苏科版八年级数学上册全等三角形单元测试题
苏科新版八年级上册数学《第1章 全等三角形》单元测试卷(含解析)
苏科新版八年级上册数学《第1章全等三角形》单元测试卷一.选择题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC ≌△DEF的是()A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E 3.下列条件中,不能判定两个直角三角形全等的是()A.两个锐角对应相等B.一条边和一个锐角对应相等C.两条直角边对应相等D.一条直角边和一条斜边对应相等4.如图,△ABC≌△DEF,下列结论正确的是()A.AB=DF B.BE=CF C.∠B=∠F D.∠ACB=∠DEF 5.如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.AB=CD B.AC=BD C.AO=BO D.∠A=∠B 6.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形7.下列条件中,不能判定两个直角三角形全等的是()A.两直角边对应相等B.斜边和一条直角边对应相等C.两锐角对应相等D.一个锐角和斜边对应相等8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为4,则BE=()A.1B.2C.3D.49.在一次小制作活动中,艳艳剪了一个燕尾图案(如图所示),她用刻度尺量得AB=AC,BO=CO,为了保证图案的美观,她准备再用量角器量一下∠B和∠C是否相等,小麦走过来说:“不用量了,肯定相等”,小麦的说法利用了判定三角形全等的方法是()A.ASA B.SAS C.AAS D.SSS10.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD二.填空题11.能够的两个图形叫做全等图形.12.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.13.如图,点P在∠AOB的平分线上,若使△AOP≌△BOP,则需添加的一个条件是(只写一个即可,不添加辅助线).14.在如图所示的2×2方格中,连接AB、AC,则∠1+∠2=度.15.已知:△ABC≌△FED,若∠B=45°,∠C=40°,则∠F=度.16.如图,BC=EF,AC∥DF,请你添加一个适当的条件,使得△ABC≌△DEF,.(只需填一个答案即可)17.如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q从A点出发,分别在线段AC和射线AX上运动,且AB=PQ,当点P运动到AP=,△ABC与△APQ全等.18.如图,AC⊥BC,AD⊥DB,要使△ABC≌△BAD,还需添加条件.(只需写出符合条件一种情况)19.如图,在△ABC和△ADC中,AB=AD,BC=DC,∠B=130°,则∠D=°.20.如图,点D,E,F,B在同一条直线上,AB∥CD,AE∥CF且AE=CF,若BD=10,BF=3.5,则EF=.三.解答题21.如图所示,△ABC≌△ADE,BC的延长线交DA于F点,交DE于G点,∠ACB=105°,∠CAD=15°,∠B=30°,则∠1的度数为多少度.22.如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.23.如图所示,△ABC≌△AEC,B和E是对应顶点,∠B=30°,∠ACB=85°,求△AEC各内角的度数.24.如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.25.如图:AC∥EF,AC=EF,AE=BD.求证:△ABC≌△EDF.26.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.27.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与试题解析一.选择题1.解:全等图形是指两个图形的形状和大小都相等,故选:C.2.解:A、根据SAS即可推出△ABC≌△DEF,故本选项错误;B、不能推出△ABC≌△DEF,故本选项正确;C、根据AAS即可推出△ABC≌△DEF,故本选项错误;D、根据ASA即可推出△ABC≌△DEF,故本选项错误;故选:B.3.解:A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.4.解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∠B=∠DEF,∠ACB=∠F,∠A=∠D,∴BE=CF,故选:B.5.解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴B、C、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:A.6.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.7.解:A、正确.根据SAS即可判断.B、正确.根据HL即可判断.C、错误.两锐角对应相等不能判断两个三角形全等.D.正确.根据AAS即可判断.8.解:如图,过B点作BF⊥CD,与DC的延长线交于F点,∵∠ABC=∠CDA=90°,BE⊥AD,∴四边形EDFB是矩形,∠EBF=90°,∴∠ABE=∠CBF,∵在△BCF和△BAE中,∴△BCF≌△BAE(ASA),∴BE=BF,∴四边形EDFB是正方形,∴S四边形ABCD =S正方形BEDF=4,∴BE==2.故选:B.9.解:在△ABO和△ACO中,,∴△ABO≌△ACO(SSS),∴∠B=∠C,故选:D.10.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.二.填空题11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.13.解:∠APO=∠BPO等.理由:∵点P在∠AOB的平分线上,∴∠AOP=∠BOP,在△AOP和△BOP中∵,∴△AOP≌△BOP(ASA),故答案为:∠APO=∠BPO(答案不唯一).14.解:在△ACM和△BAN中,,∴△ACM≌△BAN,∴∠2=∠CAM,即可得∠1+∠2=90°.故答案为:90.15.解:∵△ABC≌△FED,∴∠F=∠A,∵∠B=45°,∠C=40°,∴∠A=95°,∴∠F=95°,故答案为:95°.16.解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.17.解:∵AX⊥AC,∴∠PAQ=90°,∴∠C=∠PAQ=90°,分两种情况:①当AP=BC=5时,在Rt△ABC和Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL);②当AP=CA=10时,在△ABC和△PQA中,,∴Rt△ABC≌Rt△PQA(HL);综上所述:当点P运动到AP=5或10时,△ABC与△APQ全等;故答案为:5或10.18.解:∵AC⊥BC,AD⊥DB,∴∠C=∠D=90°∵AB为公共边,要使△ABC≌△BAD∴添加AC=BD或BC=AD或∠DAB=∠CBA或∠CAB=∠DBA后可分别根据HL、HL、AAS、AAS判定△ABC≌△BAD.19.解:在△ADC和△ABC中,,∴△ABC≌△ADC(SSS),∴∠D=∠B,∵∠B=130°,∴∠D=130°,故答案为:130.20.解:∵AB∥CD,∴∠B=∠D,∵AE∥CF,∴∠AEB=∠CFD,在△ABE和△CFD中,,∴△ABE≌△CFD,∴BE=DF,∵BD=10,BF=3.5,∴DF=BD﹣BD=6.5,∴BE=6.5,∴EF=BE﹣BF=6.5﹣3.5=3.故答案为3三.解答题21.解:∵△ABC≌△ADE,∴∠D=∠B=30°,∵∠ACB=∠CAD+∠AFC,∴∠AFC=∠ACB﹣∠CAD=90°,∴∠DFG=90°,∴∠AFC=90°,∴∠1=180°﹣∠D﹣∠DFG=180°﹣90°﹣30°=60°.22.证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).23.解:∵△ABC≌△AEC,∴∠B=∠E,∠BAC=∠EAC,∠ACB=∠ACE.∵∠B=30°,∠ACB=85°,∴∠E=30°,∠ACE=85°,∠ACB=180°﹣∠B﹣∠ACB=65°,∴∠EAC=65°.故∠E=30°,∠ACE=85°,∠EAC=65°.24.解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.25.证明:∵AC∥EF,∴∠CAB=∠FED,∵AE=BD,∴AE+EB=BD+EB,即AB=ED,又∵AC=EF,∴△ABC≌△EDF.26.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.27.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
苏科版八年级数学上册第一章 全等三角形 单元测试卷(含答案)
CE=BF,
∴△EAC≌△FDB(AAS),故C不符合题意;
D.当AE=DF时,不能使△EAC≌△FDB.
故选D.
3.D
【解析】∵△ABC≌△DEF,
∴∠D=∠A=100°,
∴∠DEF=180°﹣∠D﹣∠F=34°,
故选D.
4.D
【解析】∵ 平分 ,
∴∠DOC=∠BOC,
∵ ,
∴∠DCO=∠BOC,
24.如图,已知 ,点 、 在线段 上.
(1)线段 与 的数量关系是:_________,判断该关系的数学根据是:(用文字表达);
(2)判断 与 之间的位置关系,并说明理由.
25.已知:如图,点A、B、C、D在一条直线上,AC=DB,AE=DF,BE=CF.求证:△ABE≌△DCF.
26.小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=BD,则△ACB与△ADB有怎样的关系?
∴ ,
(2)结论:AF=AG,AF⊥AG.理由如下:
在△ABF和△GCA中, ,
∴△ABF≌△GCA(SAS),
∴AF=AG,∠GAC=∠AFB,
∵∠AFB=∠ADB+∠FAD,∠GAC=∠GAF+∠FAD,
∴∠GAF=∠ADF,
∵∠ADF=90°,
∴∠GAF=90°,
∴AG⊥AF,AG=AF.
22.(1)见解析;(2)78°
∴∠DOC=∠DCO,
∴CD=OD=4cm,
故选:D.
5.B
【解析】解:∵AB⊥BD,AC⊥CD,
∴∠B=∠C=90°,
∴∠A+∠AEB=∠D+∠CED=90°.
又∵∠AEB=∠CED,
苏科版八年级数学上册第1章《全等三角形》单元测试(含答案)
苏科版八年级数学上册第1章《全等三角形》单元测试一.选择题1.下列各组中的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形3.如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是()A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D 4.图中的两个三角形全等,则∠1等于()A.45°B.62°C.73°D.135°5.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°6.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是()A.2 B.3 C.5 D.77.下列说法正确的是()A.周长相等的两个三角形全等B.如果三角形的三个内角满足∠A:∠B:∠C=1:2:3.则这个三角形是直角三角形C.从直找外一点到这条直线的垂线段,叫做这点到直线的距离D.两条直线被第三条直线所截,同位角相等二.填空题8.如图,四边形ABCD≌四边形A′B′C′D′,则∠A的大小是.9.如图所示的网格是正方形网格,图形的各个顶点均为格点,则∠1+∠2=.10.如图,四边形ABCD中,∠BAC=∠DAC,请补充一个条件,使△ABC≌△ADC.11.如图,已知△ABC≌△ABD,且点C与点D对应,点A与点A对应,∠ACB=30°,∠ABC=85°,则∠BAD的度数为.12.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为.13.如图,已知△ABD≌△ACE,∠A=53°,∠B=22°,则∠C=°.14.如图是5×5的正方形网格,△ABC的顶点都在小正方形的顶点上,像△ABC这样的三角形叫格点三角形.画与△ABC有一条公共边且全等的格点三角形,这样的格点三角形最多可以画个.三.解答题15.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).16.如图,点E在AB上,△ABC≌△DEC,求证:CE平分∠BED.17.如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC=BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为、,结论为;(2)证明你的结论.18.已知:如图,AC,DB相交于点O,AB=DC,∠ABO=∠DCO.求证:(1)△ABO≌△DCO;(2)∠OBC=∠OCB.19.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC =4,∠D=30°,∠C=70°.(1)求线段AE的长.(2)求∠DBC的度数.20.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21.如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.参考答案一.选择题1.解:A、两个图形不能完全重合,故本选项错误;B、两个图形能够完全重合,故本选项正确;C、两个图形不能完全重合,故本选项错误;D、两个图形不能完全重合,故本选项错误;故选:B.2.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.3.解:在△ABC和△DCB中,∵∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,△ABC≌△DCB(ASA),故A能证明;B:当AB=DC时,不能证明两三角形全等,故B不能证明;C:当AC=DB时,△ABC≌△DCB(SAS),故C能证明;D:当∠A=∠D时,△ABC≌△DCB(AAS),故D能证明;故选:B.4.解:∵两个三角形全等,∴边长为a的对角是对应角,∴∠1=73°,故选:C.5.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.6.解:∵△ABC≌△DEF,BC=7,∴EF=BC=7,∴CF=EF﹣EC=3,故选:B.7.解:A、周长相等的两个三角形,不一定全等,说法错误,不符合题意;B.三角形三个内角的比是1:2:3,则这个三角形的最大内角的度数是×180°=90°,即这个三角形是直角三角形,说法正确,符合题意;C.直线外一点到这条直线的垂线段的长度,叫做这点到该直线的距离,说法错误,不合题意;D.两条直线被第三条直线所截,同位角相等,是假命题.两直线不平行,没有这个性质.不符合题意;故选:B.二.填空题8.解:∵四边形ABCD≌四边形A'B'C'D',∴∠D=∠D′=130°,∴∠A=360°﹣∠B﹣∠C﹣∠D=360°﹣75°﹣60°﹣130°=95°,故答案为:95°.9.解:如图所示:由题意可得:∠1=∠3,则∠1+∠2=∠2+∠3=135°.故答案为:135°.10.解:添加的条件是AD=AB,理由是:在△ABC和△ADC中,∴△ABC≌△ADC(SAS),故答案为:AD=AB(答案不唯一).11.解:在△ABC中,∵∠ACB=30°,∠ABC=85°,∠BAC+∠ACB+∠ABC=180°,∴∠BAC=180°﹣∠ACB+∠ABC=65°,∵△ABC≌△ABD,且点C与点D对应,点A与点A对应,∴∠BAD=∠BAC=65°,故答案为65°.12.解:∵△ABE≌△ACF∴AC=AB=5∴EC=AC﹣AE=5﹣2=3,故答案为:3.13.解:∵△ABD≌△ACE,∴∠C=∠B,∵∠B=22°,∴∠C=22°,故答案为:22.14.解:如图,以BC为公共边可画出△BDC,△BEC,△BFC三个三角形和原三角形全等.以AB为公共边可画出三个三角形△ABG,△ABM,△ABH和原三角形全等.所以可画出6个.故答案为:6.三.解答题15.解:如图所示:.16.证明:∵△ABC≌△DEC,∴∠B=∠DEC,BC=EC,∴∠B=∠BEC,∴∠BEC=∠DEC,∴CE平分∠BED.17.(1)解:由AAS,选的条件是:①,③,结论是②,故答案为:①,③,②(答案不唯一);(2)证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.18.证明:(1)∵∠AOB=∠COD,∠ABO=∠DCO,AB=DC,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);(2)由(1)知,△ABO≌△DCO,∴OB=OC∴∠OBC=∠OCB.19.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.20.(1)证明:∵△ABC≌△DEC,∴CB=CE,∠DCE=∠ACB,∴∠CEB=∠B=65°,在△BEC中,∠CEB+∠B+∠ECB=180°,∴∠ECB=180°﹣65°﹣65°=50°,又∠DCE=∠ACB,∴∠DCA=∠ECB=50°;(2)解:∵△ABC≌△DEC,∴∠D=∠A=20°,在△DFC中,∠DFA=∠DCA+∠D=50°+20°=70°.21.(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.。
苏科版八年级数学上册试题 第1章 全等三角形 单元测试卷(含详解)
第1章《 全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.下列说法正确的是( )A .两个等边三角形一定全等B .腰对应相等的两个等腰三角形全等C .形状相同的两个三角形全等D .全等三角形的面积一定相等2.已知与全等,A 、B 、C 的对应点分别为D 、E 、F ,且E 点在AE 上,B 、F 、C 、D 四点共线,如图所示若,,则下列叙述何者正确?( )A .,B .,C .,D .,3.如图,在△ABC 中,AB =BC ,点D 为AC 上的点,连接BD ,点E 在△ABC 外,连接AE ,BE ,使得CD =BE ,∠ABE =∠C ,过点B 作BF ⊥AC 交AC 点F ,若∠BAE =21°,∠C =28°,则∠FBD =( )A .49°B .59°C .41°D .51°4.如图,有一块边长为4的正方形塑料模板,将一块足够大的直角三角板的直角顶点落在点,两条直角边分别与交于点F ,与延长线交于点E .则四边形的面积是( )ABC V DEF V .=40A ∠︒=35CED ∠︒=EF EC =AE FC=EF EC AE FC ≠EF EC ≠=AE FC EF EC ≠AE FC≠ABCD A CD CB AECFA .4B .6C .10D .165.如图,在的网格中,每一个小正方形的边长都是1,点,,,都在格点上,连接,相交于,那么的大小是( )A .B .C .D .6.△ABC 中,AB =AC ,∠ABC =72°,以B 为圆心,以任意长为半径画弧,分别交BA 、BC 于M 、N ,再分别以M 、N为圆心,以大于MN 为半径画弧,两弧交于点P ,射线BP 交AC 于点D ,则图中与BC 相等的线段有( )A .BD B .CD C .BD 和AD D .CD 和AD7.如图,在Rt △ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AB 、AC 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,射线AP 交边BC 于点D .下列说法错误的是( )33⨯A B C D AC BD P APB ∠80︒60︒45︒30︒1212A .B .若,则点D 到AB 的距离为2C .若,则D .8.如图,长方形中,点为上一点,连接,将长方形沿着直线折叠,点恰好落在的中点上,点为的中点,点为线段上的动点,连接、,若、、,则的最小值是( )A .B .C .D .9.如图,点在线段上,于,于.,且,,点以的速度沿向终点运动,同时点以的速度从开始,在线段上往返运动(即沿运动),当点到达终点时,,同时停止运动.过,分别作的垂线,垂足为,.设运动时间为,当以,,为顶点的三角形与全等时,的值为( )A .1或3B .1或C .1或或 D .1或或510.如图,在中,,和的平分线、相交于点,交于点,交于点,若已知周长为,,,则长为( )CAD BAD ∠=∠2CD =30B ∠=CDA CAB ∠=∠2ABD ACDS S =V V ABCD E AD CE ABCD CE D AB F G CF P CE PF PG AE a =ED b =AF c =PF PG +a c b +-2b c +2a b c ++a b+C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒5cm AC =6cm CE =P 2cm/s A C E →→E Q 3cm/s E EC E C E C →→→→⋅⋅⋅P P Q P Q BD M N s t P C M QCN △t 115115235115ABC V 60A ∠=︒ABC ∠ACB ∠BD CE O BD AC D CE AB E ABC V 207BC =:4:3AE AD =AEA. B . C . D .4二、填空题(本大题共8小题,每小题4分,共32分)11.如图,已知正方形中阴影部分的面积为3,则正方形的面积为 .12.数学课上,老师出示如下题目:“已知:.求作:.”如图是小宇用直尺和圆规的作法,其中的道理是作出△,根据全等三角形的性质,得到.△的依据是 .13.如图,已知,,,直线与,分别交于点,,且,,则的度数为 .14.如图,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM =NBC =∠90°,连接MN ,已知MN =4,则BD = .187247267AOB ∠A O B AOB '''∠=∠ΔC O D COD ''≅'A O B AOB '''∠=∠ΔC O D COD ''≅'AB AD =AC AE =BC DE =BC AD DE F G 65DGB ∠=︒120EAB ∠=︒CAD ∠15.如图,为的平分线,为上一点,且于点,,给出下列结论:①;②;③;④;⑤四边形的面积是面积的2倍,其中结论正确的个数有 .16.如图,把两块大小相同的含45°的三角板ACF 和三角板CFB 如图所示摆放,点D 在边AC 上,点E 在边BC 上,且∠CFE =13°,∠CFD =32°,则∠DEC 的度数为 .17.如图,在中,,,,有下列结论:①;②;③连接,;④过点作交于点,连接,则.其中正确的结论有 .18.如图,在Rt △ABC 中,∠C =90°,两锐角的角平分线交于点P ,点E 、F 分别在边BC 、AC 上,且都不与点C 重合,若∠EPF =45°,连接EF ,当AC =6,BC =8,AB =10时,则△CEF的BN MBC ∠P BN PD BC ⊥D 180APC ABC ∠+∠=︒MAP ACB ∠=∠PA PC =2BC AB CD -=BP AC =BAPC PBD △ABC V AD BC ⊥AD BD =BF AC =ADC BDF △≌△BE AC ⊥DE 135AED ∠=︒D DM AB ∥AC M FM BF AM MD =+周长为 .三、解答题(本大题共6小题,共58分)19.(8分)如图,,点E 在BC 上,且,.(1) 求证:;(2) 判断AC 和BD的位置关系,并说明理由.BD BC =BE AC =DE AB =ABC EDB V V ≌20.(8分)如图,在五边形中,,.(1) 请你添加一个条件,使得,并说明理由;(2) 在(1)的条件下,若,,求的度数.21.(10分)在复习课上,老师布置了一道思考题:如图所示,点M ,N 分别在等边的边上,且,,交于点Q .求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1) 若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.ABCDE AB DE =AC AD =ABC DEA △△≌66CAD ∠=︒110B ∠=︒BAE ∠ABC V ,BC CA BM CN =AM BN 60BQM ∠=︒BM CN =60BQM ∠=︒(2) 若将题中的点M ,N 分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.22.(10分)如图1,点P 、Q 分别是边长为4cm 的等边三角形ABC 的边AB 、BC 上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s .(1)连接AQ 、CP 交于点M ,则在P ,Q 运动的过程中,证明≌;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P 、Q 运动几秒时,是直角三角形?,BC CA 60BQM ∠=︒ABQ ∆CAP ∆CMQ ∠PBQ ∆(4)如图2,若点P 、Q 在运动到终点后继续在射线AB 、BC 上运动,直线AQ 、CP 交点为M ,则变化吗?若变化说明理由,若不变,则求出它的度数。
苏科版数学八年级数学上册第一章《全等三角形》单元试题及答案
精选资料八上第一章《全等三角形》(满分:100分时间:60分钟)一、选择题(每题2分,共16分)1.如图,若OA=OB,OC=OD,∠O=50°,∠D=35°,则∠AEC的度数为( ) A.60° B.50° C.45° D.30°2.如图,小强利用全等三角形的知识丈量池塘两头M,N的距离.若△PQO≌△NMO,则只要测出其长度的线段是( )A.PO B.PQ C.MO D.MQ3.已知△A1B1C1与△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2.关于上述两个判断,以下说法正确的选项是( )A.①正确,②错误B.①错误,②正确C.①②都错误D.①②都正确4.如图,已知点A,D,C,F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要增添一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EFD.∠A=∠EDF5.如图,已知∠ 1=∠2,AC=AD,增添以下条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,此中能使△ABC≌△AED的条件的个数是( )A.4 B.3 C.2 D.16.如图,△ABD与△ACE均为正三角形.若AB<AC,则BE与CD之间的大小关系是( ) A.BE=CD B.BE>CD C.BE<CD D.大小关系不确立7.如图,在△ABC中,AB=AC,∠ABC,∠ACB的均分线BD,CE订交于点O,且BD交AC于点D,CE交AB于点E.某同学剖析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOF≌△COD;⑤△ACE≌△BCE.上述结论必定正确的选项是( )1精选资料A.①②③B.②③④C.①③⑤D.①③④8.如图,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD相于点O,AE与CD订交于点G,AC与BD订交于点F,连结OC,FG,有以下结论:①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.此中正确结论的个数是()A.1B.2C.3D.4二、填空题(每题2分,共20分)9.如图,为了使一扇旧木门不变形,木匠师傅在木门的反面加钉了一根木条,这样做的道理是_______.10.如图,OA=OB,OC=OD,若∠O=60°,∠C=25°,则∠BED=_______.11.如图,已知点C是∠AOB均分线上的点,点P,P'分别在OA,OB上,假如要获得OP=OP',需要增添以下条件中的某一个即可:①∠OCP=∠OCP';②∠OPC=∠OP'C;③PC=P'C;④PP'⊥OC.请你写出全部可能的结果的序号:_______.12.如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出以下结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.此中正确的结论是_______.(填序号)13.如图,在、四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为点E.若四边形ABCD的面积为16,则BE=_______.14.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D,E,AD,CE交于点H.若EH=EB=3,AE=4,则CH=_______.15.在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,垂足为点D.在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延伸线于点F.若EF=5cm,则AE=_______cm.2精选资料16.如图,小明为了丈量河的宽度,他站在河畔的点c处,头顶为点D,面向河对岸,压低帽檐使眼光正好落在河对岸的岸边点A,而后他姿势不变,在原地方转了180°,正好看见了他所在的岸上的一块石头B,他测出BC=30m,你能猜出河有多宽吗?谈谈原因,答:_______m.17.如图,高速公路上有A,B两点相距25km,C,D为两乡村,已知DA=10km,CB=15km,DA⊥AB,CB⊥AB,垂足分别为点A,B.现要在A,B两点间建一个服务站E,使得C,D两乡村到E站的距离相等,则AE的长是_______km.18.若三角形的两边长分别为5和7,则第三边上的中线长x的取值范围是_______.三、解答题(共64分)19.(此题12分)如图,把大小为4×4的正方形方格切割成两个全等图形,如图1.请在以下图中,沿着线画出四种不一样的分法,把4×4的正方形方格切割成两个全等图形.20.(此题8分)已知AD∥BC,AD=CB,AE=CF,请问∠B=∠D吗?为何?21.(此题8分)如图,已知C D⊥AB,BE⊥AC,垂足分别为点D,E,且BD=CE,BE交CD于点O.求证:AO均分∠BAC.22.(此题8分)如图,在四边形ABCD中,AB=AD,BC=DC,E为AC上的一动点(不与点A重合),在点E挪动的过程中BE和DE能否相等?若相等,请写出证明过程;若不相等,请说明原因.3精选资料23.(此题8分)如图,在四边形ABCD中,AB=BC,BF是∠ABC的均分线,AF∥DC,连结ACCF.求证:CA是∠DCF的均分线.24.(此题10分)两个大小不一样的等腰直角三角形三角板按图1所示的地点搁置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90°,B,C,E在同一条直线上,连结DC.请找出图2中与△ABE全等的三角形,并赐予证明(说明:结论中不得含有未表记的字母);证明:DC⊥BE.25.(此题12分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP也在直线l,边EF与边AC重合,且EF=FP.(1)在图1中,请你经过察看、丈量,猜想并写出AB与AP所知足的数目关系和地点关系;(2)将△EFP沿直线l向左平移到图三的地点时,EP交AC于点Q,连结AP,BQ,猜想并写出BQ与AP所知足的数目关系和地点关系,请证明你的猜想;将△EFP沿直线x向左平移到图3的地点时,EP的延伸线交AC的延伸线于点Q,连结AP,BQ,你以为(2)中所猜想的BQ与AP的数目关系和地点关系还建立吗?若建立,请给出证明;若不建立,请说明原因.4精选资料参照答案一、选择题1.A2.B3.D4.B5.B6.A7.D8.D二、填空题9.三角形拥有稳固性10.70°11.①②④12.①⑦③13.4 14.1 15.316.30 17.1518.1<x<6三、解答题19.四种不一样的分法如下图20.∠B=∠D.21.略22.相等.23.略24.(1)图2中△ACD≌△ABF (2)略25.(1)AB=AP,AB⊥AP(2)BQ=AP,BQ⊥AP.(3)建立.5。
苏科版八年级数学上册《第一章全等三角形》单元测试含答案
第一章全等三角形单元测试一、单选题(共10题;共30分)1.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A、∠A=∠CB、AD=CBC、BE='DF'D、AD∥BC2.如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列条件后,不能判定△ABE≌△ACD的是( )A、AD=AEB、BE=CDC、∠AEB=∠ADCD、AB=AC3.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC4.如图,在下列条件中,不能证明△ABD≌△ACD的是()A.BD=DC,AB=ACB.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CADD.∠B=∠C,BD=DC5.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°6.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是()A.∠M=∠NB.AM=CNC.AB=CDD.AM∥CN9.已知△ABC≌△DEF,∠A=50°,∠B=75°,则∠F的大小为()A.50°B.55°C.65°D.75°10.如图,在△ABC和△DEF中,给出以下六个条件中,以其中三个作为已知条件,不能判断△ABC和△DEF 全等的是()①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.A、①⑤②B、①②③C、④⑥①D、②③④二、填空题(共8题;共27分)11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=________°.12.如图所示,已知△ABC≌△ADE,∠C=∠E,AB=AD,则另外两组对应边为________,另外两组对应角为________.13.如图,△ACE≌△DBF,点A、B、C、D共线,若AC=5,BC=2,则CD的长度等于________.14.如图,AB=AD,只需添加一个条件________,就可以判定△ABC≌△ADE.15.△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为________.16.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=________.17.如图,△ABC≌△DEF,点F在BC边上,AB与EF相交于点P.若∠DEF=40°,PB=PF,则∠APF=________°.18.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是________.三、解答题(共5题;共37分)19.如图,已知△ABC≌△BAD,AC与BD相交于点O,求证:OC=OD.20.图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.21.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.22.已知命题:如图,点A,D,B,E在同一条直线上,且AD=BE,∠A=∠FDE,则△ABC≌△DEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.23.如图,已知点C是线段AB上一点,直线AM⊥AB,射线CN⊥AB,AC=3,CB=2.分别在直线AM上取一点D,在射线CN上取一点E,使得△ABD与△BDE全等,求CE2的值.四、综合题(共1题;共10分)24.定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图1,在△ABC中,CD是AB边上的中线.那么△ACD和△BCD是“朋友三角形”,并且S△ACD=S△BCD.应用:如图2,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=AD=4,BC=6,点E在BC上,点F在AD 上,BE=AF,AE与BF交于点O.(1)求证:△AOB和△AOF是“朋友三角形”;(2)连接OD,若△AOF和△DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ABC中,∠A=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积是________(请直接写出答案).答案解析一、单选题1、【答案】B【考点】全等三角形的判定【解析】【分析】由AE=CF可得AF=CE,再有∠AFD=∠CEB,根据全等三角形的判定方法依次分析各选项即可.【解答】∵AE=CF∴AE+EF=CF+EF,即AF=CE,∵∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA)∵BE=DF,∠AFD=∠CEB,AF=CE,∴△ADF≌△CBE(SAS)∵AD∥BC,∴∠A=∠C,∵∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA)故A、C、D均可以判定△ADF≌△CBE,不符合题意B、AF=CE,AD=CB,∠AFD=∠CEB无法判定△ADF≌△CBE,本选项符合题意.【点评】全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.2、【答案】C【考点】全等三角形的判定【解析】【分析】A、根据AAS(∠A=∠A,∠C=∠B,AD=AE)能推出△ABE≌△ACD,正确,故本选项错误;B、根据AAS(∠A=∠A,∠B=∠C,BE=CD)能推出△ABE≌△ACD,正确,故本选项错误;C、三角对应相等的两三角形不一定全等,错误,故本选项正确;D、根据ASA(∠A=∠A,AB=AC,∠B=∠C)能推出△ABE≌△ACD,正确,故本选项错误;故选C.3、【答案】C【考点】全等三角形的性质【解析】【解答】解:A、∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项错误;B、∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项错误;C、∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB,∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项正确;D、∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD,∴AD∥BC,故本选项错误;故选C.【分析】根据全等三角形的性质得出对应角相等,对应边相等,推出两三角形面积相等,周长相等,再逐个判断即可.4、【答案】D【考点】全等三角形的判定【解析】【解答】解:A、∵在△ABD和△ACD中∴△ABD≌△ACD(SSS),故本选项错误;B、∵在△ABD和△ACD中∴△ABD≌△ACD(SAS),故本选项错误;C、∵在△ABD和△ACD中∴△ABD≌△ACD(AAS),故本选项错误;D、不符合全等三角形的判定定理,不能推出△ABD≌△ACD,故本选项正确;故选D.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据全等三角形的判定定理逐个判断即可.5、【答案】D【考点】全等三角形的性质【解析】【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.6、【答案】D【考点】全等三角形的判定【解析】【解答】解:在△ABD与△CBD中,AD=CDAB=BCDB=DB ,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=S△ADB+S△BDC=12DB×OA+12DB×OC=12AC·BD故③正确;故选D.【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.7、【答案】D【考点】全等三角形的性质【解析】【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.8、【答案】B【考点】全等三角形的判定【解析】【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.9、【答案】B【考点】全等三角形的性质【解析】【解答】解:∵∠A=50°,∠B=75°,又∵∠A+∠B+C=180°,∴∠C=55°,∵△ABC≌△DEF,∴∠F=∠C,即:∠F=55°.故选B.【分析】由∠A=50°,∠B=75°,根据三角形的内角和定理求出∠C的度数,根据已知△ABC≌△DEF,利用全等三角形的性质得到∠F=∠C,即可得到答案.10、【答案】D【考点】全等三角形的判定【解析】【解答】解:在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);∴A不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(SSS);∴B不符合题意;在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴C不符合题意;在△ABC和△DEF中,D②③④不能判断△ABC和△DEF全等,故选D.【分析】根据全等三角形的判定方法对组合进行判断即可.二、填空题11、【答案】50【考点】全等三角形的性质【解析】【解答】因为∠B=100°,∠BAC=30°所以∠ACB=50°;又因为△ABC≌△ADE,所以∠ACB=∠AED =50°;【分析】首先根据全等三角形性质可得对应角相等,再结合图形找到全等三角形的那两个角对应相等,根据题意完成填空.12、【答案】BC=DE、AC=AE;∠B=∠ADE、∠BAC=∠DAE【考点】全等三角形的性质【解析】【解答】∵△ABC≌△ADE,∠C=∠E,AB=AD,∴AC=AE,BC=DE;∴∠BAC=∠DAE,∠B=∠ADE.【分析】由已知△ABC≌△ADE,∠C=∠E,AB=AD得C点与点E,点B与点D为对应点,然后根据全等三角形的性质可得答案.13、【答案】3【考点】全等三角形的性质【解析】【解答】解:∵△ACE≌△DBF,∴AC=BD=5,∴CD=BD﹣BC=5﹣2=3.故答案为:3.【分析】根据全等三角形对应边相等可得AC=BD,然后根据CD=BD﹣BC计算即可得解.14、【答案】∠B=∠D【考点】全等三角形的判定【解析】【解答】解:添加条件∠B=∠D,∵在△ABC和△ADE中,∴△ABC≌△ADE(ASA),故答案为:∠B=∠D.【分析】添加条件∠B=∠D,再由条件∠A=∠A,AB=AD,可利用ASA定理证明△ABC≌△ADE,答案不惟一.15、【答案】2或3【考点】全等三角形的判定【解析】【解答】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD= 12 AB=6cm,∵BD=PC,∴BP=8﹣6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s),故答案为:2或3.【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.16、【答案】45°【考点】全等三角形的性质【解析】【解答】解:∵∠BDC=35°,∠DBC=50°,∴∠BCD=180°﹣∠BDC﹣∠DBC=180°﹣35°﹣50°=95°,∵△ABC≌△DCB,∴∠ABC=∠BCD=95°,∴∠ABD=∠ABC﹣∠DBC=95°﹣50°=45°.故答案为:45°.【分析】根据三角形的内角和等于180°求出∠BCD,再根据全等三角形对应角相等可得∠ABC=∠BCD,然后列式进行计算即可得解.17、【答案】80【考点】全等三角形的性质【解析】【解答】解:∵△ABC≌△DEF,∴∠B=∠DEF=40°,∵PB=PF,∴∠PFB=∠B=40°,∴∠APF=∠B+∠PFB=80°,故答案为:80.【分析】由全等三角形的性质可求得∠B,再利用等腰三角形和外角的性质可求得∠APF.18、【答案】DC=BC或∠DAC=∠BAC【考点】全等三角形的判定【解析】【解答】解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC【分析】添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.三、解答题19、【答案】证明:∵△ABC≌△BAD,∴∠CAB=∠DBA,AC=BD,∴OA=OB,∴AC﹣OA=BD﹣OB,即:OC=OD.【考点】全等三角形的性质【解析】【分析】由△ABC≌△BAD,根据全等三角形的性质得出∠CAB=∠DBA,AC=BD,利用等角对等边得到OA=OB,那么AC﹣OA=BD﹣OB,即:OC=OD.20、【答案】解:对应顶点:A和G,E和F,D和J,C和I,B和H,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,e=11,α=90°.【考点】全等图形【解析】【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角可得对应顶点,对应边与对应角,进而可得a,b,c,e,α各字母所表示的值.21、【答案】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,AB=CB∠ABE=∠CBFBE=BF,∴△ABE≌△CBF(SAS).【考点】全等三角形的判定【解析】【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.22、【答案】解:是假命题.以下任一方法均可:①添加条件:AC=DF.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,AB=DE,∠A=∠FDE,AC=DF,∴△ABC≌△DEF(SAS);②添加条件:∠CBA=∠E.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,∠A=∠FDE,AB=DE,∠CBA=∠E,∴△ABC≌△DEF(ASA);③添加条件:∠C=∠F.证明:∵AD=BE,∴AD+BD=BE+BD,即AB=DE.在△ABC和△DEF中,∠A=∠FDE,∠C=∠F,AB=DE,∴△ABC≌△DEF(AAS)【考点】全等三角形的判定【解析】【分析】本题中要证△ABC≌△DEF,已知的条件有一组对应边AB=DE(AD=BE),一组对应角∠A=∠FDE.要想证得全等,根据全等三角形的判定,缺少的条件是一组对应角(AAS或ASA),或者是一组对应边AC=EF(SAS).只要有这两种情况就能证得三角形全等.23、【答案】解:如图,当△ABD≌△EBD时,BE=AB=5,∴CE2=BE2﹣BC2=25﹣4=21.【考点】全等三角形的判定【解析】【分析】由题意可知只能是△ABD≌△EBD,则可求得BE,再利用勾股定理可求得CE2四、综合题24、【答案】(1)证明:∵AD∥BC,∴∠OAF=∠OEB,在△AOF和△EOB中,,∴△AOF≌△EOB(AAS),∴OF=OB,则AO是△ABF的中线.∴△AOB和△AOF是“朋友三角形”(2)8或8【考点】全等三角形的判定【解析】【解答】(2)解:∵△AOF和△DOF是“朋友三角形”,∴S△AOF=S△DOF,∵△AOF≌△EOB,∴S△AOB=S△EOB,∵△AOB和△AOF是“朋友三角形”∴S△AOB=S△AOF,∴S△AOF=S△DOF=S△AOB=S△EOB,= ×4×2=4,∴四边形CDOE 的面积=S梯形ABCD﹣2S△ABE= ×(4+6)×4﹣2×4=12;拓展:解:分为两种情况:①如图1所示:∵S △ACD =S △BCD .∴AD=BD= AB=4,∵沿CD 折叠A 和A′重合,∴AD=A′D= AB= ×8=4,∵△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,∴S △DOC = S △ABC = S △BDC = S △ADC = S △A′DC ,∴DO=OB ,A′O=CO ,∴四边形A′DCB 是平行四边形,∴BC=A′D=4,过B 作BM ⊥AC 于M ,∵AB=8,∠BAC=30°,∴BM= AB=4=BC ,即C 和M 重合,∴∠ACB=90°,由勾股定理得:AC= =4 ,∴△ABC 的面积= ×BC×AC= ×4×4 =8 ; ②如图2所示:∵S△ACD=S△BCD.∴AD=BD= AB,∵沿CD折叠A和A′重合,∴AD=A′D= AB= ×8=4,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC= S△ABC= S△BDC= S△ADC= S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=4,过C作CQ⊥A′D于Q,∵A′C=4,∠DA′C=∠BAC=30°,∴CQ= A′C=2,∴S△ABC=2S△ADC=2S△A′DC=2× ×A′D×CQ=2× ×4×2=8;即△ABC的面积是8或8 ;故答案为:8或8 .【分析】应用:(1)由AAS证明△AOF≌△EOB,得出OF=OB,AO是△ABF的中线,即可得出结论;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE和梯形ABCD的面积的面积,根据S四边形CDOF=S矩形ABCD﹣2S△ABF即可求解.拓展:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积。
苏科新版八年级上册数学《第1章 全等三角形》 单元测试卷(,含答案)
苏科新版八年级上册数学《第1章全等三角形》单元测试卷(,含答案)一.选择题(共6小题,满分24分)1.如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②2.对于两个图形,下列结论:①两个图形的周长相等;②两个图形的面积相等;③能够完全重合的两个图形.其中能得出这两个图形全等的结论共有()A.0个B.1个C.2个D.3个3.如图,△OAB≌△OCD,若∠A=80°,OB=3,则下列说法正确的是()A.∠COD=80°B.CD=3C.∠D=20°D.OD=34.如图,已知MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN的是()A.AM=CN B.AC=BD C.AB=CD D.AM∥CN5.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF6.如图,AD是△ABC的中线,CE∥AB交AD的延长于点E,AB=5,AC=7,则AD的取值可能是()A.3B.6C.8D.12二.填空题(共6小题,满分24分)7.如图,AC=DB,AO=DO,CD=200m,则A,B两点间的距离为m.8.如图,AC,BD相交于点O,OB=OD,要使△AOB≌△COD,添加一个条件是.(只写一个)9.如图,△ACE≌△DBF,若∠A=66°,∠E=78°,则∠FBD的度数为.10.如图,已知点A、D、C、F在同一条直线上,∠B=∠E=90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是(只需写一个,不添加辅助线).11.如图,在4×4的正方形网格中,求α+β=度.12.如图,在△ABC中,E是AC边的中点,过点A作∠ABC平分线BD的垂线,垂足为D,连接DE,若DE=2,BC=8,则AB=.三.解答题(共6小题,满分72分)13.找出图中的全等图形.14.如图,已知△DEF的顶点E在△ABC的边BC上,F在BC的延长线上,且BE=CF,∠ABC=∠DEF,请你再添加一个条件,使得△ABC≌△DEF,并说明理由(不再添加其他线条和字母).15.如图2,是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=2.5m.乐乐在荡秋千过程中,当秋千摆动到最高点A时,过点A作AC⊥BD 于C,点A到地面的距离AE=1.5m(AE=CD),当他从A处摆动到A′处时,A′B=AB,若A′B⊥AB,作A′F⊥BD,垂足为F.求A′到BD的距离A′F.16.如图,已知△ABC≌△AEF中,∠EAB=26°,∠F=54°.(1)△ABC可以经过图形的变换得到△AEF,请你描述这个变换;(2)求∠AMB的度数.17.求证:一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等.要求:根据给出的Rt△ABC和Rt△A′B′C′(∠C=∠C′=90°,AC=A′C′),(1)在此图形上用尺规作出BC与B′C′边上的中线,不写作法,保留作图痕迹,(2)写出已知、求证和证明过程.18.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.参考答案与试题解析一.选择题(共6小题,满分24分)1.解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.2.解:①周长相等的两个图形不一定重合,所以这两个图形不一定全等;②面积相同而形状不同的两个图形不全等;③两个图形能够完全重合,则这两个图形全等.所以只有1个结论正确.故选B.3.解:∵△OAB≌△OCD,∠A=80°,OB=3,∴∠C=∠A=80°,OD=OB=3.所以选项ABC说法错误,选项D说法正确.故选:D.4.解:A、加上AM=CN不能证明△ABM≌△CDN,故此选项符合题意;B、加上AC=BD可得出AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;C、加上AB=CD,可利用SAS定理证明△ABM≌△CDN,故此选项不合题意;D、加上AM∥CN可证明∠A=∠NCB,可利用AAS定理证明△ABM≌△CDN,故此选项不合题意;故选:A.5.解:∵∠B=∠E=90°,AB=DE,∴当添加AC=DF或AD=CF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故选:D.6.解:∵AD是△ABC的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.二.填空题(共6小题,满分24分)7.解:∵AC=DB,AO=DO,∴BO=CO,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴AB=DC,∵CD=200m,∴AB=200m,即A,B两点间的距离是200m,故答案为:200.8.解:∵OB=OD,∠AOB=∠COD,OA=OC,∴△AOB≌△COD(SAS),∴要使△AOB≌△COD,添加一个条件是OA=OC,故答案为:OA=OC(答案不唯一).9.解:∵△ACE≌△DBF,∠A=66°,∠E=78°,∴∠D=∠A=66°,∠F=∠E=78°,∴∠FBD=180°﹣∠D﹣∠F=36°,故答案为:36°.10.解:∵∠B=∠E=90°,AB=DE,∴当添加AD=CF或AC=DF时,根据“HL”可判定Rt△ABC≌Rt△DEF.故答案为:AD=CF(或AC=DF).11.解:连接BC,∵AB=BC==,AC==,∴AB2+BC2=AC2,∴∠ABC=90°,∴∠BAC=∠ACB=45°,∵AB=BC=,AE=BD=1,BE=CD=2,∴△ABE≌△BCD,∴∠ACD=∠ABE=α,∵AE∥CD,∴∠DCA=∠CAE=β,∴α+β=∠BCA=45°,故答案为:45.12.解:如图,延长AD交BC于点F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠ADB=∠FDB=90°,在△ABD与△FBD中,,∴△ABD≌△FBD(ASA),∴AD=DF,AB=BF,∴点D是AF的中点,∵E是AC的中点,∴DE是△AFC的中位线,∴CF=2DE=4,∴AB=BF=BC﹣CF=8﹣4=4,故答案为:4.三.解答题(共6小题,满分72分)13.解:②与⑦是全等图形.14.证明:添加条件:∠A=∠D;理由如下:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS).15.解:∵A′B⊥AB,作A′F⊥BD,∴∠ACB=∠A'FB=90°,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS),∴A'F=BC,∴BC=BD﹣CD=2.5﹣1.5=1(m),∴A'F=1m,16.解:(1)∵△ABC≌△AEF,∠EAB=26°,∴△ABC绕点A顺时针旋转26°得到△AEF.(2)∵△ABC≌△AEF,∠F=54°,∴∠C=∠F=54°,∠EAF=∠BAC,∴∠FAC=∠EAB=26°,∴∠AMB=∠C+∠FAC=54°+26°=80°.17.解:(1)所作的图形如图所示:(2)已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AC=A′C′,AD 与A′D′分别为BC与B′C′边上的中线,且AD=A′D′,求证:Rt△ABC≌Rt△A′B′C′.证明:∵∠C=∠C′=90°,在Rt△ADC和Rt△A′D′C′中,,∴Rt△ADC≌Rt△A′D′C′(HL),∴CD=C′D′,∵AD与A′D′分别为BC与B′C′边上的中线,∴BC=2CD,B′C′=2C′D′,∴BC=B′C′,在Rt△ABC和Rt△A′B′C′中,,∴Rt△ABC≌Rt△A′B′C′(SAS).18.(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S=BC•DE=×5×4=10,△BCD∴△BCD的面积为10.。
苏科版八年级数学上册《第一章 全等三角形》单元检测卷(带答案)
苏科版八年级数学上册《第一章全等三角形》单元检测卷(带答案)一、选择题1.已知图中的两个三角形全等,则∠α的度数为A. 1050B. 750C. 600D. 4502.根据下列已知条件,能唯一画出△ABC的是( )A. AB=3,BC=4,CA=8B. ∠A=60°C. AB=4,BC=3,∠A=30°D. ∠C=90°3.小明同学有一块玻璃的三角板,不小心掉到地上碎成了三块,现要去文具店买一块同样的三角板,最省事的是( )A. 带②去B. 带①去C. 带③去D. 三块都带去4.如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD( )A. ∠B=∠CB. AE=ADC. BD=CED. BE=CD5.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M、N重合,过角尺顶点C作射线OC,由此作法便可得△NOC≌△MOC其依据是( )A. SSSB. SASC. ASAD. AAS6.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,BC=EF,∠B=∠E;③∠B=∠E,∠C=∠F,BC=EF;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有A. 1组B. 2组C. 3组D. 4组7.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是( )A. 50B. 62C. 65D. 688.尺规作图作∠AOB的平分线方法如下:如图,以点O为圆心,任意长为半径画弧分别交OA,OB于点C,D再CD长为半径画弧,两弧交于点P,作射线OP,由作法得△OCP≌△ODP的根分别以点C,D为圆心,以大于12据是( )A. SASB. ASAC. AASD. SSS9.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b则斜边BD的长是( )A. √ a2−b22B. √a2+b22C. a+bD. a−b二、填空题10.如图,已知AB=DE,∠B=∠E,请你添加一个适当的条件(填写一个即可),使得△ABC≌△DEC.11.如图△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为______.12.如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D②AC=DB③AB=DC其中不能确定△ABC≌△DCB的是_____(只填序号).13.如图,在△ABC中D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C是____度.14.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=3,CE=4.则两条凳子的高度之和为___________.15.如图,两根旗杆间相距20米,某人从点B沿BA走向点A,一段时间后他到达点M,此时他分别仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆BD的高为12米,该人的运动速度为2米/秒,则这个人运动到点M所用时间是秒.三、解答题16.已知:如图,E是BC上一点AB=EC,AB//CD,BC=CD求证:AC=ED.17.如图AB=AC,AD=AE,∠BAC=∠DAE.(1)求证:△ABD≌△ACE;(2)若∠1=25°,∠2=30°,求∠3的度数.18.如图,已知∠A=∠D=90°,E,F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF求证:△ABF≌△DCE.19.如图,在△ABC中AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足AE=CF,求证:∠ACB=90°.20.如图(1)AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm点P在线段AB上以1cm/s的速度由点A向点B 运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】【分析】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.根据全等三角形对应角相等可得∠D=∠A=60°,再根据三角形内角和定理可得答案.【解答】解:∵△ABC≌△DEF∴∠D=∠A=60°∴∠α=180°−60°−45°=75°故选:B.2.【答案】B【解析】解:A、错误∵3+4<8,不能构成三角形;B、正确.已知两角夹边,三角形就确定了;C、错误.边边角不能确定三角形;D、错误.一角一边不能确定三角形.故选:B.分析:根据三角形的三边关系以及确定三角形的条件有SAS、AAS、ASA、SSS、HL,即可判断.本题考查全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.3.【答案】C【解析】解:带③去,符合“角边角”可以配一块同样大小的三角板.故选:C.根据全等三角形的判定方法ASA即可得出结果.本题考查了全等三角形判定的应用,熟练掌握三角形全等的判定方法是解决问题的关键.4.【答案】D【解析】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.根据全等三角形的判定定理判断.本题考查的是全等三角形的判定,掌握全等三角形的判定定理是解题的关键.5.【答案】A【解析】【分析】此题主要考查学生对全等三角形判定定理的理解和掌握此题难度不大属于基础题.利用全等三角形判定定理AAS SAS ASA SSS对△MOC和△NOC进行分析即可作出正确选择.【解答】解:由题意可知OM=ON在△MOC和△NOC中{OM=ON CM=CN OC=OC,∴△MOC≌△NOC(SSS).故选A.6.【答案】C【解析】【分析】本题考查了全等三角形的判定熟记全等三角形的判定是解题关键.根据全等三角形判定的条件可得答案.【解答】解:①AB=DE BC=EF AC=DF;②AB=DE BC=EF∠B=∠E;③∠B=∠E∠C=∠F BC=EF;故选C.7.【答案】A【解析】【分析】本题考查的是全等三角形的判定的相关知识由AE⊥AB EF⊥FH BG⊥AG可以得到∠EAF=∠ABG而AE=AB∠EFA=∠AGB由此可以证明△EFA≌△ABG所以AF=BG AG=EF;同理证得△BGC≌△DHC GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB EF⊥FH∠EAF+∠BAG=90°∴AE=AB∠EFA=∠AGB∠EAF=∠ABG⇒△EFA≌△ABG∴AF=BG AG=EF.同理证得△BGC≌△DHC得GC=DH CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.8.【答案】D【解析】【分析】本题考查三角形全等的判定方法判定两个三角形全等的一般方法有:SSS SAS ASA AAS HL.注意:AAA SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与若有两边一角对应相等时角必须是两边的夹角.认真阅读作法从角平分线的作法得出△OCP与△ODP的两边分别相等加上公共边相等于是两个三角形符合SSS判定方法要求的条件答案可得.【解答】解:∵以O为圆心任意长为半径画弧交OA OB于C D即OC=OD;以点C D为圆心以大于12CD长为半径画弧两弧交于点P即CP=DP;∴在△OCP和△ODP中{C=ODOP=OPCP=DP,∴△OCP≌△ODP(SSS).故选D.9.【答案】B【解析】【分析】本题主要考查正方形的面积公式以及全等三角形的判定和性质深入理解题意是解决问题的关键.过A作AN⊥CB交CB的延长线于N作AM⊥EF交EF的延长线于M过D作DR⊥BH交BH于R延长FG 交DR 于Q 则四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形 利用这三个正方形之间的面积关系即可求出BD 2 进一步可求BD 的长.【解答】解:如图所示 过A 作AN ⊥CB 交CB 的延长线于N作AM ⊥EF 交EF 的延长线于M 过D 作DR ⊥BH 交BH 于R 延长FG 交DR 于Q∴△ABH △BCD △DEF △AGF 是四个全等的直角三角形∴四边形CEMN 是正方形 四边形QGHR 是正方形 四边形ABDF 是正方形∵CE =a HG =b∴正方形CEMN 的面积为a 2 正方形QGHR 的面积为b 2 正方形ABDF 的面积为BD 2故S △ABH +S △BDR +S △DFQ +S AGF =BD 2−b 2又a 2−b 2=2(S △ABH +S △BDR +S △DFQ +S AGF )即a 2−b 2=2(BD 2−b 2)得BD 2=a 2+b 22∴BD =√ a 2+b 22. 故选B10.【答案】BC =EC 或∠ACB =∠DCE 或∠A =∠D(本题答案不唯一)【解析】【分析】此题主要考查学生对全等三角形的判定这一知识点的理解和掌握 此题难度不大 属于基础题.本题要判定△ABC≌△DEC 已知AB =DE ∠B =∠E 具备了一组对边和一组对角对应相等 利用SAS 或者AAS 或ASA 即可判定两三角形全等了.【解答】解:①添加条件是:BC=EC在△ABC与△DEC中∴△ABC≌△DEC(SAS).故答案为BC=EC.②添加条件是:∠ACB=∠DCE在△ABC与△DEC中∴△ABC≌△DEC(AAS).故答案为∠ACB=∠DCE.③添加条件是:∠A=∠D在△ABC与△DEC中∴△ABC≌△DEC(ASA).故答案为∠A=∠D..故答案为:BC=ECE或∠ACB=∠DCE或∠A=∠D(本题答案不唯一三个答案任选一个) 11.【答案】45°【解析】解:∵∠B=70°∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°∵△ABC≌△ADE∴∠EAD=∠BAC=80°∴∠EAC=∠EAD−∠DAC=80°−35°=45°故答案为:45°由全等三角形的性质可得到∠BAC=∠EAD在△ABC中可求得∠BAC则可求得∠EAC.本题主要考查全等三角形的性质掌握全等三角形的对应边相等对应角相等是解题的关键.12.【答案】②【解析】解:∵已知∠ABC=∠DCB且BC=CB∴若添加①∠A=∠D则可由AAS判定△ABC≌△DCB;若添加②AC=DB则属于边边角的顺序不能判定△ABC≌△DCB;若添加③AB=DC则属于边角边的顺序可以判定△ABC≌△DCB.故答案为:②.一般三角形全等的判定方法有SSS SAS AAS ASA HL据此可逐个对比求解.本题考查全等三角形的几种基本判定方法只要判定方法掌握得牢固此题不难判断.13.【答案】30【解析】【分析】本题主要考查全等三角形的性质以及三角形内角和定理发现并利用∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°是正确解决本题的关键.因为三个三角形为全等三角形则对应角相等从而得到∠ADB=∠EDB=∠EDC∠DEC=∠DEB=∠A再利用三角形内角和定理得到∠ADB=∠EDB=∠EDC=60°∠DEC=∠DEB=∠A=90°最后在△DEC中利用三角形内角和定理求得∠C的度数.【解答】解:∵△ADB≌△EDB≌△EDC∴∠ADB=∠EDB=∠EDC又∵∠ADB+∠EDB+∠EDC=180°∴∠ADB=∠EDB=∠EDC=60°在△DEC中∴∠C=30°.故答案为30.14.【答案】7【解析】【分析】此题主要考查了全等三角形的判定与性质得出△ACD≌△CBE是解题关键.利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°则∠DAC=∠ECB在△ACD和△CBE中{∠CDA=∠BEC ∠DAC=∠ECB AC=CB,∴△ACD≌△CBE(AAS)故DC=BE=3则两条凳子的高度之和为:3+4=7.故答案为7.15.【答案】4【解析】【分析】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件 对应角相等 并巧妙地借助两个三角形全等 寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt △ACM≌Rt △BMD .根据题意证明∠C =∠DMB 利用AAS 证明△ACM≌△BMD 根据全等三角形的性质得到BD =AM =12米 再利用时间=路程÷速度即可.【解答】解:∵∠CMD =90°∴∠CMA +∠DMB =90°又∵∠CAM =90°∴∠CMA +∠C =90°∴∠C =∠DMB .在Rt △ACM 和Rt △BMD 中{∠A =∠B ∠C =∠DMB CM =MD∴Rt △ACM≌Rt △BMD(AAS)∴BD =AM =12米∴BM =20−12=8(米)∵该人的运动速度为2m/s∴他到达点M 时 运动时间为8÷2=4(s).故答案为4.16.【答案】证明:因为AB//CD所以∠B =∠DCE .在△ABC 和△ECD 中{AB =EC ∠B =∠DCE BC =CD所以△ABC ≌△ECD(SAS).所以AC =ED .【解析】本题考查了三角形全等的判定与性质平行线的性质比较简单求出∠B=∠DCE是证明三角形全等的关键.根据两直线平行内错角相等可得∠B=∠DCE然后利用“边角边”证明△ABC和△ECD全等再根据全等三角形对应边相等即可得证.17.【答案】(1)证明:∵∠DAE=∠BAC∴∠DAE−∠DAC=∠BAC−∠DAC∴∠1=∠CAE在△ABD和△ACE中∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE∴∠DBA=∠2∵∠2=30°∴∠DBA=30°∵∠1=25°∴∠3=∠1+∠DBA=25°+30°=55°.【解析】本题考查的是全等三角形的判定和性质以及三角形的外角性质掌握全等三角形的判定方法和适当运用三角形的外角定理是关键.(1)由∠BAC=∠DAE可得∠1=∠CAE利用SAS可证明结论;(2)由△ABD≌△ACE得到由∠DBA=∠2最后利用三角形的外角的性质即可解答.18.【答案】证明:∵BE=CF∴BE+EF=CF+EF即BF=CE∵∠A=∠D=90°∴△ABF与△DCE都为直角三角形在Rt△ABF和Rt△DCE中{BF=CE,AB=DC∴Rt△ABF≌Rt△DCE(HL).【解析】此题考查了直角三角形全等的判定解题关键是由BE=CF通过等量代换得到BF=CE.由BE=CF通过等量代换得到BF=CE结合AB=CD根据直角三角形全等的判定的方法即可证明.19.【答案】证明:如图在Rt △ACE 和Rt △CBF 中{AC =BC AE =CF∴Rt △ACE≌Rt △CBF(HL)∴∠EAC =∠BCF∵∠EAC +∠ACE =90°∴∠ACE +∠BCF =90°∴∠ACB =180°−90°=90°.【解析】先利用HL 定理证明△ACE 和△CBF 全等 再根据全等三角形对应角相等可以得到∠EAC =∠BCF 因为∠EAC +ACE =90° 所以∠ACE +∠BCF =90° 根据平角定义可得∠ACB =90°.本题主要考查全等三角形的判定 全等三角形对应角相等的性质 熟练掌握性质是解题的关键. 20.【答案】解:(1)当t =1时 AP =BQ =1又∵∠A =∠B =90°在△ACP 和△BPQ 中AP =BQ ∠A =∠B∴△ACP≌△BPQ(SAS).∴∠ACP =∠BPQ∴∠APC +∠BPQ =∠APC +∠ACP =90°.∴∠CPQ =90°即线段PC 与线段PQ 垂直.(2)①若△ACP≌△BPQ则AC =BP{3=4−t t =xt解得{t =1x =1②若△ACP≌△BQP则AC =BQ{3=xt t =4−t解得{t =2x =32综上所述 存在{t=1x=1或{t=2 x=32使得△ACP与△BPQ全等.【解析】本题主要考查了全等三角形的判定与性质注意分类讨论思想的渗透.(1)利用SAS证得△ACP≌△BPQ得出∠ACP=∠BPQ进一步得出∠APC+∠BPQ=∠APC+∠ACP= 90°得出结论即可;(2)由△ACP≌△BPQ分两种情况:①AC=BP AP=BQ②AC=BQ AP=BP建立方程组求得答案即可.。
苏科版八年级数学上册第1章-全等三角形单元练习(有答案)
参考答案
10. 2 或 或 6.
11. 25. 12. 5. 13.添加一个条件:∠BAD=∠ABC, 14. OB=OC. 15. 4. 16. 4. 三.解答题 17.解:设计方案如下:
18.证明:∵∠1=∠2, ∴∠FBD=∠ECA, ∵FB=CE,BD=AC,
9
∴△DBF≌△ACE(SAS). 故答案为:∵∠1=∠2, ∴∠FBD=∠ECA, ∵FB=CE,BD=AC, ∴△DBF≌△ACE(SAS). 19.证明:∵FG=CG, ∴∠ACB=∠DFE, ∵BF=CD,FC=FC, ∴BF+FC=CD+FC, 即 BC=DF, 在△ABC 与△EDF 中
③四边形 ABCD 的面积= AC•BD,其中正确的结论有( )
A.①②
B.①③
C.②③
D.①②③
8.如图,点 C 在∠DAB 的内部,CD⊥AD 于点 D,CB⊥AB 于点 B,CD=CB,那么 Rt△
2
ADC≌Rt△ABC 的理由是( )
A.SAS
B.ASA
C.HL
D.SSS
9.如图,AD 是△ABC 的角平分线,DE⊥AC,垂足为 E,BF∥AC 交 ED 的延长线于点 F,
.
13.如图点 C,D 在 AB 同侧,AD=BC,添加一个条件
就能使△ABD≌△BAC.
14.如图,点 D,E 分别在线段 AB,AC 上,CD 与 BE 相交于 O 点,已知∠B=∠C,请再
添加一个条件,使得△BOD≌△COE,这个条件是
(仅写出一个).
15.如图,已知∠DCE=90°,∠DAC=90°,BE⊥AC 于 B,且 DC=EC,若 BE=7,AB
第 1 章 全等三角形
八年级上册数学单元测试卷-第一章 全等三角形-苏科版(含答案)
八年级上册数学单元测试卷-第一章全等三角形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,、为⊙O的切线,切点分别为A、B,交于点C,的延长线交⊙O于点D.下列结论不一定成立的是()A. 为等腰三角形B. 与相互垂直平分C.点C、B 都在以为直径的圆上D. 为的边上的中线2、如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.13、下列各条件中,能判定两个三角形全等的是()A.两角一边对应相等B.两边一角对应相等C.两个直角三角形的锐角都对应相等D.两边对应相等4、如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带③去B.带②去C.带①去D.带①②去5、如图,已知点B,E,C,F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确条件是()A.AB=DEB.AC=DFC.∠A=∠DD.∠ACB=∠F6、如图,D在AB上,E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AEB.∠AEB=∠ADCC.BE=CDD.AB=AC7、如图,△ABC中,AB=AC,D为BC中点,在BA的延长线上取一点E,使得ED=EC,ED与AC交于点F,则的值为()A. B. C. D.8、如图,长方形中,点是中点,是边上的点,把沿折叠后,点恰好与点重合,则图中全等的三角形有()对。
A.1B.2C.3D.49、在如图所示的 6×6 网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数()A.3 个B.4 个C.6 个D.7 个10、通过尺规作图作一个角的平分线的理论依据是()A.SASB.SSSC.ASAD.AAS11、如图所示,△ABC中,AB=3,AC=7,则BC边上的中线AD的取值范围是()A.4<AD<10B.0<AD<10C.3<AD<7D.2<AD<512、如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则下列结论:①DF+AE>AD;②DE=DF;③AD⊥EF;④S DABD∶S DACD=AB∶AC,其中正确结论的个数是()A.1 个B.2 个C.3 个D.4 个13、如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是()A.1个B.2个C.3个D.4个14、已知OP平分∠AOB,点Q在OP上,点M在OA上,且点Q,M均不与点O重合.在OB 上确定点N,使QN=QM,则满足条件的点N的个数为()A.1个B.2个C.1或2个D.无数个15、如图,等腰中,,于. 的平分线分别交,于点,两点,为的中点,延长交于点,连接.下列结论:①;②;③是等腰三角形;④.其中正确的结论个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC全等的图形是________.17、如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE 上.若AD=5,BE=2,则AB的长是________.18、如图,与相交于点O,,添加条件________(写一个)后,能使.19、如图示,点B在AE上,∠CBE=∠DBE,要使△ABC≌△ABD,还需添一个条件________.20、如图,正方形ABCD的边CD在正方形ECGF的边CE上,O是EG的中点,∠EGC的平分线GH过点D,交BE于点H,连接OH,FH,EG与FH交于点M,对于下面四个结论:①GH⊥BE;②BG=EG;③△MFG为等腰三角形;④DE:AB=1+:1,其中正确结论的序号为________.21、如图,在矩形ABCD中,AB=6,AD=4,过矩形ABCD的对角线交点O作直线分别交CD、AB于点E、F,连接AE,若△AEF是等腰三角形,则DE=________.22、如图,AB=AD,∠1=∠2,如果增加一个条件________,那么△ABC≌△ADE.23、如图,AB与CD交于点O,,,,,则的度数为________24、如图,已知于点P,,请增加一个条件,使≌不能添加辅助线,你增加的条件是________.25、如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED =50°,则∠CBO=________度.三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB= ,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°,进而求出等边△ABC的边长为,问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1.求∠BPC度数的大小和正方形ABCD的边长.28、证明题已知:如图,点A、F、C、D在同一条直线上,AB∥DE,AB=DE,AF=DC .求证:BC=EF.29、如图已知:如图,DE⊥AC于点E,BF⊥AC于点F,CD∥AB, AB=CD。
苏科版数学八年级上册第一章《全等三角形》单元卷(含答案解析)
苏科版数学八年级上第一章《全等三角形》单元卷题号一二三四五总分第分一.选择题(共9小题)1.如图,△ACB ≌△A ′CB ′,∠ACB =70°,∠ACB ′=100°,则∠BCA ′的度数为()A .30°B .35°C .40°D .50°2.如图,△ABC ≌△ADC ,∠ABC =118°,∠DAC =40°,则∠BCD 的度数为()A .40°B .44°C .50°D .84°3.如果△ABC ≌△DEF ,△DEF 的周长为12,AB =3,BC =4,则AC 的长为()A .2B .3C .4D.54.如图,已知△ABC ≌△DEF .若AC =22,CF =4,则CD 的长是()A .22B .18C .16D .45.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是()A .∠B =∠CB .BE =CDC .AD =AED .BD =CE6.如图,在△ABC 和△DEF 中,AB =DE ,AC =DF ,BE =CF,且BC =5,∠A =70°,∠B =75°,EC =2,则下列结论中错误的是()A .BE =3B .∠F =35°C .DF =5D .AB ∥DE7.如图,在△ABC 中,∠C =90°,AD平分∠CAB ,BC =12cm ,BD =8cm ,那么点D 到直线AB 的距离是()A .2cmB .4cmC .6cmD .10cm8.如图,点D 为∠AOB 的平分线OC 上的一点,DE ⊥AO 于点E .若DE =4,则D 到OB 的距离为()A .5B .4C .3.5D .39.如图,AB ⊥CD ,且AB =CD ,E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =8,BF =6,AD =10,则EF 的长为()A .4B .72C .3D .52二.填空题(共10小题)10.已知,△ABC ≌△DEF ,△ABC 的周长为64cm ,AB =20cm ,AC =18cm ,则DE =,EF=.11.如图,△ABC ≌△DBE ,A 、D 、C 在一条直线上,且∠A =60°,∠C =35°,则∠DBC =°.12.如图,△ABC ≌△ADE ,线段BC 的延长线过点E ,与线段AD 交于点F ,∠ACB =∠AED =108°,∠CAD =12°,∠B =48°,则∠DEF 的度数.13.一个三角形的三边为6、10、x ,另一个三角形的三边为y 、6、12,如果这两个三角形全等,则x +y =.14.如图,△ABC 中,∠C =90°,AC =8,BC =4,AX ⊥AC ,点P 、Q 分别在边AC 和射线AX 上运动,若△ABC 与△PQA 全等,则AP 的长是.15.如图,AB ⊥CF ,垂足为B ,AB ∥DE ,点E 在CF 上,CE =FB ,AB =DE ,依据以上条件可以判定△ABC ≌△DEF ,这种判定三角形全等的方法,可以简写为.16.如图所示的网格是正方形网格,点A ,B ,C ,D 均落在格点上,则∠BAC +∠ACD =°.17.在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 与BC 相交于点D ,若BD =2,CD =1,则AC 的长是.18.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8,若S △ABC =21,则DE =.19.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BG =4GE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的答案是;三.解答题(共9小题)20.已知:如图,△ABC ≌△A ′B ′C ,∠A :∠BCA :∠ABC =3:10:5,求∠A ′,∠B ′BC的度数.21.如图,已知△ABC ≌△DEF ,B 、E 、C 、F 在同一直线上.(1)若∠BED =130°,∠D =70°,求∠ACB 的度数;(2)若2BE =EC ,EC =6,求BF 的长.22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出边FG的对应边与∠EGF的对应角;(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.23.已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.24.如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.25.已知:△ABC≌△EDC.(1)若DE∥BC(如图1),判断△ABC的形状并说明理由.(2)连结BE,交AC于F,点H是CE上的点,且CH=CF,连结DH交BE于K(如图2).求证:∠DKF=∠ACB26.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.27.如图,在Rt△ABC中,∠ABC=90°点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)请找出线段AB、DE、CD之间的数量关系,并说明理由.一.选择题(共9小题)参考答案与试题解析【点评】本题主要考查了全等三角形的性质,解题时注意:全等三角形的对应角相等.3.如果△ABC≌△DEF,△DEF的周长为12,AB=3,BC=4,则AC的长为()1.如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30°B.35°C.40°D.50°【分析】根据全等三角形的性质和角的和差即可得到结论.【解答】解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.2.如图,△ABC≌△ADC,∠ABC=118°,∠DAC=40°,则∠BCD的度数为()A.40°B.44°C.50°D.84°【分析】根据全等的性质得出∠DAC=∠BAC=40°,∠B=∠D=118°,根据四边形内角和定理求出∠BCD即可.【解答】解:∵△ABC≌△ADC,∴∠ABC=118°=∠D,∠DAC=40°=∠BAC,∴∠BAD=80°,∴四边形ABCD中,∠BCD=360°﹣2×118°﹣80°=44°,故选:B.A.2B.3C.4D.5【分析】根据全等三角形的周长相等求出△ABC的周长,根据三角形的周长公式计算即可.【解答】解:∵△ABC≌△DEF,△DEF的周长为12,∴△ABC的周长为12,又AB=3,BC=4,∴AC=5,故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的周长相等,面积相等是解题的关键.4.如图,已知△ABC≌△DEF.若AC=22,CF=4,则CD的长是()A.22B.18C.16D.4【分析】根据全等三角形的性质得AC=DF,则依据CF=4可得CD的长.【解答】解:△ABC≌△DEF,∠A与∠D是对应角,AB与DE是对应边,∴AC=DF=22,又∵CF=4,∴CD=DF﹣CF=22﹣4=18,故选:B.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等;全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.5.如图,AB=AC,D,E分别是AB,AC上的点,下列条件不能判断△ABE≌△ACD的是()A.∠B=∠C B.BE=CD C.AD=AE D.BD=CE【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;C、如添加AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BD=CE,可证明AD=AE,利用SAS即可证明△ABE≌△ACD;故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,在△ABC和△DEF中,AB=DE,AC=DF,BE=CF,且BC=5,∠A=70°,∠B=75°,EC=2,则下列结论中错误的是()A.BE=3B.∠F=35°C.DF=5D.AB∥DE【分析】由SSS证明△ABC≌△DEF得出∠B=∠DEF,∠ACB=∠F,BC=EF=5,证出AB∥DE,得出BE=BC﹣EC=3,由三角形内角和定理得出∠F=∠ACB=35°,即可得出答案.【解答】解:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF 中,,∴△ABC≌△DEF(SSS)∴∠B=∠DEF,∠ACB=∠F,BC=EF=5,∴AB∥DE,∵EC=2,∴BE=BC﹣EC=3,∵∠ACB=180°﹣∠A﹣∠B=180°﹣70°﹣75°=35°,∴∠F=35°,即选项A、B、D正确,选项C错误;故选:C.【点评】本题考查了全等三角形的判定和性质、平行线的判定、三角形内角和定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,BD=8cm,那么点D到直线AB的距离是()A.2cm B.4cm C.6cm D.10cm【分析】先求出CD的长,过点D作DE⊥AB于点E,根据角平分线上的点到角的两边的距离相等的性质可得DE=CD,从而得解.【解答】解:如图,过点D作DE⊥AB于点E,∵BC=12cm,BD=8cm,∴CD=BC﹣BD=12﹣8=4cm,∵∠C=90°,AD平分∠CAB,∴DE=CD=4cm,即点D到直线AB的距离是4cm.故选:B.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,熟记性质是解题的关键.8.如图,点D为∠AOB的平分线OC上的一点,DE⊥AO于点E.若DE=4,则D到OB的距离为()A.5B.4C.3.5D.3【分析】如图,作DH⊥OB于H.利用角平分线的性质定理即可解决问题.【解答】解:如图,作DH⊥OB于H.∵OC平分∠AOB,DE⊥OA,DH⊥OB,∴DE=DH=4,故选:B.【点评】本题考查角平分线的性质定理,解题的关键是学会添加常用辅助线,则有中考常考题型.9.如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=8,BF=6,AD=10,则EF的长为()A.4B.72C.3D.52【分析】由题意可证△ABF≌△CDF,可得BF=DE=6,CE=AF=8,可求EF的长.【解答】证明:∵AB⊥CD,CE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∴∠A=∠C,且AB=CD,∠AFB=∠CED,∴△ABF≌△CDF(AAS)∴BF=DE=6,CE=AF=8,∵AE=AD﹣DE=10﹣6=4∴EF=AF﹣AE=8﹣4=4,故选:A.【点评】本题考查了全等三角形的判定和性质,熟练运用全等三角形的判定是本题的关键.二.填空题(共10小题)10.已知,△ABC≌△DEF,△ABC的周长为64cm,AB=20cm,AC=18cm,则DE=20cm,EF=26cm.【分析】由三角形的周长可求得BC,再由全等三角形的性质可求得DE、EF.【解答】解:∵△ABC的周长为64cm,AB=20cm,AC=18cm,∴BC=64﹣20﹣18=26cm,∵△ABC≌△DEF,∴DE=AB=20cm,EF=BC=26cm,故答案为:20cm,26cm.【点评】本题主要考查全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.11.如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=25°.【分析】由△ABC≌△DBE,推出AB=BD,推出∠A=∠BDA=60°,再根据∠BDA=∠C+∠DBC,求出∠DBC 即可.【解答】解:∵△ABC≌△DBE,∴AB=BD,∴∠A=∠BDA=60°,∵∠BDA=∠C+∠DBC,∠C=35°,∴∠DBC=60°﹣35°=25°,故答案为25.【点评】本题考查全等三角形的性质,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,则∠DEF的度数36°.【分析】由△ACB的内角和定理求得∠CAB=24°;然后由全等三角形的对应角相等得到∠EAD=∠CAB=24°.则结合已知条件易求∠EAB的度数;最后利用△AEB的内角和是180度和图形来求∠DEF的度数.【解答】解:∵∠ACB=108°,∠B=48°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣48°﹣108°=24°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=24°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=12°,∴∠EAB=24°+12°+24°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣48°=72°,∴∠DEF=∠AED﹣∠AEB=108°﹣72°=36°.故答案为:36°【点评】本题考查全等三角形的性质.全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.13.一个三角形的三边为6、10、x,另一个三角形的三边为y、6、12,如果这两个三角形全等,则x+y =22.【分析】根据全等三角形对应边相等求出x、y,然后相加计算即可得解.【解答】解:∵两个三角形全等,∴x=12,y=10,∴x+y=10+12=22.故答案为:22【点评】本题考查全等三角形的性质,熟记全等三角形对应边相等是解题的关键.14.如图,△ABC中,∠C=90°,AC=8,BC=4,AX⊥AC,点P、Q分别在边AC和射线AX上运动,若△ABC与△PQA全等,则AP的长是4或8.【分析】根据全等三角形的性质即可得到结论.【解答】解:∵△ABC与△PQA全等,∴AP=BC=4或AP=AC=8,故答案为:4或8.【点评】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.15.如图,AB⊥CF,垂足为B,AB∥DE,点E在CF上,CE=FB,AB=DE,依据以上条件可以判定△ABC≌△DEF,这种判定三角形全等的方法,可以简写为SAS.【分析】依据AB⊥CF,AB∥DE,可得△ABC和△DEF都是直角三角形,由CE=FB,可得BC=EF,所以可用SAS判定△ABC≌△DEF,于是答案可得.【解答】解:∵AB⊥CF,AB∥DE,∴△ABC和△DEF都是直角三角形.∵CE=FB,CE为公共部分,∴CB=EF,又∵AB=DE,∴△ABC≌△DEF(SAS).故答案为:SAS.【点评】本题考查的是直角三角形全等的判定定理及平行线的性质;两边及其夹角分别对应相等的两个三角形全等.16.如图所示的网格是正方形网格,点A,B,C,D均落在格点上,则∠BAC+∠ACD=90°.【分析】证明△DCE≌△ABD(SAS),得∠CDE=∠DAB,根据同角的余角相等和三角形的内角和可得结论.【解答】解:在△DCE和△ABD中,∵,∴△DCE≌△ABD(SAS),∴∠CDE=∠DAB,∵∠CDE +∠ADC =∠ADC +∠DAB =90°,∴∠AFD =90°,∴∠BAC +∠ACD =90°,故答案为:90.【点评】本题网格型问题,考查了三角形全等的性质和判定及直角三角形各角的关系,本题构建全等三角形是关键.17.在Rt △ABC 中,∠ACB =90°,AD 平分∠BAC 与BC 相交于点D ,若BD =2,CD =1,则AC 的长是3【分析】作DE ⊥AB 于E ,根据角平分线的性质得到DE =DC ,根据勾股定理求出BE ,再根据勾股定理计算即可.【解答】解:作DE ⊥AB 于E ,∵AD 是∠BAC 的平分线,∠ACB =90°,DE ⊥AB ,∴DE =DC =1,在Rt △ACD 和Rt △AED 中,AD ADCD DE =⎧⎨=⎩,∴Rt △ACD ≌Rt △AED (HL ),∴AC =AE ,由勾股定理得BE =22BD DE -3设AC =AE =x ,由勾股定理得x 2+32=(x 32,解得x =3.∴AC 3故3.【点评】本题考查的是勾股定理以及角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.18.如图,BD 平分∠ABC ,DE ⊥AB 于E ,DF ⊥BC 于F ,AB =6,BC =8,若S △ABC =21,则DE =3.【分析】根据角平分线上的点到角的两边的距离相等可得DE =DF ,然后根据三角形的面积公式列式计算即可得解.【解答】解:∵BD 平分∠ABC ,DE ⊥AB ,DF ⊥BC ,∴DE =DF ,∵AB =6,BC =8,∴S △ABC =12AB •DE +12BC •DF =12×6DE +12×8DE =21,即3DE +4DE =21,解得DE =3.故答案为:3.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,是基础题,熟记性质是解题的关键.19.如图,正方形ABCD 中,点E 是AD 边的中点,BD ,CE 交于点H ,BE 、AH 交于点G ,则下列结论:①AG ⊥BE ;②BG =4GE ;③S △BHE =S △CHD ;④∠AHB =∠EHD .其中正确的答案是①②③④;【分析】首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADH≌△CDH,求得∠HAD=∠HCD,推出∠ABE=∠HAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可得到①正确.根据tan∠ABE=tan∠EAG=12,得到AG=12BG,GE=12AG,于是得到BG=4EG,故②正确;根据AD∥BC,求出S△BDE=S△CDE,推出S△BDE﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;由∠AHD=∠CHD,得到邻补角和对顶角相等得到∠AHB=∠EHD,故④正确;【解答】证明:∵四边形ABCD是正方形,E是AD边上的中点,∴AE=DE,AB=CD,∠BAD=∠CDA=90°,∴△BAE≌△CDE(SAS),∴∠ABE=∠DCE,∵四边形ABCD是正方形,∴AD=DC,∠ADB=∠CDB=45°,DH=DH,∴△ADH≌△CDH(SAS),∴∠HAD=∠HCD,∵∠ABE=∠DCE∴∠ABE=∠HAD,∵∠BAD=∠BAH+∠DAH=90°,∴∠ABE+∠BAH=90°,∴∠AGB=180°﹣90°=90°,∴AG⊥BE,故①正确;∵tan∠ABE=tan∠EAG=12,∴AG=12BG,GE=12AG,∴BG=4EG,故②正确;∵AD∥BC,∴S△BDE=S△CDE,∴S△BDE ﹣S△DEH=S△CDE﹣S△DEH,即;S△BHE=S△CHD,故③正确;∵△ADH≌△CDH,∴∠AHD=∠CHD,∴∠AHB=∠CHB,∵∠BHC=∠DHE,∴∠AHB=∠EHD,故④正确;故答案为①②③④.【点评】本题主要考查了正方形的性质及全等三角形的判定与性质,三角形的面积公式,解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直;②四个内角相等,都是90度;③对角线相等,相互垂直,且平分一组对角.三.解答题(共9小题)20.已知:如图,△ABC≌△A′B′C,∠A:∠BCA:∠ABC=3:10:5,求∠A′,∠B′BC的度数.【分析】先求出△ABC的各角的度数,再根据全等三角形对应角相等求出∠B′CB′的度数,利用三角形的外角知识求出∠A′,∠B′BC的度数.【解答】解:∵∠A:∠BCA:∠ABC=3:10:5,∴设∠A=3x,∠ABC=5x,∠BCA=10x.∵∠A+∠ABC+∠BCA=180°,∴3x+5x+10x=180°,x=10°.∴∠A=30°∠ABC=50°∠BCA=100°.∵△ABC≌△A'B'C,∴∠A'=∠A=30°,∠B'=∠ABC=50°.∵∠B'C B=180°﹣∠BCA=80°.∴∠B'B C=180°﹣∠B'﹣∠B'C B=180°﹣50°﹣80°=50°.【点评】本题主要考查全等三角形的性质,根据比值和三角形内角和定理求出△ABC的各角的度数是解题的关键.21.如图,已知△ABC≌△DEF,B、E、C、F在同一直线上.(1)若∠BED=130°,∠D=70°,求∠ACB的度数;(2)若2BE=EC,EC=6,求BF的长.【分析】(1)根据三角形的外角的性质求出∠F,根据全等三角形的对应角相等解答;(2)根据题意求出BE、EF,根据全等三角形的性质解答.【解答】解:(1)由三角形的外角的性质可知,∠F=∠BED﹣∠D=60°,∵△ABC≌△DEF,∴∠ACB=∠F=60°;(2)∵2BE=EC,EC=6,∴BE=3,∴BC=9,∵△ABC≌△DEF,∴EF=BC=9,∴BF=EF+BE=12.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.22.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出边FG的对应边与∠EGF的对应角;(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.【分析】(1)根据全等三角形的定义即可判断;(2)利用全等三角形的性质即可解决问题;【解答】解:(1)∵△EFG≌△NMH,∴FG的对应边是MH,∠EGF的对应角是∠MHN.(2))∵△EFG≌△NMH,∴MN=EF=2.1cm,HM=FG=3.3cm,∵FH=1.1cm,∴HG=3.3﹣1.1=2.2cm.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握基本知识,属于中考基础题.23.已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于E点.(1)求∠EDA的度数;(2)AB=10,AC=8,DE=3,求S△ABC.【分析】(1)直接利用三角形内角和定理得出∠BAC的度数,再利用角平分线的定义得出答案;(2)过D作DF⊥AC于F,依据角平分线的性质,即可得到DF=DE=3,再根据S△ABC=12×AB×DE+12×AC ×DF进行计算即可.【解答】解:(1)∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AD是△ABC的角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵DE⊥AB,∴∠DEA=90°,∴∠EDA=180°﹣∠BAD﹣∠DEA=180°﹣30°﹣90°=60°;(2)如图,过D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,又∵AB=10,AC=8,∴S△ABC=12×AB×DE+12×AC×DF=12×10×3+12×8×3=27.【点评】本题主要考查了角平分线的性质以及三角形的面积,角的平分线上的点到角的两边的距离相等.24.如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B,求证:AB=AC.【分析】由SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;【解答】证明:(1)在△AED与△AEC中∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;【点评】本题考查全等三角形的判定和性质,等腰三角形的判定,关键是根据SAS证明△AED与△AEC全等.25.已知:△ABC≌△EDC.(1)若DE∥BC(如图1),判断△ABC的形状并说明理由.(2)连结BE,交AC于F,点H是CE上的点,且CH=CF,连结DH交BE于K(如图2).求证:∠DKF=∠ACB【分析】(1)根据全等三角形的性质和等腰三角形的判定解答即可;(2)根据全等三角形的性质得出BC=CD,∠ACB=∠DCE,进而证明三角形全等解答即可.【解答】解:(1)∵△ABC≌△EDC,∴∠ABC=∠EDC,∠ACB=∠ECD,∵DE∥BC,∴∠EDC=∠ACB,∴∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.(2)∵△ABC≌△EDC,∴BC=CD,∠ACB=∠DCE,在△BCF和△DCH中,∴△BCF≌△DCH,∴∠FBC=∠HDC,在△FBC和△FDK中,∵∠FBC=∠HDC,∠BFC=∠DFK,∴∠DKF=∠ACB.【点评】此题考查全等三角形的性质,关键是根据全等三角形的性质和判定解答.26.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.【分析】(1)根据等腰三角形的性质和三角形的内角和即可得到结论;(2)根据全等三角形的判定和性质和三角形的内角和即可得到结论.【解答】解:(1)∵AB=AC,∠A=40°,∴∠B=∠C=70°,∵CE=PC,∠EPC=(180°﹣70°)×12=55°,又∵BD+CE=BP+PC,PC=CE,∴BD=PB,∠BPD=55°,∴∠DPE=180°﹣∠BPD﹣∠EPC=180°﹣55°﹣55°=70°;(2)相同,理由:∵PC=BC﹣BP,BD=BC﹣CE,PC=BD,∴BP=CE,∴△BDP≌△CPE(SAS),∴∠CPE=∠BDP,又∵∠BPD+∠CPE+∠DPE=180°,∠BPD+∠BDP+∠B=180°,∴∠DPE=∠B=70°.【点评】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练正确全等三角形的判定和性质是解题的关键.27.如图,在Rt△ABC中,∠ABC=90°点D在BC的延长线上,且BD=AB.过点B作BE⊥AC,与BD的垂线DE交于点E.(1)求证:△ABC≌△BDE;(2)请找出线段AB、DE、CD之间的数量关系,并说明理由.【分析】(1)利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵BE⊥AC,∴∠A+∠ABE=90°,∵∠ABC=90°,∴∠DBE+∠ABE=90°,∴∠A=∠DBE,在△ABC和△BDE中,∴△ABC≌△BDE(ASA);(2)解:AB=DE+CD,理由:由(1)证得,△ABC≌△BDE,∴AB=BD,BC=DE,∵BD=CD+BC,∴AB=CD+DE.【点评】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.。
苏科版八年级数学上册第一章 全等三角形单元检测试卷(含答案)
, ,,, 第一章 全等三角形 单元测试(时间:90 分钟 满分:100 分)一、选择题(每小题 3 分,共 30 分)1.下列图形中,和左图全等的图形是( )2.下列命题中,真命题的个数是( ) ①全等三角形的周长相等; ②全等三角形的对应角相等; ③全等三角形的面积相等;④全等三角形的对应角平分线相等.A .4B .3C .2D .13.下列条件中,能判定两个三角形全等的是( ) A .有三个角对应相等B .有两条边对应相等C .有两边及一角对应相等D .有两角及一边对应相等4.如图,△ABC ≌△ADE ,若∠B =70° ∠C =30° ∠DAC =35° 则∠EAC 的度数为 ( )A .40°B .45°C .35°D .25°5.在下列条件中,不能说明△ABC ≌△A 'B 'C '的是( ) A .∠A =∠A ',∠C =∠C ',AC =A 'C 'B .∠A =∠A ' ,AB =A 'B ',BC =B 'C 'C .∠B =∠B ', ∠C =∠C ' ,AB =A 'B 'D .AB =A 'B ', BC =B 'C ' ,AC =A 'C '6.在 Rt △ABC 与 Rt △A 'B 'C '中, ∠C =∠C '=90° ∠A =∠B ' ,AB =A 'B ',则下面结论正确的是( )A .AB =A 'C 'B .BC =B 'C ' C .AC =B 'C 'D .∠A =∠A '7.要测量河两岸相对的两点 A ,B 的距离,先在 AB 的垂线 BF 上取两点 C ,D ,使 CD =△得 △'BC ,再作出 BF 的垂线 DE ,使 A ,C ,E 在一条直线上(如图所示),可以证明△EDC ≌△ABC ,得 ED =AB ,因此测得 ED 的长就是 AB 的长,判定△EDC ≌△4BC的理由是( )A .SASB .ASAC .SSSD .AAS8.如图,H 是△ABC 的高 AD ,BE 的交点,且 DH =DC ,则下列结论:①BD =AD ;②BC=AC ;③BH =AC ;④CE =CD ,其中正确的有 ()A .1 个B .2 个C .3 个D .4 个9.一块三角形玻璃样板不慎被张宇同学碰破,成了四片完整碎片(如图所示) 聪明的他经过仔细地考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是( )A .带其中的任意两块去都可以B .带 1,2 或 2,3 去就可以了C .带 1,4 或 3,4 去就可以了D .带 1,4 或 2,4 或 3,4 去均可10.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB = ∠CED =90°,∠A =45°,∠D =30°.把△DCE 绕点 C 顺时针旋转 15° 到D 1CE 1,如图②,连接 D 1B ,则∠E 1D 1B的度数为()A .10°B .20°C .7.5°D .15°二、填空题(每小题 3 分,共 24 分)11.若△ABC ≌△A 'B 'C ',AB =24,S △A 'B 'C =180,则 ABC 的 AB 边上的高是_______.12.一个三角形的三边长分别为2,5,x,另一个三角形的三边长分别为y,2,6,若这两个三角形全等,则x+y=_______.13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF.(1)若以“SAS”为依据,还要添加的条件为_______;(2)若以“ASA”为依据,还要添加的条件为_______.14.下列说法正确的有_______个°(1)两条边对应相等的两个直角三角形全等.(2)有一锐角和斜边对应相等的两直角三角形全等.(3)-条直角边和一个锐角对应相等的两直角三角形全等.(4)面积相等的两个直角三角形全等.15.如图,在R△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP=_______时,△ABC和△PQA 全等.16.如图,△ABC的高BD,CE相交于点O.请你添加一个条件,使BD=CE.你所添加的条件是_______.(仅添加一对相等的线段或一对相等的角)17.如图,已知BE⊥AD,CF⊥AD,BE=CF,由这三个条件组合运用可以得到若干结论,请你写出三个正确结论:____________________________.18.如图,在△ABC和△DEF中,B,E,C,F在同一条直线上,下面有四个条件:①AB =DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.请你在其中选3个作为题设,余下的1个作为结论,写出所有能组成真命题组合的题设为_______.(填序号)三、解答题(共46分)19.(6分)如图,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点.求证:CP=DP.20.(6分)如图,AB⊥BC,DC⊥AC,垂足分别为B,C,过D点作BC的垂线交BC于F,交AC于E,AB=EC,试判断AC和ED的长度有什么关系?并说明理由.21.(6分)如图,AD是△ABC的中线,DE⊥AB于E,DF⊥AC于F,且BE=CF.求证:(1)AD是∠BAC的平分线;(2)AB=A C.,22.(6分)如图,施工队在沿AC方向开山修路,为了加快施工进度,要在小山的另一边点E处同时施工,在AC上的点B处,取∠ABD=145°,BD=500m,∠D=55°要使A,C,E在一条直线上,那么开挖点E离点B的距离如何求得?请你设计出解决方案.23.(6分)如图,∠BAC=∠BAD,点E在AB上.(1)添加一个条件,使△ACE≌△ADE,你添加的条件是_______;(2)根据(1)中你添加的条件,请再写出另外一对全等三角形,并证明.25.8 分)如图,已知直线 l 1∥l 2,线段 AB 在直线 l 1 上,BC 垂直于 l 1 交 l 2 于点 C ,且 AB =BC , 2 124.(8 分)数学作业本发下来了,徐波想:“我应该又是满分吧”,翻开作业本,一个大红的错号映入眼帘,徐波不解了,“我哪里做错了呢”?下面是题目和徐波的解法,亲爱的同学,你知道他哪儿错了吗?你能帮他进行正确的说明吗?如图,∠BAC 是钝角,AB =AC ,D ,E 分别在 AB ,AC 上,且 CD =BE .试说明∠ADC=∠AE B .徐波的解法:AB AC 已知在△ACD 和△ABE 中, BE CD 已知BAECAD 公共角∴△ABE ≌△ACD ,∴∠ADC =∠AE B .(P 是线段 BC 上异于两端点的一点,过点 P 的直线分别交 l 、l 于点 D 、E (点 A 、E 位于 点 B 的两侧),满足 BP =BE ,连接 AP 、CE .(1)求证:△ABP ≌△CBE ;(2)连结 AD 、BD ,BD 与 AP 相交于点 F .如图 2.①当=2 时,求证:AP ⊥BD ;②当 =n (n >1)时,设△PAD 的面积为 S △1, PCE 的面积为 S 2,求 的值.11 2参考答案1.D 2.A 3.D4.B5.B6.C7.B8.B9.D 10.D11.15 12.11 13.(1)BC =CF 或 BE =CF (2)∠A =∠D 14.3 15.5 或 1016.BE =CD 或∠EBC =∠DCB 或∠DBC =∠BCE17.△BDE ≌△CDF ,BD =CD ,DE =DF ,AD 是△ABC 的中线,BE ∥FC 等18.①②④或①③④19.略20.AC =E D .21.略22.略23.(1)∠ACE =∠ADE ;(2)△ACB ≌△ADB24.错在不能用“SSA ”说明三角形全等.25.(1)证明:∵BC ⊥直线 l ,∴∠ABP =∠CBE ,在△ABP 和△CBE 中∴△ABP ≌△CBE (SAS );(2)①证明:延长 AP 交 CE 于点 H ,∵△ABP ≌△CBE ,∴∠PAB = ∠ECB ,∴∠PAB + ∠AEE =∠ECB +∠AEH =90°,∴AP ⊥CE ,∵=2,即 P 为 BC 的中点,直线 l ∥直线 l ,∴△CPD ∽△BPE ,∴==,∴DP=PE,∴四边形BDCE是平行四边形,∴CE∥BD,∵AP⊥CE,∴AP⊥BD;②解:∵=N∴BC=n BP,∴CP=(n﹣1)BP,∵CD∥BE,∴△CPD∽△BPE,∴==n﹣1,=(n﹣1)S,即S2△∵S PAB△=S BCE=n S,△∴PAE=(n+1)S,∵==n﹣1,∴S=(n+1)(n﹣1)S,1∴==n+1.。
第一章 全等三角形数学八年级上册-单元测试卷-苏科版(含答案)
第一章全等三角形数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图所示,,,,,则等于()A. B. C. D.2、已知两个直角三角形全等,其中一个直角三角形的面积为4,斜边为3,则另一个直角三角形斜边上的高为()A. B. C. D.53、如图,中,,,是中线,,垂足为,的延长线交于点,若,则的度数为()A. B. C. D.4、如图,在△ABC中,点D、F分别在边BC、AC上,若BC=ED,AC=CD,AB=CE,且∠ACE=180°-∠ABC-2m,对下列角中,大小为m的角是()A.∠CDFB.∠ABCC.∠CFDD.∠CFE5、全等三角形是( )A.三个角对应相等的三角形B.周长相等的两个三角形C.面积相等的两个三角形D.三边对应相等的两个三角形6、如图,AB=AC,BE=CF,AD是△AEF的中线,则图中全等三角形的对数共有()A.1对B.2对C.3对D.4对7、如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D 作DF垂直于AC交AC的延长线于点F,若AB=8,AC=5,则CF=()A.1.5B.2C.2.5D.38、如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED =90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是()A.①③B.①②③C.②③④D.①②④9、如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F,连接AC、CF.下列结论:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△BEF=S△ABE.其中正确的有( )A.1个B.2个C.3个D.4个10、如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′∥BC,BE,CD交于点F.若∠BAC=35°,则∠BFC的大小是( )A.106°B.108°C.110°D.112°11、如图,△ABC中,若AB=AC,BD=CE,CD=BF,则∠EDF=()A.90°-∠AB.180°-2∠AC.D.12、如图,已知CD⊥AB于D,现有四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,那么不能得出△ADC≌△EDB的条件是()A.①③B.②④C.①④D.②③13、如图,小明把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,最省事的办法是()A.带③去B.带②去C.带①去D.带①和②去14、如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=EDB.AC=DFC.BF=ECD.∠A=∠D15、如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠CC.DB=DCD.AB=AC二、填空题(共10题,共计30分)16、如图,△ABC≌△DEF,则EF= ________.17、已知:如图,在长方形中,延长到点,使,连接,动点从点出发,以每秒2个单位长度的速度沿向终点运动,设点的运动时间为秒,当的值为________时,和全等.18、如图,已知AC=BD,∠A=∠D,请你添一个直接条件,________,使△AFC≌△DEB.19、如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是________.20、如图,△ADB≌△ECB,若∠CBD=40°,BD⊥EC,则∠D的度数为________.21、在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E 作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=________cm.22、如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论是________(填序号)23、如图,作一个角等于已知角,其尺规作图的原理是________24、如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对________.25、小明不慎将一块三角形的玻璃摔成如图所示的4块,你认为将其中哪一块带去玻璃点就能配一块与原来一模一样的三角形,应该带去第________块.(填写序号)三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,已知点,,,在同一条直线上,,且,.求证:.28、图中所示的是两个全等的五边形,∠β=115°,d=5,指出它们的对应顶点•对应边与对应角,并说出图中标的a,b,c,e,α各字母所表示的值.29、如图,点B,E,C,F在一条直线上,AB=DE,AC =DF,BE=CF.求证:△ABC ≌△DEF;30、已知:BD=BE,CD=CE,求证:∠D=∠E.参考答案一、单选题(共15题,共计45分)1、A2、C3、D4、A5、D6、D7、A8、D9、B10、C11、C12、D13、A14、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
八年级数学上册《第一章 全等三角形》单元测试卷及答案(苏科版)
八年级数学上册《第一章 全等三角形》单元测试卷及答案(苏科版)班级 姓名 学号一、单选题(共10小题,满分40分) 1.如图,在△ABC 中,△B =90°,AB =3,BC =4,AC =5,△1=△2,则点 C 到直线AE 的距离是( )A .3B .4C .4.5D .52.如图ABC BAD ≌,点A 和点B ,点C 和点D 是对应点.如果D ∠=70 CAB ∠=50 那么DAB ∠度数是( )A .80B .70C .60D .503.以下说法正确的是( )A .各边都相等的多边形是正多边形B .到线段两个端点距离相等的点在线段的垂直平分线上C .角的平分线就是角的对称轴D .形状相同的两个三角形是全等三角形4.如图,ABC 中,AD 为BAC ∠的角平分线,作BD 垂直AD 于D ,ABC 的面积为8,则ACD 的面积为( )A .3B .4C .5D .65.如图,已知ABC BAD ≌△△,线段AD 与BC 交于点O ,则下面的结论中不正确...的是( )A .=AC BDB .=BC AD C .CAO BOD ∠=∠ D .CAB DBA ∠=∠6.如图,AB△CD ,CE△BF ,A 、 E 、F 、D 在一直线上,BC 与AD 交于点O ,且OE=OF ,则图中有全等三角形的对数为( )A .2B .3C .4D .57.如图,BP 是△ABC 的平分线,AP △BP 于P ,连接PC ,若△ABC 的面积为1cm 2则△PBC 的面积为( ).A .0.4 cm 2B .0.5 cm 2C .0.6 cm 2D .不能确定8.如图,点F ,B ,E ,C 在同一条直线上,点A ,D 在直线BE 的两侧,AC//DF ,CE=FB ,添加下列哪个条件后,仍不能判定出ABC DEF ∆≅∆( )A .AB DE = B .//AB DEC .AD ∠=∠ D .AC DF =9.如图,点B 、F 、C 、E 在同一条直线上AC DF ∥,AC DF =添加以下条件,仍不能使△ABC △△DEF 的是( )A .A D ∠=∠B .AB DE =C .AB DE ∥D .BF EC =10.如图,在△ABC 中,直线ED 垂直平分线段BC ,分别交BC 、AB 于点D 点E ,若BD =3,△AEC 的周长为20,则△ABC 的周长为( )A .23B .26C .28D .30二、填空题(共8小题,满分32分)11.如图,ABC 是等边三角形,D ,E ,F 分别是AB ,BC ,CA 边上一点,且AD BE CF ==.则DEF 的形状是 .12.如图AC DB =,AO DO =且20CD =m 则A ,B 两点间的距离为 m .13.如图,小李为了测量河的宽度,他先站在河边的C 点面向河对岸,压低帽檐使目光正好落在河对岸的A 点,然后姿态不变原地转了一个角度,正好看见了他所在的岸上的一块石头B 点,他发现看到B 点和A 点的视角相等,并测量BC=30m,则河宽为;90,AB=a18.已知:如图,点E F 、分别在等边三角形ABC 的边CB AC 、的延长线上,,BE CF FB =的延长线交AE 于点G ,则AGB ∠= .三、解答题(共6小题,每题8分,满分48分)19.如图90ACB ∠=︒,AC=BC 和AD CE ⊥,BE CE ⊥垂足分别为D ,E ,且 2.5cm AD = 1.7cm DE =.(1)证明:ACD CBE ≌;(2)求BE 的长.20.如图,在五边形ABCDE 中AB DE = AC AD =.(1)请你添加一个条件,使得ABC DEA △△≌,并说明理由;(2)在(1)的条件下,若66CAD ∠=︒,110B ∠=︒求BAE ∠的度数.21.如图,△ABD 为等腰直角三角形,C 为BD 延长线上一点,F 为AD 上一点,且DF=DC ,连接BF ,AC ,试判断BF 和AC 的位置关系,并说明理由.22.如图,ABC ∆是等腰直角三角形090BAC ∠=,点D 是直线BC 上的一个动点(点D 与点B C 、不重合),以AD 为腰作等腰直角ADE ∆,连接CE .(1)如图△,当点D 在线段BC 上时,直接写出,BC CE 的位置关系,线段,BC CD ,CE 之间的数量关系;(2)如图△,当点D 在线段BC 的延长线上时,试判断线段BC ,CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由;(3)如图△,当点D 在线段CB 的延长线上时,试判断线段,BC CE 的位置关系,线段,,BC CD CE 之间的数量关系,并说明理由.23.如图△AOB 是直角,在△AOB 外作射线OC ,OM 平分△AOC ,ON 平分△BOC .(1)若△AOC =38°,求△MON 的度数;(2)若△AOC =α,试说明△MON 的大小与α无关.24.如图,已知AB=AC,E,D分别是AB,AC的中点,且AF△△BD交BD的延长线于F,AG△CE交CE的延长线于G,试判断AF和AG的关系是否相等,并说明理由.参考答案:1.B2.C3.B4.B5.C6.B7.B8.A9.B10.B11.等边三角形12.2060 (1)略0.8cm。
苏科版八年级上册数学《第1章全等三角形》单元测试题及答案
苏科版数学八年级上册《第1章全等三角形》单元测试题考试分值:120;考试时间:100分钟一.选择题(共10小题,满分40分)1.(4分)如图所示正方形网格中,连接AB、AC、AD,观测∠1+∠2+∠3=()A.120°B.125°C.130°D.135°2.(4分)长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.B.C.D.3.(4分)如图,在Rt△ABC中,∠C=90°,AC=12cm,BC=6cm,一条线段PQ=AB,P,Q两点分别在线段AC和AC的垂线AX上移动,若△ABC和△APQ全等,则AP的值为()A.6cm B.12cm C.12cm或6cm D.以上答案都不对4.(4分)如图,已知△ABC≌△CDA,∠B=∠D,则下列结论中正确的是()①AB=CD,BC=DA.②∠BAC=∠DCA,∠ACB=∠CAD.③AB∥CD,BC∥DA.A.①B.②C.①③D.①②③5.(4分)下列说法正确的是()A.全等三角形是指周长和面积都一样的三角形B.全等三角形的周长和面积都一样C.全等三角形是指形状相同的两个三角形D.全等三角形的边都相等6.(4分)如图,已知点D在AC上,点B在AE上,△ABC≌△DBE,且∠BDA=∠A,若∠A:∠C=5:3,则∠DBC=()A.30°B.25°C.20°D.15°7.(4分)如图所示,△ABC≌△EDF,DF=BC,AB=ED,AE=20,AF=5,则AC的长为()A.20 B.5 C.10 D.158.(4分)下列不能判定三角形全等的是()A.如图(1),线段AD与BC相交于点O,AO=DO,BO=CO.△ABO与△BCO B.如图(2),AC=AD,BC=BD.△ABC与△ABDC.如图(3),∠A=∠C,∠B=∠D.△ABO与△CDOD.如图(4),线段AD与BC相交于点E,AE=BE,CE=DE,AC=BD.△ABC与△BAD9.(4分)如图,在四边形ABCD中,AD∥BC,若∠DAB的角平分线AE交CD于E,连接BE,且BE边平分∠ABC,则以下命题不正确的个数是①BC+AD=AB;②E为CD中点;=S四边形ABCD;⑤BC=CE.()③∠AEB=90°;④S△ABEA.0个B.1个C.2个D.3个10.(4分)一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可二.填空题(共5小题,满分20分)11.(4分)如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.12.(4分)如图:已知DE=AB,∠D=∠A,请你补充一个条件,使△ABC≌△DEF,并说明你判断的理由:或.13.(4分)七巧板是我们祖先的一项卓越创造,它虽然只有七块,但是可以拼出多种多样的图形,如图就是一个七巧板,七块刚好拼成一个正方形,图中全等的三角形有对.14.(4分)在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,DE=4,∠D=°,∠E=70°,根据判定△ABC≌△DEF.15.(4分)如图,AB,D相交于点O,已知OC=OA,请你补充的一个条件或使△AOD≌△COB.三.解答题(共5小题,满分60分)16.(10分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.17.(12分)如图,在△ABC和△DCB中AC与BD相交于点O,AB=DC.(1)请你再添加一个条件,使得△ABC≌△DCB;(2)根据(1)中你所添加的条件,求证:△ABC≌△DCB;(3)△OBC的形状是.(直接写出结论,不需证明)18.(12分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(12分)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.20.(14分)点D是等边△ABC(即三条边都相等,三个角都相等的三角形)边BA上任意一点(点D与点B不重合),连接DC.(1)如图1,以DC为边在BC上方作等边△DCF,连接AF,猜想线段AF与BD的数量关系?请说明理由.(2)如图2,若以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF、BF′,探究AF、BF′与AB有何数量关系?请说明理由.参考答案一.选择题1.D.2.A.3.C.4.D.5.B.6.C.7.D.8.C.9.B.10.D.二.填空题11.2.12.∠B=∠E或∠ACB=∠DFE或AF=CD.13.3.14.35,ASA.15.OB=DO或∠A=∠C.三.解答题16.解:(1)3对.分别是:△ABD≌△ACD;△ADE≌△ADF;△BDE≌△CDF.(2)△BDE≌△CDF.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.又D是BC的中点,∴BD=CD.在Rt△BDE和Rt△CDF中,,∴△BDE≌△CDF(HL).17.解:(1)添加∠ABC=∠DCB,(2)证明如下:∵AB=DC,∠ABC=∠DCB,BC=CB,∴△ABC≌△DCB(SAS).(3)由(2)知△ABC≌△DCB,∴∠ACB=∠DBC,∴△OBC的形状是等腰三角形.18.解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.19.证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.20.解:(1)BD=AF,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CD=CF,∠ACB=∠DCF=60°,∴∠BCD=∠ACF,在△BCD和△ACF中,,∴△BCD≌△ACF(SAS),∴BD=AF;(2)AB=AF+BF′,理由:∵△ABC和△DCF都是等边三角形,∴BC=AC,CF′=CD,∠F′CD=∠BCA=90°,∴∠F′CB=∠DCA,在△F′CB和△DCA中,,∴△F′CB≌△DCA(SAS),∴BF′=DA,由(1)知,BD=AF,∵AB=BD+AD,∴AB=AF+BF′.。
苏科版八年级数学(上册)《第一章 全等三角形》单元检测题(含答案详解)
第1章 全等三角形检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1、要测量河两岸相对的两点的距离,先在的垂线上取两点,使,再作出的垂线,使在一条直线上(如图所示),能够讲明△≌△,得,因此测得的长就是的长,判定△≌△最恰当的理由是( )A、边角边 B、角边角C、边边边 D 。
边边角2、如图所示,两个全等的等边三角形的边长为1m ,一个微型机器人由A点开始按A BCDBEA 的顺序沿等边三角形的边循环运动,行走2 012 m 停下,则这个微型机器人停在( )A 、点A 处B 、点B 处C、点C 处 D 、点E 处3、如图,已知A B∥CD ,AD ∥B C,A C与BD 交于点O,AE ⊥B D于点E ,CF ⊥BD 于点F ,那么图中全等的三角形有( ) A、5对 B。
6对C、7对 D 。
8对4。
下列命题中正确的是( )A、全等三角形的高相等B 、全等三角形的中线相等C 、全等三角形的角平分线相等D。
全等三角形对应角的平分线相等5、如图所示,点B 、C、E 在同一条直线上,△ABC与△CDE 都是等边三角形,则下列结论不一定成立的是( )A 、△AC E≌△BCDB 、△BG C≌△AF CC 、△DC G≌△ECFD 、△AD B≌△CE A 6。
如图所示,分不表示△ABC 的三边长,则下面与△一定全等的三角形是( )7、已知:如图所示,B、C 、D 三点在同一条直线上,A C=CD ,∠B =∠E =90°,AC ⊥C D,则不正确的结论是( )A、∠A与∠D互为余角 B 、∠A =∠2C 、△A BC≌△C ED D 、∠1=∠28、如图所示,两条笔直的公路、相交于点O , C村的村民在公路的旁边建三个加工厂 A 、B、D ,已知AB =BC =CD =D A=5 km,村庄C第5题图 第8题图第2题图第7题图第6题图第3题图 第1题图到公路的距离为4 km,则C 村到公路的距离是( )A、3 k m B、4 kmC 。
八年级上册数学单元测试卷-第一章 全等三角形-苏科版(含答案)
八年级上册数学单元测试卷-第一章全等三角形-苏科版(含答案)一、单选题(共15题,共计45分)1、如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,则下列结论:①AC=AF;②EF=BC;③∠FAB=∠EAB;④∠EAB=∠FAC,其中正确结论的个数是()A.4个B.3个C.2个D.1个2、下列结论正确的是()A.面积相等的两个三角形全等B.等边三角形都全等C.底边和顶角对应相等的等腰三角形全等D.两个等腰直角三角形全等3、如图,△ABN≌△ACM,AB=AC,BN=CM,∠B=50°,∠ANB=60°,则∠MAC的度数等于()A.120°B.70°C.60°D.50°.4、不能用尺规作图作出唯一三角形的是()A.已知两角和夹边B.已知两边和夹角C.已知两角和其中一角的对边D.已知两边和其中一边的对角5、如图,已知l1∥l2∥l3∥l4,相邻两条平行直线间的距离相等.若等腰直角的三个顶点分别在三条平行直线上,则∠α的正弦值是()A. B. C. D.6、下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两个等腰直角三角形全等7、如图,点B、F、C、E在一条直线上,AB∥DE,AC∥DF,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是()A.AB=DEB.∠A=∠DC.AC=DFD.BF=EC8、如图,AB=DB,∠1=∠2,请问添加下面哪个条件不能判断△ABC≌△DBE的是()A.BC=BEB.AC=DEC.∠A=∠DD.∠ACB=∠DEB9、用直尺和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是()A.SSSB.ASAC.AASD.角平分线上的点到角两边距离相等10、如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是()A. B. C. D.11、如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,有如下五个结论:①AO⊥ BC;②OD=OE;③△OEF是等边三角形;④△OEF≌△CEF; ⑤∠OEF=54°则上列说法中正确的个数是()A. 2B. 3C. 4D. 512、已知,如图,为线段上一动点(不与点,重合),在同侧分别作等边三角形和等边三角形,与交于点,与交于点,与交于点,连结,,,以下四个结论:①;②三角形是等边三角形;③;④平分,其中正确的结论是()A.①②B.③④C.①②③D.①②④13、如图,一种测量工具,点 O是两根钢条AC、BD中点,并能绕点O转动 .由三角形全等可得内槽宽AB与CD相等,其中△OAB≌△OCD的依据是()A.SSSB.ASAC.SASD.AAS14、如图,在等腰,,点为内一点,且,若长为6,则的面积为()A.12B.16C.18D.2415、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.所有的等边三角形都是全等三角形二、填空题(共10题,共计30分)16、如图,在△ABC中,点D为BC的中点,△AEF的边EF过点C,且AE=EF,AB∥EF,AD 平分∠BAE,CE=2,AB=9,则CF=________.17、如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确的是________(写序号)18、如图,已知△ABC≌△ADE,D是∠BAC的平分线上一点,且∠BAC=60°,则∠CAE=________.19、如图,和中,,在不添加任何辅助线的情况下,请你添加一个条件________,使和全等.20、如图,点E,F在AC上,AE=CF,∠AFD=∠CEB,要使△ADF≌△CBE,需要添加的一个条件是________.21、如图,∠ACB=∠DFE,BC=EF,可以补充一个直接条件________,就能使△ABC≌△DEF.22、如图,在平面直角坐标系中,,,点是第一象限内的点,且是以为直角边的等腰直角三角形,则点的坐标为________.23、如图,已知∠BAC=∠DAE=90°,AB=AD,要使△ABC≌△ADE,还需要添加的条件是________24、如图,在四边形ABCD中,AB∥CD,连接BD.请添加一个适当的条件,使△ABD≌△CDB.(只需写一个)________25、如图,已知,是平分线上一点,,则 ________°三、解答题(共5题,共计25分)26、如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC27、如图,点A,B,C,D在一条直线上,△ABF≌△DCE.你能得出哪些结论?(请写出三个以上的结论)28、如图,△ABC中,点D在AC边上,AE∥BC,连接ED并延长ED交BC于点F,若AD=CD,求证:ED=FD.29、如图,E是的边的中点,连接并延长交的延长线于F,若,求的长.30、如图,,,,且,求证:.参考答案一、单选题(共15题,共计45分)1、B2、C3、C4、D5、A6、C7、B8、B9、A10、C11、B12、D13、C14、C15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
苏科版八年级数学上册第1章《全等三角形》单元测试附答案
苏科版八年级数学上册第1章《全等三角形》单元测试一、选择题t1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()hA.∠A B.∠B C.∠C D.∠D Y2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()6A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°O3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()5A.SSS B.SAS C.AAS D.ASA I4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()aA.3对B.4对C.5对D.6对h5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()P①AC=DF②BC=EF③∠B=∠E④∠C=∠F.6A.①②③B.②③④C.①③④D.①②④y6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()6A.4B.5C.6D.787.根据下列已知条件,能唯一画出△ABC的是()ZA.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°kC.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=648.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()0A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A A9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()fA.PM>PN B.PM<PN C.PM=PN D.不能确定A10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()=①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.=A.①②B.④③C.①②④D.①④③二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌,且DF=.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件,若加条件∠B=∠C,则可用判定.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至处时,△ABC与△APQ全等.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是;中线AD的取值范围是.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= cm.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有对全等三角形,并把它们写出来;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.《第1章全等三角形》参考答案与试题解析一、选择题1.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么△ABC中与这个角对应的角是()A.∠A B.∠B C.∠C D.∠D【考点】全等三角形的性质.【分析】只要牢记三角形只能有一个钝角就易解了.【解答】解:∵一个三角形中只能有一个钝角.∴100°的角只能是等腰三角形中的顶角.∴∠B=∠C是底角,∠A是顶角∴△ABC中与这个角对应的角是∠A.故选A.【点评】本题考查的知识点为:全等的三角形的对应角相等,知道一个三角形中只能有一个钝角是解决本题的关键.2.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】全等三角形的判定.【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.4.如图,已知AB∥DC,AD∥BC,BE=DF,则图中全等的三角形有()A.3对B.4对C.5对D.6对【考点】全等三角形的判定.【分析】根据全等三角形的判定方法进行判断.全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件.【解答】解:∵AB∥DC,AD∥BC,∴∠DAC=∠BCA,∠CDB=∠ABD,∠DCA=∠BAC,∠ADB=∠CBD,又∵BE=DF,∴由∠ADB=∠CBD,DB=BD,∠ABD=∠CDB,可得△ABD≌△CDB;由∠DAC=∠BCA,AC=CA,∠DCA=∠BAC,可得△ACD≌△CAB;∴AO=CO,DO=BO,由∠DAO=∠BCO,AO=CO,∠AOD=∠COB,可得△AOD≌△COB;由∠CDB=∠ABD,∠COD=∠AOB,CO=AO,可得△COD≌△AOB;由∠DCA=∠BAC,∠COF=∠AOE,CO=AO,可得△AOE≌△COF;由∠CDB=∠ABD,∠DOF=∠BOE,DO=BO,可得△DOF≌△BOE;故选(D)【点评】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5.在△ABC和△DEF中,已知AB=DE,∠A=∠D,若补充下列条件中的任意一条,就能判定△ABC≌△DEF的是()①AC=DF②BC=EF③∠B=∠E④∠C=∠F.A.①②③B.②③④C.①③④D.①②④【考点】全等三角形的判定.【分析】根据已知条件,已知一角和一边,所以要证两三角形全等,可以根据角边角、角角边、边角边判定定理添加条件,再根据选项选取答案.【解答】解:如图,∵AB=DE,∠A=∠D,∴根据“边角边”可添加AC=DF,根据“角边角”可添加∠B=∠E,根据“角角边”可添加∠C=∠F.所以补充①③④可判定△ABC≌△DEF.故选C.【点评】本题主要考查三角形全等的判定,根据不同的判定方法可选择不同的条件,所以对三角形全等的判定定理要熟练掌握并归纳总结.6.在△ABC中,∠A=90°,CD平分∠ACB,DE⊥BC于点E,若AB=6,则DE+DB=()A.4B.5C.6D.7【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得AD=DE,然后根据AD+DB=AB等量代换即可得解.【解答】解:∵∠A=90°,CD平分∠ACB,DE⊥BC,∴AD=DE,∵AD+DB=AB,∴DE+DB=AB=6.故选C.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键.7.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4D.∠C=90°,AB=6【考点】全等三角形的判定.【专题】作图题;压轴题.【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.【点评】此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.8.如图是人字型金属屋架的示意图,该屋架由BC、AC、BA、AD四段金属材料焊接而成,其中A、B、C、D四点均为焊接点,且AB=AC,D为BC的中点,假设焊接所需的四段金属材料已截好,并已标出BC段的中点D,那么,如果焊接工身边只有可检验直角的角尺,而又为了准确快速地焊接,他应该首先选取的两段金属材料及焊接点是()A.AD和BC,点D B.AB和AC,点A C.AC和BC,点C D.AB和AD,点A【考点】全等三角形的应用.【分析】根据全等三角形的判定定理SSS推知△ABD≌△ACD,则∠ADB=∠ADC=90°.【解答】解:根据题意知,∵在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠ADB=∠ADC=90°,∴AD⊥BC,根据焊接工身边的工具,显然是AD和BC焊接点D.故选:A.【点评】本题考查了全等三角形的应用.巧妙地借助两个三角形全等,寻找角与角间是数量关系.9.如图,已知OQ平分∠AOB,点P为OQ上任意一点,点N为OA上一点,点M为OB上一点,若∠PNO+∠PMO=180°,则PM和PN的大小关系是()A.PM>PN B.PM<PN C.PM=PN D.不能确定【考点】角平分线的性质;全等三角形的判定与性质.【分析】作PE⊥OB于E,PF⊥OA于F,根据角平分线的性质定理证明PE=PF,根据三角形全等的判定定理证明△PFN≌△PEM,得到答案.【解答】解:作PE⊥OB于E,PF⊥OA于F,∵OQ平分∠AOB,∴PE=PF,∵∠PNO+∠PNA=180°,∠PNO+∠PMO=180°,∴∠PNA=∠PMO,在△PFN和△PEM中,,∴△PFN≌△PEM,∴PM=PN.故选:C.【点评】本题考查的是角平分线的性质和全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.10.如图,已知点C是∠AOB的平分线上一点,点P、P′分别在边OA、OB上.如果要得到OP=OP′,需要添加以下条件中的某一个即可,请你写出所有可能的结果的序号为()①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.A.①②B.④③C.①②④D.①④③【考点】全等三角形的判定与性质.【分析】根据所加条件,结合已知条件,能够证明OP和OP′所在的三角形全等即可.【解答】解:①若加∠OCP=∠OCP′,则根据ASA可证明△OPC≌△OP′C,得OP=OP′;②若加∠OPC=∠OP′C,则根据AAS可证明△OPC≌△OP′C,得OP=OP′;③若加PC=P′C,则不能证明△OPC≌△OP′C,不能得到OP=OP′;④若加PP′⊥OC,则根据ASA可证明△OPC≌△OP′C,得OP=OP′.故选C.【点评】此题考查全等三角形的判定和性质,熟练掌握判定方法是关键.二、填空题11.如图,△ABC≌△ADE,∠B=100°,∠BAC=30°,那么∠AED=50度.【考点】全等三角形的性质.【分析】先运用三角形内角和定理求出∠C,再运用全等三角形的对应角相等来求∠AED.【解答】解:∵在△ABC中,∠C=180﹣∠B﹣∠BAC=50°,又∵△ABC≌△ADE,∴∠AED=∠C=50°,∴∠AED=50度.故填50【点评】本题考查的是全等三角形的性质,全等三角形的对应边相等,对应角相等.是需要识记的内容.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是∠B=∠C(填上你认为适当的一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】根据题意,易得∠AEB=∠AEC,又AE公共,所以根据全等三角形的判定方法容易寻找添加条件.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).【点评】此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.如图,AE=BF,AD∥BC,AD=BC,则有△ADF≌△BCE,且DF=CE.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】由题中条件可由ASA判定△ADF≌△BCE,进而得出DF=CE.【解答】解:∵AE=BF,∴AF=BE,∵AD∥BC,∴∠A=∠D,又AD=BC,∴△ADF≌△BCE,∴DF=CE.故答案为:△BCE,CE.【点评】本题主要考查了全等三角形的判定及性质,能够熟练掌握.14.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件AB=AC,若加条件∠B=∠C,则可用AAS判定.【考点】直角三角形全等的判定.【分析】要使△ABD≌△ACD,且利用HL,已知AD是直边,则要添加对应斜边;已知两角及一对应边相等,显然根据的判定为AAS.【解答】解:添加AB=AC∵AD⊥BC,AD=AD,AB=AC∴△ABD≌△ACD已知AD⊥BC于D,AD=AD,若加条件∠B=∠C,显然根据的判定为AAS.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.把两根钢条AA′、BB′的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为0.05米.【考点】全等三角形的应用.【专题】计算题.【分析】连接AB,A′B′,根据O为AB′和BA′的中点,且∠A′OB′=∠AOB即可判定△OA′B′≌△OAB,即可求得A′B′的长度.【解答】解:连接AB,A′B′,O为AB′和BA′的中点,∴OA′=OB,OA=OB′,∵∠A′OB′=∠AOB∴△OA′B′≌△OAB,即A′B′=AB,故A′B′=5cm,5cm=0.05m.故答案为0.05.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OA′B′≌△OAB是解题的关键.16.如图,AD=AE,BE=CD,∠1=∠2=100°,∠BAE=60°,那么∠CAE=40°.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】求出BD=CE和∠B的度数,根据SAS推出△ADB≌△AEC,推出∠C=∠B=40°,根据三角形内角和定理求出即可.【解答】解:∵BE=CD,∴BE﹣DE=CD﹣DE,∴BD=CE,∵∠2=100°,∠BAE=60°,∴∠B=∠2﹣∠BAE=40°,∵在△ADB和△AEC中∴△ADB≌△AEC,∴∠C=∠B=40°,∵∠2+∠C+∠CAE=180°,∴∠CAE=180°﹣100°﹣40°=40°,故答案为:40°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质,三角形内角和定理的应用,解此题的关键是求出△ADB≌△AEC,注意:全等三角形的对应边相等,对应角相等.17.如图,∠A=∠E,AC⊥BE,AB=EF,BE=10,CF=4,则AC=6.【考点】全等三角形的判定与性质.【分析】由AAS证明△ABC≌△EFC,得出对应边相等AC=EC,BC=CF=4,求出EC,即可得出AC的长.【解答】解:∵AC⊥BE,∴∠ACB=∠ECF=90°,在△ABC和△EFC中,,∴△ABC≌△EFC(AAS),∴AC=EC,BC=CF=4,∵EC=BE﹣BC=10﹣4=6,∴AC=EC=6;故答案为:6.【点评】本题考查了全等三角形的判定与性质;证明三角形全等得出对应边相等是解决问题的关键.18.如图,∠C=90°,AC=10,BC=5,AM⊥AC,点P和点Q从A点出发,分别在射线AC和射线AM上运动,且Q点运动的速度是P点运动速度的2倍,当点P运动至P点运动到AC中点处时,△ABC 与△APQ全等.【考点】全等三角形的判定.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt △QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,,∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5,即P点运动到AC中点;故答案为:P点运动到AC中点.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.19.AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC的取值范围是4<BC<20;中线AD的取值范围是2<AD<10.【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】BC边的取值范围可在△ABC中利用三角形的三边关系进行求解,而对于中线AD的取值范围可延长AD至点E,使AD=DE,得出△ACD≌△EBD,进而在△ABE中利用三角形三边关系求解.【解答】解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故此题的答案为4<BC<20,2<AD<10.【点评】本题主要考查了全等三角形的判定及性质以及三角形的三边关系问题,能够理解掌握并熟练运用.20.如图,BD是∠ABC的角平分线,DE⊥AB于E,△ABC的面积是30cm2,AB=18cm,BC=12cm,则DE= 2cm.【考点】角平分线的性质.【分析】过点D,作DF⊥BC,垂足为点F,根据BD是∠ABC的角平分线,得DE=DF,根据等高的三角形的面积之比等于其底边长之比,得△BDC与△BDA的面积之比,再求出△BDA的面积,进而求出DE.【解答】解:如图,过点D,作DF⊥BC,垂足为点F∵BD是∠ABC的角平分线,DE⊥AB,∴DE=DF∵△ABC的面积是30cm2,AB=18cm,BC=12cm,∴S=•DE•AB+•DF•BC,即×18×DE+×12×DE=30,△ABC∴DE=2(cm).故填2.【点评】本题考查了角平分线的性质;解题中利用了“角的平分线上的点到角的两边的距离相等”、等高的三角形的面积之比等于其底边长之比,三角形的面积计算公式等知识.三、解答题21.已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB的平分线.求证:AB=DC.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据角平分线性质和已知求出∠ACB=∠DBC,根据ASA推出△ABC≌△DCB,根据全等三角形的性质推出即可.【解答】证明:∵AC平分∠BCD,BD平分∠ABC,∴∠DBC=∠ABC,∠ACB=∠DCB,∵∠ABC=∠DCB,∴∠ACB=∠DBC,∵在△ABC与△DCB中,,∴△ABC≌△DCB(ASA),∴AB=DC.【点评】本题考查了全等三角形的性质和判定和角平分线性质的应用,关键是推出△ABC≌△DCB,题目比较好,难度适中.22.两块完全相同的三角形纸板ABC和DEF,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC和DF的交点,不重叠的两部分△AOF与△DOC是否全等?为什么?【考点】全等三角形的判定.【专题】证明题.【分析】根据题意AB=BD,AC=DF,∠A=∠D,AB=BD,AC=DF可得AF=DC,利用AAS即可判定△AOF≌△DOC.【解答】答:△AOF≌△DOC.证明:∵两块完全相同的三角形纸板ABC和DEF,∴AB=DB,BF=BC,∴AB﹣BF=BD﹣BC,∴AF=DC∵∠A=∠D,∠AOF=∠DOC,即,∴△AOF≌△DOC(AAS).【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,解答此题的关键是根据题意得出AF=DC,AO=DO.23.如图,∠DCE=90°,CD=CE,AD⊥AC,BE⊥AC,垂足分别为A、B.求证:AD+AB=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用同角的余角相等得到一对角相等,再由一对直角相等,CD=CE,利用AAS得到三角形ECB与三角形CDA全等,利用全等三角形对应边相等得到BC=AD,BE=AC,由AB+BC=AC=BE,等量代换即可得证.【解答】证明:∵∠ECB+∠DCA=90°,∠DCA+∠D=90°,∴∠ECB=∠D,在△ECB和△CDA中,,∴△ECB≌△CDA(AAS),∴BC=AD,BE=AC,∴AD+AB=AB+BC=AC=BE.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.如图,是一个用六根竹条连接而成的凸六边形风筝骨架,考虑到骨架的稳定性、对称性、实用性等因素,请再加三根竹条与其顶点连接.要求:在图(1)、(2)中分别加三根竹条,设计出两种不同的连接方案.(用直尺连接)【考点】利用轴对称设计图案.【专题】方案型.【分析】本题主要是利用轴对称图形的性质来画,本题为开放题答案不唯一.【解答】解:.【点评】本题主要考查了轴对称图形的性质.25.已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为AC=BD,∠APB的大小为α【考点】全等三角形的判定与性质.【分析】(1)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.(2)根据∠AOB=∠COD=50°求出∠AOC=∠BOD,根据SAS推出△AOC≌△BOD,根据全等三角形的性质得出AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,推出∠APB=∠AOB即可.【解答】证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.【点评】本题考查了全等三角形的性质和判定的应用,解此题的关键是求出△AOC≌△BOD,注意:全等三角形的对应边相等,对应角相等.26.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(1)图①中有3对全等三角形,并把它们写出来△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD;(2)求证:BD与EF互相平分于G;(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立,如果成立,请予证明.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)利用A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD 可判断全等三角形的个数.(2)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CDE,再求证△DEG≌△BFG,即可.(3)先根据DE⊥AC,B F⊥AC,AE=CF,求证△ABF≌△CED,再求证△BFG≌△DEG,即可得出结论.【解答】解:(1)图①中有3对全等三角形,它们是△AFB≌△DEC,△DEG≌△BFG,△AGB≌△CGD.(2)∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴ED=BF.由∠AFB=∠CED=90°得DE∥BF,∴∠EDG=∠GBF,∵∠EGD和∠FGB是对顶角,ED=BF,△DEG≌△BFG,∴EG=FG,DG=BG,所以BD与EF互相平分于G;(3)第(2)题中的结论成立,理由:∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CED(HL),∴BF=ED.∵∠BFG=∠DEG=90°,∴BF∥ED,∴∠FBG=∠EDG,∴△BFG≌△DEG,∴FG=GE,BG=GD,即第(2)题中的结论仍然成立.【点评】此题主要考查学生对全等三角形的判定与性质的理解和掌握,此题难度并不大,但是需要证明多次全等,步骤繁琐,是一道综合性较强的中档题.。
苏科版八年级数学上册第一章 全等三角形单元测试卷( 含答案)-doc
苏科版八年级数学上册第一章 全等三角形单元测试卷第1章 全等三角形(时间:100分钟 总分:120分)一、选择题 (每题3分,共24分)1.下列图形中与如图所示的图形全等的是 ( )A .B .C .D .2.如图,已知,,.则的理由是AD BD ⊥BC AC ⊥AC BD =CAB DBA △△≌( )A .HLB .SASC .AASD .ASA3.如图,,则为的长为 ( )ΔΔ35ABD EBC AB BC ≅==,,DEA .B .C .D .85324.如图所示,的度数是( )ΔΔ,3095,ABC ADE B C EAD ∠=︒∠=︒∠≌,A .44°B .55°C .66°D .77°5.根据下列条件,能画出唯一△ABC 的是 ( )A .AB =3,BC =4,CA =7 B .AC =4,BC =3.5,∠A =60°C .∠A =45°,∠B =60°,∠C =75°D .AB =5,BC =4,∠C =90°6.如图,已知OF 平分,于D 点,于E 点,F 是OF AOB ∠PD OA ⊥PE OB ⊥上的另一点,连接DF 、EF .判断图中有几对全等三角形 ( )A .1B .2C .3D .47.如图,在中,,,是边上的中线,则的取ABC A 5AB =9AC =AD BC AD 值范围是 ( )A .B .C .D .414AD <<014AD <<27AD <<59AD <<8.如果△ABC 的三边长分别为3、5、7,△DEF 的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x 的值为 ( )A .B .4C .3D .573二、填空题(每题3分,共24分)9.已知图中的两个三角形全等,则∠α的大小为______.10.如图,E 是的边的中点,过点C 作,过点E 作直线ABC A AC CF AB ∥交于D ,交于F ,若,则的长为__________. DF AB CF 9 6.5AB CF ,==BD11.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S是______.13.如图是由4个相同的小正方形组成的网格图,则______.∠+∠=124cm14.如图,小虎用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(,=AC BC ),点在上,点和分别与木墙的顶端重合,则两堵木墙∠=︒C DE A BACB90之间的距离为______.15.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中是格点三角形,请你找出方格中AABC所有与全等,且以A为顶点的格点三角形.这样的三角形共有_____ AABC个(除外).AABC16.如图.已知中,厘米,,厘米,D 为ABC A 12AB AC ==B C ∠=∠8BC =的中点.如果点P 在线段上以2厘米/秒的速度由点B 向点C 运动,AB BC 同时,点Q 在线段上由点C 向点A 运动.若点Q 的运动速度为a 厘米/CA 秒,则当与全等时,a 的值为______.BPD △CQP V三、解答题(每题8分,共72分)17.如图所示,点O 为AC 和BD 的中点,求证:.ABO CDO ∆≅∆18.如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.19.已知:如图,,,三点在同一条直线上,,,B C E AC DE ∥AC CE =.B D ∠=∠求证:.ABC CDE ∆≅∆20.问题发现:如图1,已知为线段上一点,分别以线段,为C AB AC BC 直角边作等腰直角三角形,,,,连接,90ACD ∠=︒CA CD =CB CE =AE BD ,线段,之间的数量关系为______;位置关系为_______.AE BD拓展探究:如图2,把绕点逆时针旋转,线段,交于点Rt ACD △C AE BD F ,则与之间的关系是否仍然成立?请说明理由.AE BD 21.如图,于点,点在直线上,90,ABC FA AB ∠=⊥ A D AB ,AD BC AF BD ==.(1)如图1,若点在线段上,判断与的数量关系和位置关系,D AB DF DC 并说明理由;(2)如图2,若点在线段的延长线上,其他条件不变,试判断(1)中D AB 结论是否成立,并说明理由.22.如图,在和中,,,.AOB A COD △OA OB =OC OD =50AOB COD ∠=∠=︒(1)试说明:;AC BD =(2)与相交于点,求的度数.AC BD P APB ∠23.如图,在△ABC 中,∠B=∠C ,点D 是边BC 上一点,CD=AB ,点E 在边AC 上.(1)若∠ADE=∠B ,求证:①∠BAD=∠CDE ;②BD=CE ;(2)若BD=CE ,∠BAC=70°,求∠ADE 的度数.24.(1)阅读理解:如图①,在中,,,,ABC A AB AC =AD BC ⊥CE AB ⊥垂足分别为,,且,与交于点,图中与全等的D E AE EC =AD CE F ABD △三角形是______,与全等的三角形是______;AEF A (2)问题探究:如图②,在中,,,平分ABC A 90A ∠=︒AB AC =BD ABC ∠,,垂足为,探究线段,,之间的关系,并证明;DE BC ⊥E BC AB AD (3)问题解决:如图③,在中,,,平分,ABC A 90A ∠=︒AB AC =CE ACB ∠交的延长线于点,求证:.BD CE ⊥CE D 2CE BD =25.问题背景:如图1:在四边形ABCD 中,AB =AD .∠BAD =120°.∠B =∠ADC =90°.E ,F 分别是BC .CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小王同学探究此问题的方法是:延长FD 到点G .使DG =BE .连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;(直接写结论,不需证明)探索延伸:(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠ADF =180°.E ,F 分别是BC ,CD 上的点,且∠EAF =∠BAD ,(1)中结论是否仍然成立,并说明理12由;(3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若12成立,请证明:若不成立,请直接写出它们之间的数量关系.参考答案:1.解:观察四个选项可知,只有选项B 符合题意,故选:B .2.证明:∵AD ⊥BD ,BC ⊥AC ,∴∠C =∠D =90°,在Rt △CAB 和Rt △DBA 中,, AB BA AC BD=⎧⎨=⎩∴Rt △CAB ≌Rt △DBA (HL ).故选:A .3.解:∵△ABD ≌△EBC ,AB =3,BC =5,∴BE =AB =3,BD =BC =5,∴DE =BD -BE =2,故选D .4.在中,ABC A 3095,B C ∠=︒∠=︒,∴∠CAB =180°-30°-95°=55°,∵,ΔΔABC ADE ≌∴∠EAD =∠CAB =55°,故选B .5.解:A 、不满足三边关系,本选项不符合题意.B 、边边角三角形不能唯一确定.本选项不符合题意.C 、没有边的条件,三角形不能唯一确定.本选项不符合题意.D 、斜边直角边三角形唯一确定.本选项符合题意.故选:D .6. 解:OF 平分,,,AOB ∠PD OA ⊥PE OB ⊥,.DOP EOP ∴∠=∠PDO PEO ∠=∠ ,,,PDO PEO OP OP DOP EOP ∠=∠⎧⎪=⎨⎪∠=∠⎩.DOP EOP ∴≌△△,.PD PE ∴=DPO EPO ∠=∠.180180DPF DPO EPO EPF ∴∠=︒-∠=︒-∠=∠ ,,,PF PF DPF EPF PD PE =⎧⎪∠=∠⎨⎪=⎩.FDP FEP ∴≌△△.DFO EFO ∴∠=∠ ,,,DOP EOP OF OF DFO EFO ∠=∠⎧⎪=⎨⎪∠=∠⎩.FDO FEO ∴≌△△共有3对全等三角形.∴故选:C .7.解:如图,延长AD 至点E ,使得DE =AD ,∵是边上的中线,AD BC ∴,BD CD =在△ABD 和△CDE 中,, AD DE ADB CDE BD CD =⎧⎪∠=∠⎨⎪=⎩∴△ABD △CDE (SAS ),≌∴AB =CE=5,AD =DE ,∵△ACE 中,AC -CE <AE <AC +CE ,∴4<AE <14,∴2<AD <7.故选:C .8.解:此题需要分类讨论.①若,则,325x -=73x =所以 112173x -=≠所以此种情况不符合题意;②若,则,327x -=3x =所以.215x -=所以此种情况符合题意.综上所述:3x =故选C .9.解:∵图中的两个三角形全等,∴边a 所对的角为72°,边c 所对的角是58°,∴边b 所对的角是180°-72°-58°=50°,∴∠α=50°.故答案为:50°.10.证明:∵CF //AB ,∴∠ADE =∠F ,∠FCE =∠A ,∵点E 为AC 的中点,∴AE = EC ,在△ADE 和∆CFE 中,ADE F A FCE AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌∆CFE (AAS ),∴AD = CF = 6.5,∵AB = 9,∴BD = AB - AD =9- 6.5= 2.5,故答案为: 2.5.11.解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.12.解:∵∠EAF +∠BAG =90°,∠EAF +∠AEF =90°,∴∠BAG =∠AEF ,∵在△AEF 和△BAG 中,, 90F AGB AEF BAG AE AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△BAG (AAS ),同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=(EF +DH )•FH =80, 12S △AEF =S △ABG =AF •AE =9,12S △BCG =S △CDH =CH •DH =6,12∴图中实线所围成的图形的面积S =80-2×9-2×6=50,故答案为:50.13.解:由题意得:,,,AB ED =BC DC =90D B ∠=∠=︒所以△ABC ≌△EDC(SAS ),, 1BAC ∴∠=∠所以.12180∠+∠=︒故答案为:180°.14.解:由题意得:AC =BC ,∠ACB =90°,AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠CEB =90°,∴∠ACD +∠BCE =90°,∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,, ADC CEB DAC BCE AC BC ∠∠⎧⎪∠∠⎨⎪⎩===∴△ADC ≌△CEB (AAS );由题意得:AD =EC =12cm ,DC =BE =28cm ,∴DE =DC +CE =40(cm ),答:两堵木墙之间的距离为40cm ,故答案为:40 cm .15.解:如图,根据平移,对称,可得与△ABC 全等的三角形有5个,包括△ADE ,△ANF ,△ANG ,△ACG ,△AEF .故答案为:5.16.解:当BD =PC 时,△BPD 与△CQP 全等,∵点D 为AB 的中点,∴BD =AB =6cm ,12∵BD =PC ,∴BP =8-6=2(cm ),∵点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,∴运动时间时1s ,∵△DBP ≌△PCQ ,∴BP =CQ =2cm ,∴a =2÷1=2;当BD =CQ 时,△BDP ≌△CQP ,∵BD =6cm ,PB =PC ,∴QC =6cm ,∵BC =8cm ,∴BP =4cm ,∴运动时间为4÷2=2(s ),∴a =6÷2=3(m /s ),故答案为:2或3.17.解:点O 为AC 和BD 的中点,∴AO =CO ,BO =DO ,在△ABO 和△CDO 中,, AO CO AOB COD BO DO =⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CDO (SAS ).18.(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA ); DBE DCF BD CD BDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩(2)解:∵AE =13,AF =7,∴EF =AE -AF =13-7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.19.证明:,AC DE ∥ .ACB E ∴∠=∠在和中,ABC ∆CDE ∆∵, ACB E B D AC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩.()ABC CDE AAS ∴∆≅∆20.解:问题发现:延长BD ,交AE 于点F ,如图所示:∵,90ACD ︒=∠∴,90ACE DCB ︒∠=∠=又∵,,CA CD CB CE ==∴(SAS ),ACE DCB ∆≅∆,,AE ED CAE CDB ∴=∠=∠∵,90CDB CBD ︒∠+∠=∴,90CAE CBD ︒∠+∠=∴,90AFD ︒∠=∴,AF FB ⊥,AE BD ∴⊥故答案为:,;AE BD =AE BD ⊥拓展探究:成立.理由如下:设与相交于点,如图1所示:CE BD G∵,90ACD BCE ︒∠=∠=∴,ACE BCD ∠=∠又∵,,CB CE =AC CD =∴(SAS ),ACE DCB ∆≅∆∴,,AE BD =AEC DBC ∠=∠∵,90CBD CGB ︒∠+∠=∴,90AEC EGF ︒∠+∠=∴,90AFB ︒∠=∴,BD AE ⊥即,依然成立.AE BD =AE BD ⊥21.(1)解:∵,90,ABC FA AB ∠=⊥ ∴,90ABC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .(2)∵,90,ABC FA AB ∠=⊥∴,90DBC DAF ∠∠== 在△ADF 与△BCD 中, AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△BCD ,∴DF =DC ,,ADF BCD ∠=∠∵∠BDC +∠BCD =90°,∴∠BDC +∠ADF =90°,∴∠FDC =90°,即DF ⊥DC .22.(1)证明:∵∠AOB =∠COD ,∴∠AOB +∠BOC =∠COD +∠BOC ,即∠AOC =∠BOD ,∵OA =OB ,OC =OD ,∴△AOC ≌△BOD (SAS ),∴AC =BD ;(2)解:如图,设AC 与BO 交于点M ,则∠AMO =∠BMP ,∵△AOC ≌△BOD ,∴∠OAC =∠OBD ,∴180°-∠OAC -∠AMO =180°-∠OBD -∠BMP ,即∠MPB =∠AOM =50°,∴∠APB =50°.23.(1)①∵在△ABC 中,∠BAD +∠B +∠ADB =180°∴∠BAD =180°-∠B -∠ADB ,又∵∠CDE =180°-∠ADE -∠ADB 且∠ADE =∠B ∴∠BAD =∠CDE ② 由①得∠BAD =∠CDE 在△ABD 与△DCE 中, B C AB DC BAD CDE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△DCE (ASA )∴BD =CE(2)∵在△ABD 与△DCE 中,∴△ABD ≌△DCE (SAS)∴∠BAD =∠CDE 又AB DC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∵∠ADE =180°-∠CDE -∠ADB ∴∠ADE =180°-∠BAD -∠ADB =∠B 在△ABC 中,∠BAC =70°,∠B =∠C ∴∠B =∠C =(180°-∠BAC )=1212⨯110°=55°∴∠ADE =55°24.解:(1),AD BC ⊥,90ADB ADC ∠∠∴==︒,,AB AC = AD AD =≌,Rt ABD ∴A ()HL Rt ACD A ,CE AB ⊥ ,90AEC BEC ADB ∠∠∠∴===︒,90BAD B B BCE ∠∠∠∠+=︒=+ ,BAD BCE ∠∠∴=又,AE EC = ≌,AEF ∴A ()ASA CEB A 故答案为:,;ACD △CEB △(2),理由如下:BC AB AD =+,,90A ∠=︒ AB AC =,45ABC C ∠∠∴==︒,DE BC ⊥ ,45CDE C ∠∠∴==︒,CE DE ∴=平分,BD Q ABC ∠,ABD CBD ∠∠∴=又,,A DEB ∠∠= BD BD =≌,ABD ∴A ()AAS EBD A ,,AB BE ∴=AD DE EC ==;BC BE EC AB AD ∴=+=+(3)如图,延长,交于点,BD CA H平分,CE ACB ∠,ACE BCE ∠∠∴=又,,CD CD = 90CDB CDH ∠∠==︒≌,CBD ∴A ()ASA CHD A ,BD DH ∴=,90CDH BAH ∠∠==︒ ,90H HBA H ACE ∠∠∠∠∴+=︒=+,ACE HBA ∠∠∴=又,,AB AC = 90CAE BAH ∠∠==︒≌,ACE ∴A ()ASA ABH A ,CE BH ∴=.2CE BD ∴=25.(1)解:EF =BE +FD .延长FD 到点G .使DG =BE .连接AG ,∵∠ABE =∠ADG =∠ADC =90°,AB =AD ,∴△ABE ≌△ADG (SAS ).∴AE =AG ,∠BAE =∠DAG .∴∠BAE +∠DAF =∠DAG +∠DAF =∠EAF =60°.∴∠GAF =∠EAF =60°.又∵AF =AF ,∴△AGF ≌△AEF (SAS ).∴FG =EF .∵FG =DF +DG .∴EF =BE +FD .故答案为:EF =BE +FD ;(2)解:(1)中的结论EF =BE +FD 仍然成立.证明:如图②中,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,, 1AB AD D BM DF =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =∠BAD ,12∴∠2+∠4=∠BAD =∠EAF .12∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,, AM AF MAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(3)解:结论EF =BE +FD 不成立,结论:EF =BE -FD . 证明:如图③中,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .在△ABG 与△ADF 中,, AB AD ABG ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△ADF (SAS ).∴∠BAG =∠DAF ,AG =AF .∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =∠BAD . 12∴∠GAE =∠EAF .∵AE =AE ,∴△AEG ≌△AEF (SAS ),∴EG =EF ,∵EG =BE -BG ,∴EF=BE-FD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形单元测试
一、选择题(每小题3分,共30分)
1.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是( )
A.∠A
B.∠B
C.∠C
D.∠B 或∠C
2.如图,在CD 上求一点P ,使它到OA ,OB 的距离相等,则P 点是( ) A.线段CD 的中点 B.OA 与OB 的中垂线的交点 C.OA 与CD 的中垂线的交点 D.CD 与∠AOB 的平分线的交点
第2题图 第3题图 第4题图 3.如图所示,△ABD ≌△CDB ,下面四个结论中,不正确的是( ) A.△ABD 和△CDB 的面积相等 B.△ABD 和△CDB 的周长相等 C.∠A +∠ABD =∠C +∠CBD D.AD ∥BC ,且AD =BC
4.如图,已知AB =DC ,AD =BC ,E ,F 在DB 上两点且BF =DE ,若∠AEB =120°,∠ADB =30°,则∠BCF = ( )
A.150°
B.40°
C.80°
D.90°
5.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )
A.相等
B.不相等
C.互余或相等
D.互补或相等 6.如图,AB ⊥BC ,BE ⊥AC ,∠1=∠2,AD =AB ,则( ) A.∠1=∠EFD B.BE =EC C.BF =DF =CD D.FD ∥BC
第6题图 第7题图
7.如图所示,BE ⊥AC 于点D ,且AD =CD ,BD =ED ,若∠ABC =54°,则∠E =( ) A.25° B.27° C.30° D.45°
8.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( ) A. SSS B. SAS C. AAS D. ASA 9.如图,在△ABC 中,AD 平分∠BAC ,过B 作BE ⊥AD 于E ,过E 作EF ∥AC 交AB 于F ,则( ) A. AF =2BF B.AF =BF C.AF >BF D.AF <BF 第8题图 第9题图 第10题图
A B C
D E F 1
2 A D
B C E F
F
E D C B A D A C
E B D A C B O D
C B A A E
C
B A ′
E ′ D
10.将一张长方形纸片按如图所示的方式折叠,BC BD ,为折痕,则CBD ∠的度数为( ) A .60° B .75° C .90° D .95° 二、填空题(每题3分,共15分)
11.能够____ 的两个图形叫做全等图形.
12.已知,如图,AD =AC ,BD =BC ,O 为AB 上一点,那么,图中共有 对全等三角形.
13.如图,△ABC ≌△ADE ,则,AB = ,∠E = ∠ .若∠BAE =120°,∠BAD =40°,则∠BAC = .
14.△ABC ≌△DEF ,且△ABC 的周长为12,若AB =3,EF =4,则AC = . 15.△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,且CD =4cm ,则点D 到AB •的距离是____. 三、解答题(共55分) 16.(7分)如图,已知△ABC 中,AB =AC ,AD 平分∠BAC ,请补充完整过程说明△ABD ≌△ACD 的理由.
证明: ∵AD 平分∠BAC
∴∠________=∠_________(角平分线的定义) 在△ABD 和△ACD 中
∵⎪⎪⎩
⎪⎪
⎨
⎧
∴△ABD ≌△ACD ( )
17.(8
分)已知:如图,在直线MN 上求作一点P ,使点P 到 ∠AOB 两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)
18.(8分)已知: BE ⊥CD ,BE =DE ,BC =DA ,
求证:△BEC ≌△DAE
19.(8分)已知:如图,A 、C 、F 、D 在同一直线上,AF =D C ,AB =DE ,BC =EF ,
B
A
C
B
A
E
D
第12题图 第13题图
A
O
N M B
A
求证:△ABC≌△DEF.
20.(8分)已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.
21.(8分)已知:如图,AB=AC,BD⊥AC,CE⊥AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD.
22.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是282
cm,AB=20cm,AC=8cm,求DE的长.
参考答案一、选择题
A
E
B C
F
A
C
B
D
E
F
1.A 2.D 3.C 4.D 5.D 6.D 7.B 8.D 9.B 10.C 二、填空题
11.完全重合 12.3 13.AD C 80° 14.5 15.4cm
三、解答题
16.BAD CAD AB=AC ∠BAD=∠CAD AD=AD SAS
17.作∠BOA的平分线交MN于P点,就是所求做的点。
18.HL
19.SSS
20.ASA
21.证△ADB≌△ACE,然后用线段的和差
22.△ABC的面积等于△ABD与△AC D的面积和,DE=DF,求得DE的长为2㎝
初中数学试卷。