高中数学第一章《解三角形的进一步讨论》教案新人教A版必修51.doc
高中数学 第一章 解三角形全套教案 新人教A版必修5
高中数学:新人教A 版必修5全套教案 第一章 解三角形课题: 1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系?显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1) 在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c,根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1c C c ==, A则sin sin sin abcc A B C === b c从而在直角三角形ABC 中,sin sin sin ab cA B C == C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin a b A B =, C 同理可得sin sin cbC B =, b a从而sin sin a b A B =sin cC= A c B (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
高中数学 第一章 解三角形全套教案 新人教A版必修5
高中数学:新人教A 版必修5全套教案第一章 解三角形课题: 1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin a A c =,sin b B c =,又sin 1cC c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin a b A B=sin cC=A cB (图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
新课标人教A版必修5教案(全)
数学必修5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
2019-2020年高中数学 第一章《解三角形的进一步讨论》教案 新人教A版必修5
2019-2020年高中数学第一章《解三角形的进一步讨论》教案新人教A版必修5授课类型:新授课●教学目标知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
●教学重点在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
●教学难点正、余弦定理与三角形的有关性质的综合运用。
●教学过程Ⅰ.课题导入[创设情景]思考:在ABC中,已知,,,解三角形。
(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。
下面进一步来研究这种情形下解三角形的问题。
Ⅱ.讲授新课[探索研究]例1.在ABC中,已知,讨论三角形解的情况分析:先由可进一步求出B;则从而1.当A为钝角或直角时,必须才能有且只有一解;否则无解。
2.当A为锐角时,如果≥,那么只有一解;如果,那么可以分下面三种情况来讨论:(1)若,则有两解;(2)若,则只有一解;(3)若,则无解。
(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且时,有两解;其它情况时则只有一解或无解。
[随堂练习1](1)在ABC中,已知,,,试判断此三角形的解的情况。
(2)在ABC中,若,,,则符合题意的b的值有_____个。
(3)在ABC 中,,,,如果利用正弦定理解三角形有两解,求x 的取值范围。
(答案:(1)有两解;(2)0;(3))例2.在ABC 中,已知,,,判断ABC 的类型。
高中数学 (1.1.3 解三角形的进一步讨论)示范教案 新人教A版必修5
1.1.3 解三角形的进一步讨论从容说课本节课中,应先通过分析典型例题,帮助学生理解并掌握正弦定理和余弦定理;应指出正弦定理和余弦定理是相通的,凡是能用正弦定理解的三角形,用余弦定理也可以解,反之亦然.但解题的时候,应有最佳选择.教学过程中,我们应指导学生对利用正弦定理和余弦主要途径有两条:(1)化边为角,然后通过三角变换找出角与角之间的关系,进而解决问题;(2)化角为边,将三角问题转化为代数问题加以解决.一般地,当已知三角形三边或三边数量关系时,常用余弦定理;若既有角的条件,又有边的条件,通常利用正弦定理或余弦定理,将边化为角的关系,利用三角函数公式求解较为简便.总之,关键在于灵活运用定理及公式.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;2.三角形各种形状的判定方法;3.三角形面积定理的应用.教学难点1.利用正、余弦定理进行边角互换时的转化方向;2.三角恒等式证明中结论与条件之间的内在联系的寻求;3.正、余弦定理与三角形的有关性质的综合运用.教具准备 投影仪、幻灯片第一张:课题引入图片(记作1.1.3A)正弦定理:R Cc B b A a 2sin sin sin ===; 余弦定理:a 2=b 2+c 2-2bcco s A ,b 2=c 2+a 2-2caco s B ,c 2=a 2+b 2-2abco s C ,bc a c b A 2cos 222-+=,ca b a c B 2cos 222-+= ,abc b a C 2cos 222-+=.第二张:例3、例4(记作1.1.3 B )[例3]已知△ABC , BD 为角B 的平分线,求证: AB ∶BC =AD ∶DC .[例4]在△ABC 中,求证:a 2sin2B +b 2sin2A =2ab sin C .第三张:例5(记作1.1.3C)[例5]在△ABC 中,bco s A =aco s B ,试判断三角形的形状.三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;2.三角形各种形状的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师 前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容 (给出幻灯片 1.1.3A ).从幻灯片大体可以看出,正弦定理、余弦定理实质上反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在判断三角形形状和证明三角恒等式时的应用.推进新课思考:在△ABC 中,已知A =22c m ,B =25c m,A =133°,解三角形.(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.下面进一步来研究这种情形下解三角形的问题.【例1】在△ABC 中,已知A ,B ,A ,讨论三角形解的情况.师 分析:先由a A b B sin sin =可进一步求出B ;则C =180°-(A +B ),从而A C a c sin sin =. 一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况.1.当A 为钝角或直角时,必须a >b 才能有且只有一解;否则无解.2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a <b ,那么可以分下面三种情况来讨论:(1)若a >b sin A ,则有两解;(2)若a =b sin A ,则只有一解;(3)若a<b sin A,则无解.(以上解答过程详见课本第9到第10页)师注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且b sin A<a<b时,有两解;其他情况时则只有一解或无解.(1)A为直角或钝角(2)A为锐角【例2】在△ABC中,已知a =7,b=5,c =3,判断△ABC的类型.分析:由余弦定理可知a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
人教A版高中数学必修5《一章 解三角形 1.1 正弦定理和余弦定理 解三角形的进一步讨论》优质课教案_17
课题: §1.1.3解三角形的进一步讨论教材分析:本课是人教A 版数学必修5第一章解三角形中学习了正弦定理、余弦定理的公式及基本应用的延续。
对于解三角形问题中已知两边和其中一边的对角(SSA)的情况,解的个数往往是不确定的。
在人教版的第一章"解三角形"的探究与发现"解三角形的进一步讨论"一文中,编者通过正弦定理讨论解的情况,但是在教学中学生用此法来判断三角形解的个数,感觉很抽象很难入手。
本人在教学过程不断实践和反馈中,总结了比较直观易懂的讨论三角形解的情况的方法:利用尺规作图,观察交点情况;利用SSA 解个数总结口诀解题;利用大边对大角,大角对大边辅助判断。
学情分析 :学生已经学习了正弦定理和余弦定理,在知识上具备研究问题的基础。
对于本节课内容很多学生对教材的解法感到生疏,觉得很抽象。
本节课利用几何画板探讨解决问题的学习过程,通过数与形的结合,让学生对三角形解的个数问题进一步掌握,在知识的学习过程中,由数到形,再由形到数的学习过程,也实践了由具体到抽象,由特殊到一般的研究问题的方法,对数形结合思想和由具体到抽象的研究方法有一定的认识和体会。
教学目标:知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形。
过程与方法:通过引导学生分析,解答典型例子,使学生学会数形结合求解三角形问题。
情感态度与价值观:激发学生学习数学的兴趣,同时培养学生应用数形结合思想解决数学问题的能力 重点:掌握判断解三角形问题解的个数的方法,能够熟练运用此方法判断解三角形的个数问题。
难点:利用画图来表示三角形解的个数。
教学过程:一、复习准备:正弦定理:R C c B b A a 2sin sin sin ===公式特征:对边对角(解决对边对角问题)SinA=20015030==⇒A A 或 SinA=220013545==⇒A A 或 SinA=230012060==⇒A A 或 二、讲授新课:[创设情景]思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。
新课标人教A版必修5第一章《解三角形》全章教案
(图 1.1-2) 思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析) 可分为锐角三角形和钝角三角形两种情况: 如图 1.1-3,当 ABC 是锐角三角形时,设边 AB 上的高是 CD,根据任意角三角函数的定义,有 CD= a sin B b sin A ,则 同理可得 从而
高中数学新课标必修 5 第一章
高中数学新课标必修 5 第一章
数学 5
(一)课标要求
第一章 解三角形
章节总体设计
如何看这两个定理之间的关系?” ,并进而指出, “从余弦定理以及余弦函数的性质可知,如果一个三角形 两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对 的角是钝角; 如果大于第三边的平方, 那么第三边所对的角是锐角.从上可知, 余弦定理是勾股定理的推广.” 3.重视加强意识和数学实践能力 学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力 较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数 学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的 问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学 思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用 于实际问题。 (三)教学内容及课时安排建议 1.1 正弦定理和余弦定理(约 3 课时) 1.2 应用举例(约 4 课时) 1.3 实习作业(约 1 课时) (四)评价建议 1.要在本章的教学中,应该根据教学实际,启发学生不断提出问题,研究问题。在对于正弦定理和余 弦定理的证明的探究过程中,应该因势利导,根据具体教学过程中学生思考问题的方向来启发学生得到自 己对于定理的证明。如对于正弦定理,可以启发得到有应用向量方法的证明,对于余弦定理则可以启发得 到三角方法和解析的方法。在应用两个定理解决有关的解三角形和测量问题的过程中,一个问题也常常有 多种不同的解决方案,应该鼓励学生提出自己的解决办法,并对于不同的方法进行必要的分析和比较。对 于一些常见的测量问题甚至可以鼓励学生设计应用的程序,得到在实际中可以直接应用的算法。 2.适当安排一些实习作业,目的是让学生进一步巩固所学的知识,提高学生分析问题的解决实际问题 的能力、动手操作的能力以及用数学语言表达实习过程和实习结果能力,增强学生应用数学的意识和数学 实践能力。教师要注意对于学生实习作业的指导,包括对于实际测量问题的选择,及时纠正实际操作中的 错误,解决测量中出现的一些问题。
人教A版高中数学必修5《一章 解三角形 1.1 正弦定理和余弦定理 解三角形的进一步讨论》优质课教案_22
专题 三角恒等变换与解三角形教学目标:能够熟练运用正弦定理、余弦定理等知识和方法解决一些与三角形有关的问题教学重点:正弦定理、余弦定理的简单运用教学难点:正弦定理、余弦定理的综合运用教学用具:多媒体、投影教学方法:讲练结合1.以1~2个小题或一道大题形式考查三角函数的基本公式和正、余弦定理,包括化简、求值、求三角形面积、判断三角形的形状等.2.将解三角形或三角函数的图象与性质与三角恒等变换、平面向量知识揉合在一起,有时也与不等式、函数最值结合,考查应用所学知识分析解决问题能力和应用意识,难度为中等或容易题.教学过程:一、选择题1.(2016·河南中原名校3月联考)函数f (x )=12sin 2x +12tan π3cos 2x 的最小正周期为( )A.π2B .πC .2πD .4π 解析:∵f (x )=12sin 2x +32cos 2x =sin ⎝ ⎛⎭⎪⎫2x +π3, ∴函数f (x )的最小正周期T =2π2=π. 答案:B2.(2016·全国Ⅱ卷)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin 2α=( ) A.725 B.15 C .-15 D .-725解析:∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin 2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos2⎝ ⎛⎭⎪⎫π4-α= 2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725. 答案:D3.(2016·山东卷)△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π6解析:由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A ,∴2b 2(1-sinA )=2b 2(1-cos A ),∴sin A =cos A ,即tan A =1,又0<A <π,∴A =π4. 答案:C4.(2014·全国Ⅱ卷)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1解析:S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝⎛⎭⎪⎫-22=5,∴AC = 5. 答案:B二、填空题5.(2016·浙江卷)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.解析:∵2cos 2x +sin 2x =1+cos 2x +sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4+1=A sin(ωx +φ)+b ,∴A =2,b =1.答案:2 16.在△ABC中,角A,B,C所对的边分别为a,b,c,且2a sin A=(2sin B +sin C)b+(2c+b)·sin C,则A=________.解析:根据正弦定理得2a2=(2b+c)b+(2c+b)c,即a2=b2+c2+bc.由余弦定理得a2=b2+c2-2bc cos A,故cos A=-12,又A为三角形的内角,故A =120°.答案:120°三、解答题7.(2015·全国Ⅰ卷)已知a,b,c分别为△ABC内角A,B,C的对边,sin2B =2sin A sin C.(1)若a=b,求cos B;(2)设B=90°,且a=2,求△ABC的面积.解:(1)由题设及正弦定理可得b2=2ac.又a=b,可得b=2c,a=2c.由余弦定理可得cos B=a2+c2-b22ac=14.(2)由(1)知b2=2ac.∵B=90°,由勾股定理得a2+c2=b2,故a2+c2=2ac,得c=a= 2.∴△ABC的面积为12×2×2=1.8.(2016·广州综合测试(二))在△ABC中,a,b,c分别为内角A,B,C的对边,2b sin B=(2a+c)sin A+(2c+a)sin C.(1)求B的大小;(2)若b=3,A=π4,求△ABC的面积.解:(1)∵2b sin B=(2a+c)sin A+(2c+a)sin C,由正弦定理得2b2=(2a+c)a+(2c+a)c,化简得a2+c2-b2+ac=0,∴cos B=a2+c2-b22ac=-ac2ac=-12.∵0<B <π,∴B =2π3. (2)∵A =π4, ∴C =π-π4-2π3=π3-π4. ∴sin C =sin ⎝ ⎛⎭⎪⎫π3-π4=sin π3cos π4-cos π3sin π4=6-24. 由正弦定理得c sin C =b sin B, ∵b =3,B =2π3, ∴c =b sin C sin B =6-22. ∴△ABC 的面积S =12bcsin A =12×3×6-22×sin π4=3-34.。
高中数学 第一章 解三角形教学设计 新人教A版必修5-新人教A版高二必修5数学教案
(新课标)2015-2016学年高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师 本章我们共学习了哪些内容? 生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和类型(3)在有解时只有一解,R CcB b A a 2sin sin sin === 一边(4)已知两边及其中一边的对角类型(4)可有解、一解和无解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C (5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan 12tan2tan 2-=-=-=C CC . 师 思路非常清晰,请同学们思考本题共涉及到了哪些知识点? 生 正弦定理、余弦定理与三角形面积公式. 生 还有余切的二倍角公式. 师 你能总结这类题目的解题思路吗?生 拿到题目不能盲目下手,应该先找到解题切入口. 师 对,你讲得很好.生 正弦定理、余弦定理都要试试.【例3】 将一块圆心角为120°,半径为20 c m 的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA 上,或让矩形一边与弦AB 平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值. 师 本题是应用题,怎么处理?生 由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论. 解:按图(1)的裁法:矩形的一边O P 在OA 上,顶点M 在圆弧上,设∠M OA =θ,则|MP|=20sinθ,|OP |=20co sθ, 从而S=400sinθco sθ=200sin2θ, 即当4πθ=时,S m a x =200.按图(2)的裁法:矩形的一边PQ 与弦AB 平行,设∠M O Q=θ,在△M O Q 中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin 2340120sin sin 20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到0.1°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为104.5°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为104.5°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .8.2C .10.3D .9.83.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) A.d 1>d 2B.d 1=d 2C.d 1<d 2D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:1.C 2.D 3.C 4.等腰5.70°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值X 围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。
高中数学新人教版A版精品教案《探究与发现 解三角形的进一步讨论》
正弦定理和余弦定理探究与发现 解三角形的进一步讨论●教学目标知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
●教学重点在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形; 三角形各种类型的判定方法。
●教学难点正、余弦定理与三角形的有关性质的综合运用。
●教学过程(一)复习归纳:1正弦定理:sin sin a b A B =sin c C ==++=++2sin sin sin a b c R A B C; 或=2sin a R A ,=2sin b R B ,=2sin c R C余弦定理:2222cos b a c ac B =+-2222cos a b c bc A =+-2222cos c a b ab C =+- 或222cos 2+-=b c a A bc ,222cos 2+-=a c b B ac ,222cos 2+-=b a c C ba2正弦定理可解决的类型:(1)已知两角和任一边,求其它两边及一角;(2)已知两边和其中一边对角,求另一边的对角。
余弦定理可解决的类型:(1)知三角形的任意两边及它们的夹角就可以求出第三边;(2)已知三角形的三条边就可以求出其它角。
(二)创设情景思考1:20,28,40,ABC a b A B C ===在△中,已知求和。
引申:将上题已知条件改为以下几种情况,结果如何?120,60a b A === (一解)220,60a b A === (一解)315,20,60a b A === (无解)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解,一解,两解的情形。
广东省梅州市高中数学 第一章 解三角形 1.1.3 解三角
§1.1.3 解三角形的进一步讨论●教学目标知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
●教学重点 在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
●教学难点正、余弦定理与三角形的有关性质的综合运用。
●教学过程Ⅰ.课题导入[创设情景]思考:在∆ABC 中,已知22a cm =,25b cm =,0133A =,解三角形。
(由学生阅读课本第9页解答过程) 从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。
下面进一步来研究这种情形下解三角形的问题。
Ⅱ.讲授新课[探索研究]例1.在∆ABC 中,已知,,a b A ,讨论三角形解的情况 分析:先由sin sin b A B a =可进一步求出B ; 则0180()C A B =-+ 从而sin a C c A= 1.当A 为钝角或直角时,必须a b >才能有且只有一解;否则无解。
2.当A 为锐角时,如果a ≥b ,那么只有一解;如果a b <,那么可以分下面三种情况来讨论:(1)若sin a b A >,则有两解;(2)若sin a b A =,则只有一解;(3)若sin a b A <,则无解。
(以上解答过程详见课本第910页)评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且sin b A a b <<时,有两解;其它情况时则只有一解或无解。
高中数学 第一章 解三角形教案 完整版 新人教A版必修5
数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年高中数学第一章《解三角形的进一步讨论》教案新人教A版必修51
2019-2020年高中数学第一章《解三角形的进一步讨论》教案新人教A
版必修5
授课类型:新授课●教学目标
知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
●教学重点
在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
三角形各种类型的判定方法;三角形面积定理的应用。
●教学难点
正、余弦定理与三角形的有关性质的综合运用。
●教学过程
Ⅰ.课题导入
[创设情景]
思考:在ABC中,已知,,,解三角形。
(由学生阅读课本第9页解答过程)
从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形。
下面进一步来研究这种情形下解三角形的问题。
Ⅱ.讲授新课
[探索研究]
例1.在ABC中,已知,讨论三角形解的情况
分析:先由可进一步求出B;
则
从而
1.当A为钝角或直角时,必须才能有且只有一解;否则无解。
2.当A为锐角时,
如果≥,那么只有一解;
如果,那么可以分下面三种情况来讨论:
(1)若,则有两解;
(2)若,则只有一解;
(3)若,则无解。
(以上解答过程详见课本第910页)
评述:注意在已知三角形的两边及其中一边的对角解三角形时,只有当A为锐角且时,有两解;其它情况时则只有一解或无解。
[随堂练习1]
(1)在ABC中,已知,,,试判断此三角形的解的情况。
(2)在ABC中,若,,,则符合题意的b的值有_____个。
(3)在ABC 中,,,,如果利用正弦定理解三角形有两解,求x 的取值范围。
(答案:(1)有两解;(2)0;(3))
例2.在ABC 中,已知,,,判断ABC 的类型。
分析:由余弦定理可知
222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆∆
(注意:是锐角A ⇔ABC 是锐角三角形∆)
解:,即,
∴。
[随堂练习2]
(1)在ABC 中,已知sin :sin :sin 1:2:3A B C =,判断ABC 的类型。
(2)已知ABC 满足条件,判断ABC 的类型。
(答案:(1);(2)ABC 是等腰或直角三角形)
例3.在ABC 中,,,面积为,求的值
分析:可利用三角形面积定理111sin sin sin 222S ab C ac B bc A ===以及正弦定理
解:由得,
则=3,即,
从而
Ⅲ.课堂练习
(1)在ABC 中,若,,且此三角形的面积,求角C
(2)在ABC 中,其三边分别为a 、b 、c ,且三角形的面积,求角C
(答案:(1)或;(2))
Ⅳ.课时小结
(1)在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;
(2)三角形各种类型的判定方法;
(3)三角形面积定理的应用。
Ⅴ.课后作业
(1)在ABC 中,已知,,,试判断此三角形的解的情况。
(2)设x 、x+1、x+2是钝角三角形的三边长,求实数x 的取值范围。
(3)在ABC 中,,,,判断ABC 的形状。
(4)三角形的两边分别为3cm ,5cm,它们所夹的角的余弦为方程的根,
求这个三角形的面积。
●板书设计
●授后记。