数的单调性,充分必要条件的判断、命题的否定、不等式的性质,属于基础题.10.【答案】A;【解析】复合指数函数,当0<a<1时,整体指数为减函数,指数部分为二次函数,根据复合函数同增异减原则,对该区间内进行分块讨论,从而得到最值点−1,0本题着重考察求复合函数最值问题,通常利用图象法法讨论函数单调性的最值问题.解:A.令u=x2+2x=(x+1)2−1,当0<a<1时,整体指数为减函数,则借助二次函数图象,再由复合函数同增异减原则,在已知区间内,x=0取得最大值,x=−1取得最小值时.即{b+a−1=3b+a0=52,解得{a=23b=32,有ab=1.故选:A.11.【答案】B;【解析】解:∵函数f(x)=x2+2(a−2)x+5的图象是开口方向朝上,以x=2−a为对称轴的抛物线若函数f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则2−a⩽4,解得a⩾−2.故答案为:B.由函数f(x)=x2+2(a−2)x+5的解析式,根据二次函数的性质,判断出其图象是开口方向朝上,以x=2−a为对称轴的抛物线,此时在对称轴右侧的区间为函数的递增区间,由此可构造一个关于a的不等式,解不等式即可得到实数a的取值范围.该题考查的知识点是函数单调性的性质,及二次函数的性质,其中根据已知中函数的解析式,分析出函数的图象形状,进而分析函数的性质,是解答此类问题最常用的办法.12.【答案】C;【解析】此题主要考查导数与二次方程根的分布,考查学生分析能力及运算能力,属于中档题. 对f(x)求导,问题转化为f′(x)=0在区间[12,3]上有且只有一解,根据二次方程根的分布建立不等式即解.解:f ′(x )=1x +x −a =x 2−ax +1x,x >0,令g(x)=x 2−ax +1,函数f (x )=ln x +12x 2−ax (x >0)在区间[12,3]上有且仅有一个极值点, 所以g (12).g (3)⩽0,即(14−12a +1)(9−3a +1)⩽0,且Δ≠0; 解得52⩽a ⩽103.当a =52时,令g(x)=x 2−52x +1=0,解得x 1=12,x 2=2,此时f (x )在(0,12]上单调递增,在[12,2]上单调递减,在(2,+∞)上单调递增,故f (x )在x =2处取得极小值,在x =12处取得极大值.不符合题意; 当a =103时,令g(x)=x 2−103x +1=0,解得x 1=13,x 2=3,此时f (x )在(0,13]上单调递增,在[13,3]上单调递减,在(3,+∞)上单调递增, 故f (x )在x =3处取得极小值,在x =13处取得极大值. 此时f (x )在区间[12,3]上有且仅有一个极值点,符合题意; 故选C.13.【答案】-1;【解析】解:若a >0,即图象开口向上,∵b >0,∴对称轴x =−b 2a<0,故排除第2和4两图,若a <0,即图象开口向下,∵b >0∴对称轴x =−b2a >0,故函数图象为第3个图, 由图知函数过点(0,0),∴a 2−1=0, ∴a =−1 故答案为−1先根据二次函数的开口方向和对称轴的位置,选择函数的正确图象,再根据图象性质计算a 值即可该题考查了二次函数的图象和性质,排除法解图象选择题14.【答案】(−4,0); 【解析】此题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键.解:∵g(x)=2x −2,当x ⩾1时,g(x)⩾0, 又∵∀x ∈R ,f(x)<0或g(x)<0,∴此时f(x)=m(x −2m )(x +m +3)<0在x ⩾1时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,则{m<0−m−3<12m<1,∴−4<m<0故答案为(−4,0).15.【答案】[-2,+∞);【解析】解:函数y=x2+2ax+1的对称轴为:x=−a,函数y=x2+2ax+1在区间[2,+∞)上是增函数,可得−a⩽2,解得a⩾−2,即a∈[−2,+∞).故答案为:[−2,+∞).求出二次函数的对称轴,结合函数的单调性,写出不等式求解即可.该题考查二次函数的简单性质的应用,是基础题.16.【答案】(−∞,2];【解析】此题主要考查了复合函数,先求出定义域,再根据复合函数的值域,属基础题. 解:由4−x2>0,得−2<x<2,即函数f(x)的定义域为(−2,2),且0<4−x2⩽4,所以,f(x)⩽log24=2,即函数f(x)的值域为(−∞,2].故答案为(−∞,2].17.【答案】(−12,12);【解析】此题主要考查一元二次不等式得解法,考查二次函数的性质,是中档题. 分a=0,a>0和a<0三类讨论,结合二次函数的性质求解即可.解:当a=0时,b≠0,不等式的解集(−1,3),适当选取b,c可以满足题意.当a>0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向上,所以x=−1时,a−b+c=1,x=3时,9a+3b+c=1,最小值为x=1时,a+b+c>−1,联立解这个不等式组得:a<12,所以0<a<12;当a<0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向下,所以x=−1时,a−b+c=−1,x=3时,9a+3b+c=−1,最大值为x=1时,a+b+c<1,联立解这个不等式组得:a>−12,所以−12<a<0;综上所述得−12<a<12.所以实数a的取值范围为(−12,12).故答案为(−12,12).18.【答案】(-∞,6]; 【解析】解:由题意得:对称轴x=−−a2=a2,∴a2⩽3,∴a⩽6;故答案为:(−∞,6].由已知得,函数图象开口向上,由题意读出对称轴x=a2⩽3,解出即可.本题考察了二次函数的对称轴,单调性,是一道基础题.19.【答案】解:∵函数f(x)=x2+2ax+3=(x+a)2+3-a2的对称轴为x=-a,①当-a<-5,即a>5时,函数y在[-5,5]上是增函数,故当x=-5时,函数y取得最小值为28-10a;当x=5时,函数y取得最大值为28+10a.②当-5≤-a<0,即0<a≤5时,x=-a时,函数y取得最小值为3-a2;当x=5时,函数y取得最大值为28+10a.③当0≤-a≤5,即-5≤a≤0时,x=-a时,函数y取得最小值为3-a2;当x=-5时,函数y取得最大值为28-10a.④当-a>5,即a<-5时,函数y在[-5,5]上是减函数,故当x=-5时,函数y 取得最大值为28-10a ; 当x=5时,函数y 取得最小值为28+10a .;【解析】由于二次函数的对称轴为x=-a ,分①当-a <-5、②当-5≤-a <0、③当0≤-a≤5、④当-a >5四种情况,分别利用二次函数的性质求得函数的最值.20.【答案】解:(1)由题意知,Δ=(2m−1)2−4(m 2−1) =4m 2−4m+1−4m 2+4 =5−4m ⩾0, ∴m ⩽54, ∵m 2−1≠0, ∴m≠±1,∴m 的取值范围是(−∞,−1)∪(−1,1)∪(1,54],由题意x 1+x 2=1−2m m 2−1,x 1x 2=1m 2−1 ∴1x 1+1x 2=x 1+x 2x 1x 2=1−2m ,又m ∈(−∞,−1)∪(−1,1)∪(1,54], ∴2m ∈(−∞,−2)∪(−2,2)∪(2,52],∴1−2m ∈[−32,−1)∪(−1,3)∪(3,+∞),所以1x 1+1x 2的取值范围是[-32,−1)∪(-1,3)∪(3,+∞).(2)(x 1−x 2)2=(x 2+x 2)2−4x 1x 2 =(1−2m )2(m 2−1)2−4m 2−1=5−4m (m 2−1)2,∴|x 1−x 2|=√5−4m |m 2−1|, 若|x 1−x 2|=−1m 2−1, 则m 2−1<0, 即m ∈(−1,1), ∴5−4m=1,即m=1∉(−1,1), 故不存在.; 【解析】(1)由一元二次方程有两个根,则Δ>0,求出m 的范围,再利用韦达定理求解即可, (2)由(1)中结论,对所求式子进行变形,再求解.此题主要考查一元二次方程及韦达定理求参数的范围,属于中档题.21.【答案】解:(1)由f (1)=0,得:1+b+c=0, 由f (x )是偶函数,得:b=0 ∴c=-1,因此f (x )=x 2-1,(2)当t+1<0,即t <-1时,函数f (x )在区间[t ,t+1]上为减函数, 当x=t+1时,取最小值t 2+2t ,当t≤0≤t+1,即-1≤t≤0时,函数f (x )在区间[t ,0]上为减函数,在[0,t+1]上是增函数 当x=0时,取最小值-1,当t >0时,函数f (x )在区间[t ,t+1]上为增函数, 当x=t 时,取最小值t 2-1; 【解析】(1)利用函数的奇偶性,求出b ,利用f(1)=0求出c , (2)分类讨论区间[t,t +1]与对称轴的关系,可得答案.该题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.【答案】解:(1)当a=-1时,f (x )=x 2-2x+2=(x-1)2+1,对称轴x=1, 在[-5,5]上,最大值为f (-5)=37,最小值为f (1)=1; (2)函数f (x )的对称轴是:x=-a , ①当-a≤-5,即a≥5时,f (x )在[-5,5]递增,f (x )最小值=f (-5)=-10a+27,f (x )最大值=f (5)=10a+27; ②当-5<-a≤0,即0≤a <5时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (5)=10a+27; ③当0<-a≤5,即-5≤a <0时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (-5)=-10a+27; ④-a≥5,即a≤-5时,f (x )在[-5,5]递减,f (x )最小值=f (5)=10a+27,f (x )最大值=f (-5)=-10a+27.;【解析】(1)直接将a=-1代入函数解析式,求出最大最小值,(2)先求出函数的对称轴,通过讨论对称轴的位置,得到函数的单调性,从而求出函数的最值.23.【答案】解:(1)设月产量为x 台,则总成本为20000+100x , 从而利润f(x)={−12x 2+300x −20000,0⩽x ⩽40060000−100x ,x >400.(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000, 所以当x =300时,有最大值25000;当x >400时,f(x)=60000−100x 是减函数,所以f(x)<60000−100×400<25000. 所以当x =300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.;【解析】该题考查了一次函数与二次函数的单调性、函数的应用,考查了推理能力与计算能力,属于中档题.(1)设月产量为x 台,则总成本为20000+100x ,即可得出利润f(x).(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000,利用二次函数的单调性即可最大值.当x >400时,f(x)=60000−100x 是减函数,利用一次函数的单调性即可得出最大值.24.【答案】解:(1)选①y =5, 选②y ∈[3,5], 选③y ∈[4,5], (2)选①令AN =z ,则S =12xz =4,z =8x,y =√x 2+z 2=√x 2+64x 2,∵{0<x ⩽40<z ⩽3z =8x∴83⩽x ⩽4,∴x ∈[83,2√2]时,y =f(x)为减函数,∴x ∈[2√2,4]时,y =f(x)为增函数, 当x =83时,y =√1453,当x =4时,y =2√5,∴y max =2√5;选②令DN =z ,则S =12(x +z)×3=4,z =83−x ,y =√(x −z)2+9=√(2x −83)2+9,∵{0<x ⩽40⩽z ⩽4,∴0⩽x ⩽83,z =83−x∴x ∈[0,43]时,y =f(x)为减函数,∴x ∈[43,83]时,y =f(x)为增函数, 当∴x =0或x =83时,y max =√1453; 选③令BN =z ,则S =12(x +z)×4=4,z =2−x ,y =√(x −z)2+16=2√(x −1)2+4,∵{0⩽x⩽30⩽z⩽3,∴0⩽x⩽2z=2−x∴x∈[0,1]时,y=f(x)为减函数,∴x∈[1,2]时,y=f(x)为增函数,当∴x=0或x=2时,y max=2√5,综上所述,方式②割痕MN的最大值较小,值为√1453.;【解析】此题主要考查了函数最值的综合应用,属于中档题.25.【答案】CD;【解析】此题主要考查分段函数,二次函数及对数函数的性质,函数图象的应用,函数与方程的综合应用,属难题.求解方程f2(x)−(1+a)⋅f(x)+a=0,可得f(x)=1或f(x)=a,即可得原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.分别对0⩽a⩽1,a>1,−1−√52<a<0,a=−1−√52和a<−1−√52时讨论画图即可判定.解:对于方程f2(x)−(1+a)⋅f(x)+a=0,解得f(x)=1或f(x)=a.所以原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.对于函数f(x)={ln(x+1),x⩾0x2−2ax+1,x<0,若a⩾0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)单调递减,且f(x)>1.如图:,由f(x)=1可得x=e−1,方程有1个根;又由f(x)=a可得,当0⩽a⩽1时,方程有1个根;当a>1时,方程有2个根.所以当0⩽a⩽1时,原方程共有2个根;当a>1时,原方程共有3个根.若a<0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)在(−∞,a)单调递减,在(a,0)单调递增,且f(x)⩾1−a2.又由{1−a2=aa<0,可得a=−1−√52.所以当−1−√52<a<0时,1−a2>a,如图:,由f (x)=1可得,方程有2个根;又由f(x)=a可得,方程无解.所以此时原方程有2个根;当a=−1−√52时,1−a2=a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有1个根.所以此时原方程有3个根;当a<−1−√52时,1−a2<a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有2个根.所以此时原方程有4个根;综上所述,当0⩽a⩽1或−1−√52<a<0时,原方程有2个根;当a>1或a=−1−√52时,原方程有3个根;当a<−1−√52时,原方程有4个根.对于A,对于a∈R,方程最多有4个根,故A错误;对于B,当1<a<1+√52时,方程有3个根,故B错误;对于C,当a=−1−√52时,方程有3个根,故C正确;对于D,当a<−1−√52时,方程有4个根,所以a⩽−4时,方程有4个根成立,故D正确. 故选:CD.26.【答案】ABD;【解析】【解析】此题主要考查二次函数性质,属于基础题.由f(2+x)=f(2−x)可知对称轴x=2,即−b2a=2,即可得到答案.解:由f(2+x)=f(2−x)可知对称轴x =2,即−b 2a=2,得4a =−b ,只有C 正确.故选A 、B 、D.27.【答案】ACD; 【解析】此题主要考查了函数定义域与值域,二次函数的最值,复合函数的单调性以及函数零点与方程根的关系,属于基础题.A 选项,将x =ln 3代入f(x)求解即可;B 选项,令f(x)=0,根据方程根的个数判断f(x)的图象与x 轴有几个交点;C 选项,求二次函数f(x)=(e x -1)2-4的最值即可;D 选项,利用复合函数的单调性判断即可.解:A 选项,f(ln 3)=e 2ln 3-2e ln 3-3=9-6-3=0,正确;B 选项,令f(x)=0,得(e x -3)(e x +1)=0,得e x =3或e x =-1(舍),所以x =ln 3, 即函数f(x)的图象与x 轴只有1个交点,错误;C 选项,f(x)=(e x -1)2-4,当e x =1,即x =0时,f(x)min =-4,正确;D 选项,因为函数y =e x 在[0,+∞)上单调递增且值域为[1,+∞),函数y =x 2-2x -3在[1,+∞)上单调递增,所以函数f(x)在[0,+∞)上单调递增,正确. 故选ACD .28.【答案】ACD; 【解析】此题主要考查基本不等式的应用和函数的最值,注意检验等号成立的条件,式子的变形是解答该题的关键,属于中档题.利用基本不等式分别判断选项A ,B ,D 的对错,对于C ,由b =1−2a ,且0<a <12,转化为关于a 的二次函数,由函数的性质可得最值,可判断对错.解:∵正实数a ,b 满足2a +b =1,由基本不等式可得2a +b =1⩾2√2ab , ∴ab ⩽18,当2a =b =12时等号成立,故ab 有最大值18,故A 正确; 由于(√2a +√b)2=2a +b +2√2ab =1+2√2ab ⩽2 , ∴√2a +√b ⩽√2,当且仅当2a =b =12时等号成立, 故√2a +√b 有最大值为√2,故B 错误;由a ,b 均为正数,且2a +b =1,则b =1−2a ,且0<a <12,则a 2+b 2=a 2+(1−2a )2=5a 2−4a +1,当a =25∈(0,12)时,a 2+b 2有最小值15,故C 正确; b2a+2a b⩾2√b 2a =2,当且仅当2a =b =12时等号成立,a−12a −1−4b b=−a−b 2a −2a −3b b=52−b 2a−2a b⩽52−2=12,当且仅当b2a =2ab 时等号成立, 所以a−12a−1−4b b有最大值12,故D 正确,故选ACD .29.【答案】BCD; 【解析】此题主要考查函数的单调性、最值,属中档题.对于A ,求x =12和x =1时的函数值,即可判断不为单调递增,对于BC ,根据常见函数的单调性即可判断组合函数单调性、最值,对于D ,利用配方法求最值即可得解. 解:对于A:函数y =1f(x)+g(x)=1x+√x ,当x =12时,y =2+√22,当x =1时, y =2,所以函数y =1f(x)+g(x)在(0,+∞)上不单调递增,A 错误. 对于B:函数y =1f(x)−g(x)=1x −√x ,因为函数y =1x 和函数y =−√x 在(0,+∞)上单调递减, 所以y =1f(x)−g(x)在(0,+∞)上单调递减,B 正确.对于C:因为函数y =f(x)+g(x)=x +√x 在[0,+∞)上单调递增, 且当x =0时,y =0,所以y =f(x)+g(x)的最小值为0,C 正确. 对于D:函数y =f(x)−g(x)=x −√x =(√x −12)2−14,当√x =12时,函数y =f(x)−g(x)取得最小值,且最小值为−14,D 正确. 故选BCD.30.【答案】ABC; 【解析】根据函数的奇偶性,由已知区间的解析式,画出函数图象,令f(x)=t ,分别讨论a >14,a =14,316⩽a <14,0⩽a <316,四种情况,得出0⩽a <316满足题意,再根据对称性,得a <0时,−316<a <0满足题意,最后结合选项,即可得出结果.此题主要考查数形结合解决函数的零点个数,考查转化思想以及计算能力,是中档题.解:因为f(x)是定义域为R 的奇函数,x >0时,f(x)=x(1−x)=−(x −12)2+14⩽14,且f(12)=14,画出函数f(x)的图象如下:令f(x)=t ,f(14)=316,当a >14时,由图象可得y =a 与y =f(t)有一个交点,且t <−1, 由图象可得f(x)=t 只有一个根,不满足题意,当a =14时,由图象可得y =a 与y =f(t)有两个不同交点,交点的横坐标分别记作t 1,t 2,则t 1<−1,t 2=12, 则f(x)=t 1与f(x)=t 2共有两个根,不满足题意,当316⩽a <14时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3, 由图象可得,t 1<−1<14⩽t 2<12<t 3<1,则f(x)=t 1与f(x)=t 3各有一个根,而f(x)=t 2有一个或两个根,共三个或四个根,不满足题意,当0⩽a <316时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3,由图象可得,t 1⩽−1<0⩽t 2<14<12<t 3⩽1,则f(x)=t 1与f(x)=t 3以及f(x)=t 2共有5个根,满足题意,根据函数图象的对称性,当a <0时,为使关于x 的方程f[f(x)]=a 有5个不相等的实数根,只需要−316<a <0,综上,满足条件的a 的取值范围是(−316,316). 故选:ABC .。
【师说】高考数学(理)二轮专题复习练习:高考小题标准练(4)(含答案解析)
高考小题标准练(四)小题强化练,练就速度和技能,掌握高考得分点! 姓名:________ 班级:________ 一、选择题(本大题共10小题,每小5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若复数a +i 1-2i 是纯虚数,则实数a =( )A .2B .-12C.15 D .-25 解析:由a +i 1-2i =a ++5=a -++2a5是纯虚数,得a -2=0,1+2a ≠0,所以a =2.故选A.答案:A2.设集合A ={1,2,3},则满足A ∪B ={1,2,3,4,5}的集合B 有( ) A .2个 B .4个 C .8个 D .16个解析:A ={1,2,3},A ∪B =(1,2,3,4,5),则集合B 中必含有元素4和5,即此题可转化为求集合A ={1,2,3}的子集个数问题,所以满足题目条件的集合B 共有23=8(个). 故选C.答案:C3.已知命题p :直线a 与平面α内无数条直线垂直;命题q :直线a 与平面α垂直.则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:由题意知p ⇒/ q ,但q ⇒p ,则p 是q 的必要不充分条件. 故选B. 答案:B4.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |=( )A .1B .2C .3D .4解析:由题意可得x +y =20,(x -10)2+(y -10)2=8,设x =10+t ,y =10-t ,则|t |2+|t |2=8,即|t |=2,故|x -y |=2|t |=4.故选D.答案:D5.已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( )A .(x -1)2+y 2=6425B .x 2+(y -1)2=6425C .(x -1)2+y 2=1D .x 2+(y -1)2=1解析:因为抛物线的焦点为(1,0),所以a =1,b =0.而(1,0)到直线3x +4y +2=0的距离d =3+232+42=1,所以r =1,故圆的方程为(x -1)2+y 2=1.故选C.答案:C6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=( ) A .9 B.19C .-9D .-19解析:f ⎝⎛⎭⎫14=log 214=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫14=f (-2)=3-2=19.故选B. 答案:B7.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α=( ) A.22 B.33C. 2D. 3解析:因为sin 2α+cos2α=14,所以sin 2α+cos 2α-sin 2α=14,即cos 2α=14.又α∈⎝⎛⎭⎫0,π2,所以cos α=12(负根舍去),故α=π3,所以tan α=tan π3= 3.故选D.答案:D8.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).记r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0B .0<r 2<r 1C .r 2<0<r 1D .r 2=r 1 解析:r=∑i =1nx i -x -y i -y-∑i =1nx i -x-2∑i =1ny i -y-2,计算可知r 1正相关,r 2负相关.故选C .答案:C9.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c.若c =3a ,B =30°,那么角C =( )A .120°B .105°C .90°D .75°解析:由正弦定理a sin A =c sin C 得a sin -=3asin C,解得tan C =-3,故C =120°. 故选A .答案:A10.在数列{a n }中,a 1=2,na n +1=(n +1)a n +2(n ∈N *),则a 10=( ) A .34 B .36 C .38 D .40解析:由na n +1=(n +1)a n +2得(n -1)a n =na n -1+2,则有a n n -a n -1n -1=2⎝⎛⎭⎫1n -1-1n ,a n -1n -1-a n -2n -2=2⎝⎛⎭⎫1n -2-1n -1,…,a 22-a 11=2⎝⎛⎭⎫11-12,累加得an n -a 1=2⎝⎛⎭⎫1-1n ,所以a n =4n -2,所以a 10=38.故选C.答案:C二、填空题(本大题共5小题,每小5分,共25分.请把正确答案填在题中横线上)11.二项式⎝⎛⎭⎪⎫6x +12x n的展开式中,前三项系数依次组成等差数列,则展开式中的常数项等于________.解析:前三项系数依次为1,n 2,n 2-n8,由题意n =1+n 2-n 8,解得n =8(n =1舍去),所以展开式中的通项为T r +1=C r 8(6x )8-r ⎝⎛⎭⎫12x r =⎝⎛⎭⎫12r C r 8x 8-r 6-r 2.令8-r 6-r2=0,得r =2,所以常数项是T 3=⎝⎛⎭⎫122C 28=7.答案:712.设函数f (x )=x ·2x +x ,A 0的坐标原点,A n 为函数y =f (x )图像上横坐标为n (n ∈N *)的点,向量a n =k =1n A k -1A k ,i =(1,0).设θn 为a n 与i 的夹角,则∑k =1ntan θk =________.解析:a n =A 0A n →=(n ,n ·2n +n ),θn 即为向量A 0A n →与x 轴的夹角,所以tan θn =2n +1,所以∑k =1ntan θk =2+22+…+2n +n =2n +1+n -2.答案:2n +1+n -213.如图,在多面体ABCDEF 中,已知底面ABCD 是边长为3的正方形,EF ∥AB ,EF =32,且EF 与平面ABCD 的距离为2,则该多面体的体积为________.解析:分别过点F 作FG ∥EA ,FH ∥ED.连接GH ,则该多面体被分成一个三棱柱和一个四棱锥,则所求体积为V =V ADE -GHF +V F -GHCB =12×3×2×32+13×32×3×2=152.答案:15214.已知|a |=3,|b |=4,(a +b )·(a +3b )=33,则a 与b 的夹角为________. 解析:设a 与b 的夹角为θ,由(a +b )·(a +3b )=33可得a 2+4a ·b +3b 2=33,即9+4×3×4cos θ+3×16=33,所以cos θ=-12,解得θ=120°.答案:120°15.按右图所示的程序框图运算,若输入x =8,则输出的k =________.解析:执行循环如下:x =2×8+1=17,k =1;x =2×17+1=35,k =2;x =2×35+1=71,k =3;x =2×71+1=143>115,k =4,此时满足条件.故输出k 的值为4.答案:4。
高考数学二轮复习专题过关检测—数列(含解析)
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》(含答案)
2023高考数学二轮复习专项训练《导数在解决实际问题中的应用》一、单选题(本大题共8小题,共40分)1.(5分)若z=−1+√3i,则zzz−−1=()A. −1+√3iB. −1−√3iC. −13+√33i D. −13−√33i2.(5分)命题“∀x∈R,∃x∈N,使得n⩾x2+1”的否定形式是()A. ∀x∈R,∃x∈N,使得n<x2+1B. ∀x∈R,∀x∈N,使得n<x2+1C. ∃x∈R,∃x∈N,使得n<x2+1D. ∃x∈R,∀x∈N,使得n<x2+13.(5分)已知函数y=f(x)的周期为2,当x∈[0,2]时,f(x)=(x−1)2,如果g(x)= f(x)−log5|x−1|,则函数的所有零点之和为()A. 8B. 6C. 4D. 104.(5分)执行如图所示的程序框图,若输入的x为整数,且运行四次后退出循环,则输入的x的值可以是()A. 1B. 2C. 3D. 45.(5分)如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,DF⊥AB于点F,且AE=8,AB=10.在上述条件下,给出下列四个结论:①DE=BD;②ΔBDF≌ΔCDE;③CE=2;④DE2=AF⋅BF,则所有正确结论的序号是()A. ①②③B. ②③④C. ①③④D. ①②④6.(5分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π2)的图象如图所示,则()A. 函数f(x)的最小正周期是2πB. 函数f(x)在区间(π2,π)上单调递减C. 函数f(x)的图象与y轴的交点为(0,−12)D. 点(7π6,0)为函数f(x)图象的一个对称中心7.(5分)213,log26,3log32的大小关系是A. 213<log26<3log32 B. 213<3log32<log26C. 3log32<213<log26 D. 3log32<log26<2138.(5分)设函数y=ax2与函数y=|ln x+1ax|的图象恰有3个不同的交点,则实数a的取值范围为()A. (√33e,√e) B. (−√33e,0)∪(0,√33e)C. (0,√33e) D. (√e1)∪{√33e}二、填空题(本大题共5小题,共25分)9.(5分)设A,B是非空集合,定义:A⊗B={x|x∈A∪B且x∉A∩B}.已知集合A={x|0<x<2},B={x|x⩾0},则A⊗B=__________.10.(5分)某中学组织了“党史知识竞赛”活动,已知该校共有高中学生2000人,用分层抽样的方法从该校高中学生中抽取一个容量为50的样本参加活动,其中高一年级抽取了6人,则该校高一年级学生人数为 ______.11.(5分)某几何体的三视图如图所示,则该几何体的表面积是______.12.(5分)记S n为等比数列{a n}的前n项和,若a1=12,a42=a6,则S4=______.13.(5分)已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左焦点为F,过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|,O为坐标原点,则该双曲线的离心率为______.三、解答题(本大题共6小题,共72分)14.(12分)某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大.已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少?15.(12分)在ΔABC中,内角A,B,C所对的边分别为a,b,c.已知b+c=2a,3csinB=4asinC.(Ⅰ)求cosB的值;(Ⅱ)求sin(2B+π6)的值.16.(12分)如图,ΔABC中,AC=2,BC=4,∠ACB=90°,D、E分别是AC、AB的中点,将ΔADE沿DE折起成ΔPDE,使面PDE⊥面BCDE,H、F分别是边PD和BE的中点,平面BCH与PE、PF分别交于点I、G.(Ⅰ)求证:IH//BC;(Ⅱ)求二面角P−GI−C的余弦值.17.(12分)设等比数列{a n}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,数列{b n}满足b n=2n.(1)求数列{a n}的通项公式;(2)设c n=a n⋅b n,若对任意n∈N∗,不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,求λ的取值范围.18.(12分)已知椭圆x2a2+y2b2=1(a>b>0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4,设直线l与椭圆相交于不同的两点A,B,点A的坐标为(−a,0).(Ⅰ)求椭圆的标准方程;(Ⅰ)若|AB|=4√2,求直线l的倾斜角.519.(12分)已知a为实数,函数f(x)=a ln x+x2−4x.(1)是否存在实数a,使得f(x)在x=1处取得极值?证明你的结论;,e],使得f(x0)⩽g(x0)成立,求实数a的取值范围.(2)设g(x)=(a−2)x,若∃x0∈[1e答案和解析1.【答案】C;【解析】解:∵z =−1+√3i ,∴z ·z −=|z|2=(√(−1)2+(√3)2)2=4, 则zzz −−1=−1+√3i 4−1=−13+√33i. 故选:C.由已知求得z ·z −,代入zzz −−1,则答案可求.此题主要考查复数代数形式的乘除运算,考查复数模的求法,是基础题.2.【答案】D;【解析】解:因为全称命题的否定是特称命题,所以“∀x ∈R ,∃x ∈N ,使得n ⩾x 2+1”的否定形式为∃x ∈R ,∀x ∈N ,使得n <x 2+1”. 故选:D.直接利用特称命题的否定是全称命题写出结果即可.此题主要考查命题的否定.特称命题与全称命题的否定关系,基本知识的考查.3.【答案】A; 【解析】该题考查函数的零点,考查数形结合的数学思想,正确作出函数的图象是关键. 分别作出函数y =f(x)、y =log 5|x −1|的图象,结合函数的对称性,即可求得结论.解:当x ∈[0,2]时,f(x)=(x −1)2,函数y =f(x)的周期为2,图象关于y 轴对称的偶函数y =log 5|x|向右平移一个单位得到函数y =log 5|x −1|, 则y =log 5|x −1|关于x =1对称,可作出函数的图象:函数y =g(x)的零点,即为函数图象交点横坐标, 当x >6时,y =log 5|x −1|>1,此时函数图象无交点,又两函数在(1,6]上有4个交点,由对称性知它们在[−4,1)上也有4个交点,且它们关于直线x=1对称,所以函数y=g(x)的所有零点之和为:4×2=8,故选:A.4.【答案】A;【解析】解:依题意,S随着x的增大而增大,当x⩾2时,第一次循环时S⩾4,第二次循环时S⩾4+42=20,第三次循环时S⩾20+82=84⩾64,脱离循环,故x<2,故选:A.根据S和x的关系,S随着x的增大而增大,验证当x⩾2时的情况,即可得到结果.此题主要考查了程序框图,考查了循环结构.属于基础题.本题的难点在于逆推x的值,需要借助不等式来完成.5.【答案】B;【解析】解:∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴DE=DF,DC=DB,∴ΔBDF≌ΔCDE,所以①不正确,②正确;∵∠BAC的平分线为AD,DE⊥AC,DF⊥AB,∴AE=AF=8.又∵ΔBDF≌ΔCDE,∴CE=BF=AB−AF=10−8=2,故③正确;∵AB是直径,∴∠ADB=90°.又∵DF⊥AB,∴ΔDBF∽ΔADF,∴DFAF =BFDF,即DF2=AF⋅BF,∴DE2=AF⋅BF,故④正确;故选:B.利用角平分线的性质和全等三角形的判定可以判断①②的正误;利用排除法可以判断③④的正误.此题主要考查了相似三角形的判定与性质.解题时,利用了角平分线的性质和圆周角定理,难度不大.6.【答案】D;【解析】解:由函数图可象知T4=5π12−π6=π4,所以T=π,因为T=2πω,∴ω=2,所以最小正周期为π,故A错误;又函数过点(5π12,1),所以f(5π12)=sin(2×5π12+φ)=1,所以5π6+φ=π2+2kπ,(k∈Z),解得φ=−π3+2kπ,(k∈Z),∵|φ|<π2,所以φ=−π3,所以f(x)=sin(2x−π3),当x∈(π2,π),所以2x−π3∈(2π3,5π3),因为y=sinx在x∈(2π3,5π3)上不单调,故B错误;令x=1,则f(0)=sin(−π3)=−√32,所以与y轴交点为(0,−√32),故C错误;若点(7π6,0)为函数f(x)图象的一个对称中心,则f(7π6)=0,当x=7π6时,f(7π6)=sin(2×7π6−π3)=sin2π=0,所以点(7π6,0)为函数f(x)图象的一个对称中心,故D正确,故选:D.根据函数图像求出函数解析式,再结合选项一一判断即可.此题主要考查了三角函数的图象与性质的应用问题,也考查了数形结合与函数思想,属于中档题.7.【答案】B;【解析】此题主要考查了指数函数与对数函数的大小比较问题,属于基础题.首先根据单调性,将指数值与32比较,其次根据对数函数的递增性质得到两个对数值与2、32大小关系,答案易得.解:213<212<32,3log32=32log34>32,3log32=log38<log39=2,log26>log24=2,所以213<3log32<log26.故选B.8.【答案】C;【解析】解:令ax2=|ln x+1ax|得a2x3=|ln x+1|,显然a>0,x>0.作出y=a2x3和y=|ln x+1|的函数图象,如图所示:设a=a0时,y=a2x3和y=|ln x+1|的函数图象相切,切点为(x0,y0),则{3a02x02=1x0a02x03=ln x0+1,解得x0=e−23,y0=13,a0=√3e3.∴当0<a<√3e3时,y=a2x3和y=|ln x+1|的函数图象有三个交点.故选:C.令ax2=|ln x+1ax|得a2x3=|ln x+1|,作出y=a2x3和y=|ln x+1|的函数图象,利用导数知识求出两函数图象相切时对应的a0,则0<a<a0.此题主要考查了函数图象的交点个数判断,借助函数图象求出临界值是关键.9.【答案】{x|x=0或x⩾2};【解析】此题主要考查集合的新定义,是基础题由集合A={x|0<x<2},B={x|x⩾0},可得A∪B={x|x⩾0},A∩B={x|0<x<2},则A⊗B={x|x=0或x⩾2}.10.【答案】240;【解析】解:设该校高一年级学生人数为n,则6n =502000,即n=240,故答案为:240.由分层抽样方法,按比例抽样即可.此题主要考查了分层抽样方法,重点考查了阅读能力,属基础题.11.【答案】16+8√2;【解析】解:由三视图知:几何体为直三棱柱削去一个三棱锥,如图:其中直棱柱的侧棱长为8,底面为直角三角形,且AB=BC=2,SA=2,SB=2√2,AC=2√2,∴几何体的表面积S=12×2×2+12×2×2√2+4+22×2√2+4+22×2+4×2=16+8√2.故答案为:16+8√2.几何体为直三棱柱削去一个三棱锥,结合直观图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.此题主要考查了由三视图求几何体的表面积,判断几何体的形状及数据所对应的几何量是解答此类问题的关键.12.【答案】152;【解析】解:∵a1=12,a42=a6,∴(12q3)2=12q5,解可得,q=2,则S4=12(1−24)1−2=152.故答案为:152.由已知结合等比数列的通项公式可求公比,然后结合等比数列的求和公式即可求解.这道题主要考查了等比数列的公式及求和公式的简单应用,属于基础试题.13.【答案】√3+1;【解析】解:过F的一条倾斜角为30°的直线与C在第一象限交于点A,且|OF|=|OA|=c,∠AOx=60°,则A(c2,√3c 2)所以c 24a2−3c24b2=1,c2 4a2−3c24(c2−a2)=1,可得e 24−3e24e2−4=1,可得e4−8e2+4=0.解得e=1+√3.故答案为:√3+1.利用已知条件求出A的坐标,代入双曲线方程,结合离心率公式,求解即可.此题主要考查双曲线的定义和性质,主要是离心率的求法,注意运用三角形的中位线定理和勾股定理,考查运算能力,属于中档题.14.【答案】解:设空调机、洗衣机的月供应量分别是x、y台,总利润是P,则P=6x+8y,由题意有30x+20y⩽300,5x+10y⩽110,x⩾0,y⩾0,x、y均为整数由图知直线y=−34x+18P过M(4,9)时,纵截距最大,这时P也取最大值P max=6×4+8×9=96(百元).故当月供应量为空调机4台,洗衣机9台时,可获得最大利润9600元.;【解析】此题主要考查找出约束条件与目标函数,准确地描画可行域,再利用图形直线求得满足题设的最优解.用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.利用线性规划的思想方法解决某些实际问题属于直线方程的一个应用.15.【答案】解:(Ⅰ)在三角形ABC中,由正弦定理得bsinB =csinC,所以bsinC=csinB,又由3csinB=4asinC,得3bsinC=4asinC,即3b=4a,又因为b +c =2a ,得b =4a 3,c =2a3,由余弦定理可得cosB =a 2+c 2−b 22ac=a 2+49a 2−169a 22⋅a⋅23a=−14;(Ⅱ)由(Ⅰ)得sinB =√1−co s 2B =√154,从而sin2B =2sinBcosB =−√158, cos2B =cos 2B −sin 2B =−78,故sin (2B +π6)=sin2Bcos π6+cos2Bsin π6=−√158×√32−78×12=−3√5+716.; 【解析】本小题主要考查同角三角函数的基本关系,两角和的正弦公式,二倍角的正余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力,属于中档题. (Ⅰ)根据正余弦定理可得;(Ⅱ)根据二倍角的正余弦公式以及和角的正弦公式可得.16.【答案】证明:(Ⅰ)∵D ,E 分别是边AC 和AB 的中点,∴DE ∥BC , ∵BC ⊄平面PED ,ED ⊂平面PED , ∴BC ⊂平面BCH , ∴IH ∥BC .解:(Ⅱ)如图,建立空间右手直角坐标系,由题意得:D (0,0,0),E (2,0,0),P (0,0,1),F (3,12,0),C (0,1,0),H (0,0,12),∴EP →=(-2,0,1),EF →=(1,12,0),CH →=(0,-1,12),HI →=12DE →=(1,0,0), 设平面PGI 的一个法向量为n →=(x ,y ,z ),则{EP →.n →=−2x +z =0EF →.n →=x +12y =0,令x=1,解得y=-2,z=2,∴n →=(1,-2,2), 设平面CHI 的一个法向量为m →=(a ,b ,c ),则{CH →.m →=−b +12c =0HI →.m →=a =0,取b=1,得m →=(0,1,2), 设二面角P-GI-C 的平面角为θ, 则cosθ=|m →.n →||m →|.|n →|=3×√5=2√1515.∴二面角P-GI-C的余弦值为2√1515.;【解析】(Ⅰ)推导出DE//BC,从而BC⊂平面BCH,由此能证明IH//BC.(Ⅱ)以D为原点,DE,DC,DP为x,y,z轴,建立空间右手直角坐标系,利用向量法能求出二面角P−GI−C的余弦值.该题考查线线平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.17.【答案】解:(1)设公比为q的等比数列{ an}的前n项和为S n,a2=18,且S1+116,S2,S3成等差数列,所以:{a1q=182S2=S1+116+S3,解得:a1=14,q=12,所以S n=14(1−12n)1−12=12(1−12n),故a n=14.(12)n−1=(12)n+1,(2)由于:a n=(12)n+1,数列{b n}满足b n=2n.则:C n=a n b n=n2n,则:T n=12+222+323+⋯+n2n①,1 2T n=122+223+324+⋯+n2n+1②,①−②得:12T n=(121+122+⋯+12n)−n2n+1,解得:T n=2−2+n2n,由于S n=14(1−12n)1−12=12(1−12n),所以不等式c1+c2+⋯+c n⩾12λ+2S n−1恒成立,即2−2+n2n ⩾1−12n+12λ−1,则2−n+12n⩾12λ恒成立,令f(n)=n+12n,则f(n +1)−f(n)=n+22n+1−n+12n=−n2n+1<0,所以f(n)关于n 单调递减, 所以(2−n+12n )min=2−1+12,则2−22⩾12λ 解得:λ⩽2.故:λ的取值范围为(−∞,2].;【解析】此题主要考查的知识要点:数列的通项公式的求法及应用,错位相减法在数列求和中的应用,恒成立问题的应用,主要考查学生的运算能力和转化能力,属于较难题.(1)直接利用递推关系式和建立的方程组进一步求出数列的通项公式;(2)利用(1)的结论,进一步利用错位相减法求出数列的和,最后利用恒成立问题求出参数的取值范围.18.【答案】解:(1)∵椭圆x 2a2+y 2b 2=1(a >b >0)的离心率e=√32,椭圆上任意一点到椭圆的两个焦点的距离之和为4, ∴a=2,c=√3,b=1, ∴椭圆的标准方程:x 24+y 21=1,(2)∵设直线l 与椭圆相交于不同的两点A ,B ,点A 的坐标为(-a ,0). ∴点A 的坐标为(-2,0), ∴直线l 的方程为:y=k (x+2),(Ⅱ)(i )由(Ⅰ)可知点A 的坐标是(-2,0). 设点B 的坐标为(x 1,y 1),直线l 的斜率为k . 则直线l 的方程为y=k (x+2).于是A 、B 两点的坐标满足方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x+(16k 2-4)=0. 由-2x 1=16k 2−41+4k 2,得x 1=2−8k 21+4k 2.从而y 1=4k1+4k 2. 所以|AB|=4√1+k 21+4k 2 由|AB|=4√25,得4√1+k 21+4k 2=4√25整理得32k 4-9k 2-23=0,即(k 2-1)(32k 2+23)=0,解得k=±1. 所以直线l 的倾斜角为π4或3π4.;【解析】(1)椭圆x 2a 2+y 2b 2=1(a >b >0)根据a 2=b 2+c 2,ca =√32,2a =4,求解.(2)联立方程组{y =k(x +2)x 24+y 21=1消去y 并整理,得(1+4k 2)x 2+16k 2x +(16k 2−4)=0,运用韦达定理,弦长公式求解.此题主要考查了椭圆和直线的位置关系,联立方程组结合弦长公式求解.19.【答案】解:(1)函数f (x )定义域为(0,+∞),f′(x )=ax +2x-4=2x 2−4x +ax假设存在实数a ,使f (x )在x=1处取极值,则f′(1)=0,∴a=2,…(2分) 此时,f′(x )=2(x−1)2x,当x >0时,f′(x )≥0恒成立,∴f (x )在(0,+∞)递增.…(4分) ∴x=1不是f (x )的极值点.故不存在实数a ,使得f (x )在x=1处取极值.…(5分) (2)由f (x 0)≤g (x 0) 得:(x 0-ln x 0)a≥x 02-2x 0 …(6分) 记F (x )=x-lnx (x >0),∴F′(x )=x−1x(x >0),.…(7分)∴当0<x <1时,F′(x )<0,F (x )递减;当x >1时,F′(x )>0,F (x )递增. ∴F (x )≥F (1)=1>0.…(8分) ∴a≥x 02−2x 0x0−ln x 0,记G (x )=x 2−2xx−lnx ,x ∈[1e ,e]∴G′(x )=(2x −2)(x−lnx )−(x−2)(x−1)(x−lnx )2=(x−1)(x−2lnx +2)(x−lnx )2…(9分)∵x ∈[1e,e],∴2-2lnx=2(1-lnx )≥0,∴x-2lnx+2>0∴x ∈(1e ,1)时,G′(x )<0,G (x )递减;x ∈(1,e )时,G′(x )>0,G (x )递增…(10分)∴G (x )min =G (1)=-1∴a≥G (x )min =-1.…(11分) 故实数a 的取值范围为[-1,+∞). …(12分); 【解析】(1)求出函数f(x)定义域,函数的导函数f′(x),假设存在实数a ,使f(x)在x =1处取极值,则f′(1)=0,求出a ,验证推出结果.(2)由f (x 0)⩽g(x 0) 得:(x 0−ln x 0)a ⩾x 02−2x 0,记F(x)=x −ln x(x >0),求出F′(x),推出F(x)⩾F(1)=1>0,转化a ⩾x 02−2x 0x 0−ln x 0,记G(x)=x 2−2x x−ln x,x ∈[1e,e]求出导函数,求出最大值,列出不等式求解即可.该题考查函数的动手的综合应用,函数的最值的求法,极值的求法,考查转化思想以及计算能力.。
高考数学二轮复习专练二中档小题(五)
中档小题(五)1.(2013·洛阳市统一考试)在△ABC 中,D 为边BC 上任意一点,AD →=λAB →+μAC →,则λμ的最大值为( )A .1 B.12C.13D.14 2.以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等关系不一定成立的是( ) A .2a 3>3a 4 B .5a 5>a 1+6a 6 C .a 5+a 4-a 3<0 D .a 3+a 6+a 12<2a 73.(2013·洛阳市统一考试)若函数f (x )=2x -k ·2-x2x +k ·2-x(k 为常数)在定义域内为奇函数,则k的值为( )A .1B .-1C .±1D .0 4.(2013·高考辽宁卷)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C+c sin B cos A =12b ,且a >b ,则∠B =( )A.π6B.π3C.2π3D.5π6 5.(2013·高考大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1D.x 25+y 24=1 6.(2013·陕西省质量检测试题)如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.12(A +B )为a 1,a 2,…,a N 的算术平均数 C .A 和B 分别是a 1,a 2,…,a N 中的最小数和最大数 D .A 和B 分别是a 1,a 2,…,a N 中的最大数和最小数7.(2013·石家庄市教学质量检测)在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为( )A.14B.13C.12D.32 8.(2013·江西省七校联考)定义在R 上的偶函数f (x ),当x ≥0时,f (x )=2x ,则满足f (1-2x )<f (3)的x 的取值范围是( )A .(-1,2)B .(-2,1)C .[-1,2]D .(-2,1] 9.(2013·高考山东卷)函数y =x cos x +sin x 的图象大致为( )10.(2013·浙江省名校第一次联考)已知P 为双曲线C :x 29-y 216=1上的点,点M 满足|OM→|=1,且OM →²PM →=0,则当|PM →|取得最小值时的点P 到双曲线C 的渐近线的距离为( )A.95B.125 C .4 D .5 11.(2013·武汉市武昌区高三年级联合考试)已知|a |=1,|b |=2,a 与b 的夹角为60°,则a +b 在a 方向上的投影为________.12.已知由样本数据点集合{(x i ,y i )|i =1,2,…,n }求得的回归直线方程为y ^=1.5x +0.5,且x =3.现发现两个数据点(2.2,2.9)和(3.8,7.1)误差较大,去除后重新求得的回归直线l 的斜率为1.2,那么,当x =4时,y 的估计值为________.13.(2013·江西省七校联考)已知实数x 、y 满足⎩⎪⎨⎪⎧x -y +1≥0x +2y -8≤0x ≤3,若(3,52)是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.14.(2013·高考课标全国卷Ⅱ)设θ为第二象限角,若tan(θ+π4)=12,则sin θ+cos θ=________.备选题 1.(2013·石家庄市教学质量检测)如图是两个全等的正三角形,给定下列三个命题:①存在四棱锥,其正视图、侧视图如图;②存在三棱锥,其正视图、侧视图如图;③存在圆锥,其正视图、侧视图如图.其中真命题的个数是( )A .3B .2C .1D .0 2.(2013·浙江省名校第一次联考)设f (x )在(0,+∞)上是单调递增函数,当n ∈N *时,f (n )∈N *,且f [f (n )]=2n +1,则( )A .f (1)=3,f (2)=4B .f (1)=2,f (2)=3C .f (2)=4,f (4)=5D .f (2)=3,f (3)=43.若不等式|2a -1|≤|x +1x|对一切非零实数x 恒成立,则实数a 的取值范围为________.4.(2013·济南市高考模拟考试)下列命题正确的序号为________. ①函数y =ln(3-x )的定义域为(-∞,3];②定义在[a ,b ]上的偶函数f (x )=x 2+(a +5)x +b 的最小值为5;③若命题p :对∀x ∈R ,都有x 2-x +2≥0,则命题綈p :∃x ∈R ,有x 2-x +2<0;④若a >0,b >0,a +b =4,则1a +1b的最小值为1.答案:1.【解析】选D.依题意得,λ+μ=1,λμ=λ(1-λ)≤(λ+1-λ2)2=14,当且仅当λ=1-λ,即λ=12时取等号,因此λμ的最大值是14.2.【解析】选D.由S 5>S 6,得a 6<0,即a 1+5d <0,选项A ,B ,C 都能化成a 1+5d <0,所以D 错.3.【解析】选C.依题意,f (-x )=2-x -k ·2x 2-x +k ·2x =-2x -k ·2-x 2x+k ·2-x ,即(2-x -k ·2x )(2x +k ·2-x )=(2-x +k ·2x )(-2x +k ·2-x ),∴k 2=1,k =±1.4.【解析】选A.由正弦定理可得sin A sin B cos C +sin C ²sin B cos A =12sin B ,又因为sinB ≠0,所以sin A cosC +sin C cos A =12,所以sin(A +C )=sin B =12.因为a >b ,所以∠B =π6.5.【解析】选C.由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点(1,32)必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.6.【解析】选D.由图易知,该程序框图的功能是选择A 的最大数,选择B 的最小数.7.【解析】选C.如图,设圆的半径为r ,圆心为O ,AB 为圆的一条直径,CD 为垂直AB 的一条弦,垂足为M ,若CD 为圆内接正三角形的一条边,则O 到CD 的距离为r2,设EF 为与CD 平行且到圆心O 距离为r2的弦,交直径AB 于点N ,所以当过AB 上的点且垂直AB 的弦的长度超过CD 时,该点在线段MN 上变化,所以所求概率P =r 2r =12.8.【解析】选A.依题意得,函数f (x )在[0,+∞)上是增函数,且f (x )=f (|x |),不等式f (1-2x )<f (3)⇔f (|1-2x |)<f (3)⇔|1-2x |<3⇔-3<1-2x <3⇔-1<x <2.9.【解析】选D.当x =π2时,y =1>0,排除C.当x =-π2时,y =-1,排除B ;或利用y =x cos x +sin x 为奇函数,图象关于原点对称,排除B.当x =π时,y =-π<0,排除A.10.【解析】选B.由OM →²PM →=0,得OM ⊥PM ,根据勾股定理,求|MP |的最小值可以转化为求|OP |的最小值,当|OP |取得最小值时,点P 的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x ±3y =0,∴所求的距离d =125.11.【解析】由题意知a +b 在a 方向上的投影为(a +b )·a |a |=a 2+|a |·|b |cos 60°|a |=2.【答案】212.【解析】回归直线方程为y ^=1.5x +0.5,x =3,故样本点的中心为(3,5),又由于除去(2.2,2.9)和(3.8,7.1)这两个数据点后,x ,y 的值没有改变,所以样本点的中心也没有改变,设新的回归直线l 方程为y ^=1.2x +b ,将样本点的中心(3,5)代入解得b =1.4,当x =4时,y 的估计值为6.2.【答案】6.213.【解析】记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.【答案】(-∞,-12)14.【解析】∵tan(θ+π4)=12,∴1+tan θ1-tan θ=12,解得tan θ=-13.∴(sin θ+cos θ)2=sin 2θ+cos 2θ+2sin θ²cos θsin 2θ+cos 2θ=tan 2θ+2tan θ+1tan 2θ+1=19-23+119+1=25. ∵θ为第二象限角,tan θ=-13,∴2k π+3π4<θ<2k π+π,∴sin θ+cos θ<0,∴sin θ+cos θ=-105.【答案】-105备选题 1.【解析】选 A.对于①,存在斜高与底边长相等的正四棱锥,其正视图与侧视图是全等的正三角形.对于②,存在如图所示的三棱锥S -ABC ,底面为等腰三角形,其底边AB 的中点为D ,BC 的中点为E ,侧面SAB 上的斜高为SD ,且CB =AB =SD =SE ,顶点S 在底面上的射影为AC 的中点,则此三棱锥的正视图与侧视图是全等的正三角形.对于③,存在底面直径与母线长相等的圆锥,其正视图与侧视图是全等的正三角形.所以选A.2.【解析】选B.由f [f (n )]=2n +1,得f [f (1)]=3,f [f (2)]=5,∵当n ∈N *时,f (n )∈N *,若f (1)=3,则由f [f (1)]=3得,f (3)=3,与f (x ) 在(0,+∞)上单调递增矛盾,故选项A 错;若f (2)=4,则f (4)=5,4<f (3)<5,与f (3)∈N *矛盾,故选项C 错;若f (2)=3,则由f [f (2)]=5得f (3)=5,故选项D 错,故选项B 正确.3.【解析】|x +1x |=|x |+|1x |≥2,当且仅当|x |=1时,|x +1x|min =2.要使不等式恒成立,只要|2a -1|≤2即可,-2≤2a -1≤2,得-12≤a ≤32.【答案】[-12,32]4.【解析】命题①中,函数的定义域是(-∞,3),故命题①不正确;命题②中,若已知函数是偶函数,则必有a =-5,b =5,即函数f (x )=x 2+5,x ∈[-5,5],其最小值为5,命题②正确;全称命题的否定是特称命题,命题③正确;命题④中,1a +1b =14(a +b )(1a +1b)=14(2+b a +a b )≥14(2+2b a ²a b )=1(当且仅当a =b =2时,等号成立),命题④正确. 【答案】②③④。
专题9.1 直线的方程(练习)【必考点专练】2023届高考数学二轮复习专题
专专9.1直线的方程一、单选题1. 点(0,1)-到直线(1)y k x =+距离的最大值为( ) A. 1B. 2C. 3D. 22. 若平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,则a =( ) A. 12±或0B.252-或0 C.252± D.252+或0 3. “4ab =”是“直线210x ay +-=与直线220bx y +-=平行”的( ) A. 充要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件4. 在平面直角坐标系中,记d 为点到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A. 1B. 2C. 3D. 45. 已知(2,3)A ,(1,2)B -,若点(,)P x y 在线段AB 上,则3yx -最大值为 ( ) A. 1B.35C. 12-D. 3-6. 已知00(,)P x y 是直线:0++=l Ax By C 外一点,则方程00()0Ax By C Ax By C +++++=表示( )A. 过点P 且与l 垂直的直线B. 过点P 且与l 平行的直线C. 不过点P 且与l 垂直的直线D. 不过点P 且与l 平行的直线7. 2020年12月4日,嫦娥五号探测器在月球表面第一次动态展示国旗.1949年公布的《国旗制法说明》中就五星的位置规定:大五角星有一个角尖正向上方,四颗小五角星均各有一个角尖正对大五角星的中心点。
有人发现,第三颗小星的姿态与大星相近。
为便于研究,如图,以大星的中心点为原点,建立直角坐标系,1234,,,OO OO OO OO 分别是大星中心点与四颗小星中心点的联结线,3OO 与x 轴所成的角16α︒≈,则第三颗小星的一条边AB 所在直线的倾斜角约为( )A. 0︒B. 1︒C. 2︒D. 3︒8. 已知直线1:0()l kx y k R +=∈与直线2:220l x ky k -+-=相交于点A ,点B 是圆22(2)(3)2x y +++=上的动点,则||AB 的最大值为( )A. B. C. 5+ D. 3+9. 著名数学家华罗庚曾说过“数无形时少直觉,形少数时难入微”,事实上,很多代点(,)M x y 与点(,)N a b 最小值为( )A. B. C. 8 D. 610. 已知圆C :221x y +=,直线l :2x =,P 为直线l 上的动点,过点P 作圆C 的切线,切点分别为A ,B ,则直线AB 过定点( )A. 1(,0)2B. (0,2)C. (2,1)D. 1(,1)2二、多选题11. 已知直线12:10,:10l x l x +=-=,直线:10l kx y k -+-=被12,l l 截,则k 的值可能为( )A. 2+B. 2-C. 2D. 212. 已知在平面直角坐标系中,3(,0)2A ,(0,3)B ,点(,)M m n 位于线段AB 上,M与端点A ,B 不重合,则11212m n +++的可能取值为( ) A.13B.23C. 1D. 313. 下列说法中,正确的有.( )A. 点斜式11()y y k x x -=-可以表示任何直线B. 直线42y x =-在y 轴上的截距为2-C. 直线20x y -=关于0x y +=对称的直线方程是20x y -=D. 点(2,3)P 到直线的(1)30ax a y +-+=的最大距离为5 14. 下列说法正确的是( )A. 直线 10xsin y α-+=的倾斜角的取值范围为3[0,][,)44πππ⋃B. “5c =”是“点(2,1)到直线340x y c ++=距离为3”的充要条件C. 直线l :30()x y R λλλ+-=∈恒过定点(3,0)D. 直线25y x =-+与210x y ++=平行,且与圆225x y +=相切三、填空题15. 曲线23()x y x x e =+在点(0,0)处的切线方程为__________.16. 已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,的最大值为__________. 17. 已知函数,函数()f x 的图象在点和点的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.18. 已知直线l 过点(0,2)A 和2(1213)()B m m m R ++∈,则直线l 的倾斜角的取值范围为__________. 四、解答题19. 已知直线l 过点(1,1)M ,且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当||||OA OB +取得最小值时,直线l 的方程;(2)当22||||MA MB +取得最小值时,直线l 的方程.20. 已知直线l 经过直线1l :250x y +-=与2l :20x y -=的交点.(1)若点(5,0)A 到l 的距离为3,求直线l 的方程; (2)求直线l 的方程,使点(5,0)A 到直线l 的距离最大;(3)求直线l 的方程,使直线l 和直线1l 关于直线2l 对称.答案和解析1.【答案】B解:因为直线(1)y k x =+恒过点(1,0)-,可知:点(0,1)-到直线(1)y k x =+的最大距离,即为点(0,1)-与(1,0)-两点的距离,则点(0,1)-到直线(1)y k x =+ 故选.B2.【答案】A解:平面内三点(1,)A a -,2(2,)B a ,3(3,)C a 共线,,AB AC k k ∴=232131a a a a ++∴=--,化为:2(21)0a a a --=,解得0a =或1a =± 故选.A3.【答案】C解:由题意知a ,b 均不为0,则直线210x ay +-=与直线220bx y +-=平行的充要条件是22b a -=-且11a≠, 即4ab =且1a ≠,故“4ab =”是“直线210x ay +-=与直线220bx y +-=平行”的必要不充分条件. 故选.C4.【答案】C解:由题意, 当0m =时,,∴当cos 1θ=-时,max 3;d =当0m ≠时,222222|cos sin 2||sin cos 2||1sin()2|111m m m d mmm θθθθθα---++++===+++,(其中1tan )mα=-,∴当sin()1θα+=时,max 13d =+<,d ∴的最大值为3.故选.C5.【答案】C解:设(3,0)Q ,3yx -表示直线PQ 的斜率, 则30323AQ k -==--,201132BQ k -==---, 点(,)P x y 是线段AB 上的任意一点,3y x ∴-的取值范围是1[3,]2--, 故3yx -的最大值为12-,故选:.C6.【答案】D解:因为点00(,)P x y 不在直线0Ax By C ++=上, 所以000Ax By C ++≠,所以直线00()0Ax By C Ax By C +++++=不经过点P ,排除A 、B ;又直线00()0Ax By C Ax By C +++++=与直线l :0Ax By C ++=平行,排除C , 故选.D7.【答案】C解:过3O 作x 轴平行线3O E ,则316.OO E α∠=≈︒ 由五角星的内角为36︒,可知318BAO ∠=︒, 所以直线AB 的倾斜角为18162︒-︒=︒, 故选.C8.【答案】C解:联立消去参数k 得22(1)(1)2x y -+-=,所以点A 在以(1,1)C 为圆心,2为半径的圆上.又点B 是圆22(2)(3)2x y +++=上的动点,此圆圆心为(2,3)D --,半径为2, 且22||(12)(13)5CD =+++=,两圆相离, 所以||AB 的最大值为||2252 2.CD ++=+ 故选.C9.【答案】B解:设()f x =则()f x()f x ∴的几何意义为点(,0)M x 到两定点(2,4)A 与(1,3)B 的距离之和.设点(2,4)A 关于x 轴的对称点为A ',则A '的坐标为(2,4).- 要求()f x 的最小值,可转化为求||||MA MB +的最小值,利用对称思想可知||||||||||MA MB MA MB A B +='+'=即()f x故选.B10.【答案】A解:根据题意,因为P 为直线l :2x =上的动点,设(2,)P t ,圆C :221x y +=,其圆心C 的坐标为(0,0),半径为1,PA 、PB 为圆C 的切线, 则以线段PC 为直径的圆N 的方程为2220x y x ty +--=,则有2222120x y x y x ty ⎧+=⎨+--=⎩,联立可得210x ty +-=, 即两圆公共弦AB 的方程为210x ty +-=,即12()2ty x -=-, 所以直线AB 过定点1(,0).2故选:.A11.【答案】AD解:直线12:310,:310l x y l x y -+=--=平行, 倾斜角为,两平行线间距离为1112+=, 因为直线:10l kx y k -+-=被12,l l 截得的线段长为2, 所以直线:10l kx y k -+-=的倾斜角为或,,,则斜率为23+或3 2.- 故选.AD12.【答案】BC解:由题意知,直线AB 的方程为2133x y+=, 点(,)M m n 位于线段AB 上,M 与端点A ,B 不重合, 则2133m n+=,即23m n +=,(0,3)n ∈, 所以111121242m n n n +=+++-+ 266.(4)(2)(1)9n n n ==-+--+ 因为(0,3)n ∈, 所以2(1)9(5,9],n --+∈ 所以2626[,).(1)935n ∈--+故选.BC13.【答案】BCD解:A :点斜式11()y y k x x -=-不能表示斜率不存在的直线,故A 错误; B :直线42y x =-在y 轴上的截距为2-,正确;C :在直线20x y -=上任取一点(,)P m n ,它关于0x y +=的对称点(,)Q m n --在直线20x y -=上,所以直线20x y -=关于0x y +=对称的直线方程是20x y -=,C 正确;D :因为直线的(1)30ax a y +-+=即()30a x y y +-+=过定点(3,3)M -,所以点(2,3)P 到直线的(1)30ax a y +-+=的最大距离为||5MP =,D 正确. 故选:.BCD14.【答案】ACD解:直线 sin 10x y α-+=的倾斜角θ,可得tan sin [1,1]θα=∈-, 所以θ的取值范围为3[0,][,),44πππ⋃所以A 正确; “点(2,1)到直线340x y c ++=距离为3”,可得22|64| 3.34c ++=+解得5c =,25c =-,所以“5c =”是“点(2,1)到直线340x y c ++=距离为3”的充分不必要条件,所以B 不正确;直线l :30()x y R λλλ+-=∈,即,恒过定点(3,0),所以C 正确;直线25y x =-+即250x y +-=与直线210x y ++=平行,22|5|521-=+,所以直线25y x =-+与圆225x y +=相切, 所以D 正确; 故选:.ACD15.【答案】3y x =解:23()x y x x e =+,223(21)3()3(31)x x x y x e x x e e x x ∴'=+++=++, ∴当0x =时,3y '=,23()x y x x e ∴=+在点(0,0)处的切线斜率3k =, ∴曲线23()x y x x e =+在点(0,0)处的切线方程为:3.y x =故答案为3.y x =16.+解:设11(,)A x y ,22(,)B x y ,O 为坐标原点,11(,)OA x y =,22(,)OB x y =,由22111x y +=,22221x y +=,121212x x y y +=, 可得A ,B 两点在圆221x y +=上, 且1212111cos 2OA OB AOB x x y y ⋅=⨯⨯∠=+=, 即有60AOB ︒∠=,即三角形OAB 为等边三角形,1AB =,A ,B 两点到直线:10l x y +-=的距离1d 与2d 之和,设AB 中点为M ,则距离1d 与2d 之和等于M 到直线l 的距离的两倍,圆心(0,0)到线段AB 中点M 的距离2d =,圆心到直线l 的距离d '=M ∴到直线l 的距离的最大值为d d +'=+,+17.【答案】解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:18.【答案】[0,](,)62πππ⋃解:设此直线的倾斜角为θ,[0,).θπ∈ 则2tanθ=232).3m =+ [0,](,).62ππθπ∴∈⋃故答案为:[0,](,).62πππ⋃19.【答案】 解:(1)设(,0)A a ,(0,)(0,0).B b a b >>设直线l 的方程为1x y a b +=,则111a b+=, 所以2224a b a bb a b a=+++⋅=, 当且仅当2a b ==时取等号, 此时直线l 的方程为20.x y +-=(2)方法一:设直线l 的斜率为k ,则0k <,直线l 的方程为1(1)y k x -=-, 则,(0,1)B k -,所以22222211||||2224MA MB k k k k +=+++⋅=, 当且仅当221k k=,即1k =-时, 22||||MA MB +取得最小值4,此时直线l 的方程为20.x y +-=方法二:设(,0)A a ,(0,)(0,0).B b a b >>设直线l 的方程为1x y a b +=,则111a b+=,即a b ab +=, 2222||||(1)1(1)1MA MB a b +=-++-+222()4a b a b =+-++2224a b ab =+-+2()4a b =-+∴当且仅当2a b ==时,22||||MA MB +取得最小值4, 此时直线方程为122x y +=,即20.x y +-=20.【答案】解:(1)易知l 不可能为2l ,故可设经过两已知直线交点的直线系方程为(25)(2)0x y x y λ+-+-=,即(2)(12)50x y λλ++--=,点(5,0)A 到l 的距离为3, 22|1055|3(2)(12)λλλ+-∴=++-,化简得22520λλ-+=,解得12λ=或2λ=, ∴直线l 的方程为2x =或4350.x y --=(2)由解得直线1l 与2l 的交点为(2,1)P , 显然当l PA ⊥时,点(5,0)A 到直线l 的距离最大, 又101253PA k -==--, 3l k ∴=,∴所求直线l 的方程是13(2)y x -=-,即350.x y --=(3)在直线1l 上取点(0,5)E ,设点E 关于直线2l 的对称点是(,)F a b ,则052022a b ++-⋅=且520b a -=--, 解得4a =,3b =-,由直线l 经过两点(2,1)P ,(4,3)F -, 可得直线l 的方程是341324y x +-=+-,即250.x y +-=。
新高考2020高考数学二轮复习小题考法专训六直线与圆
小题考法专训(六) 直线与圆A 级——保分小题落实练一、选择题1.已知直线l 1:x +2ay -1=0,l 2:(a +1)x -ay =0,若l 1∥l 2,则实数a 的值为( ) A .-32B .0C .-32或0D .2解析:选C 由l 1∥l 2得1×(-a )=2a (a +1),即2a 2+3a =0,解得a =0或a =-32.经检验,当a =0或a =-32时均有l 1∥l 2,故选C.2.直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为( )A .2x +3y -12=0B .2x -3y -12=0C .2x -3y +12=0D .2x +3y +12=0解析:选D 由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧x +3=0,y -1=0,可得x=-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求方程为2x +3y +12=0,故选D.3.(2019·开封定位考试)已知圆(x -2)2+y 2=9,则过点M (1,2)的最长弦与最短弦的长之和为( )A .4B .6C .8D .10解析:选D 圆(x -2)2+y 2=9的圆心为(2,0),半径为3,所以过点M 的最长弦的长为6,最短弦的长为232-[(2-1)2+(0-2)2]2=4,所以过点M 的最长弦与最短弦的长之和为10,故选D.4.已知圆(x -1)2+y 2=1被直线x -3y =0分成两段圆弧,则较短弧长与较长弧长之比为( )A .1∶2B .1∶3C .1∶4D .1∶5解析:选A (x -1)2+y 2=1的圆心为(1,0),半径为1.圆心到直线的距离d =11+3=12,所以较短弧所对的圆心角为2π3,较长弧所对的圆心角为4π3,故两弧长之比为1∶2,故选A. 5.已知直线3x +ay =0(a >0)被圆(x -2)2+y 2=4所截得的弦长为2,则a 的值为( ) A. 2 B . 3 C .2 2D .2 3解析:选B 由已知条件可知,圆的半径为2,又直线被圆所截得的弦长为2,故圆心到直线的距离为3,即69+a2=3,得a = 3.6.已知圆(x -a )2+y 2=1与直线y =x 相切于第三象限,则a 的值是( ) A. 2 B .- 2 C .± 2D .-2解析:选B 依题意得,圆心(a,0)到直线x -y =0的距离等于半径,即有|a |2=1,|a |= 2.又切点位于第三象限,结合图形(图略)可知,a =-2,故选B.7.已知圆C 过点A (2,4),B (4,2),且圆心C 在直线x +y =4上,若直线x +2y -t =0与圆C 相切,则t 的值为( )A .-6±2 5B .6±2 5C .25±6D .6±4 5解析:选B 因为圆C 过点A (2,4),B (4,2),所以圆心C 在线段AB 的垂直平分线y =x 上,又圆心C在直线x +y =4上,联立⎩⎪⎨⎪⎧y =x ,x +y =4,解得x =y =2,即圆心C (2,2),圆C 的半径r =(2-2)2+(2-4)2=2.又直线x +2y -t =0与圆C 相切,所以|2+4-t |5=2,解得t=6±2 5.8.(2019·石家庄模拟)已知圆C 截两坐标轴所得弦长相等,且圆C 过点(-1,0)和(2,3),则圆C 的半径为( )A .8B .2 2C .5D . 5解析:选D 设圆的标准方程为(x -a )2+(y -b )2=r 2(r >0),∵圆C 经过点(-1,0)和(2,3),∴⎩⎪⎨⎪⎧(a +1)2+b 2=r 2,(a -2)2+(b -3)2=r 2,∴a +b -2=0.①又圆C 截两坐标轴所得弦长相等,∴|a |=|b |.② 由①②得a =b =1,∴圆C 的半径为5,故选D.9.若点P (1,1)为圆C :x 2+y 2-6x =0的弦MN 的中点,则弦MN 所在直线的方程为( ) A .2x +y -3=0 B .x -2y +1=0 C .x +2y -3=0D .2x -y -1=0解析:选D 由圆的方程易知圆心C 的坐标为(3,0),又P (1,1),所以k PC =0-13-1=-12.易知MN ⊥PC ,所以k MN ·k PC =-1,所以k MN =2.根据弦MN 所在的直线经过点P (1,1)得所求直线方程为y -1=2(x -1),即2x -y -1=0.故选D.10.已知直线y =ax 与圆C :x 2+y 2-6y +6=0相交于A ,B 两点,C 为圆心.若△ABC 为等边三角形,则a 的值为( )A .1B .±1 C. 3D .± 3解析:选D 圆的方程可以化为x 2+(y -3)2=3,圆心为C (0,3),半径为3,根据△ABC 为等边三角形可知AB =AC =BC =3,所以圆心C (0,3)到直线y =ax 的距离d =32×3=32,所以32=|a ×0-3|a 2+1⇒2=a 2+1⇒a =± 3. 11.圆(x -3)2+(y -3)2=9上到直线3x +4y -11=0的距离等于2的点有( ) A .1个 B .2个 C .3个D .4个解析:选B 圆(x -3)2+(y -3)2=9的圆心为(3,3),半径为3,圆心到直线3x +4y -11=0的距离d =|3×3+4×3-11|32+42=2,∴圆上到直线3x +4y -11=0的距离为2的点有2个.故选B.12.已知圆O :x 2+y 2=9,过点C (2,1)的直线l 与圆O 交于P ,Q 两点,则当△OPQ 的面积最大时,直线l 的方程为( )A .x -y -3=0或7x -y -15=0B .x +y +3=0或7x +y -15=0C .x +y -3=0或7x -y +15=0D .x +y -3=0或7x +y -15=0解析:选D 当直线l 的斜率不存在时,l 的方程为x =2,则P (2,5),Q (2,-5),所以S △OPQ =12×2×25=2 5.当直线l 的斜率存在时,设l 的方程为y -1=k (x -2)⎝ ⎛⎭⎪⎫k ≠12,则圆心到直线l 的距离d =|1-2k |1+k2,所以|PQ |=29-d 2,S △OPQ =12×|PQ |×d =12×29-d 2×d= (9-d 2)d 2≤9-d 2+d 22=92,当且仅当9-d 2=d 2,即d 2=92时,S △OPQ 取得最大值92,因为25<92,所以S △OPQ 的最大值为92,此时4k 2-4k +1k 2+1=92,解得k =-1或k =-7,此时直线l 的方程为x +y -3=0或7x +y -15=0,故选D.二、填空题13.已知直线l 1:y =2x ,则过圆x 2+y 2+2x -4y +1=0的圆心且与直线l 1垂直的直线l 2的方程为________.解析:由题意,圆的标准方程为(x +1)2+(y -2)2=4,所以圆的圆心坐标为(-1,2),所以所求直线的方程为y -2=-12(x +1),即x +2y -3=0.答案:x +2y -3=014.在平面直角坐标系xOy 中,已知圆C 过点A (0,-8),且与圆x 2+y 2-6x -6y =0相切于原点,则圆C 的方程为______________________,圆C 被x 轴截得的弦长为________.解析:将已知圆化为标准方程得(x -3)2+(y -3)2=18,圆心为(3,3),半径为3 2.由于两个圆相切于原点,连心线过切点,故圆C 的圆心在直线y =x 上.由于圆C 过点(0,0),(0,-8),所以圆心又在直线y =-4上.联立y =x 和y =-4,得圆心C 的坐标(-4,-4).又因为点(-4,-4)到原点的距离为42,所以圆C 的方程为(x +4)2+(y +4)2=32,即x 2+y 2+8x +8y =0.圆心C 到x 轴距离为4,则圆C 被x 轴截得的弦长为2×(42)2-42=8.答案:x 2+y 2+8x +8y =0 815.已知从圆C :(x +1)2+(y -2)2=2外一点P (x 1,y 1)向该圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,则当|PM |取最小值时点P 的坐标为_______.解析:如图所示,连接CM ,CP .由题意知圆心C (-1,2),半径r = 2.因为|PM |=|PO |,所以|PO |2+r 2=|PC |2,所以x 21+y 21+2=(x 1+1)2+(y 1-2)2,即2x 1-4y 1+3=0.要使|PM |的值最小,只需|PO |的值最小即可.当PO 垂直于直线2x -4y +3=0时,即PO 所在直线的方程为2x +y =0时,|PM |的值最小,此时点P 为两直线的交点,则⎩⎪⎨⎪⎧2x -4y +3=0,2x +y =0,解得⎩⎪⎨⎪⎧x =-310,y =35,故当|PM |取最小值时点P 的坐标为⎝ ⎛⎭⎪⎫-310,35.答案:⎝ ⎛⎭⎪⎫-310,35 16.(2019·合肥质检)在平面直角坐标系xOy 中,圆C 经过点(0,1),(0,3),且与x 轴正半轴相切,若圆C 上存在点M ,使得直线OM 与直线y =kx (k >0)关于y 轴对称,则k 的最小值为________.解析:由圆C 过点(0,1),(0,3)知,圆心的纵坐标为1+32=2,又圆C 与x 轴正半轴相切,所以圆的半径为2,则圆心的横坐标x =22-⎝⎛⎭⎪⎫3-122=3,即圆心为(3,2),所以圆C的方程为(x -3)2+(y -2)2=4.因为k >0,所以k 取最小值时,直线y =-kx 与圆相切,可得2=|3k +2|k 2+1,即k 2-43k =0,解得k =43(k =0舍去). 答案:4 3B 级——拔高小题提能练1.[多选题]若实数x ,y 满足x 2+y 2+2x =0,则下列关于yx -1的判断正确的是( )A.y x -1的最大值为 3 B .y x -1的最小值为- 3C.yx -1的最大值为33D .yx -1的最小值为-33解析:选CD 由x 2+y 2+2x =0得(x +1)2+y 2=1,表示以(-1,0)为圆心、1为半径的圆,yx -1表示圆上的点(x ,y )与点(1,0)连线的斜率,易知,y x -1最大值为33,最小值为-33. 2.(2019·成都二诊)在平面直角坐标系xOy 中,M ,N 分别是x 轴正半轴和y =x (x >0)图象上的两个动点,且|MN |=2,则|OM |2+|ON |2的最大值是( )A .4-2 2B .43 C .4D .4+2 2解析:选D 直线y =x 的倾斜角为π4,所以由题意知∠MON =π4,则在△MON 中,|MN |2=|OM |2+|ON |2-2|OM |·|ON |cos ∠MON ,即2=|OM |2+|ON |2-2|OM |·|ON |≥|OM |2+|ON |2-2·|OM |2+|ON |22,整理,得|OM |2+|ON |2≤42-2=4+22,当且仅当|OM |=|ON |=2+2时,等号成立,即|OM |2+|ON |2的最大值为4+22,故选D.3.已知A (-3,0),B (3,0),P 为圆x 2+y 2=1上的动点,AP ―→=PQ ―→,过点P 作与AP 垂直的直线l 交直线QB 于点M ,若点M 的横坐标为x ,则|x |的取值范围是( )A .|x |≥1B .|x |>1C .|x |≥2D .|x |≥22解析:选A 由题意,设P (cos θ,sin θ),则Q (2cos θ+3,2sin θ),所以k AP=sin θcos θ+3,所以直线PM 的方程为(cos θ+3)x +y sin θ-3cos θ-1=0,直线BQ的方程为x sin θ-y cos θ-3sin θ=0,联立解得x =3+cos θ1+3cos θ=33+233(1+3cos θ),因为1-3≤1+3cos θ<0或0<1+3cos θ≤1+3,所以x ≤-1或x ≥1,即|x |≥1,故选A.4.已知直线l :mx -y =1,若直线l 与直线x +m (m -1)y =2垂直,则m 的值为________;动直线l :mx -y =1被圆C :x 2-2x +y 2-8=0截得的最短弦长为________.解析:因为直线mx -y =1与直线x +m (m -1)y =2垂直,所以m ×1+(-1)×m (m -1)=0,解得m =0或m =2.动直线l :mx -y =1过定点(0,-1),圆C :x 2-2x +y 2-8=0化为(x -1)2+y 2=9,圆心(1,0)到直线mx -y -1=0的距离的最大值为(0-1)2+(-1-0)2=2,所以动直线l 被圆C 截得的最短弦长为29-(2)2=27.答案:0或2 275.已知m >0,n >0,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是____________.解析:因为m >0,n >0,直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切, 所以圆心C (1,1)到直线的距离d =|m +1+n +1-2|(m +1)2+(n +1)2=1,即|m +n |=(m +1)2+(n +1)2,两边平方并整理得m +n +1=mn ≤⎝ ⎛⎭⎪⎫m +n 22,即(m +n )2-4(m +n )-4≥0, 解得m +n ≥2+22,所以m +n 的取值范围为[2+22,+∞). 答案:[2+22,+∞)。
2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习(附答案)
2023届新高考数学二轮复习:专题(三角函数的范围与最值)提分练习【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z ……. 二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( ) A .11 B .13C .15D .17例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( ) A.B.CD例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫⎪⎪⎢⎝⎭⎣⎭ D .5π3π0,2,124⎛⎫⎡⎤ ⎪⎢⎥⎝⎭⎣⎦例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A .3⎡⎫+∞⎪⎢⎣⎭B .43⎤⎥⎣⎦ C .43⎫⎪⎪⎝⎭D .43⎫⎪⎪⎣⎭例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A .0,3⎛⎫⎪ ⎪⎝⎭B .453⎡⎫⎪⎢⎪⎣⎭ C .3⎛⎫⎪ ⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c ,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B.1a ≤ C.2≥b D.2≤b 2.(2023ꞏ全国ꞏ高三专题练习)ABC中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .53.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,44.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.233⎛⎤ ⎥ ⎝⎦C.14⎡⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( )A .①④B .②③C .②④D .②③④7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( )A .⎝B .32⎛ ⎝C .2⎢⎣D .32⎡⎢⎣二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为710.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( )A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( )A .22S a bc +的最大值为12B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 12.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角,,A B C 所对的边分别为,,a b c ,且2cos c b b A -=,则下列结论正确的有( )A .2AB = B .B 的取值范围为0,4π⎛⎫⎪⎝⎭C .ab的取值范围为)2D .112sin tan tan A B A -+的取值范围为⎫⎪⎪⎝⎭三、填空题13.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin ,06f x x πωω⎛⎫=+> ⎪⎝⎭,若5412f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭且()f x 在区间5,412ππ⎛⎫⎪⎝⎭上有最小值无最大值,则ω=_______. 14.(2023ꞏ全国ꞏ高三专题练习)函数()()π3sin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭,已知π33f ⎛⎫= ⎪⎝⎭且对于任意的x R ∈都有ππ066f x f x ⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,若()f x 在5π2π,369⎛⎫ ⎪⎝⎭上单调,则ω的最大值为______.15.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||2πϕ…,4π-为()f x 的零点,且()4f x f π⎛⎫⎪⎝⎭…恒成立,()f x 在区间,1224ππ⎡⎫-⎪⎢⎣⎭上有最小值无最大值,则ω的最大值是_______16.(2023ꞏ全国ꞏ高三对口高考)在ABC 中,)(),cos ,cos ,sin AB x x AC x x ==,则ABC 面积的最大值是____________17.(2023ꞏ高一课时练习)用I M 表示函数sin y x =在闭区间I 上的最大值.若正数a 满足[0,][,2]2a a a M M ≥,则a 的最大值为________.18.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知2a =,cos cos 4b C c B -=,43C ππ≤≤,则tan A 的最大值为_______.19.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,若120BAC ∠=︒,点D 为边BC 的中点,1AD =,则AB AC ⋅uu u r uuu r的最小值为______.20.(2023ꞏ全国ꞏ高三专题练习)△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .21.(2023ꞏ全国ꞏ高三专题练习)已知0θ>,对任意*n ∈N ,总存在实数ϕ,使得cos()n θϕ+<θ的最小值是___ 22.(2023ꞏ上海ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,0πϕ<< ,π()()4f x f ≤恒成立,且()y f x =在区间3π0,8⎛⎫ ⎪⎝⎭上恰有3个零点,则ω的取值范围是______________.23.(2023ꞏ全国ꞏ高三专题练习)已知锐角三角形ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且A B >,若7sin 2cos sin 25C A B =+,则tan B 的取值范围为_______. 24.(2023ꞏ全国ꞏ高三专题练习)若函数()41sin 2cos 33f x x x a x =-+在(),-∞+∞内单调递增,则实数a 的取值范围是___________.25.(2023秋ꞏ湖南衡阳ꞏ高一衡阳市八中校考期末)设函数()()2sin 1(0)f x x ωϕω=+->,若对于任意实数ϕ,()f x 在区间π3π,44⎡⎤⎢⎥⎣⎦上至少有2个零点,至多有3个零点,则ω的取值范围是________.26.(2023ꞏ全国ꞏ高三专题练习)已知函数()()211(sin )sin 20,22f x x x R ωωωω=+->∈,若()f x 在区间(),2ππ内没有极值点,则ω的取值范围是___________.27.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)某小区有一个半径为r 米,圆心角是直角的扇形区域,现计划照图将其改造出一块矩形休闲运动场地,然后在区域I (区域ACD ),区域II (区域CBE )内分别种上甲和乙两种花卉(如图),已知甲种花卉每平方米造价是a 元,乙种花卉每平方米造价是3a 元,设∠BOC =θ,中植花卉总造价记为()f θ,现某同学已正确求得:()()2f arg θθ=,则()g θ=___________;种植花卉总造价最小值为___________.28.(2023ꞏ全国ꞏ高三专题练习)已知函数()()2sin cos 0,06f x x a x a πωωω⎛⎫=++>> ⎪⎝⎭对任意12,x x R ∈都有()()12f x f x +≤若()f x 在[]0,π上的取值范围是3,⎡⎣,则实数ω的取值范围是__________.29.(2023ꞏ全国ꞏ高三专题练习)已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________. 30.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC ∆中,2BC =,sin sin 2sin B C A +=,则中线AD长的取值范围是_______; 四、解答题31.(2023ꞏ全国ꞏ高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值;32.(2023ꞏ全国ꞏ模拟预测)在ABC 中,内角,,A B C 的对边分别为,,,sin cos 6a b c b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设点D 是AC 的中点,若BD =,求a c +的取值范围.参考答案【总结】一、三角函数()sin()f x A x ωϕ=+中ω的大小及取值范围 1、任意两条对称轴之间的距离为半周期的整数倍,即()2Tkk ∈Z ; 2、任意两个对称中心之间的距离为半周期的整数倍,即()2Tk k ∈Z ; 3、任意对称轴与对称中心之间的距离为14周期加半周期的整数倍,即()42T Tk k +∈Z ; 4、()sin()f x A x ωϕ=+在区间(,)a b 内单调2Tb a ⇒-…且()22k a b k k πππωϕωϕπ-+++∈Z 剟?5、()sin()f x A x ωϕ=+在区间(,)a b 内不单调(,)a b ⇒内至少有一条对称轴,2a kb πωϕπωϕ+++剟()k ∈Z6、()sin()f x A x ωϕ=+在区间(,)a b 内没有零点2Tb a ⇒-…且(1)()k a b k k πωϕωϕπ+++∈Z 剟?7、()sin()f x A x ωϕ=+在区间(,)a b 内有n 个零点(1)()(1)()k a k k k n b k n πωϕππωϕπ-+<⎧⇒∈⎨+-<++⎩Z …….二、三角形范围与最值问题1、坐标法:把动点转为为轨迹方程2、几何法3、引入角度,将边转化为角的关系4、最值问题的求解,常用的方法有:(1)函数法;(2)导数法;(3)数形结合法;(4)基本不等式法.要根据已知条件灵活选择方法求解.【典型例题】例1.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,7cos 25A =,ABC 的内切圆的面积为16π,则边BC 长度的最小值为( )A .16B .24C .25D .36【答案】A【答案解析】因为ABC 的内切圆的面积为16π,所以ABC 的内切圆半径为4.设ABC 内角A ,B ,C 所对的边分别为a ,b ,c .因为7cos 25A =,所以24sin 25A =,所以24tan 7A =.因为1sin 2ABC S bc A ==△1()42a b c ++⨯,所以25()6bc a b c =++.设内切圆与边AC 切于点D ,由24tan 7A =可求得3tan 24A ==4AD ,则163AD =.又因为2b c a AD +-=,所以323b c a +=+.所以2532251626333bc a a ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭.又因为b c +≥323a +≥即23210016333a a ⎛⎫⎛⎫+≥+ ⎪ ⎪⎝⎭⎝⎭,整理得21264a a --0≥.因为0a >,所以16a ≥,当且仅当403b c ==时,a 取得最小值. 故选:A .例2.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin()f x x ωϕ=+,其中0ω>,||,24ππϕ≤-为()f x 的零点:且()4f x f π⎛⎫≤ ⎪⎝⎭恒成立,()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,则ω的最大值是( )A .11B .13C .15D .17【答案】C【答案解析】由题意,4x π=是()f x 的一条对称轴,所以14f π⎛⎫=± ⎪⎝⎭,即11,42k k Z ππωϕπ+=+∈①又04f π⎛⎫-= ⎪⎝⎭,所以22,4k k Z πωϕπ-+=∈②由①②,得()1221k k ω=-+,12,k k Z ∈又()f x 在,1224ππ⎛⎫- ⎪⎝⎭区间上有最小值无最大值,所以24128T πππ⎛⎫≥--= ⎪⎝⎭ 即28ππω≥,解得16ω≤,要求ω最大,结合选项,先检验15ω=当15ω=时,由①得1115,42k k Z ππϕπ⨯+=+∈,即1113,4k k Z πϕπ=-∈,又||2πϕ≤ 所以4πϕ=-,此时()sin 154f x x π⎛⎫=- ⎪⎝⎭,当,1224x ππ⎛⎫∈- ⎪⎝⎭时,3315,428x πππ⎛⎫-∈- ⎪⎝⎭,当1542x ππ-=-即60x π=-时,()f x 取最小值,无最大值,满足题意.故选:C例3.(2023ꞏ高一课时练习)如图,直角ABC ∆的斜边BC 长为2,30C ∠=︒,且点,B C 分别在x 轴,y 轴正半轴上滑动,点A 在线段BC 的右上方.设OA xOB yOC =+,(,x y ∈R ),记M OA OC =⋅,N x y =+,分别考查,M N 的所有运算结果,则A .M 有最小值,N 有最大值B .M 有最大值,N 有最小值C .M 有最大值,N 有最大值D .M 有最小值,N 有最小值【答案】B【答案解析】依题意30,2,90BCA BC A ∠==∠= ,所以1AC AB ==.设OCB α∠=,则30,090ABx αα∠=+<< ,所以()())30,sin 30Aαα++ ,()()2sin ,0,0,2cos B C αα,所以()()12cos sin 30sin 2302M OA OC ααα==+=++⋅ ,当23090,30αα+== 时,M 取得最大值为13122+=.OA xOB yOC =+ ,所以()()30sin 30,2sin 2cos x y αααα++==,所以()()30sin 302sin 2cos N x y αααα++=+=+12sin 2α=+,当290,45αα== 时,N 有最小值为1故选B. 例4.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin cos f x a x b x cx =++图象上存在两条互相垂直的切线,且221a b +=,则a b c ++的最大值为( )A .B .C D 【答案】D【答案解析】由221a b +=,令sin ,cos a b θθ==, 由()sin cos f x a x b x cx =++,得()cos sin sin cos cos sin f x a x b x c x x c θθ'=-+=-+()sin x c θ=-+,所以()11c f x c '-≤≤+由题意可知,存在12,x x ,使得12()()1f x f x ''=-,只需要21111c c c -+=-≥,即211c -≤-,所以20c ≤,0c =,πsin cos 4a b c a b θθθ⎛⎫++=+=+=+≤ ⎪⎝⎭所以a b c ++故选: D.例5.(2023ꞏ全国ꞏ高三专题练习)已知0m >,函数(2)ln(1),1,()πcos 3,π,4x x x m f x x m x -+-<≤⎧⎪=⎨⎛⎫+<≤ ⎪⎪⎝⎭⎩恰有3个零点,则m 的取值范围是( )A .π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭B .π5π3π,2,12124⎡⎫⎡⎤⎪⎢⎢⎥⎣⎭⎣⎦C .5π3π0,2,124⎛⎫⎡⎫ ⎪⎪⎢⎝⎭⎣⎭D .5π3π0,2,124⎛⎫⎡⎤⎪⎢⎥⎝⎭⎣⎦【答案】A【答案解析】设()(2)ln(1)g x x x =-+,()cos 34h x x π⎛⎫+ ⎝=⎪⎭,求导()23ln(1)ln(1)111x g x x x x x -'=++=++-++ 由反比例函数及对数函数性质知()g x '在(]1,,0m m ->上单调递增,且102g ⎛⎫'< ⎪⎝⎭,()10g '>,故()g x '在1,12⎛⎫⎪⎝⎭内必有唯一零点0x ,当()01,x x ∈-时,()0g x '<,()g x 单调递减; 当(]0,x x m ∈时,()0g x '>,()g x 单调递增;令()0g x =,解得0x =或2,可作出函数()g x 的图像, 令()0h x =,即3,42x k k Z πππ+=+∈,在(]0,π之间解得12x π=或512π或34π,作出图像如下图数形结合可得:π5π3π,2,12124⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭ ,故选:A例6.(2023ꞏ全国ꞏ高三专题练习)已知函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎣⎦上单调递增,且当ππ,43x ⎡⎤∈⎢⎥⎣⎦时,()0f x ≥恒成立,则ω的取值范围为( )A .522170,,232⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦B .4170,8,32⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦C .4280,8,33⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦D .5220,,823⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【答案】B【答案解析】由已知,函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,64⎡⎤⎢⎥⎣⎦上单调递增,所以()111π2ππ2πZ 3k x k k ω-≤-≤∈,解得:()1112π2π2ππZ 33k k x k ωωωω-≤≤+∈,由于()111Z π,π,642π2π2ππ33k k k ωωωω⎡⎤⎡⎤⊆⎢⎢⎥⎣⎦⎣⎦-+∈,所以112ππ2π632πππ43k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()11141248Z 3k k k ω-≤≤+∈① 又因为函数()πcos (0)3f x x ωω⎛⎫=-> ⎪⎝⎭在ππ,43x ⎡⎤∈⎢⎥⎣⎦上()0f x ≥恒成立,所以()222πππ2π2π+Z 232k x k k ω-≤-≤∈,解得:()2222π2ππ5πZ 66k k x k ωωωω-≤≤+∈, 由于()2222π2ππ5π,Z 6π,46π3k k k ωωωω-+⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣∈⎦,所以222πππ462ππ5π36k k ωωωω⎧≥-⎪⎪⎨⎪≤+⎪⎩,解得:()2222586Z 32k k k ω-≤≤+∈② 又因为0ω>,当120k k ==时,由①②可知:04432532ωωω⎧⎪>⎪⎪-≤≤⎨⎪⎪-≤≤⎪⎩,解得403ω⎛⎤∈ ⎥⎝⎦,;当121k k ==时,由①②可知:02883221732ωωω⎧⎪>⎪⎪≤≤⎨⎪⎪≤≤⎪⎩,解得1782ω⎡⎤∈⎢⎥⎣⎦,.所以ω的取值范围为4170,8,32⎛⎤⎡⎤⎥⎢⎥⎝⎦⎣⎦.故选:B.例7.(2023ꞏ全国ꞏ高三专题练习)在锐角ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,ABC 的面积为S ,若222sin()SA C b a +=-,则1tan 3tan()A B A +-的取值范围为( )A.3⎡⎫+∞⎪⎢⎣⎭B.433⎡⎤⎢⎥⎣⎦ C.4,33⎛⎫⎪ ⎪⎝⎭D.4,33⎡⎫⎪⎢⎪⎣⎭【答案】C【答案解析】在ABC 中,1sin()sin ,sin 2A CB S ac B +==, 故题干条件可化为22b a ac -=,由余弦定理得2222cos b a c ac B =+-, 故2cos c a B a =+,又由正弦定理化简得:sin 2sin cos sin sin cos cos sin C A B A A B A B =+=+,整理得sin()sin B A A -=,故B A A -=或B A A -=π-(舍去),得2B A =ABC 为锐角三角形,故02022032A A A ππππ⎧<<⎪⎪⎪<<⎨⎪⎪<-<⎪⎩,解得64A ππ<<tan 1A <<114tan tan (,3tan()3tan 33A AB A A +=+∈- 故选:C例8.(2023ꞏ上海ꞏ高三专题练习)在钝角ABC 中,,,a b c 分别是ABC 的内角,,A B C 所对的边,点G 是ABC 的重心,若AG BG ⊥,则cos C 的取值范围是( )A.⎛ ⎝⎭ B.45⎡⎢⎣⎭ C.⎫⎪⎪⎝⎭D .4,15⎡⎫⎪⎢⎣⎭【答案】C【答案解析】延长CG 交AB 于D ,如下图所示:G 为ABC 的重心,D ∴为AB 中点且3CD DG =,AG BG ⊥ ,12DG AB ∴=,3322CD AB c ∴==;在ADC △中,2222222225522cos 3232c bAD CD AC c b ADC AD CD c c -+--∠===⋅; 在BDC 中,2222222225522cos 3232c a BD CD BC c a BDC BD CD c c -+--∠===⋅; BDC ADC π∠+∠= ,cos cos BDC ADC ∴∠=-∠,即222222525233c a c b c c--=-,整理可得:22225a b c c +=>,C ∴为锐角; 设A 为钝角,则222b c a +<,222a c b +>,a b >,2222222255a ba b a b b a ⎧+>+⎪⎪∴⎨+⎪<+⎪⎩,22221115511155b b a a b b a a ⎧⎛⎫⎛⎫++<⎪ ⎪ ⎪⎪⎝⎭⎝⎭∴⎨⎛⎫⎛⎫⎪<++ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得:223b a ⎛⎫< ⎪⎝⎭, 0a b >>,03b a ∴<<,由余弦定理得:22222222cos 255533a b c a b a b C ab ab b a ⎛⎫+-+⎛⎫==⋅=+>⨯+= ⎪ ⎝⎭⎝, 又C为锐角,cos 1C <<,即cos C的取值范围为3⎛⎫ ⎪ ⎪⎝⎭. 故选:C.例9.(2023ꞏ全国ꞏ高三专题练习)设锐角ABC 的内角,,A B C 所对的边分别为,,a b c,若,3A a π==,则2b 2c bc ++的取值范围为( )A .(1,9]B .(3,9]C .(5,9]D .(7,9]【答案】D【答案解析】因为,3A a π==,由正弦定理可得22sin sin sin 3ab cAB B π====⎛⎫-⎪⎝⎭, 则有22sin ,2sin 3b B c B π⎛⎫==- ⎪⎝⎭,由ABC 的内角,,A B C 为锐角,可得0,220,32B B πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,512sin 2124sin 2462666266B B B B πππππππ⎛⎫⎛⎫∴<<⇒<-<⇒<-≤⇒<-≤ ⎪ ⎪⎝⎭⎝⎭, 由余弦定理可得222222cos 3,a b c bc A b c bc =+-⇒=+- 因此有2223b c bc bc ++=+28sin sin 33B B π⎛⎫=-+ ⎪⎝⎭2cos 4sin 3B B B =++22cos 25B B =-+(]54sin 27,96B π⎛⎫=+-∈ ⎪⎝⎭故选:D.例10.(2023ꞏ上海ꞏ高三专题练习)某公园有一个湖,如图所示,湖的边界是圆心为O 的圆,已知圆O 的半径为100米.为更好地服务游客,进一步提升公园亲水景观,公园拟搭建亲水木平台与亲水玻璃桥,设计弓形,,,MN NP PQ QM 为亲水木平台区域(四边形MNPQ 是矩形,A ,D 分别为,MN PQ 的中点,50OA OD ==米),亲水玻璃桥以点A 为一出入口,另两出入口B ,C 分别在平台区域,MQ NP 边界上(不含端点),且设计成2BAC π∠=,另一段玻璃桥F D E --满足//,,//,FD AC FD AC ED AB ED AB ==.(1)若计划在B ,F 间修建一休闲长廊该长廊的长度可否设计为70米?请说明理由;(附:1.732≈≈)(2)设玻璃桥造价为0.3万元/米,求亲水玻璃桥的造价的最小值.(玻璃桥总长为AB AC DE DF +++,宽度、连接处忽略不计).【答案解析】(1)由题意,50,100OA OM ==,则100,2MQ AM BAC π==∠=,设,2MAB NAC πθαθ∠=∠==-.若C ,P重合,1tan tan tan 2αθα=====75MB =,∴75tan tan MB MB AM θθθ<<<<=⋅=,tan NC AN α=⋅=而100100MF CP NC ==-=∴1tan 1001)tan BF MB MF θθ⎫=-=+-≥⎪⎭,当tan 1θ=(符合题意)时取等号,又1)70->, ∴可以修建70米长廊. (2)cos cos AM AN AB AC θα====cos )cos sin sin cos AB AC θθθθθθ++=+=.设sin cos 4t πθθθ⎛⎫=+=+ ⎪⎝⎭,则212sin cos t θθ=+,即21sin cos 2t θθ-=.AB AC t t+==-1)知tan 2θ<<,而132<<<<θ∃使42ππθ+=且3444πππθ<+<,即112t t t <≤<-≤,∴AB AC t t+=≥-4t πθ==时取等号. 由题意,AB AC DE DF +=+,则玻璃桥总长的最小值为米,∴铺设好亲水玻璃桥,最少需0.3=例11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,满足πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭(1)设3a =,2c =,过B 作BD 垂直AC 于点D ,点E 为线段BD 的中点,求BE EA ⋅的值;(2)若ABC 为锐角三角形,2c =,求ABC 面积的取值范围.【答案解析】(1)πsin sin 3b A a B ⎛⎫=+ ⎪⎝⎭,由正弦定理得:π1sin sin sin sin sin sin sin cos 322B A A B A B A B ⎛⎫=+=+ ⎪⎝⎭,所以1sin sin cos 02A B A B =,因为()0,πA ∈,所以sin 0A ≠,所以1sin 02B B =,即tan B =因为()0,πB ∈,所以π3B =, 因为3a =,2c =,由余弦定理得:2222cos 9467b a c ac B =+-=+-=, 因为0b >,所以b =,其中11sin 3222ABC S ac B ==⨯⨯=△,所以2ABC S BD AC === 因为点E 为线段BD的中点,所以BE = 由题意得:EA ED DA BE DA =+=+,所以()227028BE EA BE BE DA BE ⋅=⋅+=+= . (2)由(1)知:π3B =,又2c =, 由正弦定理得:2πsin sin sin 3a cA CA ==⎛⎫+ ⎪⎝⎭,所以2sin πsin 3A a A ===⎛⎫+ ⎪⎝⎭,因为ABC 为锐角三角形,所以π0,22ππ0,32A C A ⎧⎛⎫∈ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=-∈ ⎪⎪⎝⎭⎩,解得:ππ,62A ⎛⎫∈ ⎪⎝⎭,则tan A ⎫∈+∞⎪⎪⎝⎭()0,3,()11,4tan A +∈,故()1,4a =,ABC面积为1sin ,222S ac B a ⎛==∈ ⎝ 故ABC面积的取值范围是2⎛ ⎝.【过关测试】 一、单选题1.(2023ꞏ全国ꞏ高三专题练习)已知,a b R ∈,设函数1()cos 2f x x =,2()cos f x a b x =-,若当12()()f x f x ≤对[,]()∈<x m n m n 恒成立时,n m -的最大值为3π2,则( ) A.1a ≥ B .1a C .2≥b D .2≤b 【答案】A【答案解析】设[]cos ,x t x m n ∈=,,因为n m -的最大值为3ππ22T>=,所以[,]x m n ∈时,cos t x =必取到最值,当3π2n m -=时,根据余弦函数对称性得cos 12π22m n m Z nk k ++=⇒=∈,,此时3π3πcos cos(cos(2π)cos 22442m n n mm k +-=-=-==-3π3πcos cos(cos(2π)cos 22442m n n m n k +-=+=+==-或者cos1π+2π22m n m n Z k k ++=-⇒=∈,,此时3π3πcos cos(cos(2π+π)cos 22442m n n m m k +-=-=-=-=3π3πcos cos(cos(2π+π)cos 22442m n n m n k +-=+=+=-=由()2212()()2cos 1cos 2cos cos 10f x f x x a b x x b x a ≤⇒-≤-⇒+-+≤,设[]cos ,x t x m n ∈=,时 ()2210t bt a +-+≤对应解为12t t t ≤≤,由上分析可知当1t =,21t ≥或11t ≤-,2t =n m -的最大值为3π2,所以122t t ≤-,即122a +-≤,所以1a ≥.12122b t t -=+≥-或12122b t t -=+≤-+,即2b ≤或2≥-b 故选:A.2.(2023ꞏ全国ꞏ高三专题练习)ABC 中,4AB ACB π=∠=,O 是ABC 外接圆圆心,是OC AB CA CB ⋅+⋅的最大值为( )A .0B .1C .3D .5【答案】C【答案解析】过点O 作,OD AC OE BC ⊥⊥,垂足分别为D ,E ,如图,因O 是ABC 外接圆圆心,则D ,E 分别为AC ,BC 的中点,在ABC 中,AB CB CA =-,则222||||||2AB CA CB CA CB =+-⋅ ,即22||||22CA CB CA CB +-⋅=,21|cos |2CO CA CO CA OCA CD CA CA ⋅=∠=⋅=,同理21||2CO CB CB ⋅= ,因此,()OC AB CA CB OC CB CA CA CB CO CA CO CB CA CB ⋅+⋅=⋅-+⋅=⋅-⋅+⋅ 2222211||||2||||||1222CA CB CA CB CA +-=-+=-,由正弦定理得:||sin ||2sin 2sin sin 4AB B BCA B ACB π===≤∠ ,当且仅当2B π=时取“=”, 所以OC AB CA CB ⋅+⋅的最大值为3. 故选:C3.(2023ꞏ全国ꞏ高三专题练习)在锐角ABCcos cos ()sin sin A CA B C a c+=,且cos 2C C +=,则a b +的取值范围是( ) A.(4⎤⎦B.(2,C .(]0,4D .(]2,4【答案】Acos 2sin()26C C C π+=+=,得262C k πππ+=+,Z k ∈,(0,)2C π∈ ,3C π∴=.由题cos cos A C a c +=cos cos 2b A Cb a ca +==,故cos cos sin sin 2sin A C bA C A+=,即sin cos sin sin cos 2b C A C A C ⋅+⋅==故()sin sin A C B +==即sin b B =由正弦定理有sin sin sin a b c A B C ===,故a A =,b B =,又锐角ABC ,且3C π=,(0,)2A π∴∈,2(0,)32B A ππ=-∈,解得(6A π∈,2π,2sin )sin()]3a b A B A A π∴+=++-1sin )4sin(26A A A A π+=+, (6A π∈ ,2π,(63A ππ∴+∈,2)3π,sin()6A π+∈1], a b ∴+的取值范围为(4⎤⎦.故选:A .4.(2023ꞏ全国ꞏ高三专题练习)设ω∈R ,函数()()22,0,6314,0,22sin x x f x g x x x x x πωωω⎧⎛⎫+≥ ⎪⎪⎪⎝⎭==⎨⎪++<⎪⎩.若()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,且函数()f x 与()g x 的图象有三个交点,则ω的取值范围是( )A .12,43⎛⎤ ⎝⎦B.23⎤⎥⎝⎦C.143⎡⎫⎪⎢⎣⎭D .4412,0,33⎡⎫⎡⎤-⎪⎢⎢⎥⎣⎭⎣⎦【答案】B【答案解析】当0,2x π⎡⎫∈⎪⎢⎣⎭时,,6626x πππωπω⎡⎫+∈+⎪⎢⎣⎭, 因为()f x 在1,32π⎛⎫- ⎪⎝⎭上单调递增,所以262413312sin 62πωππωπ⎧+≤⎪⎪⎪-≤-⎨⎪⎪≥⎪⎩,解得1243ω≤≤, 又因函数()f x 与()g x 的图象有三个交点,所以在(),0x ∈-∞上函数()f x 与()g x 的图象有两个交点,即方程231422x x x ωω++=在(),0x ∈-∞上有两个不同的实数根,即方程23610x x ω++=在(),0x ∈-∞上有两个不同的实数根,所以22Δ3612003060102ωωω⎧⎪=->⎪-<⎨⎪⎪⨯+⨯+>⎩,解得3ω>,当233ω⎛⎤∈ ⎥ ⎝⎦时,当0x ≥时,令()()2sin 6f x g x x x πωω⎛⎫-=+- ⎪⎝⎭,由()()10f x g x -=>, 当562x ππω+=时,73x πω=, 此时,()()7203f xg x π-=-<, 结合图象,所以0x ≥时,函数()f x 与()g x 的图象只有一个交点,综上所述,233ω⎛⎤∈ ⎥ ⎝⎦. 故选:B.5.(2023秋ꞏ湖南长沙ꞏ高三长郡中学校考阶段练习)已知函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭在π,π3⎡⎤⎢⎥⎣⎦上恰有3个零点,则ω的取值范围是( ) A .81114,4,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭B .111417,4,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭C .111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭D .141720,5,333⎡⎫⎡⎫⋃⎪⎪⎢⎢⎣⎭⎣⎭【答案】C【答案解析】π,π3x ⎡⎤∈⎢⎥⎣⎦,ππππ,π3333x ωωω⎡⎤+∈++⎢⎥⎣⎦,其中2ππ4ππ3ωω≤-<,解得:36ω≤<,则ππ4π333ω+≥,要想保证函数在π,π3⎡⎤⎢⎥⎣⎦恰有三个零点,满足①1111πππ+2π2π+2π33π4π+2π<π5π+2π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,1k Z ∈,令10k =,解得:1114,33ω⎡⎫∈⎪⎢⎣⎭;或要满足②2222ππ2ππ+2π33π2π+3π<π2π+4π3k k k k ωω⎧≤+<⎪⎪⎨⎪+≤⎪⎩,2k Z ∈,令21k =,解得:175,3ω⎛⎫∈ ⎪⎝⎭;经检验,满足题意,其他情况均不满足36ω≤<条件,综上:ω的取值范围是111417,5,333⎡⎫⎛⎫⋃⎪ ⎪⎢⎣⎭⎝⎭.故选:C6.(2023ꞏ全国ꞏ高三专题练习)已知函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω在区间[0,]π上有且仅有4条对称轴,给出下列四个结论:①()f x 在区间(0,)π上有且仅有3个不同的零点; ②()f x 的最小正周期可能是2π;③ω的取值范围是131744⎡⎫⎪⎢⎣⎭,; ④()f x 在区间0,15π⎛⎫⎪⎝⎭上单调递增. 其中所有正确结论的序号是( ) A .①④B .②③C .②④D .②③④【答案】B【答案解析】由函数()sin 4f x x ωπ⎛⎫=+ ⎪⎝⎭(0)>ω,令,42x k k Z ππωπ+=+∈,则()14,4k x k Zπω+=∈函数()f x 在区间[0,]π上有且仅有4条对称轴,即()1404k ππω+≤≤有4个整数k 符合,由()1404k ππω+≤≤,得140101444k k ωω+≤≤⇒≤+≤,则0,1,2,3k =, 即1434144ω+⨯≤<+⨯,131744ω∴≤<,故③正确; 对于①,(0,)x π∈ ,,444x ωωππππ⎡⎫∴+∈+⎪⎢⎣⎭,79,422ππωππ⎛⎫∴+∈ ⎪⎝⎭当,442x ωππ7π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有3个不同的零点;当,442x ωππ9π⎡⎫+∈⎪⎢⎣⎭时,()f x 在区间(0,)π上有且仅有4个不同的零点;故①错误;对于②,周期2T πω=,由131744ω≤<,则4141713ω<≤,881713T ππ∴<≤, 又88,21713πππ⎛⎤∈ ⎥⎝⎦,所以()f x 的最小正周期可能是2π,故②正确; 对于④,015x π⎛⎫∈ ⎪⎝⎭Q ,,44154x ωωππππ⎛⎫∴+∈+ ⎪⎝⎭,,又131744ω⎡⎫∈⎪⎢⎣⎭,,78,1541515ωππππ⎛⎫∴+∈ ⎪⎝⎭ 又8152ππ>,所以()f x 在区间0,15π⎛⎫⎪⎝⎭上不一定单调递增,故④错误.故正确结论的序号是:②③ 故选:B7.(2023ꞏ全国ꞏ高三专题练习)函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,则下列说法正确的是( )A .在()0,π不存在1x ,2x 使得()()122f x f x -=B .函数()f x 在()0,π仅有1个最大值点C .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调进增D .实数ω的取值范围是1319,66⎡⎫⎪⎢⎣⎭【答案】D【答案解析】对于A,()f x 在[]0,π上有且仅有3个零点,则函数的最小正周期T π< , 所以在[]0,π上存在12,x x ,且12()1,()1f x f x ==- ,使得()()122f x f x -=,故A 错误; 由图象可知,函数在()0,π可能有两个最大值,故B 错误; 对于选项D,令,6x k k Z πωπ-=∈ ,则函数的零点为1(6x k k Z ππω=+∈ ,所以函数在y 轴右侧的四个零点分别是:71319,,,6666ππππωωωω, 函数()sin 06y x πωω⎛⎫=-> ⎪⎝⎭在[]0,π有且仅有3个零点,所以136196ππωππω⎧≤⎪⎪⎨⎪>⎪⎩ ,解得1319[,66ω∈ ,故D 正确; 由对选项D 的分析可知,ω的最小值为136, 当02x π<< 时,11(,)6612x πππω-∈-, 但11(,)612ππ-不是0,2π⎛⎫⎪⎝⎭的子集, 所以函数()f x 在0,2π⎛⎫⎪⎝⎭上不是单调进增的,故C 错,故选:D.8.(2023ꞏ上海ꞏ高三专题练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若cos cos sin sin()sin B C A A C bc C ⎛⎫++=⎪⎝⎭,3B π=,则a c +的取值范围是( ) A.2⎝ B.32⎛ ⎝C.2⎢⎣D.32⎡⎢⎣【答案】A【答案解析】由题知cos cos sin sin()sin B C AA C bc C ⎛⎫++=⎪⎝⎭,3B π= ∴cos cos sin sin sin B C AB b cC ⎛⎫+= ⎪⎝⎭即cos cos 3sin B C Ab c C+=由正弦定理化简得∴cos cos c B b C ⋅+⋅==∴sin sin cos cos sin 3A C B C B +=∴sin()sin B C A +==∴2b =3B π=∴1sin sin sin a b cA B C===∴23sin sin sin sin()sin 326a c A C A A A A A ππ+=+=+-==+203A π<<∴5666A πππ<+<∴)26A π<+≤a c <+≤故选:A . 二、多选题9.(2023秋ꞏ山东济南ꞏ高三统考期中)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且()()tan 1tan tan A B A B +-= ) A .π6A =B .若b c -=,则ABC 为直角三角形C .若ABC 面积为1,则三条高乘积平方的最大值为D .若D 为边BC 上一点,且1,:2:AD BD DC c b ==,则2b c +的最小值为7【答案】BCD【答案解析】对于A ,因为()()tan 1tan tan A B A B +-=tan tan A B +=,()sin cos tan tan C A B A B =+()sin sin cos cos sin sin sin cos sin sin cos cos cos cos A B A B A B CA B A A A B A A++=⋅=⋅=⋅,cos sin sin C A A C =,因为0πC <<,所以sin 0C >,故tan A = 又0πA <<,所以π3A =,故A 错误;对于B ,由余弦定理得222222cos a b c bc A b c bc =+-=+-,因为3b c a -=,即3b a c =+,代入上式得222a c c c c ⎫=+⎫⎪⎪⎝+-+⎪⎭⎭⎪⎝,整理得22320c a +-=,解得a =或2a c =-(舍去),则2b c =,所以222b a c =+,故B 正确;对于C ,设,,AB AC BC 边上的高分别是,,CE BF AD ,则由三角形面积公式易得222,,AD BF CE a b c ===,则()228AD BF CE abc ⎛⎫⨯⨯= ⎪⎝⎭,因为111a b c ++≥111a b c ==,即a b c ==时,等号成立,此时21sin 12S bc A ===,得2b =所以()228AD BF CE abc ⎛⎫⨯⨯=≤ ⎪⎝⎭C 正确; 对于D ,因为:2:BD DC c b =,所以22c AD AB AB BC b c BD =+=++()22222c b c AB AC AB AB AC b c b c b c=+-=++++ ,可得22222224212cos 60(2)(2)(2)b c bc c b cb b c b c b c ︒=+++++,整理得()22227b c b c +=,故12c b +=所以()1222225b c b c b c c b c b ⎫⎫+=++=++⎪⎪⎭⎭57⎛⎫≥=⎪⎪⎭,当且仅当22b c c b =且12c b +=,即7b c ==时,等号成立,所以2b c +≥2b c +D 正确. 故选:BCD.10.(2023秋ꞏ江苏苏州ꞏ高三苏州中学校考阶段练习)已知函数()2sin 212cos xf x x=+,则下列说法中正确的是( ) A .()()f x f x π+=B .()f xC .()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增D .若函数()f x 在区间[)0,a 上恰有2022个极大值点,则a 的取值范围为60646067,33ππ⎛⎤⎥⎝⎦ 【答案】ABD【答案解析】()2sin 2sin 2sin 21cos 212cos 2cos 2122xx xf x x xx ===+++⎛⎫+ ⎪⎝⎭, A 选项:()()()()sin 22sin 22cos 222cos 2x xf x f x x xπππ++===+++,A 选项正确;B 选项:设()sin 22cos 2xf x t x==+,则()sin 2cos 222x t x t x ϕ-==+≤解得213t ≤,t ≤≤,即max t =,即()f xB 选项正确;C 选项:因为022f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,所以()f x 在,22ππ⎛⎫- ⎪⎝⎭上不单调,C 选项错误;D 选项:()()()()()222cos 22cos 2sin 22sin 24cos 222cos 22cos 2x x x x x f x x x +--+'==++,令()0f x '=,解得1cos 22x =-,即3x k ππ=+或23x k ππ=+,Z k ∈, 当2,33x k k ππππ⎛⎫∈++ ⎪⎝⎭,Z k ∈时,()0f x '<,函数单调递减, 当当24,33x k k ππππ⎛⎫∈++⎪⎝⎭,Z k ∈时,()0f x ¢>,函数单调递增, 所以函数()f x 的极大值点为3π,43π,L ,()13n ππ+-, 又函数()f x 在区间[)0,a 上恰有2022个极大值点,则2021,202233a ππππ⎛⎤∈++ ⎥⎝⎦,即60646067,33a ππ⎛⎤∈ ⎥⎝⎦,D 选项正确; 故选:ABD.11.(2023ꞏ全国ꞏ高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC的周长为2+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB的面积为13【答案】ACD【答案解析】对于选项A :。
2020版新高考数学二轮复习练习-小题专题练(四)-立体几何-Word版含解析
小题专题练(四) 立体几何
一、选择题
1.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,点M 在EF 上且AM ∥平面BDE ,则M 点的坐标为(
)
A .(1,1,1)
B.⎝⎛⎭⎫23,23,1
C.⎝⎛⎭⎫22,22,1
D.⎝⎛
⎭⎫24,24,1 2.(2019·贵阳模拟)设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下面四个命题:
①若α⊥β,β⊥γ,则α∥γ;
②若α⊥β,m ⊂α,n ⊂β,则m ⊥n ;
③若m ∥α,n ⊂α,则m ∥n ;
④若α∥β,γ∩α=m ,γ∩β=n ,则m ∥n .
其中正确命题的序号是( )
A .①④
B .①②
C .②③④
D .④
3.已知长方体ABCD -A 1B 1C 1D 1中,AA 1=AB =3,AD =1,则异面直线B 1C 和C 1D 所成角的余弦值为( )
A.
64 B.63 C.26 D.36
4.设α,β是两个不同的平面,l 是直线且l ⊂α,则“α∥β”是“l ∥β”的( )
A .充分而不必要条件
B .充要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
5.在△ABC 中,AB =2,BC =1.5,∠ABC =120°(如图),若将△ABC 绕直线BC 旋转一周,则形成的旋转体的体积是( )。
高考数学二轮复习专练二中档小题(四)
中档小题(四)1.双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平分圆C :(x -1)2+(y -2)2=1的周长,此双曲线的离心率等于( )A.5 B .2 C. 3 D. 2 2.(2013·郑州市第二次质量检测)在数列{a n }中,a n +1=ca n (c 为非零常数),前n 项和为S n =3n +k ,则实数k 为( )A .-1B .0C .1D .2 3.(2013·湖南省五市十校第一次联合检测)在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tan C =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4 4.(2013·高考湖南卷)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为2的矩形,则该正方体的正视图的面积等于( )A.32 B .1 C.2+12D. 25.(2013·温州市第一次适应性测试)在△ABC 中,若∠A =120°,AB →·AC →=-1,则|BC →|的最小值是( )A. 2 B .2 C. 6 D .6 6.(2013·福建省质量检测)已知点A (1,2),B (3,2),以线段AB 为直径作圆C ,则直线l :x +y -3=0与圆C 的位置关系是( )A .相交且过圆心B .相交但不过圆心C .相切D .相离 7.(2013·高考江西卷)阅读如下程序框图,如果输出i =5,那么在空白矩形框中应填入的语句为( )A .S =2*i -2B .S =2*i -1C .S =2*iD .S =2*i +4 8.(2013·山西省上学期诊断考试)已知函数f (x )=M cos(ωx +φ)(M >0,ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,AC =BC =22,∠C =90°,则f (12)的值为( )A .-12B.12 C .-22D.229.(2013·南昌市第一次模拟测试)下列说法中,不正确的是( )A .点(π8,0)为函数f (x )=tan(2x +π4)的一个对称中心B .设回归直线方程为y ^=2-2.5x ,当变量x 增加一个单位时,y 大约减少2.5个单位 C .命题“在△ABC 中,若sin A =sin B ,则△ABC 为等腰三角形”的逆否命题为真命题D .对于命题p :“x x -1≥0”,则¬p :“xx -1<0”10.(2013·辽宁省五校第一联合体考试)函数f (x )=x 3-bx 2+1有且仅有两个不同零点,则b 的值为( )A.342 B.322C.3232 D .不确定 11.(2013·北京市东城区统一检测)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价p %,第二次提价q %;方案乙:每次都提价p +q2%,若p >q >0,则提价多的方案是________.12.(2013·洛阳市统一考试)将一颗骰子先后投掷两次分别得到点数a 、b ,则直线ax +by =0与圆(x -2)2+y 2=2有公共点的概率为________.13.(2013·安徽省“江南十校”联考)设动点P (x ,y )在区域 Ω:⎩⎪⎨⎪⎧x ≥0y ≥x x +y ≤4上(含边界),过点P 任意作直线l ,设直线l 与区域Ω的公共部分为线段AB ,则以AB 为直径的圆的面积的最大值为________.14.(2013·高考重庆卷)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为 ________.备选题 1.(2013·高考重庆卷)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=( )A .-5B .-1C .3D .42.(2013·高考课标全国卷Ⅰ)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1C.x 227+y 218=1D.x 218+y 29=1 3.(2013·大连市双基测试)已知点A (-2,0),点B (2,0),且动点P 满足|P A |-|PB |=2,则动点P 的轨迹与直线y =k (x -2)有两个交点的充要条件为k ∈________.4.(2013·合肥市教学质量检测)下列命题中真命题的编号是________.(填上所有正确的编号)①向量a 与向量b 共线,则存在实数λ使a =λb (λ∈R );②a ,b 为单位向量,其夹角为θ,若|a -b |>1,则π3<0≤π;③A 、B 、C 、D 是空间不共面的四点,若AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,则△BCD 一定是锐角三角形;④向量AB →,AC →,BC →满足|AB →|=|AC →|+|BC →|,则AC →与BC →同向; ⑤若向量a ∥b ,b ∥c ,则a ∥c .答案:1.【解析】选A.因为双曲线的渐近线平分圆的周长,所以该渐近线过圆心,即y =bax过(1,2),即b a =2,因为e =ca =a 2+b 2a,所以e = 5.2.【解析】选A.依题意得,数列{a n }是等比数列,a 1=3+k ,a 2=S 2-S 1=6,a 3=S 3-S 2=18,则62=18(3+k ),由此解得k =-1.3.【解析】选A.由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sin C ,在等式-2·cos B ·cos C =sin B ·cos C +cos B ·sin C 两边除以cos B ·cos C 得tan B+tan C =-2,tan (B +C )=tan B +tan C 1-tan B tan C =-1=-tan A ,所以角A =π4.4.【解析】选D.由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为2的矩形,因此该几何体的正视图是一个长为2,宽为1的矩形,其面积为 2.5.【解析】选C.∵AB →·AC →=-1,∴|AB →|·|AC →|cos 120°=-1,即|AB →|·|AC →|=2,∴|BC →|2=|AC →-AB →|2=AC →2-2AB →·AC →+AB →2≥2|AB →|·|AC →|-2AB →·AC →=6,∴|BC →|min = 6.6.【解析】选B.以线段AB 为直径作圆C ,则圆C 的圆心坐标C (2,2),半径r =12|AB |=12×(3-1)=1,点C 到直线l :x +y -3=0的距离为|2+2-3|2=22<1,所以直线与圆相交,并且点C 不在直线l :x +y -3=0上.7.【解析】选C.当i =2时,S =2×2+1=5<10;当i =3时,仍然循环,排除D ;当i =4时,S =2×4+1=9<10;当i =5时,不满足S <10,即此时S ≥10,输出i .此时A 项求得S =2×5-2=8,B 项求得S =2×5-1=9,C 项求得S =2×5=10,故只有C 项满足条件.8.【解析】选A.依题意,△ABC 是直角边长为22的等腰直角三角形,因此其边AB 上的高是12,函数f (x )的最小正周期是2,故M =12,2πω=2,ω=π,f (x )=12cos(πx +φ).又函数f (x )是奇函数,于是有φ=k π+π2,其中k ∈Z .由0<φ<π得φ=π2,故f (x )=-12sin πx ,f (12)=-12sin π2=-12. 9.【解析】选D.由y =tan x 的对称中心为(k π2,0)(k ∈Z ),知A 正确.由回归直线方程知B 正确.在△ABC 中,若sin A =sin B ,则A =B ,C 正确.10.【解析】选C.f ′(x )=3x 2-2bx =x (3x -2b ),令f ′(x )=0,则x =0,x =2b3.当曲线f (x )与x 轴相切时,f (x )有且只有两个不同零点,因为f (0)=1≠0,所以f (2b 3)=0,解得b =3232.11.【解析】设原价为a ,则方案甲提价后为a (1+p %)(1+q %),方案乙提价后为a (1+p +q 2%)2.由于(1+p %)(1+q %)<⎣⎡⎦⎤(1+p %)+(1+q %)22=(1+p +q 2%)2,故提价多的是方案乙.【答案】乙 12.【解析】依题意, 将一颗骰子先后投掷两次得到的点数所形成的数组(a ,b )有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax +by =0与圆(x -2)2+y 2=2有公共点,即2aa 2+b 2≤2,a ≤b 的数组(a ,b )有(1,1),(1,2),(1,3),(1,4),…,(6,6),共1+2+3+4+5+6=21种,因此所求的概率等于2136=712.【答案】71213.【解析】如图,区域Ω为△MON 及其内部,A 、B 在区域Ω中,则|AB |的最大值为|OM |=4.所以以AB 为直径的圆的面积的最大值为π·(42)2=4π.【答案】4π 14.【解析】由题意,要使8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,需Δ=64sin 2α-32cos 2α≤0,化简得cos 2α≥12.又0≤α≤π,∴0≤2α≤π3或5π3≤2α≤2π,解得0≤α≤π6或5π6≤α≤π.【答案】⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π备选题 1.【解析】选C.因为log 210与lg 2(即log 102)互为倒数,所以lg(log 210)与lg(lg 2)互为相反数.不妨令lg(log 210)=x ,则lg(lg 2)=-x ,而f (x )+f (-x )=(ax 3+b sin x +4)+[a (-x )3+b sin(-x )+4]=8,故f (-x )=8-f (x )=8-5=3,故选C.2.【解析】选D.设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 21a 2+y 21b 2=1, ①x 22a 2+y 22b 2=1. ②①-②得(x 1+x 2)(x 1-x 2)a 2=-(y 1-y 2)(y 1+y 2)b 2,∴y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). ∵x 1+x 2=2,y 1+y 2=-2,∴k AB =b 2a2.而k AB =0-(-1)3-1=12, ∴b 2a 2=12,∴a 2=2b 2, ∴c 2=a 2-b 2=b 2=9, ∴b =c =3,a =32,∴E 的方程为x 218+y 29=1.3.【解析】由已知得动点P 的轨迹为一双曲线的右支且2a =2,c =2,则b =c 2-a 2=1,∴P 点的轨迹方程为x 2-y 2=1(x >0),其一条渐近线方程为y =x .若P 点的轨迹与直线y =k (x -2)有两个交点,则需k ∈(-∞,-1)∪(1,+∞).【答案】(-∞,-1)∪(1,+∞) 4.【解析】①不是真命题,当b =0时,命题不成立;对于②,|a -b |=a 2-2a ·b +b 2=1-2cos θ+1>1,解得cos θ<12,因为向量夹角范围是[0,π],所以θ∈(π3,π];对于③,易知,BD >AB ,CD >AC ,所以BD 2+CD 2>AB 2+AC 2=BC 2,所以∠BDC 是锐角,同理可证其余两边所对的角都是锐角,所以△BCD 一定是锐角三角形;④不对,当C 点位于线段AB 上时,满足题设条件,但是两向量是反向的;⑤不对,当b =0时,命题就不成立.【答案】②③。
高考数学二轮复习之专练二中档小题(八)
中档小题(八)1.(2013·江西省高三上学期七校联考)已知条件p :x ≤1,条件q :1x<1,则綈p 是q 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件2.如图,一个简单几何体的正视图和侧视图相同,是由一个正方形与一个正三角形构成,俯视图中圆的半径为 3.则该几何体的表面积为( )A .15πB .18πC .21πD .24π3.(2013·湖北省八校高三第二次联考)两个正数a ,b 的等差中项是92,一个等比中项是25,且a >b ,则抛物线y 2=-b ax 的焦点坐标为( ) A .(-516,0) B .(-15,0) C .(15,0) D .(-25,0) 4.(2013·高考安徽卷)若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A.23 B.25C.35D.9105.(2013·高考陕西卷)已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定6.2013年,各大品牌汽车继续在中国的汽车市场上相互博弈,汽车的配置与销售价格以及维修费用等成为人们购买汽车时需要考虑的因素,某汽车制造商为了进一步拓宽市场,统计了某种品牌的汽车的使用年限x 和所支出的维修费用y (万元),得到的统计资料如表所示:若由资料,可知15年,若该品牌汽车在使用10年时报废,则这10年的维修总费用约为( )A .11.28万元B .11.38万元C .12.28万元D .12.38万元 7.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0x -2y +k ≥0x -1≤0,如果目标函数z =3x -2y 的取值范围为[-4,3],则k 的值为( )A .5B .4C .3D .28.若不等式|a -2x |≤x +3对任意x ∈[0,2]恒成立,则实数a 的取值范围是( )A .(-1,3)B .[-1,3]C .(1,3)D .[1,3]9.(2013·郑州市高中毕业年级第一次质量预测))设函数f (x )=sin x +cos x ,把f (x )的图象按向量a =(m ,0)(m >0)平移后的图象恰好是函数y =-f ′(x )的图象,则m 的最小值为( ) A.π4 B.π3C.π2D.2π310.执行如图所示的程序框图,则输出的S 的值为( )A .25B .9C .17D .20 11.(2013·广东省惠州市高三第三次调研考试)sin(α+π4)=24,则sin 2α=________. 12.(2013·安徽省“江南十校”高三联考)若不等式组⎩⎪⎨⎪⎧x -y +2≥0ax +y -2≤0y ≥0表示的平面区域的面积为3,则实数a 的值是________.13.(2013·海淀区高三年级第二学期期中练习)某几何体的三视图如图所示,则它的体积为________.14.设A 是整数集的一个非空子集,对于k ∈A ,如果k -1∉A 且k +1∉A ,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有________个.备选题1.(2013·高考课标全国卷Ⅰ)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos 2A +cos 2A =0,a =7,c =6,则b =( )A .10B .9C .8D .52.函数f (x )=log a |x |+1(0<a <1)的图象大致为( )3.已知函数f (x )=2x -12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________. 4.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成递减的等差数列.若A =2C ,则a c的值为________.答案:1.【解析】选A.由x >1得1x <1;反过来,由1x<1不能得知x >1,即綈p 是q 的充分不必要条件.2.【解析】选C.由三视图可知,该几何体是圆锥与等底面的圆柱组合而成的几何体,所以该几何体的表面积是圆锥的侧面积、圆柱的侧面积和底面圆的面积的和,所以该几何体的表面积S =12×2π×3×23+2π×3×23+π×(3)2=21π.3.【解析】选B.由两个正数a ,b 的等差中项是92得a +b =9;a ,b 的一个等比中项是25得ab =20,且a >b ,故a =5,b =4,又由b a =45=2p 得p 2=15,故抛物线y 2=-b ax 的焦点坐标为(-15,0). 4.【解析】选D.由题意,从五位大学毕业生中录用三人,所有不同的可能结果有(甲,乙,丙),(甲,乙,丁),(甲,乙,戊),(甲,丙,丁),(甲,丙,戊),(甲,丁,戊),(乙,丙,丁),(乙,丙,戊),(乙,丁,戊),(丙,丁,戊),共10种,其中“甲与乙均未被录用”的所有不同的可能结果只有(丙、丁、戊)这1种,故其对立事件“甲或乙被录用”的可能结果有9种,所求概率P =910. 5.【解析】选B.由题意知点在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b2<1,故直线与圆相交. 6.【解析】选D.x =15(2+3+4+5+6)=4,y =15(2.2+3.8+5.5+6.5+7.0)=5,b = 错误!=1.23,a =5-1.23×4=0.08.所以回归直线方程为错误!=0.08+1.23x ,当x =10时,y ^=0.08+1.23×10=12.38(万元).7.【解析】选B.作出不等式组对应的可行域,如图中阴影部分所示,由z =3x -2y 得y=32x -z 2,由图象可知当直线y =32x -z 2经过点C (4-k 5,2+2k 5)时,直线y =32x -z 2的截距最大,而此时z =3x -2y 取得最小值-4,所以12-3k 5-4+4k 5=-4,解得k =4. 8.【解析】选B.不等式|a -2x |≤x +3等价于-x -3≤a -2x ≤x +3,即x -3≤a ≤3x +3对任意x ∈[0,2]恒成立.所以当x ∈[0,2]时,(x -3)max ≤a ≤(3x +3)min ,即-1≤a ≤3.9.【解析】选C.f (x )=sin x +cos x =2sin(x +π4),y =-f ′(x )=-(cos x -sin x )=2sin(x -π4),∵将f (x )的图象按向量a =(m ,0)(m >0)平移后得到y =2sin(x -π4)的图象,∴2sin(x +π4-m )=2sin(x -π4).故m =π2+2k π,k ∈N ,故m 的最小值为π2. 10.【解析】选C.由题知,第一次运行:S =1,T =0,不满足T >S ,则S =1+8=9,n =0+2=2,T =0+22=4;第二次运行:S =9,T =4,不满足T >S ,则S =9+8=17,n =2+2=4,T =4+24=20,此时20>17满足T >S ,故输出的S 的值为17.11.【解析】sin(α+π4)=22sin α+22cos α=24,∴sin α+cos α=12,(sin α+cos α)2=sin 2α+cos 2α+2sin αcos α=1+sin 2α=14,故sin 2α=-34. 【答案】-3412.【解析】作出可行域,如图中阴影部分所示,区域面积S =12(2a+2)×2=3,解得a =2.【答案】213.【解析】依题意得,该几何体是一个四棱锥,其中底面是一个直角梯形(上底长是2、下底长是4、高是4),一个侧面垂直于底面,因此该几何体的体积等于13×12×(2+4)×4×4=16.【答案】1614.【解析】依题意可知,若由S 的3个元素构成的集合不含“好元素”,则这3个元素一定是紧邻的3个数,故这样的集合共有6个.【答案】6备选题1.【解析】选D.由23cos 2A +cos 2A =0,得23cos 2A +2cos 2A -1=0,解得cos A =±15. ∵A 是锐角,∴cos A =15. 又a 2=b 2+c 2-2bc cos A ,∴49=b 2+36-2×b ×6×15, ∴b =5或b =-135. 又∵b >0,∴b =5.2.【解析】选A.由函数f (x )的解析式可确定该函数为偶函数,图象关于y 轴对称,设g (x )=log a |x |,先画出x >0时,g (x )的图象,然后根据g (x )的图象关于y 轴对称画出x <0时g (x )的图象,最后由函数g (x )的图象向上整体平移一个单位即得f (x )的图象,结合图象知选A.3.【解析】当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0. 【答案】04.【解析】依题意知b =a +c 2,a c =sin A sin C =sin2C sin C =2cos C =2×a 2+b 2-c 22ab ,即a c =a 2+b 2-c 2ab=(a +c )(a -c )+b 2ab =2b (a -c )+b 2ab =2(a -c )+b a ,所以a 2=c [2(a -c )+a +c 2],即(2a -3c )(a -c )=0,又由a >c ,因此有2a =3c ,故a c =32. 【答案】32。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小题专题练(一) 集合、常用逻辑用语、函数与导数、不等式1.已知集合M ={x |x >1},N ={x |x 2-2x -8≤0},则M ∩N =( ) A .[-4,2) B .(1,4] C .(1,+∞)D .(4,+∞)2.已知函数f (x )=⎩⎪⎨⎪⎧log 12x ,x >12+4x ,x ≤1,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=( )A .4B .-2C .2D .13.设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件4.已知不等式|x +3|+|x -2|≤a 的解集非空,则实数a 的取值范围是( ) A .[1,5] B .[1,+∞)C .[5,+∞)D .(-∞,1]∪[5,+∞)5.已知集合A ={(x ,y )|x 2+y 2≤3,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8 C .5D .46.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .47.已知在(-∞,1]上单调递减的函数f (x )=x 2-2tx +1,且对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,则实数t 的取值范围为( )A .[-2,2]B .[1,2]C .[2,3]D .[1,2]8.函数f (x )=(x +1)ln(|x -1|)的大致图象是( )9.若偶函数f (x )满足f (x -1)=f (x +1),且当x ∈[0,1]时,f (x )=x 2,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x在⎣⎢⎡⎦⎥⎤0,103上的根的个数是( )A .1B .2C .3D .410.已知f (x )=ln x -x 4+34x,g (x )=-x 2-2ax +4,若对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫54,+∞B.⎣⎢⎡⎭⎪⎫-18,+∞ C.⎣⎢⎡⎦⎥⎤-18,54 D.⎝⎛⎦⎥⎤-∞,-5411.若2a =3b =6,则4-a=________;1a +1b=________.12.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,log 2(x +1),x >0,则f (f (-3))=________,f (x )的最小值为________.13.已知不等式组⎩⎪⎨⎪⎧x +y ≤2,x ≥0,y ≥m表示的平面区域的面积为2,则x +y +2x +1的最小值为________,最大值为________.14.已知p :0<x <2,q :x <a ,若p 是q 的充分不必要条件,则实数a 的取值范围是________. 15.设函数f (x )=|x 2+a |+|x +b |(a ,b ∈R ),当x ∈[-2,2]时,记f (x )的最大值为M (a ,b ),则M (a ,b )的最小值为________.16.已知函数f (x )=x 2+ax +b (a ,b ∈R )在区间(0,1)内有两个零点,则3a +b 的取值范围是____________.17.已知函数f ′(x )和g ′(x )分别是二次函数f (x )和三次函数g (x )的导函数,它们在同一坐标系中的图象如图所示.(1)若f (1)=1,则f (-1)=________;(2)设函数h (x )=f (x )-g (x ),则h (-1),h (0),h (1)的大小关系为________.(用“<”连接)小题专题练(一)1.解析:选B.集合N ={x |x 2-2x -8≤0}={x |-2≤x ≤4}, 集合M ={x |x >1}, 所以M ∩N ={x |1<x ≤4}. 故选B.2.解析:选B.f ⎝ ⎛⎭⎪⎫12=2+412=2+2=4,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=f (4)=log 124=log 12⎝ ⎛⎭⎪⎫12-2=-2.3.解析:选C.法一:当a >b ≥0时,a >b ⇔a 2>b 2⇔a |a |>b |b |,当a ,b 一正一负时,a >b ⇔a >0>b ⇔a |a |>0>b |b |,当0≥a >b 时,0≥a >b ⇔a 2<b 2⇔-a |a |<-b |b |⇔a |a |>b |b |,所以a >b ⇔a |a |>b |b |,故选C.法二:构造函数f (x )=x |x |,易知为奇函数且为增函数,所以当a >b 时,f (a )=a |a |>b |b |=f (b ),所以选C.4.解析:选C.因为不等式|x +3|+|x -2|≤a 的解集非空等价于|x +3|+|x -2|的最小值小于或等于a ,由于不等式|x +3|+|x -2|≥5在x ∈R 上恒成立,所以a ≥5.选C.5.解析:选A.法一:由x 2+y 2≤3知,-3≤x ≤3,-3≤y ≤ 3.又x ∈Z ,y ∈Z ,所以x ∈{-1,0,1},y ∈{-1,0,1},所以A 中元素的个数为C 13C 13=9,故选A.法二:根据集合A 的元素特征及圆的方程在坐标系中作出图形,如图,易知在圆x 2+y 2=3中有9个整点,即为集合A 的元素个数,故选A.6.解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.7.解析:选B.由f (x )在(-∞,1]上单调递减得t ≥1,由对任意的x 1,x 2∈[0,t +1],总有|f (x 1)-f (x 2)|≤2,得f (x )max -f (x )min ≤2,即f (0)-f (t )≤2,t 2≤2,因此1≤t ≤2, 选B.8.解析:选C.根据函数表达式,当x >2时,函数值大于0,可排除A 选项,当x <-1时,函数值小于0,故可排除B 和D 选项,进而得到C 正确.故答案为C. 9.解析:选C.因为f (x )为偶函数,所以当x ∈[-1,0]时,-x ∈[0,1], 所以f (-x )=x 2,即f (x )=x 2. 又f (x -1)=f (x +1), 所以f (x +2)=f (x ),故f (x )是以2为周期的周期函数,据此在同一直角坐标系中作出函数y =f (x )与y =⎝ ⎛⎭⎪⎫110x在⎣⎢⎡⎦⎥⎤0,103上的图象,如图所示,数形结合可得两图象有3个交点,故方程f (x )=⎝ ⎛⎭⎪⎫110x在⎣⎢⎡⎦⎥⎤0,103上有三个根.故选C.10.解析:选A.因为f ′(x )=1x -14-34x 2=-x 2+4x -34x 2=-(x -1)(x -3)4x 2, 易知,当x ∈(0,1)时,f ′(x )<0,当x ∈(1,2]时,f ′(x )>0, 所以f (x )在(0,1)上单调递减,在(1,2]上单调递增, 故f (x )min =f (1)=12.对于二次函数g (x )=-x 2-2ax +4,易知该函数开口向下, 所以g (x )在区间[1,2]上的最小值在端点处取得, 即g (x )min =min{g (1),g (2)}.要使对任意的x 1∈(0,2],存在x 2∈[1,2],使得f (x 1)≥g (x 2)成立, 只需f (x 1)min ≥g (x 2)min , 即12≥g (1)且12≥g (2), 所以12≥-1-2a +4且12≥-4-4a +4,解得a ≥54.11.解析:由题可得a =log 26,b =log 36,所以4-a=4-log 26=122log 26=12log 262=162=136, 1a +1b =1log 26+1log 36=log 62+log 63=log 6(2×3)=1. 答案:136112.解析:函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0log 2(x +1),x >0,则f (f (-3))=f (9-6)=f (3)=log 24=2,当x ≤0时,二次函数的图象开口向上,对称轴为直线x =-1, 所以函数的最小值为f (-1)=1-2=-1; 当x >0时,函数是增函数,x =0时f (0)=0,所以x >0时,f (x )>0,综上函数的最小值为-1,故答案为2,-1. 答案:2 -1 13.解析:画出不等式组所表示的区域,由区域面积为2,可得m =0.而x +y +2x +1=1+y +1x +1,y +1x +1表示可行域内任意一点与点(-1,-1)连线的斜率,所以y +1x +1的最小值为0-(-1)2-(-1)=13,最大值为2-(-1)0-(-1)=3,所以x +y +2x +1的最小值为43,最大值为4.答案:43414.解析:据充分不必要条件的概念,可知只需A ={x |0<x <2}是集合B ={x |x <a }的真子集即可,结合数轴可知只需a ≥2即可.答案:[2,+∞)15.解析:去绝对值,f (x )=±(x 2+a )±(x +b ),利用二次函数的性质可得,f (x )在[-2,2]的最大值为f (-2),f (2),f ⎝ ⎛⎭⎪⎫-12,f ⎝ ⎛⎭⎪⎫12中之一,所以可得M (a ,b )≥f (-2)=|4+a |+|-2+b |,M (a ,b )≥f (2)=|4+a |+|2+b |, M (a ,b )≥f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪14+a +⎪⎪⎪⎪⎪⎪12+b ,M (a ,b )≥f ⎝ ⎛⎭⎪⎫-12=⎪⎪⎪⎪⎪⎪14+a +⎪⎪⎪⎪⎪⎪-12+b , 上面四个式子相加可得4M (a ,b )≥2⎝ ⎛⎭⎪⎫|4+a |+⎪⎪⎪⎪⎪⎪14+a + ⎝ ⎛⎭⎪⎫|2-b |+|b +2|+⎪⎪⎪⎪⎪⎪b +12+⎪⎪⎪⎪⎪⎪12-b≥2⎪⎪⎪⎪⎪⎪4-14+⎝ ⎛⎭⎪⎫|2+2|+⎪⎪⎪⎪⎪⎪12+12 =252,即有M (a ,b )≥258, 可得M (a ,b )的最小值为258,故答案为258.答案:25816.(-5,0)17.解析:由题意知f ′(x )=x ,g ′(x )=x 2,则可设f (x )=12x 2+a ,g (x )=13x 3+b ,其中a ,b ∈R .(1)因为f (1)=1,所以12×12+a =1,所以a =12,所以f (-1)=12×(-1)2+12=1.(2)因为h (x )=f (x )-g (x ),所以h (x )=12x 2+a -13x 3-b ,所以h (-1)=56+(a -b ),h (0)=a -b ,h (1)=16+(a -b ),故h (0)<h (1)<h (-1).答案:(1)1 (2)h (0)<h (1)<h (-1)。