辽宁省高考数学试卷文科答案与解析
全国各地2022年数学高考真题及答案-(辽宁文)含详解

全国各地2022年数学高考真题及答案-(辽宁文)含详解2022年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)第Ⅰ卷(选择题共60分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
参考公式:如果事件A、B互斥,那么球的表面积公式P(A+B)=P(A)+P(B)S=4πR2如果事件A、B相互独立,那么其中R表示球的半径P(A·B)=P(A)·P(B)球的体积公式如果事件A在一次试验中发生的概率是P,那么V=43πR3n次独立重复试验中事件A恰好发生k次的概率其中R表示球的半径Pn(k)=CknPk(1-p)n-k(k=0,1,2,…,n)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合M={某|-3<某<1|,N={某|某≤-3},则M=N(A)(B){某|某≥-3}(C){某|某≥1}(D){某|某<1|(2)若函数y=(某+1)(某-a)为偶函数,则a=(A)-2(B)-2(C)1(D)2(3)圆某2+y2=1与直线y=k某+2没有公共点的充要条件是(A)2,2(-∈k)(B)3,3(-∈k)(C)k),2()2,(+∞--∞∈(D)k),3()3,(+∞--∞∈(4)已知0<a<1,某=loga2loga3,y=,5log21az=loga3,则(A)某>y>z(B)z>y>某(C)y>某>z(D)z>某>y(5)已知四边形ABCD的三个顶点A(0,2),B(-1,-2),C(3,1),且2=,则顶点D的坐标为(A)(2,27)(B)(2,-21)(C)(3,2)(D)(1,3)(6)设P为曲线C:y=某2+2某+3上的点,且曲线C在点P处切线倾斜角的取值范围为4,0π,则点P横坐标的取值范围为(A)--21,1(B)[-1,0](C)[0,1](D)1,21(7)4张卡片上分别写有数字1,2,3,4从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为(A)31(B)21(C)32(D)43(8)将函数y=2某+1的图象按向量a平移得到函数y=2某+1的图象,则(A)a=(-1,-1)(B)a=(1,-1)(C)a=(1,1)(D)a=(-1,1)(9)已知变量某、y满足约束条件≥+-≤--≤-+,01,013,01某y某y某y则z=2某+y的最大值为第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.(13)函数23()某ye某+=-∞+∞的反函数是.(14)在体积为的球的表面上有A、B、C三点,AB=1,BCA、C两点的球面距离为3π,则球心到平面ABC的距离为.(15)3621(1)()某某某++展开式中的常数项为.(16)设(0,)2某π∈,则函数22in1in2某y 某+=的最小值为.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)在△ABC中,内角A,B,C,对边的边长分别是a,b,c.已知2,3cCπ== .(Ⅰ)若△ABCa,b;(Ⅱ)若in2inBA=,求△ABC的面积.(18)(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:(Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求(i)4周中该种商品至少有一周的销售量为4吨的概率;(ii)该种商品4周的销售量总和至少为15吨的概率.(19)(本小题满分12分)如图,在棱长为1的正方体ABCD-A′B′C′D′中,AP=BQ=b(0<b<1),截面PQEF∥A′D,截面PQGH∥AD′.(Ⅰ)证明:平面PQEF和平面PQGH互相垂直;(Ⅱ)证明:截面PQEF和截面PQGH面积之和是定值,并求出这个值;(Ⅲ)若12b=,求D′E与平面PQEF所成角的正弦值.(20)(本小题满分12分)已知数列{an},{bn}是各项均为正数的等比数列,设(N某)nnnbcna=∈.(Ⅰ)数列{cn}是否为等比数列?证明你的结论;(Ⅱ)设数列{tnan},{lnbn}的前n项和分别为Sn,Tn.若12,,21nnSnaTn==+求数列{cn}的前n项和.(21)(本小题满分12分)在平面直角坐标系某Oy中,点P到两点(0,-3)、(0,3)的距离之和等于4.设点P的轨迹为C.(Ⅰ)写出C的方程;(Ⅱ)设直线y=k某+1与C交于A、B两点.k为何值时OBOA⊥此时||的值是多少?(22)(本小题满分14分)设函数f(某)=a某3+b某2-3a2某+1(a、b∈R)在某=某1,某=某2处取得极值,且|某1-某2|=2.(Ⅰ)若a=1,求b的值,并求f(某)的单调区间;(Ⅱ)若a>0,求b的取值范围.2022年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件AB,互斥,那么球的表面积公式()()()PABPAPB+=+2如果事件AB,相互独立,那么其中R表示球的半径()()()PABPAPB=球的体积公式如果事件A在一次试验中发生的概率是P,那么34π3VR=n次独立重复试验中事件A恰好发生k次的概率(012)kknknnPkCPpkn-=-=,,,,其中R表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}31M某某=-<<,{}3N某某=-≤,则MN=(D)A.B.{}3某某-≥C.{}1某某≥D.{}1某某<解析:本小题主要考查集合的相关运算知识。
2024年辽宁高考数学试题(含答案)

2024年辽宁高考数学试题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =( )A .0B .1C D .22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则( )A .p 和q 都是真命题B .p ⌝和q 都是真命题C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ( )A .12B C D .14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是( )A .100块稻田亩产量的中位数小于1050kgB .100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C .100块稻田亩产量的极差介于200kg 至300kg 之间D .100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( )A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ( )A .1-B .12C .1D .27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为( )A .12B .1C .2D .38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为( )A .18B .14C .12D .1二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分. 在每小题给出的四个选项中,有多项符合题目要求. 全部选对得 6 分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有( )A .()f x 与()g x 有相同零点B .()f x 与()g x 有相同最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( )A .l 与A 相切B .当P ,A ,B 三点共线时,||PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共 3 小题,每小题 5 分,共 15 分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S = .13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+= .14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .四、解答题:本题共 5 小题,共 77 分. 解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i )为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii )为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.1.C【分析】由复数模的计算公式直接计算即可.【详解】若1i z =--=故选:C.2.B【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.3.B【分析】由()2b a b -⊥ 得22b a b =⋅,结合1,22a a b =+= ,得22144164a b b b +⋅+=+= ,由此即可得解.【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,故选:B.4.C【分析】计算出前三段频数即可判断A ;计算出低于1100kg 的频数,再计算比例即可判断B ;根据极差计算方法即可判断C ;根据平均值计算公式即可判断D.【详解】对于 A, 根据频数分布表可知, 612183650++=<,所以亩产量的中位数不小于 1050kg , 故 A 错误;对于B ,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C ,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D ,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.5.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 6.D【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-∈-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.7.B【分析】解法一:根据台体的体积公式可得三棱台的高h =的结构特征求得AM =111ABC A B C -补成正三棱锥-P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V -=,进而可求正三棱锥-P ABC 的高,即可得结果.【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D =可知1111166222ABC A B C S S =⨯⨯==⨯= 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则1AADN AD AM MN x=--=,可得1DD==结合等腰梯形11BCC B可得22211622BB DD-⎛⎫=+⎪⎝⎭,即()221616433x x+=-++,解得x=所以1A A与平面ABC所成角的正切值为11tan1A MA ADAMÐ==;解法二:将正三棱台111ABC A B C-补成正三棱锥-P ABC,则1A A与平面ABC所成角即为PA与平面ABC所成角,因为11113PA A BPA AB==,则111127P A B CP ABCVV--=,可知1112652273ABC A B C P ABCV V--==,则18P ABCV-=,设正三棱锥-P ABC的高为d,则11661832P ABCV d-=⨯⨯⨯=,解得d=,取底面ABC的中心为O,则PO⊥底面ABC,且AO=所以PA与平面ABC所成角的正切值tan1POPAOAO∠==.故选:B.8.C【分析】解法一:由题意可知:()f x的定义域为(),b-+∞,分类讨论a-与,1b b--的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=, 则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.9.BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(2)04g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC 10.ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD11.AD【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心12.95【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.13.【分析】法一:根据两角和与差的正切公式得()tan αβ+=-,再缩小αβ+的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan 1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-<,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+ ()()22sin cos 1αβαβ+++=,解得()sin αβ+=法二: 因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α==,cos β=则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos αβ=====故答案为:14. 24 112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.15.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+∈,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A =又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A =又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅== ,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan A A A ⋅=⇔又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 1t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c ==故ABC 的周长为216.(1)()e 110x y ---=(2)()1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a ≤和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e '=-xf x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞.17.(1)证明见解析【分析】(1)由题意,根据余弦定理求得2EF =,利用勾股定理的逆定理可证得EF AD ⊥,则,EF PE EF DE ⊥⊥,结合线面垂直的判定定理与性质即可证明;(2)由(1),根据线面垂直的判定定理与性质可证明PE ED ⊥,建立如图空间直角坐标系E xyz -,利用空间向量法求解面面角即可.【详解】(1)由218,,52AB AD AE AD AF AB ====,得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF ,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥,所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE ,所以EF ⊥平面PDE ,又PD ⊂平面PDE ,故EF ⊥PD ;(2)连接CE,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,(2,0,PC PD PB PF =-=-=-=-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z == ,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x ==,得11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==-,所以cos ,m nm n m n ⋅===设平面PCD 和平面PBF 所成角为θ,则sin θ==,即平面PCD 和平面PBF.18.(1)0.686(2)(i )由甲参加第一阶段比赛;(i )由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i )首先各自计算出331(1)P p q ⎡⎤=--⎣⎦甲,331(1)Pq p ⎡⎤=--⋅⎣⎦乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i )若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19.(1)23x =,20y =(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可.【详解】(1)由已知有22549m =-=,故C 的方程为229x y -=.当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y -=联立得到22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q -,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =-+,与229x y -=联立,得到方程()()229n n x k x x y --+=.展开即得()()()2221290n n n n k x k y kx x y kx ------=,由于(),n n n P x y 已经是直线()n n y k x x y =-+和229x y -=的公共点,故方程必有一根n x x =.从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k ---=-=--,相应的()2221n n nn n y k y kx y k x x y k +-=-+=-.所以该直线与C 的不同于n P 的交点为222222,11n n n n n nn ky x k x y k y kx Q k k ⎛⎫--+- ⎪--⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x----,故n Q 一定在C 的左支上.所以2212222,11n n n n n nn x k x ky y k y kx P k k +⎛⎫+-+- ⎪--⎝⎭.这就得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-.所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++-+--=---()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++=-=-=-----.再由22119x y -=,就知道110x y -≠,所以数列{}n n x y -是公比为11k k +-的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b = ,(),UW c d =,则12UVW S ad bc =- .(若,,U V W 在同一条直线上,约定0UVW S = )证明:1sin ,2UVW S UV UW UV UW =⋅=12UV UW =⋅===12ad bc ===-.证毕,回到原题.由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n n n n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.而又有()()()111,n n n n n n P P x x y y +++=---- ,()122121,n n n n n n P P x x y y ++++++=--,故利用前面已经证明的结论即得()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==---+-- ()()()()12112112n n n n n n n n x x y y y y x x ++++++=-----()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=-+---2219119119112211211211k k k k k k k k k k k k ⎛⎫-+-+-+⎛⎫⎛⎫⎛⎫⎛⎫=-+--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+-+-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11kk-+的等比数列.所以对任意的正整数m ,都有n n m n n m x y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+⎛⎫-=-=- ⎪+-⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫-+⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---.移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+.故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=-- ,()122121,n n n n n n P P x x y y ++++++=--.所以3n n P P + 和12n n P P ++ 平行,这就得到12123n n n n n n P P P P P P S S +++++= ,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。
【高三】辽宁2021年高考文科数学试题(带答案和解释)

【高三】辽宁2021年高考文科数学试题(带答案和解释)绝密★启用前2021年普通高等学校招生全国统一考试(辽宁卷)数学(可供文科学生采用)第i卷一、:本大题共12小题,每小题5分后,共40分后.在每小题得出的四个选项中,只有一项就是合乎题目建议的.(1)已知集合(a)(b)(c)(d)(2)复数的模为(a)(b)(c)(d)(3)已知点(a)(b)(c)(d)(4)下面就是关于公差的等差数列的四个命题:其中的真命题为(a)(b)(c)(d)(5)某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为若低于60分的人数是15人,则该班的学生人数是(a)(b)(c)(d)(6)在,内角面元的边长分别为a.b.c.d.(7)未知函数a.b.c.d.(8)继续执行如图所示的程序框图,若输出a.b.c.d.(9)未知点a.b.c.d.(10)已知三棱柱a.b.c.d.(11)已知椭圆的左焦点为f(a)(b)(c)(d)(12)已知函数设表示中的较大值,表示中的较小值,记得最小值为得最小值为,则(a)(b)(c)(d)第ii卷本卷包括必考题和选考题两部分。
第13题-第22题为必考题,每个试题考生都必须作答。
第22题-第24题为选考题,考生根据要求作答。
二、题:本大题共4小题,每小题5分后.(13)某几何体的三视图如图所示,则该几何体的体积是.(14)未知等比数列.(15)未知为双曲线.(16)为了实地考察某校各班出席课外书法小组的人数,在全校随机提取5个班级,把每个班级出席该小组的指出做为样本数据.未知样本平均数为7,样本方差为4,且样本数据互相不相同,则样本数据中的最大值为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分后)设向量(i)若(ii)设函数18.(本小题满分12分后)如图,(i)澄清:(ii)设19.(本小题满分12分后)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取3道题解答.试求:(i)所出的2道题都就是甲类题的概率;(ii)所取的2道题不是同一类题的概率.20.(本小题满分12分后)如图,抛物线(i);(ii)21.(本小题满分12分后)(i)证明:当(ii)若不等式值域范围.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分。
最新辽宁省高考数学试卷(文科)答案与解析

2012年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2012•辽宁)已知向量=(1,﹣1),=(2,x).若•=1,则x=()A.﹣1 B.C.D.1﹣考点:数量积的坐标表达式.专题:计算题.分析:由题意,=(1,﹣1),=(2,x).•=1,由数量积公式可得到方程2﹣x=1,解此方程即可得出正确选项解答:解:因为向量=(1,﹣1),=(2,x).•=1所以2﹣x=1,解得x=1故选D点评:本题考查数量积的坐标表达式,熟练记忆公式是解本题的关键,本题是基础题,记忆型2.(5分)(2012•辽宁)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A)∩(∁U B)=()A.{5,8} B.{7,9} C.{0,1,3} D.{2,4,6}考点:交、并、补集的混合运算.专题:计算题.分析:由题已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},可先求出两集合A,B的补集,再由交的运算求出(∁U A)∩(∁U B)解答:解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},所以(C U A)∩(C U B)={7,9}故选B点评:本题考查交、并、补集的混合计算,解题的关键是熟练掌握交、并、补集的计算规则3.(5分)(2012•辽宁)复数=()A.B.C.1﹣i D.1+i考点:复数代数形式的乘除运算.专题:计算题. 分析:由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项 解答: 解:故选A点评:本题考查复合代数形式的乘除运算,属于复数中的基本题型,计算题4.(5分)(2012•辽宁)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( )A . 12B . 16C . 20D . 24考点:等差数列的性质. 专题:计算题. 分析: 利用等差数列的性质可得,a 2+a 10=a 4+a 8,可求结果解答: 解:由等差数列的性质可得,则a 2+a 10=a 4+a 8=16,故选B点评:本题主要考查了等差数列的性质的应用,属于基础试题5.(5分)(2012•辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≥0,则¬p 是( )A . ∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0B . ∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≤0C . ∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0D . ∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0考点:命题的否定. 专题:简易逻辑. 分析:由题意,命题p 是一个全称命题,把条件中的全称量词改为存在量词,结论的否定作结论即可得到它的否定,由此规则写出其否定,对照选项即可得出正确选项解答: 解:命题p :∀x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)≥0是一个全称命题,其否定是一个特称命题,故¬p :∃x 1,x 2∈R ,(f (x 2)﹣f (x 1))(x 2﹣x 1)<0.故选:C .点评:本题考查命题否定,解题的关键是熟练掌握全称命题的否定的书写规则,本题易因为没有将全称量词改为存在量词而导致错误,学习时要注意准确把握规律.6.(5分)(2012•辽宁)已知,α∈(0,π),则sin2α=( ) A . ﹣1 B .C .D . 1考点:二倍角的正弦. 专题:三角函数的图像与性质. 分析: 由,两边同时平方,结合同角平方关系可求.解答: 解:∵,两边同时平方可得,(sin α﹣cos α)2=2,∴1﹣2sinαcosα=2,∴sin2α=﹣1.故选A.点评:本题主要考查了同角平方关系及二倍角公式的应用,属于基础试题.7.(5分)(2012•辽宁)将圆x2+y2﹣2x﹣4y+1=0平分的直线是()A.x+y﹣1=0 B.x+y+3=0 C.x﹣y+1=0 D.x﹣y+3=0考点:直线与圆相交的性质.专题:计算题.分析:将圆的方程化为标准方程,找出圆心坐标,由所求直线要将圆平分,得到所求直线过圆心,故将圆心坐标代入四个选项中的直线方程中检验,即可得到满足题意的直线方程.解答:解:将圆的方程化为标准方程得:(x﹣1)2+(y﹣2)2=4,可得出圆心坐标为(1,2),将x=1,y=2代入A选项得:x+y﹣1=1+2﹣1=2≠0,故圆心不在此直线上;将x=1,y=2代入B选项得:x+y+3=1+2+3=6≠0,故圆心不在此直线上;将x=1,y=2代入C选项得:x﹣y+1=1﹣2+1=0,故圆心在此直线上;将x=1,y=2代入D选项得:x﹣y+3=1﹣2+3=2≠0,故圆心不在此直线上,则直线x﹣y+1=0将圆平分.故选C点评:此题考查了直线与圆相交的性质,以及圆的标准方程,其中根据题意得出将圆x2+y2﹣2x﹣4y+1=0平分的直线即为过圆心的直线是解本题的关键.8.(5分)(2012•辽宁)函数y=x2﹣lnx的单调递减区间为()A.(﹣1,1]B.(0,1]C.[1,+∞)D.(0,+∞)考点:利用导数研究函数的单调性.专题:计算题.分析:由y=x2﹣lnx得y′=,由y′≤0即可求得函数y=x2﹣lnx的单调递减区间.解答:解:∵y=x2﹣lnx的定义域为(0,+∞),y′=,∴由y′≤0得:0<x≤1,∴函数y=x2﹣lnx的单调递减区间为(0,1].故选:B.点评:本题考查利用导数研究函数的单调性,注重标根法的考查与应用,属于基础题.9.(5分)(2012•辽宁)设变量x,y满足,则2x+3y的最大值为()A.20 B.35 C.45 D.55考点:简单线性规划.专题:计算题.分析:先画出满足约束条件的平面区域,结合几何意义,然后求出目标函数z=2x+3y取最大值时对应的最优解点的坐标,代入目标函数即可求出答案.解答:解:满足约束条件的平面区域如下图所示:令z=2x+3y可得y=,则为直线2x+3y﹣z=0在y轴上的截距,截距越大,z越大作直线l:2x+3y=0把直线向上平移可得过点D时2x+3y最大,由可得x=5,y=15,此时z=55故选D点评:本题考查的知识点是简单线性规划,其中画出满足约束条件的平面区域,找出目标函数的最优解点的坐标是解答本题的关键.10.(5分)(2012•辽宁)执行如图所示的程序框图,则输出的S的值是()A.4B.C.D.﹣1考点:循环结构.专题:阅读型.分析:根据流程图,先进行判定条件,满足条件则运行循环体,一直执行到不满足条件即跳出循环体,求出此时的S即可.解答:解:第一次运行得:S=﹣1,i=2,满足i<6,则继续运行第二次运行得:S=,i=3,满足i<6,则继续运行第三次运行得:S=,i=4,满足i<6,则继续运行第四次运行得:S=4,i=5,满足i<6,则继续运行第五次运行得:S=﹣1,i=6,不满足i<6,则停止运行输出S=﹣1,故选D.点评:本题主要考查了当型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.11.(5分)(2012•辽宁)在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为()B.C.D.A.考点:几何概型.专题:概率与统计.分析:设AC=x,则BC=12﹣x,由矩形的面积S=x(12﹣x)>20可求x的范围,利用几何概率的求解公式可求.解:设AC=x,则BC=12﹣x(0<x<12)解答:矩形的面积S=x(12﹣x)>20∴x2﹣12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率P==.故选C.点评:本题主要考查了二次不等式的解法,与区间长度有关的几何概率的求解公式的应用,属于基础试题.12.(5分)(2012•辽宁)已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,﹣2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为()A.1B.3C.﹣4 D.﹣8考点:利用导数研究曲线上某点切线方程.专题:计算题;压轴题.分析:首先可求出P(4,8),Q(﹣2,2),然后根据导数的几何意义求出切线方程AP,AQ 的斜率K AP,K AQ,再根据点斜式写出切线方程,然后联立方程即可求出点A的纵坐标.解答:解:∵P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,﹣2,∴P(4,8),Q(﹣2,2),∵x2=2y,∴y=,∴y′=x,∴切线方程AP,AQ的斜率K AP=4,K AQ=﹣2,∴切线方程AP为y﹣8=4(x﹣4),即y=4x﹣8,切线方程AQ的为y﹣2=﹣2(x+2),即y=﹣2x﹣2,令,∴,∴点A的纵坐标为﹣4.故选:C.点评:本题主要考查了利用导数的几何意义求出切线方程,属常考题,较难.解题的关键是利用导数的几何意义求出切线方程AP,AQ的斜率K AP,K AQ.二、填空题(共4小题,满分20分)13.(5分)(2012•辽宁)一个几何体的三视图如图所示,则该几何体的体积为12+π.考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知该几何体为上部是一个圆柱,底面直径为2,高为1.下部为长方体,长、宽、高分别为4,3,1.分别求体积再相加即可.解答:解:由三视图可知该几何体为上部是一个圆柱,底面直径为2,高为1,体积为π×12×1=π.下部为长方体,长、宽、高分别为4,3,1,体积为4×3×1=12.故所求体积等于12+π故答案为:12+π点评:本题考查三视图求几何体的体积,考查计算能力,空间想象能力,三视图复原几何体是解题的关键14.(5分)(2012•辽宁)已知等比数列{a n}为递增数列.若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q=2.考点:等比数列的性质.专题:计算题.分析:由{a n}为递增数列且a1>0可知q>1,由已知可得2()=5a n q,可求q解答:解:∵{a n}为递增数列且a1>0∴q>1∵2(a n+a n+2)=5a n+1,∴2()=5a n q∴2+2q2=5q∴q=2故答案为:2点评:本题主要考查了等比数列的单调性及等比数列通项公式的应用,属于基础试题15.(5分)(2012•辽宁)已知双曲线x2﹣y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若PF1⊥PF2,则|PF1|+|PF2|的值为.考点:双曲线的简单性质.专题:计算题;压轴题.分析:根据双曲线方程为x2﹣y2=1,可得焦距F1F2=2,因为PF1⊥PF2,所以|PF1|2+|PF2|2=|F1F2|2.再结合双曲线的定义,得到|PF1|﹣|PF2|=±2,最后联解、配方,可得(|PF1|+|PF2|)2=12,从而得到|PF1|+|PF2|的值为.解答:解:∵PF1⊥PF2,∴|PF1|2+|PF2|2=|F1F2|2.∵双曲线方程为x2﹣y2=1,∴a2=b2=1,c2=a2+b2=2,可得F1F2=2∴|PF1|2+|PF2|2=|F1F2|2=8又∵P为双曲线x2﹣y2=1上一点,∴|PF1|﹣|PF2|=±2a=±2,(|PF1|﹣|PF2|)2=4因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)﹣(|PF1|﹣|PF2|)2=12∴|PF1|+|PF2|的值为故答案为:点评:本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和,着重考查了双曲线的基本概念与简单性质,属于基础题.16.(5分)(2012•辽宁)已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2正方形.若PA=2,则△OAB的面积为.考点:直线与平面垂直的性质;球内接多面体.专题:计算题;压轴题.分析:可将P,A,B,C,D补全为长方体ANCD﹣A′B′C′D′,让P与A′重合,则该长方体的对角线PC即为球O的直径(球O为该长方体的外接球,于是可求得PC的长度,可判断△OAB为等边三角形,从而而求其面积.解答:解:依题意,可将P,A,B,C,D补全为长方体ABCD﹣A′B′C′D′,让P与A′重合,则球O为该长方体的外接球,长方体的对角线PC即为球O的直径.∵ABCD是边长为2正方形,PA⊥平面ABCD,PA=2,∴PC2=AP2+AC2=24+24=48,∴2R=4,R=OP=2,∴△OAB为边长是2的等边三角形,∴S△OAB=×2×2×sin60°=3.故答案为:3.点评:本题考查直线与平面垂直的性质,考查球内接多面体的应用,“补形”是关键,考查分析、转化与运算能力,属于中档题.三、解答题(共5小题,满分60分)17.(12分)(2012•辽宁)在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C 成等差数列.(Ⅰ)求cosB的值;(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.考点:数列与三角函数的综合.专题:计算题;综合题.分析:(Ⅰ)在△ABC中,由角A,B,C成等差数列可知B=60°,从而可得cosB的值;(Ⅱ)(解法一),由b2=ac,cosB=,结合正弦定理可求得sinAsinC的值;(解法二),由b2=ac,cosB=,根据余弦定理cosB=可求得a=c,从而可得△ABC为等边三角形,从而可求得sinAsinC的值.解答:解:(Ⅰ)由2B=A+C,A+B+C=180°,解得B=60°,∴cosB=;…6分(Ⅱ)(解法一)由已知b2=ac,根据正弦定理得sin2B=sinAsinC,又cosB=,∴sinAsinC=1﹣cos2B=…12分(解法二)由已知b2=ac及cosB=,根据余弦定理cosB=解得a=c,∴B=A=C=60°,∴sinAsinC=…12分点评:本题考查数列与三角函数的综合,着重考查等比数列的性质,考查正弦定理与余弦定理的应用,考查分析转化与运算能力,属于中档题.18.(12分)(2012•辽宁)如图,直三棱柱ABC﹣A′B′C′,∠BAC=90°,,AA′=1,点M,N分别为A′B和B′C′的中点.(Ⅰ)证明:MN∥平面A′ACC′;(Ⅱ)求三棱锥A′﹣MNC的体积.(椎体体积公式V=Sh,其中S为底面面积,h为高)考点:直线与平面平行的判定;棱柱的结构特征;棱柱、棱锥、棱台的体积.专题:综合题.分析:(Ⅰ)证法一,连接AB′,AC′,通过证明MN∥AC′证明MN∥平面A′ACC′.证法二,通过证出MP∥AA′,PN∥A′C′.证出MP∥平面A′ACC′,PN∥平面A′ACC′,即能证明平面MPN∥平面A′ACC′后证明MN∥平面A′ACC′.(Ⅱ)解法一,连接BN,则V A′﹣MNC=V N﹣A′MC=V N﹣A′BC=V A′﹣NBC=.解法二,V A′﹣MNC=V A′﹣NBC﹣V M﹣NBC=V A′﹣NBC=.解答:(Ⅰ)(证法一)连接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC﹣A′B′C′为直三棱柱,所以M为AB′的中点,又因为N为B′C′中点,所以MN∥AC′,又MN⊄平面A′ACC′,AC′⊂平面A′ACC′,所以MN∥平面A′ACC′;(证法二)取A′B′中点,连接MP,NP.而M,N分别为AB′,B′C′中点,所以MP∥AA′,PN∥A′C′.所以MP∥平面A′ACC′,PN∥平面A′ACC′;又MP∩PN=P,所以平面MPN∥平面A′ACC′,而MN⊂平面MPN,所以MN∥平面A′ACC′;(Ⅱ)(解法一)连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=B′C′=1,故V A′﹣MNC=V N﹣A′MC=V N﹣A′BC=V A′﹣NBC=.(解法二)V A′﹣MNC=V A′﹣NBC﹣V M﹣NBC=V A′﹣NBC=.点评:本题考查线面关系,体积求解,考查空间想象能力、思维能力、推理论证能力、转化、计算等能力.19.(12分)(2012•辽宁)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.如图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?非体育迷体育迷合计男女合计(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.05 0.01k 3.841 6.635附.考点:独立性检验的应用;频率分布直方图;列举法计算基本事件数及事件发生的概率.专题:综合题.分析:(I)根据所给的频率分布直方图得出数据列出列联表,再代入公式计算得出K方,与3.841比较即可得出结论;(II)由题意,列出所有的基本事件,计算出事件“任选3人,至少有1人是女性”包含的基本事件数,即可计算出概率.解答:解:(I)由频率分布直方图可知,在抽取的100人中,“体育迷”有25人,从而2×2列联表如下:非体育迷体育迷合计男30 15 45女45 10 55合计75 25 100…3分将2×2列联表中的数据代入公式计算,得==≈3.03因为3.03<3.841,所以没有理由认为“体育迷”与性别有关…6分(II)由频率分布直方图知,“超级体育迷”为5人,从而一切可能结果所的基本事件空间为Ω={(a1,a2),(a1,a3),(a2,a3),(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}其中a i表示男性,i=1,2,3,b i表示女性,i=1,2…9分Ω由10个基本事件组成,而且这些基本事件的出现是等可能的.用A表示事件“任选2人,至少有1人是女性”.则A={(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)}事件A有7个基本事件组成,因而P(A)=…12分点评:本题考查独立性检验的运用及频率分布直方图的性质,列举法计算事件发生的概率,涉及到的知识点较多,有一定的综合性,难度不大,是高考中的易考题型20.(12分)(2012•辽宁)如图,动圆,1<t<3与椭圆C2:相交于A,B,C,D四点,点A1,A2分别为C2的左,右顶点.(Ⅰ)当t为何值时,矩形ABCD的面积取得最大值?并求出其最大面积;(Ⅱ)求直线AA1与直线A2B交点M的轨迹方程.考点:圆与圆锥曲线的综合;圆锥曲线的轨迹问题.专题:综合题;压轴题.分析:(Ⅰ)设A(x0,y0),则矩形ABCD的面积S=4|x0||y0|,由得,从而=,由此可求矩形ABCD的面积的最大值;(Ⅱ)由A(x0,y0),B(x0,﹣y0),A1(﹣3,0),A2(3,0),确定直线AA1的方程,直线A2B方程,利用,即可求得直线AA1与直线A2B交点M的轨迹方程.解答:解:(Ⅰ)设A(x0,y0),则矩形ABCD的面积S=4|x0||y0|由得,从而==∴,时,S max=6∴t=时,矩形ABCD的面积取得最大值,最大面积为6;(Ⅱ)由A(x0,y0),B(x0,﹣y0),A1(﹣3,0),A2(3,0),知直线AA1的方程为①直线A2B方程为②由①②可得:③∵④∴④代入③可得(x<﹣3,y<0)∴直线AA1与直线A2B交点M的轨迹方程(x<﹣3,y<0).点评:本题主要考查直线、圆、椭圆的方程,椭圆的几何性质,轨迹方程的求法,考查函数方程思想、转化思想、运算求解能力和推理论证能力,难度较大.21.(12分)(2012•辽宁)设,证明:(Ⅰ)当x>1时,f(x)<(x﹣1);(Ⅱ)当1<x<3时,.考点:综合法与分析法(选修);利用导数求闭区间上函数的最值.专题:证明题;综合题;压轴题.分析:(Ⅰ)证法一,记g(x)=lnx+﹣1﹣(x﹣1),可得到g′(x)=+﹣<0,从而g(x)为减函数,又g(1)=0,当x>1时,g(x)<g(1),问题解决;证法二,利用均值不等式,可证得,当x>1时,<+.①,令k(x)=lnx﹣x+1,同理可证k(x)为减函数,于是有lnx<x﹣1②,由①②可证得结论;(Ⅱ)记h(x)=f(x)﹣,可求得h′(x)=﹣<<0(1<x<3),从而h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,从而证得结论;解答:证明:(Ⅰ)(证法一):记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②由①②得当x>1时,f(x)<(x﹣1);(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,h′(x)=+﹣=﹣<﹣=,令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,∴h′(x)<0,…10′因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,于是,当1<x<3时,f(x)<…12′点评:本题考查利用导数求闭区间上函数的最值,着重考查构造函数的思想,考查分析、转化与综合计算与应用解决问题的能力,属于难题.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。
2023年辽宁省高考数学真题及答案解析

2023年辽宁省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,()()13i 3i +-对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A.2B.1C.23D.1-3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B.2040400200C C ⋅种C .3030400200C C ⋅种D.4020400200C C ⋅种4.若()()21ln 21x f x x a x -=++为偶函数,则=a ().A.1- B.0C.12D.15.已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A.23B.3C.23-D.23-6.已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A.2e B.eC.1e -D.2e -7.已知α为锐角,15cos 4α+=,则sin 2α=().A.358B.158- C.354- D.154-+8.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A.120B.85C.85- D.120-二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为C.AC =D.PAC △的10.设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A.2p = B.83MN =C.以MN 为直径的圆与l 相切 D.OMN 为等腰三角形11.若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A.0bc > B.0ab > C.280b ac +> D.0ac <12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C.采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D.当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题:本大题共4小题,每小题5分,共20分。
普通高等学校招生全国统一考试数学文试题(辽宁卷,解析

2012年普通高等学校招生全国统一考试数学文试题(辽宁卷)详细解析注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =(A) —1 (B) —12 (C) 12 (D)1【答案】D【解析】21,1a b x x ⋅=-=∴=Q ,故选D【点评】本题主要考查向量的数量积,属于容易题。
(2)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U I {7,9}。
故选B【解析二】 集合)()(B C A C U U I 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
(3)复数11i =+(A) 1122i - (B)1122i+ (C) 1i - (D) 1i +【答案】A【解析】11111(1)(1)222i i i i i i --===-++-,故选A 【点评】本题主要考查复数代数形式的运算,属于容易题。
辽宁省高考数学试卷文科答案与解析.doc

2012年辽宁省高考数学试卷(文科)参考答案与试题解析1. ( 5分)(2012?辽宁)已知向量.1= (1, -1) , b = (2, x ).若方?b=1,则 x=(考点:数量积的坐标表达式. 专题:计算题.分析: -. ― ―—由题意,3= (1,- 1) , b = (2, x ). 3?b =1,由数量积公式可得到方程2 - x=1,解此方程即可得出正确选项解答:-「〜一解:因为向量 a= ( 1,— 1) , b = ( 2, X ). 3^> = 1 所以2 - X=1,解得X=1 故选D点评:本题考查数量积的坐标表达式,熟练记忆公式是解本题的关键,本题是基础题,记忆 型2. (5 分)(2012?辽宁)已知全集 U={0 , 1, 2, 3, 4, 5, 6, 7, 8, 9},集合 A={0 , 1, 3,5 , 8},集合 B={2 , 4 , 5 ,6 , 8}, 则 (?U A ) A (?U B )=()A . {5 , 8}B . {7 , 9}C . {0 , 1, 3}D .{2 , 4 ,6}考点:交、并、补集的 1 勺混合运算.专题:计算题.分析:由题已知全集 U={0, 1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9},集合 A={0 ,1 , 3 ,5 , 8},集合B={2 , 4, 5, 6, 8},可先求出两集合 A , B 的补集,再由交的运算求出(?u A )A (?UB )解答:解:由题义知,全集 U={0 , 1, 2, 3, 4, 5, 6, 7, 8, 9},集合 A={0 , 1 , 3 , 5 ,8},集合 B={2 , 4 , 5 , 6 , 8},所以 C u A={2 , 4 , 6 , 7 , 9} , C U B={0 , 1 , 3 , 7 , 9}, 所以(C u A ) A (C U B ) ={7 , 9} 故选B点评:本题考查交、并、补集的混合计算,解题的关键是熟练掌握交、并、补集的计算规则D . 1+i考点:复数代数形式的乘除运算.、选择题(共12小题,每小题 5分,满分60分)3. ( 5分)(2012?辽宁)复数(专题:计算题.分析:由题意,可对此代数分子分母同乘以分母的共轭,整理即可得到正确选项解答:解:_ 1+L 〔1+门(1 -i) 2 2故选A点评:本题考查复合代数形式的乘除运算,属于复数中的基本题型,计算题4. ( 5分)(2012?辽宁)在等差数列{a n}中,已知a4+a8=16,贝U a2+a io=( )A . 12 B. 16 C. 20 D. 24考点:等差数列的性质.专题:计算题.分析:利用等差数列的性质可得,a2+a io=a4+a8,可求结果解答:解:由等差数列的性质可得,则a2+a io=a4+a8=l6,故选B点评:本题主要考查了等差数列的性质的应用,属于基础试题5. ( 5 分)(2012?辽宁)已知命题p:?x l, x2€R, (f (x2)- f (x l)) (x2 - x l)为,则「p是A . (?X1,切)x2€R, (f ( X2) -f (X1)) (x2 - x1) B . ?X1 , X2€R, (f ( X2)切-f ( X1)) (x2 - x1)C .?X1,X2€R,(f ( X2) -f (X1)) (X2 - X1)D .?X1 , X2 €R, ( f ( X2)-f ( X1)) (X2 -X1) v 0v 0考点:命题的否定.专题:简易逻辑.分析:由题意,命题p是一个全称命题,把条件中的全称量词改为存在量词,结论的否定作结论即可得到它的否定,由此规则写出其否定,对照选项即可得出正确选项解答:解:命题p : ?X1 , X2€R, ( f ( X2)- f ( X1)) ( X2 - x1)为是一个全称命题,其否定是一个特称命题,故?p: ?X1, X2€R , (f (X2)- f (X1)) ( X2 - X1)v 0 .故选:C.点评:本题考查命题否定,解题的关键是熟练掌握全称命题的否定的书写规则,本题易因为没有将全称量词改为存在量词而导致错误,学习时要注意准确把握规律.6. ( 5分)(2012?辽宁)已知A . - 1 B. -:2考点:二倍角的正弦.专题:三角函数的图像与性质. .一",a€ (0,C..::n),贝U sin2 a=(D. 1分析:由虽口a -匚皿口二近,两边同时平方,结合同角平方关系可求. 解答:解:•.•吐口a -SE。
高考辽宁文科科数学试题及答案word解析版

2014年普通高等学校招生全国统一考试(辽宁)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年辽宁,文1,5分】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合U ()A B =( )(A ){|0}x x ≥ (B ){|1}x x ≤ (C){|01}x x ≤≤ (D){|01}x x << 【答案】D【解析】{}10A B x x x =≥≤或,∴{}U ()01A B x x =<<,故选D .【点评】本题考查了集合的并集、补集运算,利用数轴进行数集的交、并、补运算是常用方法. (2)【2014年辽宁,文2,5分】设复数z 满足(2i)(2i)5z --=,则z =( )(A )23i + (B )23i - (C )32i + (D)32i - 【答案】A【解析】由(2i)(2i)5z --=,得:()()()52i 52i 2i 2i 2i 2i z +-===+--+,∴23i z =+,故选A . 【点评】本题考查了复数代数形式的除法运算,是基础的计算题.(3)【2014年辽宁,文3,5分】已知132a -=,21log 3b =,121log 3c =,则( )(A )a b c >> (B)a c b >> (C)c b a >> (D)c a b >>【答案】D【解析】∵1030221a -<=<=,221log log 103b =<=,12221log log 3log 213c ==>=,∴c a b >>,故选D .【点评】本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.(4)【2014年辽宁,文4,5分】已知,m n 表示两条不同直线,α表示平面,下列说法正确的是( )ﻩ(A )若//m α,//n α,则//m n (B )若m α⊥,n α⊂,则m n ⊥ (C)若m α⊥,m n ⊥,则//n α (D)若//m α,m n ⊥,则n α⊥ 【答案】B【解析】A:若//m α,//n α,则m ,n 相交或平行或异面,故A错;B.若m α⊥,n α⊂,则m n ⊥,故B 正确;C.若m α⊥,m n ⊥,则//n α或n α⊂,故C错;D.若//m α,m n ⊥,则//n α或n α⊂或n α⊥,故D错,故选B .【点评】本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.(5)【2014年辽宁,文5,5分】设,,a b c 是非零向量,已知命题p :若0=a b ,0=b c ,则0=a c ;命题q :若a b ,b c ,则a c ,则下列命题中真命题是( )(A)p q ∨ (B)p q ∧ (C)()()p q ⌝∧⌝ (D)()p q ∨⌝ 【答案】A 【解析】若0=a b ,0=b c ,则a b =b c ,即()0-=a c b ,则0a c =不一定成立,故命题p 为假命题,若a b ,b c ,则a c ,故命题q为真命题,则p q ∨,为真命题,p q ∧,()()p q ⌝∧⌝,()p q ∨⌝都为假命题,故选A . 【点评】本题主要考查复合命题之间的判断,利用向量的有关概念和性质分别判断p ,q 的真假是解决本题的关键. (6)【2014年辽宁,文6,5分】若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )(A)2π (B)4π (C )6π (D)8π【答案】BA【解析】2112()124P A ππ⋅==⨯,故选B. 【点评】本题主要考查几何槪型的概率的计算,求出对应的图形的面积是解决本题的关键,比较基础. (7)【2014年辽宁,文7,5分】某几何体三视图如图所示,则该几何体的体积为( )(A)84π-(B)82π-(C)8π- (D)82π-【答案】C【解析】由三视图知:几何体是正方体切去两个14圆柱,正方体的棱长为2,切去的圆柱的底面半径为1,高为2,∴几何体的体积321221284V ππ=-⨯⨯⨯⨯=-,故选C.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(8)【2014年辽宁,文8,5分】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF的斜率为( )(A)43- (B)1- (C)34- (D)12-【答案】C【解析】∵点(2,3)A -在抛物线C :22y px =的准线上,∴22p =,∴()2,0F ,∴直线AF 的斜率为33224=---,故选C.【点评】本题考查抛物线的性质,考查直线斜率的计算,考查学生的计算能力,属于基础题.(9)【2014年辽宁,文9,5分】设等差数列{}n a 的公差为d ,若数列{}12n a a 为递减数列,则( )(A )0d > (B )0d < (C)10a d > (D)10a d < 【答案】D【解析】∵等差数列{}n a 的公差为d ,∴1n n a a d +-=,又数列{}12na a 为递减数列,∴11112212n n a a a d a a +=<,∴10a d <,故选D .【点评】本题考查了等差数列的通项公式、数列的单调性、指数函数的运算法则等基础知识与基本技能方法,属于中档题.(10)【2014年辽宁,文10,5分】已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为( )(A)1247[,][,]4334 (B)3112[,][,]4343-- (C)1347[,][,]3434 (D)3113[,][,]4334--【答案】A【解析】当10,2x ⎡⎤∈⎢⎥⎣⎦,由()12f x =,即1cos 2x π=,则3x ππ=,即13x =,当12x >时,由()12f x =,得1212x -=,解得34x =,则当0x ≥时,不等式()12f x ≤的解为1334x ≤≤,(如图)则由()f x 为偶函数,∴当0x <时,不等式()12f x ≤的解为3143x -≤≤-,即不等式()12f x ≤的解为1334x ≤≤或3143x -≤≤-,则由31143x -≤-≤-或13134x ≤-≤,解得1243x ≤≤或4734x ≤≤,即不等式1(1)2f x -≤的解集为1243x ≤≤或4734x ≤≤,故选A.【点评】本题主要考查不等式的解法,利用分段函数的不等式求出0x ≥时,不等式()12f x ≤的解是解决本题的关键.(11)【2014年辽宁,文11,5分】将函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,所得图象对应的函数( )(A)在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递减 (B )在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增(C )在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递减 (D)在区间,63ππ⎡⎤-⎢⎥⎣⎦上单调递增【答案】B【解析】把函数3sin 23y x π⎛⎫=+ ⎪⎝⎭的图象向右平移2π个单位长度,得到的图象所对应的函数解析式为:3sin 223y x ππ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦.即23sin 23y x π⎛⎫=- ⎪⎝⎭.由2222232k x k πππππ-+≤-≤+, 得71212k x k ππππ+≤≤+,k ∈Z .取0k =,得71212x ππ≤≤. ∴所得图象对应的函数在区间7,1212ππ⎡⎤⎢⎥⎣⎦上单调递增,故选B .【点评】本题考查了函数图象的平移,考查了复合函数单调性的求法,复合函数的单调性满足“同增异减”原则,是中档题.(12)【2014年辽宁,文12,5分】当[2,1]x ∈-时,不等式32430ax x x -++≥恒成立,则实数a 的取值范围是( )(A)[5,3]-- (B)9[6,]8-- (C )[6,2]-- (D)[4,3]--【答案】C【解析】当0x =时,不等式32430ax x x -++≥对任意a ∈R 恒成立;当01x <≤时,32430ax x x -++≥可化为23143a x x x ≥--,令()23143f x x x x=--,则()()()234491189x x f x x x x x -+'=-++=-(*),当01x <≤时,()0f x '>,()f x 在(]0,1上单调递增,()()max 16f x f ==-∴6a ≥-;当20x -≤<时,32430ax x x -++≥可化为23143a x x x≤--,由(*)式可知,当21x -≤≤-时,()0f x '<,()f x 单调递减,当10x -<<时,()0f x '>,()f x 单调递增,()()min 12f x f =-=-,∴2a ≤-;综上所述,实数a 的取值范围是62a -≤≤-,即实数a 的取值范围是[6,2]--,故选C .【点评】本题考查利用导数研究函数的最值,考查转化思想、分类与整合思想,按照自变量讨论,最后要对参数范围取交集;若按照参数讨论则取并集.第II 卷(共90分)二、填空题:本大题共4小题,每小题5分 (13)【2014年辽宁,文13,5分】执行右侧的程序框图,若输入3n =,则输出T = . 【答案】20【解析】由程序框图知:算法的功能是求()()()112123123T i =+++++++++++的值,当输入3n =时,跳出循环的i 值为4,∴输出1361020T =+++=.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.(14)【2014年辽宁,文14,5分】.已知x ,y 满足条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则目标函数34z x y =+的最大值为 .【答案】18【解析】由约束条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩作出可行域如图,联立240330x y x y -+=⎧⎨--=⎩,解得23x y =⎧⎨=⎩,∴()2,3C .化目标函数34z x y =+为直线方程的斜截式,得:344zy x =-+.由图可知,当直线344zy x =-+过点C 时,直线在y 轴上的截距最大,即z 最大.∴max 324318z =⨯+⨯=.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.(15)【2014年辽宁,文15,5分】已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += .【答案】12【解析】如图:MN 的中点为Q ,易得212QF NB =,112QF AN =,∵Q 在椭圆C 上,∴1226QF QF a +==,∴||||12AN BN +=.【点评】本题考查椭圆的定义,椭圆的基本性质的应用,基本知识的考查. (16)【2014年辽宁,文16,5分】对于0c >,当非零实数,a b 满足22420a ab b c -+-=,且使|2|a b +最大时,124a b c++的最小值为 . 【答案】1-【解析】∵22420a ab b c -+-=,∴22221342416c b a ab b a b ⎛⎫=-+=-+ ⎪⎝⎭,由柯西不等式得,()22222233223223242b b a b a b a b ⎡⎤⎛⎫⎡⎤⎛⎫⎛⎫⎡⎤⎢⎥-++≥-+⋅=+ ⎪⎢⎥ ⎪ ⎪ ⎪⎢⎥⎣⎦⎢⎥⎝⎭⎝⎭⎝⎭⎣⎣⎦,故当2a b +最大时, 有344223b a b -=,∴12a b =,2c b =,∴22124224111142a b c b b b b ⎛⎫++=++=+- ⎪⎝⎭, 当2b =-时,取得最小值为1-.【点评】本题考查了柯西不等式,以及二次函数的最值问题,属于难题.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2014年辽宁,文17,12分】在ABC ∆中,内角A ,B ,C 的对边,,a b c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值;(2)cos()B C -的值.解:(1)由2BA BC =得cos 2ac B ⋅=.又1cos 3B =,所以6ac =.由余弦定理得22a c +=22cos b ac B +⋅. 又因为3b =,所以22a c +=21326133+⨯⨯=.解22613ac a c =⎧⎨+=⎩得23a c =⎧⎨=⎩或32a c =⎧⎨=⎩.因为a c >,32a c =⎧∴⎨=⎩. (2)在ABC ∆中,2sin 1cos B B =-21221()3=-=.由正弦定理得sin sin b cB C=, 所以222sin 3sin 3c B C b⨯==42=.因为a c >,所以角C 为锐角.2cos 1sin C C =-24271()99=-=.cos()B C -cos cos sin sin B C B C =+17224239=⨯+⨯2327=. 【点评】此题考查了正弦、余弦定理,平面向量的数量积运算,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.(18)【2014年辽宁,文18,12分】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查, 喜欢甜品 不喜欢甜品 合计南方学生 60 20 80 北方学生 10 10 20合计 70 30 100(1”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:21212211222112)(++++-=n n n n n n n n n χ,解:(1)由题意,()2210060102010 4.762 3.84170308020X ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从这5名学生中随机抽取3人,共有3510C =种情况,有2名喜欢甜品,有133C =种情况, ∴至多有1人喜欢甜品的概率710.【点评】本题考查独立性检验的应用,考查古典概型及其概率计算公式,考查学生的计算能力,属于中档题. (19)【2014年辽宁,文19,12分】如图,ABC ∆和BCD ∆所在平面互相垂直,且AB BC =2BD ==,o 120ABC DBC ∠=∠=,E 、F 、G 分别为AC 、DC 、AD 的中点. (1)求证:EF ⊥平面BC G; (2)求三棱锥D ﹣BCG 的体积.附:椎体的体积公式13V Sh =,其中S 为底面面积,h 为高.解:(1)∵2AB BC BD ===.120ABC DBC ∠=∠=︒,∴ABC DBC ∆∆≌,∴AC DC =,∵G 为AD 的中点,∴CG AD ⊥.同理BG AD ⊥,∵CG BG G =,∴AD ⊥平面BGC , ∵//EF AD ,∴EF ⊥平面BCG .(2)在平面ABC 内,作AO CB ⊥,交CB 的延长线于O ,∵ABC ∆和BCD ∆所在平面互相垂直,∴AO ⊥平面BCD ,∵G 为AD 的中点∴G 到平面BCD 的距离h 是AO 长度的一半.在AOB ∆中,sin 603AO AB =︒=,1111sin1203322D BCG D BCD DCB V V S h BD BC --∆===⋅⋅⋅⋅︒=.【点评】本题考查线面垂直,考查三棱锥体积的计算,正确转换底面是关键.(20)【2014年辽宁,文20,12分】圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图). (1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :3y x =+交于A 、B 两点,若PAB ∆ 的面积为2,求C 的标准方程.解:(1)解法一:设圆半径r ,P 点上下两段线段长分别为2,,4m n r =,由射影定理得:2r mn =,三角形面积22422422421111444()168168162222s m n r m n r m n r r =++=+++≥++=++,仅当2m n ==时,s 取最大值,这时(2,2)P .解法二:2()P k χ≥0.100 0.050 0.010 k2.7063.8416.635yxPO设切点P 的坐标为()00,x y ,且00x >,00y >.则切线的斜率为00x y -,故切线方程为()0000xy y x x y -=--, 即001x x y y +=.此时,切线与x 轴正半轴,y 轴正半轴围成的三角形的面积000014482S x y x y =⋅⋅=⋅.再根据22004x y +=≥00x y ==故点P的坐标为.(2)设椭圆方程22221x y a b +=,11(,)A x y ,22(,)B x y .椭圆过点P 得:22221a b+=,则P到直线y x =+的距离d =.由题得:Δ122ABP S d AB =⋅⋅=,解得AB =.由弦长公式得()()()2222121212123214243AB k x x x x x x x x ⎡⎤⎡⎤=++-=+-=⎣⎦⎣⎦,即2121216()-43x x x x +=.把点P 代入方程得:22221a b +=,由22221y x x y a b ⎧=⎪⎨+=⎪⎩得2210x a +-=,整理得2102x -=,12x x ∴+=,212232b x x b-=⋅,代入上式得2424831683b b b --⋅=,即4263103b b -+=,解得23b =,26a =,或26b =,23a =(舍),所以椭圆方程为:22163x y +=.【点评】本题主要考查直线和圆相切的性质,直线和圆锥曲线的位置关系,点到直线的距离公式、弦长公式的应用,属于难题.(21)【2014年辽宁,文21,12分】已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=--.证 明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.解:(1)2ππ()π(cos )2sin 2(0)π20,()4022f x x x x f f =---∴=--<=->,()f x 在π(0)2,上有零点,()π(1sin )2osx πsin (π2osx)0f x x c x c '=+-=+->,()f x ∴在π(0)2,上单调递增.(2)()(21x g x x ππ=--,,2x ππ⎛⎫∈ ⎪⎝⎭,()()cos 211sin x x g x x x ππ-∴=-⋅+-+cos π2π(π),(0,)1sin π2x x g x x x x -∴-=-+∈+,设cos π2()1sin πx x h x x x --=++,π(0,)2x ∈,则()g x 与()h x 的零点同.22cos sin (1sin )cos 2cos 2π(-cos )2(1sin )()1sin (1sin )π1sin 1sin ππ(1sin )x x x x x x x x x h x x x x x x x -++--+'=+-=+-=+++++()π(1sin )f x x =+,π(0,)2x ∈.由(1)知,()f x 在π(0,)2上只有一个零点0x ,且在点0x 左负右正. ()h x ∴在0x 点左侧递减,在0x 点右侧递增,且(0)10h =>,π()02h =,故0()0h x <,存在唯一20(0,)x x ∈,使得()20h x =,即2(π)0g x -=,12πx x ∴=-,即1210πx x x x +=<+,01πx x ∴+>,所以()g x 在,2ππ⎛⎫⎪⎝⎭上存在唯一零点1x ,且01πx x +>.【点评】本题考查零点的判定定理,涉及导数法证明函数的单调性,属中档题. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B铅笔在答题卡上将所选题号后的方框涂黑.--(22)【2014年辽宁,文22,10分】(选修4-1:几何证明选讲)如图,EP 交圆于E 、C 两点,PD 切圆于D ,G 为CE 上一点且PG PD =,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F . (1)求证:AB 为圆的直径; (2)若AC BD =,求证:AB ED =.解:(1)PD PG PDG PGD PD =∴∠=∠为圆的切线,PDA DBA ∴∠=∠ 又PGD EGA DBA EGA DBA BAD EGA BAD ∠=∠∴∠=∠∴∠+∠=∠+∠, 9090BDA PFA AF EP PFA BDA AB ∴∠=∠⊥∴∠=︒∴∠=︒∴为直径. (2)连接,BC DC 90AB BDA ACB ∴∠=∠=︒是直径,在Rt BDA Rt ACB ∆∆与中,,AB BA AC BD ==,Rt BDA Rt ACB ∆≅∆,DAB CBA DCB DAB ∴∠=∠∠=∠ //DAB CBA DC AB ∴∠=∠∴,90AB EP DC EP DCE ⊥∴⊥∠=︒ED ∴为直径, 由(1)AB ED =.【点评】本题考查圆的切线的性质,考查三角形全等的证明,考查直径所对的圆周角为直角,属于中档题. (23)【2014年辽宁,文23,10分】(选修4-4:坐标系与参数方程)将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极坐标建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.解:(1)设11(,)x y 为圆221x y +=上任意一点,按题中要求变换后的点(,)x y .根据题意得112x x y y =⎧⎨=⎩,所以112x x y y =⎧⎪⎨=⎪⎩.由22111x y +=得2214y x +=.故C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数). (2)由2244220x y x y ⎧+=⎨+-=⎩解得10x y =⎧⎨=⎩或02x y =⎧⎨=⎩.不妨设1(1,0)P ,2(0,2)P,则线段中点坐标1(,1)2. 所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,即2430x y -+=.化为极坐标方程为2cos 4sin 30ρθρθ-+=,即34sin 2cos ρθθ=-.ﻩ【点评】本题主要考查求点的轨迹方程的方法,极坐标和直角坐标的互化,用点斜式求直线的方程,属于中档题. (24)【2014年辽宁,文24,10分】(选修4-5:不等式选讲)设函数()2|1|1f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N . (1)求M ;(2)当x M N ∈时,证明:221()[()]4x f x x f x +≤.解:(1)()2|1|1f x x x =-+-33,[1,)1,(,1)x x x x -∈+∞⎧=⎨-∈-∞⎩.当1x ≥时,()331f x x =-≤,解得413x ≤≤;当1x <时,()11f x x =-≤,解得01x ≤<.所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)2()16814g x x x =-+≤,解得13{|}44N x x =-≤≤.M N =3{|0}4x x ≤≤.当x M N ∈时,()1f x x =-.22()[()]x f x x f x +=22(1)(1)x x x x -+-2x x =-211()42x =--,3{|0}4x x x ∈≤≤.221()[()]4x f x x f x ∴+≤.【点评】本题主要考查绝对值不等式的解法,体现了分类讨论、等价转化的数学思想,属于中档题.。
辽宁省高考数学试卷文科答案与解析

2009年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009•辽宁)已知集合M={x|﹣2<x≤5},N={x|x<﹣5或x>5},则M∪N=()A.{x|x<﹣5或x>﹣2} B.{x|﹣5<x<5} C.{x|﹣2<x<5} D.{x|x<﹣3或x>5} 【考点】并集及其运算.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:在数轴上画出集合M={x|﹣2<x≤5},N={x|x<﹣5或x>5},如图:则M∪N={x|x<﹣5或x>﹣2}.故选A.【点评】本题属于以数轴为工具,求集合的并集的基础题,也是高考常考的题型.2.(5分)(2009•辽宁)已知复数z=1﹣2i,那么=()A.B.C.D.【考点】复数代数形式的混合运算.【分析】复数的分母实数化,然后化简即可.【解答】解:=故选D.【点评】复数代数形式的运算,是基础题.3.(5分)(2009•辽宁)已知{a n}为等差数列,且a7﹣2a4=﹣1,a3=0,则公差d=()A.﹣2 B.﹣C.D.2【考点】等差数列.【专题】计算题;方程思想.【分析】利用等差数列的通项公式,结合已知条件列出关于a1,d的方程组,求解即可.【解答】解:设等差数列{a n}的首项为a1,公差为d,由等差数列的通项公式以及已知条件得,即,解得d=﹣,故选B.【点评】本题考查了等差数列的通项公式,熟记公式是解题的关键,同时注意方程思想的应用.4.(5分)(2009•辽宁)平面向量与的夹角为60°,=(2,0),||=1,则|+2|=()A.B. C.4 D.12【考点】向量加减混合运算及其几何意义.【分析】根据向量的坐标求出向量的模,最后结论要求模,一般要把模平方,知道夹角就可以解决平方过程中的数量积问题,题目最后不要忘记开方.【解答】解:由已知|a|=2,|a+2b|2=a2+4a•b+4b2=4+4×2×1×cos60°+4=12,∴|a+2b|=.故选:B.【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,根据和的模两边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,它的值是两个向量的模与两向量夹角余弦的乘积,结果可正、可负、可以为零,其符号由夹角的余弦值确定.5.(5分)(2009•辽宁)如果把地球看成一个球体,则地球上的北纬60°纬线长和赤道长的比值为()A.0.8 B.0.75 C.0.5 D.0.25【考点】球面距离及相关计算.【专题】计算题.【分析】先求北纬60°纬圆半径,求出纬线长,再求赤道长,即可.【解答】解:设地球半径为R,则北纬60°纬线圆的半径为Rcos60°=R而圆周长之比等于半径之比,故北纬60°纬线长和赤道长的比值为0.5.故选C.【点评】本题考查球面距离及其他计算,考查空间想象能力,是基础题.6.(5分)(2009•辽宁)已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)=()A.B.C.D.【考点】对数的运算性质.【分析】根据3<2+log23<4知,符合x<4时的解析式,故f(2+log23)=f(3+log23),又有3+log23>4知,符合x>4的解析式,代入即得答案.【解答】解:∵3<2+log23<4,所以f(2+log23)=f(3+log23)且3+log23>4∴f(2+log23)=f(3+log23)=故选A.【点评】本题主要考查已知分段函数的解析式求函数值的问题.7.(5分)(2009•辽宁)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y﹣1)2=2 B.(x﹣1)2+(y+1)2=2 C.(x﹣1)2+(y﹣1)2=2 D.(x+1)2+(y+1)2=2【考点】圆的标准方程.【分析】圆心在直线x+y=0上,排除C、D,再验证圆C与直线x﹣y=0及x﹣y﹣4=0都相切,就是圆心到直线等距离,即可.【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;验证:A中圆心(﹣1,1)到两直线x﹣y=0的距离是;圆心(﹣1,1)到直线x﹣y﹣4=0的距离是.故A错误.故选B.【点评】一般情况下:求圆C的方程,就是求圆心、求半径.本题是选择题,所以方法灵活多变,值得探究.8.(5分)(2009•辽宁)已知tanθ=2,则sin2θ+sinθcosθ﹣2cos2θ=()A.﹣B.C.﹣D.【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用.【专题】计算题.【分析】利用sin2θ+cos2θ=1,令原式除以sin2θ+cos2θ,从而把原式转化成关于tanθ的式子,把tanθ=2代入即可.【解答】解:sin2θ+sinθcosθ﹣2cos2θ====.故选D.【点评】本题主要考查了三角函数的恒等变换应用.本题利用了sin2θ+cos2θ=1巧妙的完成弦切互化.9.(5分)(2009•辽宁)ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD 内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【考点】几何概型.【专题】计算题.【分析】本题考查的知识点是几何概型的意义,关键是要找出点到O的距离大于1的点对应的图形的面积,并将其和长方形面积一齐代入几何概型计算公式进行求解.【解答】解:已知如图所示:长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为因此取到的点到O的距离大于1的概率P==1﹣故选B.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.10.(5分)(2009•辽宁)某店一个月的收入和支出总共记录了N个数据a1,a2,…a N,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S和月净盈利V,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的()A.A>0,V=S﹣T B.A<0,V=S﹣T C.A>0,V=S+T D.A<0,V=S+T【考点】设计程序框图解决实际问题.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知S表示月收入,T表示月支出,V表示月盈利,根据收入记为正数,支出记为负数,故条件语句的判断框中的条件为判断累加量A的符号,由分支结构的“是”与“否”分支不难给出答案,累加完毕退出循环后,要输出月收入S,和月盈利V,故在输出前要计算月盈利V,根据收入、支出与盈利的关系,不难得到答案.【解答】解析:月总收入为S,支出T为负数,因此A>0时应累加到月收入S,故判断框内填:A>0又∵月盈利V=月收入S﹣月支出T,但月支出用负数表示因此月盈利V=S+T故处理框中应填:V=S+T故选A>0,V=S+T【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11.(5分)(2009•辽宁)下列4个命题p2:∃x∈(0,1),㏒1/2x>㏒1/3x㏒1/2x㏒1/3x其中的真命题是()A.p1,p3B.p1,p4C.p2,p3D.p2,p4【考点】命题的真假判断与应用;指数函数的单调性与特殊点;对数函数的单调性与特殊点.【专题】压轴题.【分析】本题的考查意图是指数函数和对数函数的单调性,但作为选择题来讲,此类题采用特殊值法更好.【解答】解:取x=,则㏒1/2x=1,㏒1/3x=log32<1,p2正确.当x∈(0,)时,()x<1,而㏒1/3x>1.p4正确故选D.【点评】特殊值法是解决选择题的常用解法之一,特点是快捷、实用,不易出错相当于实践验证.12.(5分)(2009•辽宁)已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<f()的x取值范围是()A.(,) B.[,)C.(,)D.[,)【考点】奇偶性与单调性的综合.【专题】分析法;函数的性质及应用.【分析】由题设条件偶函数f(x)在区间[0,+∞)单调增加可得出此函数先减后增,以y 轴为对称轴,由此位置关系转化不等式求解即可【解答】解析:∵f(x)是偶函数,故f(x)=f(|x|)∴f(2x﹣1)=f(|2x﹣1|),即f(|2x﹣1|)<f(||)又∵f(x)在区间[0,+∞)单调增加得|2x﹣1|<,解得<x<.故选A.【点评】本题考查了利用函数的单调性和奇偶性解不等式,在这里要注意本题与下面这道题的区别:已知函数f(x)在区间[0,+∞)单调增加,则满足f(2x﹣1)<的x取值范围是()二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009•辽宁)在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC.已知点A(﹣2,0),B(6,8),C(8,6),则D点的坐标为(0,﹣2).【考点】相等向量与相反向量.【分析】由四边形ABCD的边AB∥DC,AD∥BC,和三个点的坐标,可以先设出点的坐标,根据两条对角线交于一点,用中点坐标公式得到结果.【解答】解:设D(x,y),∵AC与BD中点相同∴﹣2+8=6+x,∴x=0又0+6=8+y,y=﹣2∴D=(0,﹣2),故答案为:(0,﹣2).【点评】向量首尾相连,构成封闭图形,则四个向量的和是零向量,用题目给出的三个点的坐标,再设出要求的坐标,写出首尾相连的四个向量的坐标,让四个向量相加结果是零向量,解出设的坐标.14.(5分)(2009•辽宁)已知函数f(x)=sin(ωx+φ)(ω>0)的图象如图所示,则ω=.【考点】三角函数的周期性及其求法;y=Asin(ωx+φ)中参数的物理意义.【专题】数形结合.【分析】根据所给的图形,看出四分之一个周期的值,得到最小正周期,根据周期的计算公式,得到要求的值,本题主要考查读图问题,从图形中看出需要的结果.【解答】解:∵由图象可得最小正周期4(﹣)=T=∴ω==.故答案为:.【点评】根据所给的图形,看出四分之一个周期的值,得到最小正周期,根据周期的计算公式,得到要求的值,本题主要考查读图问题,从图形中看出需要的结果.15.(5分)(2009•辽宁)若函数f(x)=在x=1处取极值,则a=3.【考点】利用导数研究函数的极值.【专题】计算题;压轴题.【分析】先求出f′(x),因为x=1处取极值,所以1是f′(x)=0的根,代入求出a即可.【解答】解:f′(x)==.因为f(x)在1处取极值,所以1是f′(x)=0的根,将x=1代入得a=3.故答案为3【点评】考查学生利用导数研究函数极值的能力.16.(5分)(2009•辽宁)设某几何体的三视图如图(尺寸的长度单位为m)则该几何体的体积为4m3.【考点】由三视图求面积、体积.【专题】计算题;压轴题.【分析】由三视图可知几何体是三棱锥,明确其数据关系直接解答即可.【解答】解:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,体积等于×2×4×3=4故答案为:4【点评】本题考查三视图求体积,三视图的复原,考查学生空间想象能力,是基础题.三、解答题(共6小题,满分70分)17.(10分)(2009•辽宁)等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,(1)求{a n}的公比q;(2)求a1﹣a3=3,求S n.【考点】等差数列的性质;等比数列的前n项和.【专题】等差数列与等比数列.【分析】(Ⅰ)由题意知a1+(a1+a1q)=2(a1+a1q+a1q2),由此可知2q2+q=0,从而.(Ⅱ)由已知可得,故a1=4,从而.【解答】解:(Ⅰ)依题意有a1+(a1+a1q)=2(a1+a1q+a1q2)由于a1≠0,故2q2+q=0又q≠0,从而(Ⅱ)由已知可得故a1=4从而【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答.18.(12分)(2009•辽宁)如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D 为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外哪两点间距离相等,然后求B,D的距离(计算结果精确到0.01 km,≈1.414,≈2.449).【考点】解三角形的实际应用.【专题】计算题;应用题.【分析】在△ACD中,∠DAC=30°推断出CD=AC,同时根据CB是△CAD底边AD的中垂线,判断出BD=BA,进而在△ABC中利用余弦定理求得AB答案可得.【解答】解:在△ACD中,∠DAC=30°,∠ADC=60°﹣∠DAC=30°,所以CD=AC=0.1.又∠BCD=180﹣60°﹣60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA、在△ABC中,=,sin215°=,可得sin15°=,即AB==,因此,BD=≈0.33km.故B、D的距离约为0.33km.【点评】本题主要考查了解三角形的实际应用.考查学生分析问题解决问题的能力.综合运用基础知识的能力.19.(12分)(2009•辽宁)如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N 分别为AB,DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.【考点】直线与平面所成的角;反证法与放缩法.【专题】计算题;证明题.【分析】(1)(解法一)由面面垂直的性质定理,取CD的中点G,连接MG,NG,再证出∠MNG是所求的角,在△MNG中求解;(解法二)由垂直关系建立空间直角坐标系,求出平面DCEF的法向量,再用向量的数量积求解;(2)由题意假设共面,由AB∥CD推出AB∥平面DCEF,再推出AB∥EN,由得到EN∥EF,即推出矛盾,故假设不成立;【解答】解:(1)解法一:取CD的中点G,连接MG,NG.设正方形ABCD,DCEF的边长为2,则MG⊥CD,MG=2,NG=.∵平面ABCD⊥平面DCED,∴MG⊥平面DCEF,∴∠MNG是MN与平面DCEF所成的角.∵MN==,∴sin∠MNG=为MN与平面DCEF所成角的正弦值解法二:设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.则M(1,0,2),N(0,1,0),可得=(﹣1,1,﹣2).又∵=(0,0,2)为平面DCEF的法向量,∴cos(,)=•∴MN与平面DCEF所成角的正弦值为cos•(2)假设直线ME与BN共面,则AB⊂平面MBEN,且平面MBEN与平面DCEF交于EN由已知,两正方形不共面,∴AB⊄平面DCEF.又∵AB∥CD,∴AB∥平面DCEF.∵面EN为平面MBEN与平面DCEF的交线,∴AB∥EN.又∵AB∥CD∥EF,∴EN∥EF,这与EN∩EF=E矛盾,故假设不成立.∴ME与BN不共面,它们是异面直线.【点评】本题考查了线面角的求法,可有面面垂直的性质定理用两种方法来求解;还考查了用反证法证明,用了线线平行与线面平行的相互转化来推出矛盾,考查了推理论证能力和逻辑思维能力.20.(12分)(2009•辽宁)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:甲厂分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)频数12 63 86 182 92 61 4 乙厂分组[29.86,29.90)[29.90,29.94)[29.94,29.98)[29.98,30.02)[30.02,30.06)[30.06,30.10)[30.10,30.14)频数29 71 85 159 76 62 18(1)试分别估计两个分厂生产的零件的优质品率;(2)由于以上统计数据填下面2×2(3)列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.甲厂乙厂合计优质品非优质品合计附:.【考点】独立性检验的应用.【专题】应用题;图表型.【分析】本题考查的知识点是独立性检验的应用,(1)要求两个分厂生产的零件的优质品率,我们可以根据已知中的表格中的数据,及规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品,我们及计算出两个分厂生产的零件的优质品率;(2)按照分层抽样中,样本中的比例与总体中的比例一致,易得表中各项数据的值,然后我们可以根据列联表中的数据,代入公式,计算出k值,然后代入离散系数表,比较即可得到答案.【解答】解:(Ⅰ)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为(Ⅱ)甲厂乙厂合计优质品360 320 680非优质品140 180 320合计500 500 1000≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”【点评】独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式,计算出k值,然后代入离散系数表,比较即可得到答案.21.(12分)(2009•辽宁)设f(x)=e x(ax2+x+1),且曲线y=f(x)在x=1处的切线与x 轴平行.(1)求a的值,并讨论f(x)的单调性;(2)证明:当.【考点】利用导数研究函数的单调性.【专题】压轴题.【分析】(1)先对函数f(x)进行求导,然后根据在x=1处的导数值等于其切线的斜率可求a的值,然后当f'(x)<0时可求函数的单调递减区间,当f'(x)>0时可求函数的单调递增区间.(2)先确定函数f(x)在[0,1]单调增,求出最大值和最小值,故根据任意x1,x2∈[0,1],有|f(x1)﹣f(x2)|≤e﹣1<2,将cosθ、sinθ代入即可得到答案.【解答】解:(Ⅰ)f'(x)=e x(ax2+x+1+2ax+1).由条件知,f'(1)=0,故a+3+2a=0⇒a=﹣1.于是f'(x)=e x(﹣x2﹣x+2)=﹣e x(x+2)(x﹣1).故当x∈(﹣∞,﹣2)或(1,+∞)时,f'(x)<0;当x∈(﹣2,1)时,f'(x)>0.从而f(x)在(﹣∞,﹣2),(1,+∞)单调减少,在(﹣2,1)单调增加.(Ⅱ)由(Ⅰ)知f(x)在[0,1]单调增加,故f(x)在[0,1]的最大值为f(1)=e,最小值为f(0)=1.从而对任意x1,x2∈[0,1],有|f(x1)﹣f(x2)|≤e﹣1<2.而当时,cosθ,sinθ∈[0,1].从而|f(cosθ)﹣f(sinθ)|<2【点评】本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.22.(12分)(2009•辽宁)已知,椭圆C过点A,两个焦点为(﹣1,0),(1,0).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.【考点】椭圆的应用;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题;压轴题.【分析】(Ⅰ)由题意,c=1,可设椭圆方程代入已知条件得,求出b,由此能够求出椭圆方程.(Ⅱ)设直线AE方程为:,代入得,再点在椭圆上,结合直线的位置关系进行求解.【解答】解:(Ⅰ)由题意,c=1,可设椭圆方程为,解得b2=3,(舍去)所以椭圆方程为.(Ⅱ)设直线AE方程为:,代入得设E(x E,y E),F(x F,y F),因为点在椭圆上,所以由韦达定理得:,,所以,.又直线AF的斜率与AE的斜率互为相反数,在上式中以﹣K代K,可得,所以直线EF的斜率即直线EF的斜率为定值,其值为.【点评】本题综合考查直线与椭圆的位置关系,解题时要认真审题,仔细解答,避免出错.。
2022年辽宁省高考数学试卷(新高考II)附答案解析

2022年辽宁省高考数学试卷(新高考II)附答案解析一、选择题1. 题目:设函数 $ f(x) = \sqrt{x^2 + 1} $,求 $ f'(0) $。
答案:$ f'(0) = \frac{1}{2} $。
解析:根据导数的定义,我们有 $ f'(0) = \lim_{x \to 0}\frac{f(x) f(0)}{x 0} $。
将 $ f(x) $ 和 $ f(0) $ 代入,得到$ f'(0) = \lim_{x \to 0} \frac{\sqrt{x^2 + 1} 1}{x} $。
由于$ \sqrt{x^2 + 1} $ 在 $ x = 0 $ 附近可近似为 $ 1 +\frac{x^2}{2} $,所以 $ f'(0) $ 可近似为 $ \lim_{x \to 0}\frac{1 + \frac{x^2}{2} 1}{x} = \frac{1}{2} $。
2. 题目:已知等差数列 $\{a_n\}$ 的首项为 $a_1$,公差为$d$,求 $a_5$。
答案:$a_5 = a_1 + 4d$。
解析:根据等差数列的定义,我们有 $a_5 = a_1 + (5 1)d =a_1 + 4d$。
3. 题目:已知函数 $f(x) = x^3 3x$,求 $f(x)$ 的极值点。
答案:极小值点为 $x = 1$,极大值点为 $x = 1$。
解析:求导数 $f'(x) = 3x^2 3$,令 $f'(x) = 0$,解得 $x = \pm 1$。
然后求二阶导数 $f''(x) = 6x$,当 $x = 1$ 时,$f''(1) = 6 > 0$,所以 $x = 1$ 是极小值点;当 $x = 1$ 时,$f''(1) = 6 < 0$,所以 $x = 1$ 是极大值点。
4. 题目:已知函数 $f(x) = \frac{1}{x}$,求 $f(x)$ 的反函数。
辽宁高考文科数学试题及答案解析.docx

普通高等学校招生全国统一考试
文科数学
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|x>-1},B={x|x<2},则A∩B=
A.(-1,+∞)
B.(-∞,2)
C.(-1,2)
2.设z=i(2+i),则z=
A.1+2i
B.-1+2i
C.1-2i
D.-1-2i
3.已知向量a=(2,3),b=(3,2),则|a-b|=
A.√2
B.2
C.5√2
D.50
4.生物实验室有5只兔子,其中只有3只测量过某项指标。
若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为
A.2/3
B.3/5
C.2/3
D.1/5
5.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测。
甲:我的成绩比乙高。
乙:丙的成绩比我和甲的都高。
丙:我的成绩比乙高。
成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为A.甲、乙、丙
B.乙、甲、丙
C.丙、乙、甲
D.甲、丙、乙。
高考真题-文科数学辽宁卷解析

2012年普通高等学校招生全国统一考试(辽宁卷)数学(供文科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。
(1)已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x = (A) —1 (B) —12 (C) 12(D)1 【答案】D 【解析】21,1a b x x ⋅=-=∴=,故选D【点评】本题主要考查向量的数量积,属于容易题。
(2)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析一】因为全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U {7,9}。
故选B【解析二】 集合)()(B C A C U U 即为在全集U 中去掉集合A 和集合B 中的元素,所剩的元素形成的集合,由此可快速得到答案,选B【点评】本题主要考查集合的交集、补集运算,属于容易题。
采用解析二能够更快地得到答案。
(3)复数11i =+ (A) 1122i - (B)1122i + (C) 1i - (D) 1i +【答案】A 【解析】11111(1)(1)222i i ii i i --===-++-,故选A 【点评】本题主要考查复数代数形式的运算,属于容易题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009年辽宁省高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2009?辽宁)已知集合M={x|﹣2<x≤5},N={x|x<﹣5或x>5},则M∪N=()A.{x|x<﹣5或x>﹣2} B.{x|﹣5<x<5} C.{x|﹣2<x<5} D.{x|x<﹣3或x>5}【考点】并集及其运算.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.【解答】解:在数轴上画出集合M={x|﹣2<x≤5},N={x|x<﹣5或x>5},如图:则M∪N={x|x<﹣5或x>﹣2}.故选A.【点评】本题属于以数轴为工具,求集合的并集的基础题,也是高考常考的题型.,那么=(2i)(5分)(2009?辽宁)已知复数z=1﹣2..D ..BC.A【考点】复数代数形式的混合运算.【分析】复数的分母实数化,然后化简即可.= 【解答】解:故选D.【点评】复数代数形式的运算,是基础题.)d=(,a为等差数列,且﹣2a=﹣1a=0,则公差{a(.3(5分)2009?辽宁)已知}374n D .B.﹣C2..﹣A2【考点】等差数列.【专题】计算题;方程思想.【分析】利用等差数列的通项公式,结合已知条件列出关于a,d的方程组,求解即可.1【解答】解:设等差数列{a}的首项为a,公差为d,由等差数列的通项公式以及已知条件1n得,即,,﹣d=解得.故选B.【点评】本题考查了等差数列的通项公式,熟记公式是解题的关键,同时注意方程思想的应用.+2|=(|)2,0),|20094.(5分)(?辽宁)|=1平面向量,与的夹角为60°则,=(.C.4 BD.A12.【考点】向量加减混合运算及其几何意义.【分析】根据向量的坐标求出向量的模,最后结论要求模,一般要把模平方,知道夹角就可以解决平方过程中的数量积问题,题目最后不要忘记开方.【解答】解:由已知|a|=2,222 cos60°+4=12,b+4b+4a?=4+4×2×1×|a+2b|=a|a+2b|=∴.故选:B.根据和的模两【点评】本题是对向量数量积的考查,根据两个向量的夹角和模之间的关系,它的边平方,注意要求的结果非负,舍去不合题意的即可.两个向量的数量积是一个数量,可负、可以为零,其符号由夹角的值是两个向量的模与两向量夹角余弦的乘积,结果可正、余弦值确定.纬线长和赤道长的辽宁)如果把地球看成一个球体,则地球上的北纬60°.(5分)(2009?5 )比值为(0.25 0.5 D.0.8 B.0.75 C.A.【考点】球面距离及相关计算.【专题】计算题.°纬圆半径,求出纬线长,再求赤道长,即可.【分析】先求北纬60=R 纬线圆的半径为Rcos60°【解答】解:设地球半径为R,则北纬60°而圆周长之比等于半径之比,故北纬60°纬线长和赤道长的比值为0.5.故选C.【点评】本题考查球面距离及其他计算,考查空间想象能力,是基础题.=;当x<4时f(4,则f(x)x)x(6.(5分)2009?辽宁)已知函数f(x)满足:≥=()(=f(x+1),则f2+log3)2AD.B.C..【考点】对数的运算性质.【分析】根据3<2+log3<4知,符合x<4时的解析式,故f(2+log3)=f(3+log3),又222有3+log3>4知,符合x>4的解析式,代入即得答案.2【解答】解:∵3<2+log3<4,所以f(2+log3)=f(3+log3)222且3+log3>42∴f(2+log3)=f(3+log )322.=故选A.【点评】本题主要考查已知分段函数的解析式求函数值的问题.7.(5分)(2009?辽宁)已知圆C与直线x﹣y=0及x﹣y﹣4=0都相切,圆心在直线x+y=0上,则圆C的方程为()222222A.(x+1)+(y﹣1)=2 B.(x﹣1)+(y+1)=2 C.(x﹣1)+(y﹣1)=222 D.(x+1)+(y+1)=2【考点】圆的标准方程.【分析】圆心在直线x+y=0上,排除C、D,再验证圆C与直线x﹣y=0及x﹣y﹣4=0都相切,就是圆心到直线等距离,即可.【解答】解:圆心在x+y=0上,圆心的纵横坐标值相反,显然能排除C、D;的距离是;﹣y=0 1A中圆心(﹣,1)到两直线x验证:.故A错误.﹣y﹣4=0 的距离是圆心(﹣1,1)到直线x故选B.【点评】一般情况下:求圆C的方程,就是求圆心、求半径.本题是选择题,所以方法灵活多变,值得探究.22)θ=(,则sinθ+sinθcosθ﹣2costan.8(5分)(2009?辽宁)已知θ=2.﹣.﹣BD.CA.【考点】三角函数中的恒等变换应用;同角三角函数基本关系的运用.【专题】计算题.2222【分析】利用sinθ+cosθ=1,令原式除以sinθ+cosθ,从而把原式转化成关于tanθ的式子,把tanθ=2代入即可.22【解答】解:sinθ+sinθcosθ﹣2cosθ===.=故选D.22【点评】本题主要考查了三角函数的恒等变换应用.本题利用了sinθ+cosθ=1巧妙的完成弦切互化.9.(5分)(2009?辽宁)ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD )的概率为(1的距离大于O内随机取一点,取到的点到..DC .AB..【考点】几何概型.【专题】计算题.【分析】本题考查的知识点是几何概型的意义,关键是要找出点到O的距离大于1的点对应的图形的面积,并将其和长方形面积一齐代入几何概型计算公式进行求解.【解答】解:已知如图所示:长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为﹣P==1因此取到的点到O的距离大于1的概率故选B.【点评】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P= 求解.,其…a,a?分)(2009辽宁)某店一个月的收入和支出总共记录了N个数据,a5.10(N12那V,和月净盈利该店用下边的程序框图计算月总收入中收入记为正数,支出记为负数.S )么在图中空白的判断框和处理框中,应分别填入下列四个选项中的(.A.A>0,V=S﹣T B.A<0,V=S﹣T C.A>0,V=S+T D.A<0,V=S+T【考点】设计程序框图解决实际问题.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知S表示月收入,T 表示月支出,V表示月盈利,根据收入记为正数,支出记为负数,故条件语句的判断框中的条件为判断累加量A的符号,由分支结构的“是”与“否”分支不难给出答案,累加完毕退出循环后,要输出月收入S,和月盈利V,故在输出前要计算月盈利V,根据收入、支出与盈利的关系,不难得到答案.【解答】解析:月总收入为S,支出T为负数,因此A>0时应累加到月收入S,故判断框内填:A>0又∵月盈利V=月收入S﹣月支出T,但月支出用负数表示因此月盈利V=S+T故处理框中应填:V=S+T故选A>0,V=S+T【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.11.(5分)(2009?辽宁)下列4个命题p:?x∈(0,1),㏒x>㏒x1/321/2㏒x 1/2㏒x1/3.其中的真命题是()A.p,p B.p,p C.p,p D.p,p 42411332【考点】命题的真假判断与应用;指数函数的单调性与特殊点;对数函数的单调性与特殊点.【专题】压轴题.【分析】本题的考查意图是指数函数和对数函数的单调性,但作为选择题来讲,此类题采用特殊值法更好.x=,则㏒x=1,㏒x=log2<1,p【解答】解:取正确.21/21/33x正确.p1,而㏒x∈(0>,)时,1()<x当41/3.故选D不易出错相当于实践特点是快捷、实用,【点评】特殊值法是解决选择题的常用解法之一,验证.)12x﹣∞)单调增加,则满足f(?辽宁)已知偶函数f(x)在区间[0,+12.(5分)(2009)取值范围是(()的x<f.,[(),A.)(,)B.D[,)C.【考点】奇偶性与单调性的综合.【专题】分析法;函数的性质及应用.y∞)单调增加可得出此函数先减后增,以[0,+【分析】由题设条件偶函数f (x)在区间轴为对称轴,由此位置关系转化不等式求解即可)=f(|x|x(x)是偶函数,故f()【解答】解析:∵f||()|2x﹣1|)<f(﹣1)=f|2x﹣1|),即f(∴f(2x又∵f(x)在区间[0,+∞)单调增加<.x<,解得﹣得|2x1|<故选A.【点评】本题考查了利用函数的单调性和奇偶性解不等式,在这里要注意本题与下面这道题)<的x2x﹣1取)在区间[0,+∞)单调增加,则满足f(的区别:已知函数f(x值范围是()二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2009?辽宁)在平面直角坐标系xOy中,四边形ABCD的边AB∥DC,AD∥BC.已知点A(﹣2,0),B(6,8),C(8,6),则D点的坐标为(0,﹣2).【考点】相等向量与相反向量.【分析】由四边形ABCD的边AB∥DC,AD∥BC,和三个点的坐标,可以先设出点的坐标,根据两条对角线交于一点,用中点坐标公式得到结果.【解答】解:设D(x,y),中点相同BD与AC∵.∴﹣2+8=6+x,∴x=0又0+6=8+y,y=﹣2∴D=(0,﹣2),故答案为:(0,﹣2).【点评】向量首尾相连,构成封闭图形,则四个向量的和是零向量,用题目给出的三个点的坐标,再设出要求的坐标,写出首尾相连的四个向量的坐标,让四个向量相加结果是零向量,解出设的坐标.14.(5分)(2009?辽宁)已知函数f(x)=sin(ωx+φ)(ω>0)的图象如图所示,则ω=.【考点】三角函数的周期性及其求法;y=Asin(ωx+φ)中参数的物理意义.【专题】数形结合.【分析】根据所给的图形,看出四分之一个周期的值,得到最小正周期,根据周期的计算公式,得到要求的值,本题主要考查读图问题,从图形中看出需要的结果.=)(﹣【解答】解:∵由图象可得最小正周期4T==∴ω.=故答案为:.【点评】根据所给的图形,看出四分之一个周期的值,得到最小正周期,根据周期的计算公式,得到要求的值,本题主要考查读图问题,从图形中看出需要的结果.=在x=1处取极值,则a=3.)分).(5(2009?辽宁)若函数f(x 15【考点】利用导数研究函数的极值.【专题】计算题;压轴题.【分析】先求出f′(x),因为x=1处取极值,所以1是f′(x)=0的根,代入求出a即可..=(x)=′【解答】解:f )在1处取极值,f因为(x x)=0的根,(f1所以是′代入得将x=1a=3.3故答案为【点评】考查学生利用导数研究函数极值的能力.16.(5分)(2009?辽宁)设某几何体的三视图如图(尺寸的长度单位为m)则该几何体的3体积为4m.【考点】由三视图求面积、体积.【专题】计算题;压轴题.【分析】由三视图可知几何体是三棱锥,明确其数据关系直接解答即可.【解答】解:这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3,体积等于×2×4×3=4故答案为:4【点评】本题考查三视图求体积,三视图的复原,考查学生空间想象能力,是基础题.三、解答题(共6小题,满分70分)17.(10分)(2009?辽宁)等比数列{a}的前n项和为S,已知S,S,S成等差数列,23n1n(1)求{a}的公比q;n(2)求a﹣a=3,求S.n13【考点】等差数列的性质;等比数列的前n项和.【专题】等差数列与等比数列.22.2q+q=0 ,从而q+aq+a)=2(a+aq),由此可知((Ⅰ)由题意知【分析】a+a111111,从而=4(Ⅱ)由已知可得,故a1.2【解答】解:(Ⅰ)依题意有a+(a+aq)=2(a+aq+aq)1111112由于a≠0,故2q+q=0 1,从而0≠q又.(Ⅱ)由已知可得=4故a1从而【点评】本题考查数列的性质和应用,解题时要认真审题,仔细解答.18.(12分)(2009?辽宁)如图,A、B、C、D都在同一个与水平面垂直的平面内,B、D为两岛上的两座灯塔的塔顶.测量船于水面A处测得B点和D点的仰角分别为75°,30°,于水面C处测得B点和D点的仰角均为60°,AC=0.1 km.试探究图中B,D间距离与另外,≈2.449)≈1.414.(计算结果精确到哪两点间距离相等,然后求B,D的距离0.01 km ,【考点】解三角形的实际应用.【专题】计算题;应用题.【分析】在△ACD中,∠DAC=30°推断出CD=AC,同时根据CB是△CAD底边AD的中垂线,判断出BD=BA,进而在△ABC中利用余弦定理求得AB答案可得.【解答】解:在△ACD中,∠DAC=30°,∠ADC=60°﹣∠DAC=30°,所以CD=AC=0.1.又∠BCD=180﹣60°﹣60°=60°,故CB是△CAD底边AD的中垂线,所以BD=BA、=,ABC中,在△2,sin15°=15sin°,可得=,即AB==.≈因此,BD=0.33km故B、D的距离约为0.33km.【点评】本题主要考查了解三角形的实际应用.考查学生分析问题解决问题的能力.综合运用基础知识的能力.19.(12分)(2009?辽宁)如图,已知两个正方行ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若平面ABCD⊥平面DCEF,求直线MN与平面DCEF所成角的正弦值;(2)用反证法证明:直线ME与BN是两条异面直线.【考点】直线与平面所成的角;反证法与放缩法.【专题】计算题;证明题.【分析】(1)(解法一)由面面垂直的性质定理,取CD的中点G,连接MG,NG,再证出∠MNG是所求的角,在△MNG中求解;(解法二)由垂直关系建立空间直角坐标系,求出平面DCEF的法向量,再用向量的数量积求解;(2)由题意假设共面,由AB∥CD推出AB∥平面DCEF,再推出AB∥EN,由得到EN∥EF,即推出矛盾,故假设不成立;【解答】解:(1)解法一:取CD的中点G,连接MG,NG.设正方形ABCD,DCEF的边长为2,NG=.MG=2,则MG⊥CD,∵平面ABCD⊥平面DCED,∴MG⊥平面DCEF,∴∠MNG是MN与平面DCEF所成的角.所成角的正弦值DCEF与平面MN为∵MN=MNG=∠sin,∴= 解法二:设正方形ABCD,DCEF的边长为2,以D为坐标原点,分别以射线DC,DF,DA为x,y,z轴正半轴建立空间直角坐标系如图.,可得=(﹣1,1,﹣2,1,0)).2则M(1,0,),N(0=(0,0,又∵2)为平面DCEF 的法向量,(cos=?,)∴cos?与平面DCEF所成角的正弦值为MN∴(2)假设直线ME与BN共面,则AB?平面MBEN,且平面MBEN与平面DCEF交于EN由已知,两正方形不共面,∴AB?平面DCEF.又∵AB∥CD,∴AB∥平面DCEF.∵面EN为平面MBEN与平面DCEF的交线,∴AB∥EN.又∵AB∥CD∥EF,∴EN∥EF,这与EN∩EF=E矛盾,故假设不成立.∴ME与BN不共面,它们是异面直线.【点评】本题考查了线面角的求法,可有面面垂直的性质定理用两种方法来求解;还考查了用反证法证明,用了线线平行与线面平行的相互转化来推出矛盾,考查了推理论证能力和逻辑思维能力.20.(12分)(2009?辽宁)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品.从两个分厂生产的零件中个抽出500件,量其内径尺寸,的结果如下表:甲厂乙厂)试分别估计两个分厂生产的零件的优质品率;1(.(2)由于以上统计数据填下面2×2(3)列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.乙厂合计甲厂优质品非优质品合计附:.【考点】独立性检验的应用.【专题】应用题;图表型.【分析】本题考查的知识点是独立性检验的应用,(1)要求两个分厂生产的零件的优质品率,我们可以根据已知中的表格中的数据,及规定内径尺寸(单位:mm)的值落在(29.94,30.06)的零件为优质品,我们及计算出两个分厂生产的零件的优质品率;(2)按照分层抽样中,样本中的比例与总体中的比例一致,易得表中各项数据的值,然后我们可以根据列联表中的数据,代入公式,计算出k值,然后代入离散系数表,比较即可得到答案.【解答】解:(Ⅰ)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为;件优质品,乙厂抽查的产品中有320从而乙厂生产的零件的优质品率估计为(Ⅱ)甲厂乙厂合计360 320 680 优质品140 180 320 非优质品500 500 1000 合计≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”【点评】独立性检验的应用的步骤为:根据已知条件将数据归结到一个表格内,列出列联表,再根据列联表中的数据,代入公式值,k,计算出然后代入离散系数表,比较即可得到答案.x2x处的切线与x)在x=1ax+x+1),且曲线y=f((12分)(2009?辽宁)设f(x)=e(21.轴平行.(x)的单调性;)求(1a的值,并讨论f.)证明:当(2【考点】利用导数研究函数的单调性.【专题】压轴题.【分析】(1)先对函数f(x)进行求导,然后根据在x=1处的导数值等于其切线的斜率可求a 的值,然后当f'(x)<0时可求函数的单调递减区间,当f'(x)>0时可求函数的单调递增区间.∈[0,1],x,]单调增,求出最大值和最小值,故根据任意x(2)先确定函数f(x)在[0,121有|f(x)﹣f(x)|≤e﹣1<2,将cosθ、sinθ代入即可得到答案.21x2【解答】解:(Ⅰ)f'(x)=e(ax+x+1+2ax+1).由条件知,f'(1)=0,故a+3+2a=0?a=﹣1.x2x于是f'(x)=e(﹣x﹣x+2)=﹣e(x+2)(x﹣1).故当x∈(﹣∞,﹣2)或(1,+∞)时,f'(x)<0;当x∈(﹣2,1)时,f'(x)>0.从而f(x)在(﹣∞,﹣2),(1,+∞)单调减少,在(﹣2,1)单调增加.(Ⅱ)由(Ⅰ)知f(x)在[0,1]单调增加,故f(x)在[0,1]的最大值为f(1)=e,最小值为f(0)=1.∈[0,1],有|f(x)﹣f(x)|≤ex从而对任意,x﹣1<2.2112而当时,cosθ,sinθ∈[0,1].从而|f(cosθ)﹣f(sinθ)|<2【点评】本题主要考查函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.A,两个焦点为(﹣1,0),(1,0过点辽宁)分)22.(12(2009?已知,椭圆C).(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.【考点】椭圆的应用;椭圆的标准方程;直线与圆锥曲线的综合问题.【专题】计算题;压轴题.,可设椭圆方程代入已知条件得,由此b(Ⅰ)由题意,【分析】c=1,求出能够求出椭圆方程.,代入方程为:(Ⅱ)设直线AE得,再点在椭圆上,结合直线的位置关系进行求解.【解答】解:(Ⅰ)由题意,c=1,可设椭圆方程为,2(舍去),解得b=3所以椭圆方程为.方程为:AE (Ⅱ)设直线,得代入设E(x,y),F(x,y),FEEF因为点在椭圆上,,,所以由韦达定理得:,.所以又直线AF的斜率与AE的斜率互为相反数,,,可得K在上式中以﹣K代的斜率EF 所以直线的斜率为定值,其值为.EF即直线【点评】本题综合考查直线与椭圆的位置关系,解题时要认真审题,仔细解答,避免出错.。