初中数学《相似三角形》优秀教案
三角形相似的判定教学设计(优秀4篇)
三角形相似的判定教学设计(优秀4篇)《相似三角形》数学教案篇一一、教材内容分析《探索三角形相似的条件》是北师大版试验教科书八年级下册第四章第九节的内容,1课时,它是在学生学习了相似三角形的概念基础上,进一步研究三角形相似的条件,是今后进一步研究其他图形的基础。
二、教学目标(知识,技能,情感态度、价值观)1、知识目标:(1)使使学生能通过三角形全等的判定来发现三角形相似的判定。
(2)学生掌握相似三角形判定定理1,并了解它的证明。
(3)使学生初步掌握相似三角形的判定定理1的应用。
2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。
3、情感目标:(1)在公理的形成过程中渗透:实验、观察、类比、归纳;(2)通过知识的纵横迁移感受数学的系统特征。
三、教学重难点:重点:掌握相似三角形判定定理1及其应用。
难点:定理1的证明方法。
四、教学环境及资源准备1、投影片2、观看相关视频五、教学过程教学过程教师活动学生活动设计意图及资源准备(一)、导入新课1、多媒体展示问题,什么叫相似三角形?相似三角形与全等三角形有何联系?2、到目前为止判定三角形相似的方法有几个?3、什么叫相似三角形?相似三角形与全等三角形有何联系?学生回答证明三角形的两种方法通过提问既起到复习旧知识又起到引出新问题的作用(二)、探究新知1新课讲解(1)、做一做,做出两个三角形来试验是否相似。
(2)、师生共同总结:两角对应相等的两个三角形相似。
2应用新知教学例1:已知:△ABC和△DEF中A=40,B=80,E=80,F=60求证:△ABC∽△DEF例2:直角三角形被斜边上的高分成的两个直三角形的与原三角形相似3、例题小结1、学生亲手实践2、学生理解3、边听讲边思考让学生通过亲手实践来体验知识的准确性,理解,消化主要知识例1,例2的练习加强学生,以达对定理的更深一步的理解与掌握。
(三)、随堂练习学生完成教师订正练习应用巩固知识(四)、课时小结通过这节课的学习,你能获得哪些收获?分小组交流后个别回答知识系统化(五)、课后作业习题4.9第1题、第2题。
初中数学初三数学上册《相似三角形的性质》教案、教学设计
一、教学目标
(一)知识与技能
1.理解相似三角形的定义及性质,掌握相似三角形的判定方法。
2.能够运用相似三角形的性质解决实际问题,如求线段长度、角度大小等。
3.学会使用相似三角形的相关定理进行证明,提高逻辑推理能力。
4.掌握相似变换的概念,了解其在现实生活中的应用。
(二)过程与方法
1.通过观察、实践、探索,引导学生发现相似三角形的性质,培养他们的观察能力和动手操作能力。
2.通过小组合作、讨论交流,培养学生的团队合作意识和解决问题的能力。
3.运用类比、归纳等数学思想,帮助学生建立知识体系,提高他们的逻辑思维能力。
4.设计丰富的例题和练习,巩固所学知识,提高学生的解题技巧。
1.重点:相似三角形的定义、性质及判定方法,相似变换的应用。
2.难点:相似三角形性质的证明过程,以及将相似三角形性质应用于解决实际问题。
(二)教学设想
1.创设情境,导入新课
-通过展示生活中常见的相似图形,如地图、照片等,引发学生对相似三角形的兴趣。
-提问方式引导学生回顾已学的全等三角形知识,为新课的学习做好铺垫。
作业要求:
1.学生应在规定时间内独立完成作业,注重作业质量,提高解题效率。
2.作业完成后,认真检查,确保答案正确、书写规范。
3.积极参与课堂讨论,与同学分享解题思路和心得。
4.遇到问题及时向老师请教,不断提高自己的数学素养。
在教学过程中,教师应关注学生的个体差异,因材施教,充分调动学生的积极性,引导他们主动参与课堂活动。同时,注重培养学生的数学思维和解决问题的能力,为他们的终身学习奠定基础。
二、学情分析
本章节的学习对象为初三学生,经过前两年的数学学习,他们已经掌握了平面几何的基本知识和技能,具备了一定的逻辑推理和问题解决能力。在此基础上,学生对相似三角形的性质这一章节内容的学习将面临以下挑战:
27.2相似三角形(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
初中数学《相似三角形》教案
初中数学《相似三角形》教案相似三角形是初中数学中的重要内容,这一课的主要目标是使学生能够理解相似三角形的概念和性质,并能够运用相似三角形的特性解决问题。
以下是本课的教案。
一、教材分析本课所用教材为初中数学教材《数学七年级上册》,第三章“图形的相似与投影”中的“相似三角形”的内容。
本课所讲解的内容包括相似三角形的定义、相似三角形的性质以及相似三角形的判定方法。
二、教学目标1.知识目标-了解相似三角形的定义和性质。
-掌握相似三角形的判定方法。
2.能力目标-能够用相似三角形的性质解决应用问题。
-能够在图形中判断是否存在相似三角形。
3.情感目标-培养学生的观察、思考和解决问题的兴趣。
-培养学生的合作意识和团队合作精神。
三、教学重难点1.教学重点-让学生理解相似三角形的定义及性质。
-培养学生用相似三角形的性质解决问题的能力。
2.教学难点-学生理解相似三角形的判定方法。
-培养学生在图形中判断相似三角形的能力。
四、教学步骤1.导入与引入(15分钟)-利用实例引导学生思考相似三角形的概念,例如:两根相似的饭筷是什么样的?为什么呢?-引入相似三角形的定义,即三角形的对应角相等,对应边成比例。
2.知识讲解(30分钟)-讲解相似三角形的性质:例如对应边成比例、对应角相等、两个相似三角形的比值等。
-结合教材中的习题,引导学生理解相似三角形的重要性质。
3.练习与应用(30分钟)-配备充足的习题和问题,让学生运用所学的知识解决问题。
-给予学生适当的指导,让学生在小组中合作讨论答案。
-学生进行相互检查和讲解,加深对相似三角形的理解。
4.总结与拓展(15分钟)-总结学生学习到的知识,重点强调相似三角形的判定方法和性质。
-给学生拓展一些相关的问题,让学生综合运用所学知识。
五、教学评价与反思1.教学评价-教师根据学生的课堂表现和练习题的完成情况,进行直观式评价。
-学生相互评价,通过小组合作和讲解习题的过程,相互学习和提高。
2.反思与完善-教师在过程中及时发现和解决学生的问题,引导学生更好地理解相似三角形。
相似三角形教案
相似三角形教案I. 教学目标通过本教案的学习,学生将能够:1. 掌握相似三角形的定义;2. 理解相似三角形的性质和判定方法;3. 运用相似三角形的性质解决实际问题。
II. 教学准备1. 教师准备:投影仪、幻灯片、黑板、粉笔等教学工具;2. 学生准备:教材、笔、纸等学习用具。
III. 教学过程Step 1: 导入新知1. 教师引导学生回顾已经学过的一些基础概念,如平行线、角等。
2. 引入相似三角形的概念,让学生尝试给出相似三角形的定义。
Step 2: 相似三角形的定义与性质1. 教师通过幻灯片展示相似三角形的定义,并与学生一起讨论其特点。
2. 学生借助教材,归纳相似三角形的性质,如对应角相等、对应边成比例等。
Step 3: 判断相似三角形的方法1. 教师介绍判定相似三角形的方法,包括AAA(角-角-角)相似判定法、AA(角-角)相似判定法和SAS(边-角-边)相似判定法。
2. 通过幻灯片展示实例,让学生运用这些方法判断相似三角形。
Step 4: 案例分析与讨论1. 教师提供一些实际问题,要求学生分析并运用相似三角形的性质解决。
2. 学生在小组中合作讨论,找出解决问题的方法,并向全班展示他们的解决思路。
Step 5: 练习与巩固1. 教师布置一些练习题,要求学生运用相似三角形的性质进行求解。
2. 学生独立完成练习,并检查答案。
Step 6: 拓展与应用1. 教师推荐一些与相似三角形相关的拓展阅读资料,鼓励学生深入了解这一概念的应用和意义。
2. 学生可以选择阅读其中的一篇文章,并做一份读后感。
IV. 教学反思通过本教案的设计,学生在活动中能够借助幻灯片、小组合作讨论以及个人练习等方式全面了解相似三角形的定义、性质和判定方法。
此外,通过解决实际问题的过程,学生能够培养思维能力和解决问题的策略意识。
教学过程中要注意调动学生积极性,激发他们的学习兴趣,让他们充分参与到教学活动中。
相似三角形教案
相似三角形教案一、教学目标1、知识与技能目标理解相似三角形的定义,掌握相似三角形的性质和判定定理。
能够运用相似三角形的性质和判定定理解决简单的几何问题。
2、过程与方法目标通过观察、比较、猜想、验证等数学活动,培养学生的观察能力、逻辑思维能力和创新能力。
经历相似三角形的探索过程,体会数学中的转化思想和分类讨论思想。
3、情感态度与价值观目标让学生在探索相似三角形的过程中,体验成功的喜悦,增强学习数学的信心。
培养学生合作交流的意识和勇于探索的精神。
二、教学重难点1、教学重点相似三角形的定义、性质和判定定理。
相似三角形的应用。
2、教学难点相似三角形判定定理的证明。
灵活运用相似三角形的性质和判定定理解决实际问题。
三、教学方法讲授法、讨论法、探究法四、教学过程1、导入新课展示生活中常见的相似三角形的图片,如金字塔、埃菲尔铁塔等,引导学生观察并思考这些图形的特点。
提问:这些图形有什么共同的特征?从而引出相似三角形的概念。
2、讲解新课(1)相似三角形的定义两个三角形的对应角相等,对应边成比例,这两个三角形叫做相似三角形。
强调相似三角形的对应关系,即对应顶点、对应角、对应边。
(2)相似三角形的表示方法用“∽”表示相似,如△ABC∽△A'B'C'。
(3)相似三角形的性质相似三角形的对应角相等。
相似三角形的对应边成比例。
相似三角形的对应高、对应中线、对应角平分线的比等于相似比。
相似三角形的周长比等于相似比,面积比等于相似比的平方。
(4)相似三角形的判定定理两角分别相等的两个三角形相似。
两边成比例且夹角相等的两个三角形相似。
三边成比例的两个三角形相似。
(5)相似三角形判定定理的证明以“两角分别相等的两个三角形相似”为例,引导学生通过作辅助线,构造全等三角形,证明两个三角形相似。
3、课堂练习出示一些简单的相似三角形的判断题和计算题,让学生巩固所学知识。
例如:判断△ABC 和△A'B'C'是否相似,其中∠A = 60°,∠B =40°,∠A' = 60°,∠C' = 80°。
九年级数学下册《相似三角形》优秀教学案例
3.教师在小组合作过程中,要关注学生的参与情况,适时给予指导和鼓励,确保每个学生都能在合作学习中得到提升。
(四)反思与评价
1.鼓励学生在学习过程中进行自我反思,总结自己的学习方法和经验,提高他们的自主学习能力。
结合学科特点,本案例将引导学生通过观察、猜想、验证、应用等环节,深入理解相似三角形的本质。在课程设计上,充分考虑学生的认知水平和兴趣,注重知识点的层次性,由浅入深,逐步引导学生掌握相似三角形的判定方法及其在实际问题中的应用。
此外,本案例还注重情感目标的实现,通过鼓励学生积极参与、勇于探索,培养他们面对困难时坚持不懈的精神,使学生在掌握知识的同时,也能获得成功的体验和自信心的提升。在教学过程中,教师将以亲切、鼓励的语言,营造轻松、愉快的学习氛围,让学生在愉悦的情感状态下主动探索、积极思考,实现知识与能力的全面发展。
4.教学过程中,注重启发式教学,引导学生主动思考,培养他们独立解决问题的习惯。
(三)情感态度与价值观
1.培养学生积极参与、勇于探索的精神,使他们面对数学问题充满好奇心和求知欲。
2.通过解决实际问题,让学生体会数学与生活的紧密联系,提高他们对数学学科的兴趣和认识。
3.培养学生合作学习的意识,让他们在团队中相互帮助、共同进步,增强集体荣誉感。
(五)作业小结
1.设计具有针对性的作业,涵盖本节课所学知识点,让学生通过练习巩固知识。
2.布置一些拓展性的作业,如研究相似三角形在其他领域的应用,激发学生的探究欲望。
3.要求学生完成作业后进行自我检查,对自己的学习情况进行评价,培养他们的自主学习能力。
相似三角形的判定教案模板
相似三角形的判定教案模板教案能够展现出教师在备课中的思维过程,并且显示出教师对课标、教材、学生的理解和把握的水平以及运用有关教育理论和教学原则组织教学活动的能力。
下面是给大家整理的相似三角形的判定教案5篇,希望大家能有所收获!相似三角形的判定教案1掌握三边成比例的两个三角形相似和两边成比例且夹角相等的两个三角形相似这两个判定三角形相似的定理.阅读教材P32-34,自学“探究2”、“探究3”、“思考”与“例1”,掌握相似三角形判定定理1与判定定理2. 自学反馈学生独立完成后集体订正①如果两个三角形的三组边对应成比例,那么这两个三角形. ②如果两个三角形的两组对应边的比相等,并且相等,那么这两个三角形相似. ③下列是两位同学运用相似三角形的定义判定两个三角形是否相似,你认为他们的说法是否正确?为什么?并写出你的解答. 判断如图所示的两个三角形是否相似,简单说明理由.甲同学:这两个三角形的三个内角虽然分别相等,但是它们的边的比不相等,ACAB≠≠IJHJBC,所以他们不相似. HI乙同学:这两个三角形的三个内角分别相等,对应边之比也相等,所以它们相似. 注意对应关系,可类比全等三角形中找对应边和对应角的方法.活动1 小组讨论例2 如图,DE与△ABC的边AB、AC分别相交于D、E两点,若AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm,DE=4cm,则BC的长为多少? 3解:∵AE=2 cm,AC=3 cm,AD=2.4 cm,AB=3.6 cm, ∴AEAD2==,而∠A=∠A,ACAB3∴△ADE∽△ABC. DEAE=. BCAC4又∵DE= cm,342∴3=, BC3∴∴BC=2 cm. 运用相似三角形可以进行边的计算. 活动2 跟踪训练(独立完成后展示学习成果) 1.如图,在□ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF和△CDE 相似,则BF长为多少?在要使判断的两个三角形相似时,有一个角相等的情况下,夹这角的两边的比相等时有两种情形,不要只考虑一种情形,而忽视了另一种情形. 2.如图所示,DE∥FG∥BC,图中共有相似三角形( )A.1对B.2对C.3对D.4对按照一定的顺序去寻找相似三角形. 活动3 课堂小结学生试述:这节课你学到了些什么?相似三角形的判定教案2相似三角形的判定1.两个三角形的两个角对应相等2.两边对应成比例,且夹角相等3.三边对应成比例4.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似。
初中数学相似教案
初中数学相似教案教学目标:1. 理解相似三角形的定义和性质;2. 学会运用相似三角形解决实际问题;3. 培养学生的逻辑思维能力和解决问题的能力。
教学内容:1. 相似三角形的定义和性质;2. 相似三角形的判定;3. 相似三角形的应用。
教学步骤:一、导入(5分钟)1. 引导学生回顾已学的三角形相关知识,如三角形的分类、三角形的性质等;2. 提问:同学们,你们知道什么是相似三角形吗?有没有谁能举个例子来说明一下?二、新课讲解(15分钟)1. 讲解相似三角形的定义:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形叫做相似三角形;2. 讲解相似三角形的性质:相似三角形的对应边成比例,对应角相等;3. 讲解相似三角形的判定:如果两个三角形的对应角相等,对应边成比例,那么这两个三角形相似;4. 举例说明相似三角形的应用,如解决实际问题中的测量问题、几何图形的构造等。
三、课堂练习(15分钟)1. 请同学们完成教材上的练习题,巩固相似三角形的定义和性质;2. 教师选取部分学生的作业进行讲解和解析,解答学生的疑问。
四、课后作业(5分钟)1. 请同学们完成教材上的课后作业,加深对相似三角形的理解和应用;2. 教师布置一些相关的拓展题目,提高学生的思维能力。
教学评价:1. 课堂讲解:教师对学生的学习情况进行观察和评估,了解学生对相似三角形知识的掌握程度;2. 课堂练习:教师对学生的练习情况进行批改和评价,及时发现和纠正学生的错误;3. 课后作业:教师对学生的作业情况进行批改和评价,了解学生对相似三角形知识的应用能力。
教学反思:本节课通过讲解相似三角形的定义、性质和判定,以及应用,使学生掌握了相似三角形的基本知识。
在教学过程中,要注意引导学生主动参与,积极思考,通过举例和练习题来巩固所学知识。
同时,还要注重培养学生的逻辑思维能力和解决问题的能力,提高他们对数学学科的兴趣和信心。
相似三角形的教案
相似三角形的教案【篇一:《相似三角形》教学设计】《相似三角形》教学设计教学设计说明一、教材分析本节“相似三角形”是北师大版实验教材八年级下册第四章第五节的内容,在此之前学生已经学习了相似多边形,知道了相似多边形的本质特征,为学习本节内容做了铺垫。
本节课旨在由一般到特殊引出相似三角形的概念,并应用这一概念解决一些实际问题,为下一步学习相似三角形的判定定理做感性和理性的准备,因此本节课具有承前启后的联系和纽带作用。
同时本节内容的教学对整章学习掌握起着奠基作用,也为学生今后在学习和生活中更好的用数学作准备,因而它在本章的学习中占有重要地位。
二.设计理念:1.指导思想:本节课是关于相似三角形概念的教学,课本内容较少,如何使知识容量、思维容量尽可能饱和,有效培养学生的创新能力,是设计本节课的指导思想。
2. 设计思路:①.为了使学生能较顺利地在教师的引导下进行先学,在复习相似多边形的基础上,由一般到特殊引出相似三角形的定义,并能在具体情景中深入理解,认识相似三角形的本质并应用它来解决问题。
借助练习,通过合作探究,独立思考来完成本课的目标②.整堂课设置问题,层层深入,给学生充分的思考时间,使学生感受到了自己是课堂的主人,让学生在亲身实践中去体验、去感悟,一切的新知识都是由学生自己发现。
教师只是引导和帮助学生去探索,而没有把现有的知识灌输给学生。
③.根据《数学课程标准》所提出的先进教学理念,用教材教,而不是教教材,让课堂由学生主导,充分发挥学生的主体作用,结合初中生的认知特点,本节课力求形成“创设问题情景→构建模型→合作探究→实践应用”的模式,在重视双基的同时,更关注知识的形成过程。
三.教学目标知识与技能目标:使学生了解两个三角形相似的概念,学会利用相似三角形解决一些实际问题,在实际应用中加深对相似三角形的认识和理解。
培养学生的抽象思维能力和解决实际问题的能力。
过程与方法目标:在相似三角形概念及性质的学习过程中,引导学生对问题观察、分析、归纳、猜想,养成良好的思维习惯。
初中数学《相似三角形》优秀教案
相似三角形一、知识概述(一)相似三角形1、对应角相等,对应边成比例的两个三角形,叫做相似三角形.温馨提示:①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛.2、相似三角形对应边的比叫做相似比.温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似.判定定理(2):两边对应成比例且夹角相等,两三角形相似.判定定理(3):三边对应成比例,两三角形相似.温馨提示:①有平行线时,用上节学习的预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理(1)或判定定理(2);③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.(三)三角形的重心1、三角形三条中线的交点叫做三角形的重心.2、三角形的重心与顶点的距离等于它与对边中点的距离的两倍.二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:(1)“平行线型”相似三角形,基本图形见上节图.“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A旋转某一角度而形成的.温馨提示:从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形.三、解题方法技巧点拨1、寻找相似三角形的个数例1、(吉林)将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中所有点、线都在同一平面内,回答下列问题:(1)图中共有多少个三角形?把它们一一写出来;(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.分析:(1)在△ABC内,有五个三角形,加上△ABC与△AFG,共有七个三角形.(2)这是依据相似三角形判定定理来解决的计数问题.由于“不包括全等”,图中还剩五个非直角三角形,考虑到题设中两个三角形摆放的随意性,∠1不一定等于∠2,而∠B=∠C=45°,∠3、∠4都为钝角,又排除△ABD与△ACE相似,还剩三个三角形,这三个三角形相似.解:(1)共有七个三角形,它们是△ABD、△ABE、△ADE、△ADC、△AEC、△ABC与△AFG.(2)有相似三角形,它们是△ABE∽△DAE,△DAE∽△DCA,△ABE∽△DCA(或△ABE ∽△DAE∽△DCA).点拨:①解决这类计数问题,一定要依据图形与定理,全面、周密思考,做到不重不漏,这类题有利于发散思维的培养和创新意识的形成;②有兴趣的同学可继续探索一下本题中BD、DE、EC三条线段有何关系?2、画符合要求的相似三角形例2、(上海)在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(1)(2)分析:设单位正方形的边长为1,则△ABC的三边为,从而根据相似三角形判定定理2或3可画△A1B1C1,易得点拨:在4×4的正方形方格中,满足题设的△A1B1C1只能画出以上三个,若正方形方格数不加限制,则和△ABC相似且不全等的三角形可以画无数个.3、相似三角形的判定例3、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有相似三角形,并证明.分析:(1)根据题设,观察图形易见,DE、EF、FD分别是△AOB、△BOC、△COA的中位线,利用三角形的中位线性质可证△DEF与△ABC的三边对应成比例;(2)由于正方形的四条边相等,且BE=CE,DF=3CF,设出正方形边长后,图中所有线段都能求出,故可从三边是否成比例判定哪些三角形相似.点拨:①第(1)题,若点O在△ABC外,其他条件不变,结论仍成立;②第(2)题也可用判定定理2,先证△ABE∽△ECF,得出∠AEF=90°后,再证其中任意三角形与△AEF相似,显然,以上证法较简便.4、直角三角形相似的判定例4、求证:若一个直角三角形的一条直角边和斜边上的高与另一个直角三角形的一条直角边和斜边上的高成比例,那么这两个直角三角形相似.已知:如图,Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,CD、C′D′分别是两个三角形斜边上的高,且CD︰C′D′=AC︰A′C′.求证:△ABC∽△A′B′C′.分析:判定直角三角形相似的方法除使用一般三角形的判定方法外,还可使用“斜边和一直角边对应成比例的两直角三角形相似”这一定理.证明△ABC∽△A′B′C′,只要再证一锐角对应相等即可.证明:∵CD、C′D′分别是△ABC、△A′B′C′的高,∴△ACD、△A′C′D′是直角三角形.5、三角形重心问题例5、已知△ABC的重心G到BC边上的距离为5,那么BC边上的高为()A.5B.12C.10D.15解析:因为G为△ABC的重心,所以DG︰DA=1︰3,因为GE⊥BC,AF⊥BC,所以GE∥AF,所以GE︰AF=DG︰DA=1︰3,因为GE=5,所以AF=15.6、相似三角形的综合运用例6、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.分析:(1)△ADF与△EDB都是直角三角形,要证它们相似,只要再找一个角对应相等即可;(2)注意到CD是斜边AB的中线,AD=BD=CD,由结论(1)不难得出结论(2).证明:(1)∵DF⊥AB,∴∠ADF=∠BDE=90°,又∵∠F+∠A=∠B+∠A,∴∠F=∠B,∴△ADF∽△EDB.(2)由(1)得,∴AD·BD=DE·DF.又∵CD是Rt△ABC斜边上的中线,∴AD=BD=CD.故CD2=DE·DF.点拨:本题综合考查了直角三角形的性质与相似三角形的判定等.这是一道阶梯型问题,第(2)题根据(1)得出有关比例式,然后使用“等线代换”使问题简捷获证.其实第(2)题也可这样思考:把它转化为比例式,证明这三条线段所在的△CDE∽△FDC.请同学们完成这一证明.例7、如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:.分析:待证式中的四条线段不是在两个三角形中,无法直接根据两个三角形相似得出,需要插入一个“中间比”,由题设易证△ABE∽△ACF,△BDE∽△CDF,从中不难找到这个中间比.证明:∵AD是△ABC的角平分线,∴∠1=∠2.∵BE⊥AD,CF⊥AD,∴∠3=∠4=90°,∴△ABE∽△ACF,点拨:①当无法直接由两个三角形相似得出结论中的比例式时,一般可寻找“中间比”帮忙;例8、如图,在正方形ABCD 中,M 、N 分别是AB 、BC 上的点,BM=BN ,BP ⊥MC 于点P .求证:(1)△PBN ∽△PCD ;(2)PN ⊥PD .分析:要证PN ⊥PD ,即证∠DPN=90°,由已知∠BPC=90°,而∠BPC 与∠DPN 有公共部分∠CPN ,因此只要证明∠4=∠5即可.这就必须先证明出结论(1).在△PBN 与△PCD 中,易证∠1=∠3,以下只要证明夹∠1、∠3的两边对应成比例. 证明:(1)在正方形ABCD 中,AB ∥CD ,∠ABC=90°.∵BP ⊥MC ,∴△PBM ∽△PCB .点拨:要注意观察出图中存在的“母子相似三角形”基本图形,从而充分利用它得出∠1=∠2及△PBM ∽△PCB 等重要结论一、本章的两套定理第一套(比例的有关性质):涉及概念:①cd a b = d b c a a c b d ==或 ⇒=⇔=bc ad d c b a b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。
九年级数学上册《相似三角形的性质》教案、教学设计
在学生小组讨论环节,我会将学生分成若干小组,每组4-6人。给出以下讨论题目:
1.请列举出相似三角形的性质,并尝试用简洁的语言解释每个性质。
2.请举例说明相似三角形在实际问题中的应用。
3.你认为相似三角形的性质与全等三角形的性质有哪些联系和区别?
要求学生在小组内进行充分讨论,分享各自的观点和想法。在此过程中,我会巡回指导,关注学生的讨论进度,适时给予提示和引导。
2.培养学生运用几何图形描述和分析问题的能力,提高他们的逻辑思维和推理能力。
3.引导学生将相似三角形的性质应用于实际生活,培养他们的应用意识和创新能力。
(二)教学难点
1.相似三角形性质的推导和证明,尤其是其中的比例关系和角度关系。
2.学生在解决实际问题时,如何将相似三角形的性质灵活运用。
3.培养学生合作交流能力,提高他们在团队中的参与度和贡献度。
2.相似三角形的性质:详细讲解相似三角形的性质,如对应角相等、对应边成比例等,并结合实际例子进行解释。
3.相似三角形的判定方法:介绍判定相似三角形的方法,如AA、SSS、SAS等,并通过典型例题进行讲解。
4.相似三角形的应用:展示相似三角形在实际问题中的应用,如测量、设计等,让学生体会几何知识在实际生活中的价值。
(五)总结归纳,500字
在总结归纳环节,我会从以下几个方面进行:
1.知识点回顾:引导学生回顾本节课所学的相似三角形的定义、性质、判定方法及应用。
2.学习方法总结:让学生总结自己在学习相似三角形过程中的心得体会,分享有效的学习方法。
3.情感态度与价值观:强调几何知识在实际生活中的重要性,激发学生学习几何的兴趣和热情。
1.学生对相似三角形定义的理解程度,以及对相似性质的认识和运用能力。
相似三角形教案
相似三角形教案相似三角形教案一、教学目标:1. 知识与技能:掌握相似三角形的概念;了解相似三角形的性质;能够判断两个三角形是否相似;能够应用相似三角形的性质解决实际问题。
2. 过程与方法:通过实例引入,提供多种不同的教学方法,如讲解、讨论、实例分析等,激发学生的学习兴趣;通过课堂练习和作业的形式,培养学生的分析问题和解决问题的能力。
3. 情感态度与价值观:培养学生的计算能力和分析能力,增强对数学的兴趣;培养学生的逻辑思维能力和创造力,注重培养学生的合作精神和团队意识。
二、教学重点与难点:1. 教学重点:相似三角形的性质及其应用。
2. 教学难点:如何判断两个三角形是否相似;如何应用相似三角形的性质解决问题。
三、教学过程与方法:1. 导入新知识:通过示意图引入相似三角形的概念和性质,让学生对相似三角形有初步的认识。
2. 讲解与示范:讲解相似三角形的判定方法和性质,并通过示例进行演示,让学生理解和掌握相似三角形的性质。
3. 实例分析:让学生通过分析实际生活中的例子,找出相似三角形的特点,并运用相似三角形的性质解决实际问题。
4. 讨论与合作:组织学生进行小组讨论,共同解决相似三角形的问题,培养学生的合作意识和团队精神,激发学生的思考和创造力。
5. 总结与归纳:让学生总结相似三角形的判定方法和性质,进行知识归纳和概念澄清,确保学生对相似三角形有深入的理解。
6. 拓展与巩固:通过练习题和作业的形式,巩固学生对相似三角形知识的掌握和运用能力,培养学生的分析和解决问题的能力。
四、教学资源:1. 教学课件:显示相似三角形的示意图和相关概念。
2. 教学实例:提供多个真实生活中的示例,让学生进行分析和解决问题。
五、教学评估:1. 课堂练习:在教学过程中进行课堂练习,检测学生对相似三角形的掌握程度。
2. 作业评价:布置相关的作业,检测学生对相似三角形的应用能力和解决问题的策略。
六、教后反思:通过本节课的教学,学生能够初步掌握相似三角形的概念和性质,并能够运用相似三角形的性质解决实际问题。
九年级数学相似三角形作业讲评课教案5篇最新
九年级数学相似三角形作业讲评课教案5篇最新相似三角形是初中比较重要的一门课程,今天小编在这里整理了一些九年级数学相似三角形作业讲评课教案5篇最新,我们一起来看看吧!九年级数学相似三角形作业讲评课教案1相似三角形 - 初中数学第三册教案相似三角形的性质教学示例1(第1课时)一、教学目标1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.3.进一步培养学生类比的教学思想.4.通过相似性质的学习,感受图形和语言的和谐美二、教法引导先学后教,达标导学三、重点及难点1.教学重点:是性质定理1的应用.2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具.六、教学步骤[复习提问]1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?[讲解新课]根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的其他性质(见图).建议让学生类比“全等三角形的`对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比∽ ,,教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.分析示意图:结论→∽(欠缺条件)→∽(已知)∽ ,BM=MC,∽ ,以上两种情况的证明可由学生完成.[小结]本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.七、布置作业教材P241中3、教材P247中A组3.八、板书设计相似三角形的性质教学示例1(第1课时)一、教学目标1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.3.进一步培养学生类比的教学思想.4.通过相似性质的学习,感受图形和语言的和谐美二、教法引导先学后教,达标导学三、重点及难点1.教学重点:是性质定理1的应用.2.教学难点:是相似三角形的判定1与性质等有关知识的综合运用.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具.六、教学步骤[复习提问]1.三角形中三种主要线段是什么?2.到目前为止,我们学习了相似三角形的哪些性质?3.什么叫相似比?[讲解新课]根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.下面我们研究相似三角形的其他性质(见图).建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比∽ ,,教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.分析示意图:结论→∽(欠缺条件)→∽(已知)∽ ,BM=MC,∽ ,以上两种情况的证明可由学生完成.[小结]本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.七、布置作业教材P241中3、教材P247中A组3.八、板书设计九年级数学相似三角形作业讲评课教案2相似三角形相似三角形判定定理:(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
初中数学《相似三角形》教案
初中数学《相似三角形》教案第四章相似图形5.相似三角形一、学生知识状况分析学生的知识技能基础:在七年级的学习中,学生通过观看、测量、画图、拼摆等数学活动, 体会了全等三角形中“对应关系”的重要作用。
上一节课“相似多边形”的学习,使学生在探究相似形本质特点的过程中,进展了有条理地摸索与表达,归纳,反思,交流等能力。
学生活动体会基础:上述学习经历为学生连续探究“相似三角形”积存了丰富的活动体会和知识基础。
二、教学任务分析(一)教材的地位和作用分析:.《相似三角形》在本章中承上启下,. 表达了从一样到专门的数学思想;. 是学生今后学习的基础;. 是解决生活中许多实际问题的常用数学模型.即相似三角形的知识是在全等三角形知识的基础上的拓广和进展,相似三角形承接全等三角形,从专门的相等到一样的成比例予以深化,学好相似三角形的知识,为今后进一步学习探究三角形相似的条件、三角函数及与此有关的比例线段等知识打下良好的基础。
(二)教学重点:相似三角形定义的明白得和认识。
(三)教学难点:1..相似三角形的定义所揭示的本质属性的明白得和应用;2..例2后想一想中“渗透三角形相似与平行的内在联系”是本节课的第二个难点。
(四)教法与学法分析:本节课将借助生活实际和图形变换创设宽松的学习环境;并利用多媒体手段辅助教学,直观、形象,表达数学的趣味性。
学生则通过观看类比、动手实践、自主探究、合作交流的学习方式完成本节课的学习。
(五)教法建议1.从知识的逻辑体系动身,在知识的引入时可考虑先复习相似形的概念,在探究归纳给出相似三角形的概念2.在知识的引入上,能够从生活实例的角度动身,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念3.在知识的引入上,还能够从知识的建构模式入手,给出几组图形,告诉学生这几组图形差不多上相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的明白得5.在概念的明白得过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的明白得6.在本节内容中对应边及对应角的查找学生常常显现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生查找其中的对应边或对应角,并说明依照,有利于知识的把握(六)教学目标分析:通过一些具体问题的情境设置、观看类比、动手操作;让学生积极摸索、充分参与、合作探究;深化对相似三角形定义的明白得和认识.进展学生的想象能力,应用能力,建模意识,空间观念等,培养学生积极的情感和态度。
相似三角形的判定数学教学教案(10篇)
相似三角形的判定数学教学教案(10篇)《相似三角形》数学教案篇一教学目标:1、了解相似三角形的概念,会表示两个三角形相似。
2、能运用相似三角形的概念判断两个三角形相似。
3、理解“相似三角形的对应角相等,对应边成比例”的性质。
重点和难点:1、本节教学的重点是相似三角形的概念2、在具体的图形中找出相似三角形的对应边,并写出比例式,需要学生具有一定的分辨能力,是本节教学的难点。
知识要点:1、对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的对应角相等,对应边成比例。
3、相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)重要方法:1、全等三角形是相似三角形的特殊情况,它的相似比是1。
2、相似三角形中,利用对应角寻找对应边;反过来利用对应边寻找对应角。
3、书写相似三角形时,需要把对应顶点的字母写在对应的位置上。
教学过程一、创设情境,导入新课1、课件出示:①国旗上的☆,②同一底片不同尺寸的照片。
以上图形之间可以通过怎样的图形变换得到?2、经过相似变换后得到的像与原像称为相似图形。
那么将一个三角形作相似变换后所得的像与原像称为相似三角形二、合作学习,探索新知1、合作学习如图1,在方格纸内先任意画一个☆ABC,然后画出☆ABC经某一相似变换(如放大或缩小若干倍)后得到像☆A ′B ′C ′(点A ′、B ′、C ′分别对应点A 、B 、C)。
问题讨论1:☆A ′B ′C ′与☆ABC对应角之间有什么关系?问题讨论2:☆A ′B ′C ′与☆ABC对应边之间有什么关系?学生相互比较得到结论:对应角相等,对应边成比例。
2、由合作学习定义相似三角形的概念(1)相似三角形:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形(2)表示:相似用符号“☆”来表示,读作“相似于”如☆A ′B ′C ′与☆ABC相似,记做“☆A ′B ′C ′☆☆ABC ” 。
注意:在表示三角形相似时,一般把对应顶点的字母写在对应的位置上(3)定义的几何语言表述:A B C A ′B ′C ′相似三角形的判定数学教学教案篇二一、教学目标1.使学生了解判定定理2、3的证明方法并会应用。
数学《相似三角形的判定》教案
相似三角形的判定(一)一、教学内容的说明1、教材所处的地位:三角形相似的判定是相似形这一章的教学重点,是在学习三角形相似的定义和预备定理的基础上作进一步研究。
从知识的系统性来看,相似三角形是全等三角形知识的发展,它们存在一般与特殊的关系,因此可类比三角形全等的判定方法得到三角形相似的判定方法。
同时判定定理1的证明方法又为进一步学习其它几个判定定理奠定了基础。
2、这一内容可分为四课时完成,本教学设计是第一课时。
3、本节课注重分层教学,在各个环节均照顾不同层次的学生,使各层次学生均有所得,体会到成功的喜悦,树立自信心,主动发展。
教学重点:三角形相似的判定定理1的理解和应用。
教学难点:三角形相似的判定定理1的证明方法。
因为它的证明是在只有相似三角形的定义和预备定理的条件下完成的,需要添加辅助线转化为预备定理。
二、教学目标的确定根据本节课的具体内容并结合学生的实际情况,我从知识与技能、过程与方法、情感态度价值观三方面制定了教学目标:1、使学生理解定理内容及其证明方法,初步会运用定理解决有关问题;2、通过学生探索、证明、理解和应用定理,进一步发展符号感和推力能力,使学生学会学习,体验成功;3、通过图形变式,使学生体验数学活动充满着探索性和创造性,并享受数学美;通过小组讨论,培养学生合作意识。
三、教学方法与教学手段的选择为了充分调动学生学习的积极性,使学生变被动学习为主动愉快地学习,我引导学生类比联想,猜想命题,形成定理,采用讨论、探究式的教学方法.在教学手段方面,我选择了计算机辅助教学的方式,运用Powerpoint和几何画板,增加图形的直观性和课堂密度.四、教学过程的设计为了实现教学目标,我遵循学生的认知规律,根据“循序渐进原则”;把这节课分为三个阶段:“定理探索阶段”;“定理运用阶段”;“定理巩固阶段”.下面我将对教学步骤作出说明。
(一)定理探索阶段1、类比,猜想三角形相似的判定方法由于探索三角形相似的新的判定方法首先应让学生对已有知识有一个清晰的认识,所以先让学生复习相似三角形的定义和判定三角形相似的预备定理,教师引导学生思考,现有的判定三角形相似的方法中:①定义需要对应角分别相等,对应边成比例,条件多,过于苛刻;②预备定理要求有三角形一边的平行线,条件过于特殊,使用起来有局限性.说明探索三角形相似的新的判定方法的必要性。
初中数学初三数学上册《相似三角形》教案、教学设计
-学生在理解相似三角形的动态变化过程中,可能会对对应角、对应边的概念产生混淆。
(二)教学设想
1.对于重点内容的处理:
-利用直观教具和多媒体演示,让学生直观感受相似三角形的形成过程,强化对判定方法的理解。
-设计由易到难的题目,让学生逐步掌握相似三角形性质的应用,通过实际操作和问题解决,加深对知识的理解。
(五)总结归纳
在总结归纳环节,我将带领学生回顾本节课所学的内容,并总结如下:
1.相似三角形的定义、判定方法和性质。
2.相似三角形在实际问题中的应用。
3.本节课的学习方法,如合作探究、交流讨论等。
五、作业布置
为了巩固学生对相似三角形知识的掌握,提高他们的应用能力,我设计了以下作业:
1.基础知识巩固题:完成课本第十章的习题1、2、3,这些题目旨在帮助学生巩固相似三角形的判定方法和性质,确保学生对基本概念的理解。
4.情感态度的培养:
-鼓励学生积极面对挑战,将难点作为提升自我能力的契机,培养学生的坚持精神和自信态度。
-创设积极的学习氛围,通过肯定和鼓励,帮助学生树立正确的学习观念,培养对数学的积极情感。
四、教学内容与过程
(一)导入新课
在导入新课时,我将利用学生已有的知识经验,通过以下方式激发学生的兴趣和好奇心:
-通过对不同判定方法的比较和分析,引导学生理解各种判定方法之间的联系和区别。
-梳理相似三角形的性质和判定方法,归纳总结规律,形成知识结构。
(三)情感态度与价值观
1.培养学生对数学的热爱和兴趣,增强学生的自信心和自主学习意识。
-创设有趣的问题情境,激发学生的学习兴趣,让学生在解决问题的过程中体验到数学的乐趣。
相似三角形教学设计(共8篇)
相似三角形教学设计〔共8篇〕第1篇:《相似三角形》教学设计《相似三角形》教学设计一、教学目的〔一〕知识教学点1.使学生能利用公式解决简单的实际问题.2.使学生理解公式与代数式的关系.〔二〕才能训练点1.利用数学公式解决实际问题的才能.2.利用的公式推导新公式的才能.〔三〕德育浸透点数学来于消费理论,又反过来效劳于消费理论.〔四〕美育浸透点数学公式是用简洁的数学形式来说明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.二、学法引导1.数学方法:引导发现法,以复习提问小学里学过的公式为根底、打破难点2.学生学法:观察→分析^p →推导→计算三、重点、难点、疑点及解决方法1.重点:利用旧公式推导出新的图形的计算公式.2.难点:同重点.3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.四、课时安排1课时五、教具学具准备投影仪,自制胶片。
六、教学步骤〔一〕创设情景,复习引入师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开场就参与课堂教学,使学生在后面利用公式计算感到不陌生.在学生说出几个公式后,师提出本节课我们应在小学学习的根底上,研究如何运用公式解决实际问题.板书:公式师:小学里学过哪些面积公式?板书: S = ah附图〔出示投影1〕。
解释三角形,梯形面积公式【教法说明】让学生感知用割补法求图形的面积。
〔二〕探究求知,讲授新课师:下面利用面积公式进展有关计算〔出示投影2〕例1 如图是一个梯形,下底〔米〕,上底,高,利用梯形面积公式求这个梯形的面积S。
师生共同分析^p :1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些如今知道吗?2.题中“M”是什么意思?〔师补充说明厘米可写作cm,千米写作km,平方厘米写作等〕学生口述解题过程,老师予以指正并指出,强调解题的标准性.【教法说明】1.通过分析^p ,引导学生在一个实际问题中,必须明确哪些量是的,哪些量是未知的,要解决这个问题,必须哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.〔出示投影3〕例2 如图是一个环形,外圆半径,内圆半径求这个环形的面积学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.评讲时注意1.假如有学生作了简便计算,那么给予表扬和鼓励:假如没有学生这样计算,那么启发学生这样计算.2.此题实际上是由圆的面积公式推导出环形面积公式.3.进一步强调解题的标准性教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.测试反应,稳固练习〔出示投影4〕1.计算底,高的三角形面积2.长方形的长是宽的1.6倍,假如用a表示宽,那么这个长方形的周长是多少?当时,求t3.圆的半径,求圆的周长C和面积S4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形一、知识概述(一)相似三角形1、对应角相等,对应边成比例的两个三角形,叫做相似三角形.温馨提示:①当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例,其应用广泛.2、相似三角形对应边的比叫做相似比.温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似.判定定理(2):两边对应成比例且夹角相等,两三角形相似.判定定理(3):三边对应成比例,两三角形相似.温馨提示:①有平行线时,用上节学习的预备定理;②已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理(1)或判定定理(2);③已有两边对应成比例时,可考虑利用判定定理2或判定定理3.但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似.①由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;②如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛.③如图,可简单记为:在Rt△ABC中,CD⊥AB,则△ABC∽△CBD∽△ACD.(三)三角形的重心1、三角形三条中线的交点叫做三角形的重心.2、三角形的重心与顶点的距离等于它与对边中点的距离的两倍.二、重点难点疑点突破1、寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对应元素是分析与解决相似三角形问题的一项基本功.通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角.2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法.如:(1)“平行线型”相似三角形,基本图形见上节图.“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图.其中各图中都有一个公共角或对顶角.“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图.若图中∠1=∠2,∠B=∠D(或∠C=∠E),则△ADE∽△ABC,该图可看成把第一个图中的△ADE绕点A旋转某一角度而形成的.温馨提示:从基本图形入手能较顺利地找到解决问题的思路和方法,能帮助我们尽快地找到添加的辅助线.以上“平行线型”是常见的,这类相似三角形的对应元素有较明显的顺序,“相交线型”识图较困难,解题时要注意从复杂图形中分解或添加辅助线构造出基本图形.三、解题方法技巧点拨1、寻找相似三角形的个数例1、(吉林)将两块完全相同的等腰直角三角形摆成如图的样子,假设图形中所有点、线都在同一平面内,回答下列问题:(1)图中共有多少个三角形?把它们一一写出来;(2)图中有相似(不包括全等)三角形吗?如果有,就把它们一一写出来.分析:(1)在△ABC内,有五个三角形,加上△ABC与△AFG,共有七个三角形.(2)这是依据相似三角形判定定理来解决的计数问题.由于“不包括全等”,图中还剩五个非直角三角形,考虑到题设中两个三角形摆放的随意性,∠1不一定等于∠2,而∠B=∠C=45°,∠3、∠4都为钝角,又排除△ABD与△ACE相似,还剩三个三角形,这三个三角形相似.解:(1)共有七个三角形,它们是△ABD、△ABE、△ADE、△ADC、△AEC、△ABC与△AFG.(2)有相似三角形,它们是△ABE∽△DAE,△DAE∽△DCA,△ABE∽△DCA(或△ABE ∽△DAE∽△DCA).点拨:①解决这类计数问题,一定要依据图形与定理,全面、周密思考,做到不重不漏,这类题有利于发散思维的培养和创新意识的形成;②有兴趣的同学可继续探索一下本题中BD、DE、EC三条线段有何关系?2、画符合要求的相似三角形例2、(上海)在大小为4×4的正方形方格中,△ABC的顶点A、B、C在单位正方形的顶点上,请在图中画出一个△A1B1C1,使得△A1B1C1∽△ABC(相似比不为1),且点A1、B1、C1都在单位正方形的顶点上.(1)(2)分析:设单位正方形的边长为1,则△ABC的三边为,从而根据相似三角形判定定理2或3可画△A1B1C1,易得点拨:在4×4的正方形方格中,满足题设的△A1B1C1只能画出以上三个,若正方形方格数不加限制,则和△ABC相似且不全等的三角形可以画无数个.3、相似三角形的判定例3、(1)如图,O是△ABC内任一点,D、E、F分别是OA、OB、OC的中点,求证:△DEF∽△ABC;(2)如图,正方形ABCD中,E是BC的中点,DF=3CF,写出图中所有相似三角形,并证明.分析:(1)根据题设,观察图形易见,DE、EF、FD分别是△AOB、△BOC、△COA的中位线,利用三角形的中位线性质可证△DEF与△ABC的三边对应成比例;(2)由于正方形的四条边相等,且BE=CE,DF=3CF,设出正方形边长后,图中所有线段都能求出,故可从三边是否成比例判定哪些三角形相似.点拨:①第(1)题,若点O在△ABC外,其他条件不变,结论仍成立;②第(2)题也可用判定定理2,先证△ABE∽△ECF,得出∠AEF=90°后,再证其中任意三角形与△AEF相似,显然,以上证法较简便.4、直角三角形相似的判定例4、求证:若一个直角三角形的一条直角边和斜边上的高与另一个直角三角形的一条直角边和斜边上的高成比例,那么这两个直角三角形相似.已知:如图,Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,CD、C′D′分别是两个三角形斜边上的高,且CD︰C′D′=AC︰A′C′.求证:△ABC∽△A′B′C′.分析:判定直角三角形相似的方法除使用一般三角形的判定方法外,还可使用“斜边和一直角边对应成比例的两直角三角形相似”这一定理.证明△ABC∽△A′B′C′,只要再证一锐角对应相等即可.证明:∵CD、C′D′分别是△ABC、△A′B′C′的高,∴△ACD、△A′C′D′是直角三角形.5、三角形重心问题例5、已知△ABC的重心G到BC边上的距离为5,那么BC边上的高为()A.5B.12C.10D.15解析:因为G为△ABC的重心,所以DG︰DA=1︰3,因为GE⊥BC,AF⊥BC,所以GE∥AF,所以GE︰AF=DG︰DA=1︰3,因为GE=5,所以AF=15.6、相似三角形的综合运用例6、如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于E,交AC延长线于F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.分析:(1)△ADF与△EDB都是直角三角形,要证它们相似,只要再找一个角对应相等即可;(2)注意到CD是斜边AB的中线,AD=BD=CD,由结论(1)不难得出结论(2).证明:(1)∵DF⊥AB,∴∠ADF=∠BDE=90°,又∵∠F+∠A=∠B+∠A,∴∠F=∠B,∴△ADF∽△EDB.(2)由(1)得,∴AD·BD=DE·DF.又∵CD是Rt△ABC斜边上的中线,∴AD=BD=CD.故CD2=DE·DF.点拨:本题综合考查了直角三角形的性质与相似三角形的判定等.这是一道阶梯型问题,第(2)题根据(1)得出有关比例式,然后使用“等线代换”使问题简捷获证.其实第(2)题也可这样思考:把它转化为比例式,证明这三条线段所在的△CDE∽△FDC.请同学们完成这一证明.例7、如图,AD是△ABC的角平分线,BE⊥AD于E,CF⊥AD于F.求证:.分析:待证式中的四条线段不是在两个三角形中,无法直接根据两个三角形相似得出,需要插入一个“中间比”,由题设易证△ABE∽△ACF,△BDE∽△CDF,从中不难找到这个中间比.证明:∵AD是△ABC的角平分线,∴∠1=∠2.∵BE⊥AD,CF⊥AD,∴∠3=∠4=90°,∴△ABE∽△ACF,点拨:①当无法直接由两个三角形相似得出结论中的比例式时,一般可寻找“中间比”帮忙;例8、如图,在正方形ABCD 中,M 、N 分别是AB 、BC 上的点,BM=BN ,BP ⊥MC 于点P .求证:(1)△PBN ∽△PCD ;(2)PN ⊥PD .分析:要证PN ⊥PD ,即证∠DPN=90°,由已知∠BPC=90°,而∠BPC 与∠DPN 有公共部分∠CPN ,因此只要证明∠4=∠5即可.这就必须先证明出结论(1).在△PBN 与△PCD 中,易证∠1=∠3,以下只要证明夹∠1、∠3的两边对应成比例. 证明:(1)在正方形ABCD 中,AB ∥CD ,∠ABC=90°.∵BP ⊥MC ,∴△PBM ∽△PCB .点拨:要注意观察出图中存在的“母子相似三角形”基本图形,从而充分利用它得出∠1=∠2及△PBM ∽△PCB 等重要结论一、本章的两套定理第一套(比例的有关性质):涉及概念:①cd a b = d b c a a c b d ==或 ⇒=⇔=bc ad d c b a b a n d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。