MIM工艺介绍
mim工艺技术
mim工艺技术MIM(Metal Injection Molding)是一种综合了传统粉末冶金技术和塑料注塑成型技术的金属成形工艺。
它利用聚合物为载体,在高压注射成型时将金属粉末喷射入模具中,然后通过高温和高压烧结成型。
MIM工艺技术已经广泛应用于各个领域,如电子、汽车、医疗、化工等。
MIM工艺技术的优势之一是可以制造复杂形状的零部件。
相比传统的金属加工工艺,MIM工艺可以制造具有内孔、薄壁、复杂曲线等特殊结构的零部件,而且生产效率高。
MIM工艺的制造工艺是分为四个主要步骤:压注成型、脱模、脱脂和底漆。
通过调整模具的形状和复杂度,可以生产出各种各样的金属零件。
MIM工艺技术的另一个优势是材料的选择性。
根据不同的应用需求,可以选择不同的金属粉末制作零部件。
常用的MIM材料包括不锈钢、合金钢、硬质合金、钴合金等。
这些材料具有高强度、耐磨、耐腐蚀等特点,能够更好地满足各种应用的需求。
MIM工艺技术还具有材料利用率高、成本低等优点。
相较于传统的CNC加工工艺,MIM工艺可以最大限度地减少材料浪费,提高成品率和利用率。
同时,MIM工艺采用批量生产的方式,可以实现大规模生产,降低生产成本。
因此,MIM工艺技术已成为制造业中非常重要的一种生产工艺。
然而,MIM工艺技术也存在一些挑战和限制。
首先,对于一些特殊形状的零件,模具的设计和制造可能会较为困难,需要更高的精确度和工艺控制。
其次,对于一些特殊材料,如高温合金等,MIM工艺可能无法满足其特殊的热处理要求。
此外,MIM工艺在生产过程中也需要严格控制温度、压力等参数,以保证产品质量。
总之,MIM工艺技术通过结合粉末冶金和塑料注塑成型技术,实现了金属零件的高效制造。
其可以制造复杂形状的零部件,材料选择性高,且材料利用率高、成本低。
虽然存在一些挑战和限制,但这种工艺技术在制造业中具有广泛的应用前景。
随着技术的进一步发展,MIM工艺技术将不断改进和完善,为各行各业提供更好的解决方案。
mim生产工艺
mim生产工艺MIM(Metal Injection Molding)是一种将金属粉末与有机粘结剂混合成浆料,然后注射成型,烧结成金属零件的先进制造工艺。
它结合了金属粉末冶金和塑料注射成型的优点,可以制造出形状复杂、尺寸精确的金属零件。
MIM的生产工艺主要分为原料制备、注射成型、脱蜡、烧结和后处理几个步骤。
首先是原料制备阶段,将金属粉末与有机粘结剂、增塑剂等进行混合,并加入一定量的溶剂,制成可注射成型的浆料。
这个浆料的配方需要根据所需零件的材质和性能进行精确控制。
然后是注射成型阶段,将预制好的浆料注入到注射机的料筒中,在高温高压的状态下,通过注射射嘴喷出,填充到金属模具的腔室中。
这个过程需要严格控制注射机的温度和压力,以保证浆料充分填充模具,并得到尺寸精确的零件。
注射成型完成后,需要进行脱蜡处理。
将注射成型的零件放入烘箱中,通过升温使有机粘结剂熔化和挥发,形成脱蜡孔,这一过程称为烘干。
然后再将零件放入高温炉中进行烧结。
在烧结的过程中,金属粉末会逐渐结合,形成致密的金属骨架结构,零件的尺寸也会缩小。
烧结完成后,还需要进行后处理。
对于某些需要表面处理的零件,可以进行机械加工、抛光、镀膜等工艺来提高其表面光洁度和耐腐蚀性。
最后,还需要对零件进行质量检验和包装,确保产品质量。
利用MIM工艺,可以制造复杂形状、高精度的金属零件,具有高密度、高强度、耐磨损、耐腐蚀等优点,广泛应用于汽车、医疗、电子、航空航天等领域。
然而,MIM工艺也存在一些挑战,比如成本较高、生产周期较长、工艺参数控制较为复杂等。
随着技术的不断发展,MIM工艺的应用前景仍然广阔。
MIM简介及基本流程
模具及适用范围: MIM技术使用的金属模具,其寿命和工程塑料注射成型具模具相当。 由于使用金属模具,MIM适合于零件的大量生产。由于利用注射机成 型产品毛坯,极大地提高了生产效率,降低了生产成本,而且注射成 型产品的一致性、重复性好,从而为大批量和规模化工业生产提供了 保证。注射成型的材料非常广泛(铁基,低合金,高速钢,不锈钢,工 具钢,硬质合金)。原则上任何可高温浇结的粉末材料均可由MIM工艺 造成零件,包括了传统制造工艺中的难加工材料和高熔点材料。此外, MIM也可以根据用户的要求进行材料配方研究,制造任意组合的合金 材料,将复合材料成型为零件。MIM工艺采用微米级细粉末,既能加 速烧结收缩,有助于提高材料的力学性能,延长材料的疲劳寿命,又 能改善耐、抗应力腐蚀及磁性能。对于过硬,过脆难以切削的材料或 几何形状复杂、铸造时原料有偏析或污染的零件,采用MIM工艺可大 幅度节约成本。以加工打字机印刷元件导杆为例,通常需14道工序; 而采用MIM工艺只需6道工序,可节约一半左右的成本。零件越小越 复杂,经济效益将越好。 通过以上分析,可以看出MIM成型的潜力是很大的。
第十七页,编辑于星期五:六点 五十二分。
混料:把金属粉末与有机粘接剂均匀掺混在一起,使各种原料成为
注射成型用混合料。混合料的均匀程度直接影响其流动性,因而影
响注射成型工艺参数,以至最终材料的密度及其它性能。在注射成 型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物
料,并在适当的注射压力下注入模具中,成型出毛坯。注射成型的 毛坯在微观上应均匀一致,从而使制品在烧结过程中均匀收缩。
(1)加料及剩余量
加料:一般要求定时、定量、均匀供料。 剩余量:保证每次注射后料筒底部有一定剩余的物料 剩料的作用:a、传压;b、补料(收缩后的补料) 剩料一般控制在10~20mm,不能太多,太少。
MIM(金属材料粉末注塑成型)技术介绍
精心整理
MIM(金属粉末注塑成型)技术介绍
?????MIM 是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。
MIM 的工艺步骤是:首先选取符合MIM MIM ????1????2~1.6μm ????3度高,工序简单,可实现连续大批量生产;?
????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。
产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;?
国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。
?
MIM技术优势
MIM与传统粉末冶金相对比?
?MIM可以制造复杂形状的产品,避免更多的二次机加工。
?
?MIM产品密度高、耐蚀性好、强度高、延展性好。
?
?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。
?
MIM与机械加工相对比?
??MIM设计可以节省材料、降低重量。
???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。
MIM工艺介绍及其应用
MIM工艺介绍及其应用MIM(Metal Injection Molding)工艺是一种将金属粉末与热塑性或热固性高分子混合,并通过注射成型和烧结工艺制造出复杂金属零件的技术。
MIM工艺结合了传统金属加工和塑料注射成型技术的优点,能够实现高精度、高复杂度的金属零件制造,并在很多行业得到广泛应用。
MIM工艺的制造过程主要包括以下几个步骤。
首先,将金属粉末与高分子材料混合,并制成类似塑料颗粒的混合物。
然后,将混合物注入金属注射成型机中,通过高压注射将其注射到预先设计好的模具中。
注射成型后,通过烧结工艺将混合物中的高分子材料去除,使金属粉末颗粒相互结合,形成致密的金属零件。
最后,对烧结后的零件进行精加工和表面处理,以实现最终的产品要求。
MIM工艺具有许多独特的优点,使其在各个领域得到广泛应用。
首先,MIM工艺可以制造出具有复杂形状和高精度的金属零件,可替代传统加工如铸造、机械加工等。
其次,MIM工艺可以生产不锈钢、合金、硬质合金等多种金属材料的零件,具有高强度和耐磨损性。
此外,MIM工艺还具有节约原材料、降低成本和提高生产效率的优势。
MIM工艺在汽车、电子、医疗器械、航空航天等行业中得到广泛应用。
在汽车行业,MIM工艺可用于制造发动机配件、承载结构件等关键零部件,提高汽车的性能和可靠性。
在电子行业,MIM工艺可用于制造手机壳、键盘、连接器等微小精密零件,提升产品的外观和功能。
在医疗器械领域,MIM工艺可应用于制造植入式医疗器械如人工关节、牙科支架等,提供定制化解决方案。
在航空航天领域,MIM工艺可用于制造航空发动机内部零部件,提高发动机的性能和可靠性。
总之,MIM工艺通过结合金属粉末和高分子材料,实现了复杂形状和高精度金属零件的制造,并在汽车、电子、医疗器械、航空航天等领域得到广泛应用。
随着材料科学和制造工艺的不断进步,MIM工艺将会在更多领域发挥重要作用,并为各行各业提供更多创新的解决方案。
MIM(Metal Injection Molding)工艺是一种先进的金属加工技术,通过将金属粉末与热塑性或热固性高分子混合,并通过注射成型和烧结工艺制造出具有复杂形状和高精度的金属零件。
mim注射成型工艺
MIIM注射成型工艺MIIM注射成型工艺是一种高精度、高效率的注射成型技术,被广泛应用于制造业中。
本文将介绍MIIM注射成型工艺的原理、优势以及在制造业中的应用。
1. MIIM注射成型工艺的原理MIIM注射成型工艺是一种通过熔融注射成型的方法,该方法将熔融状态的材料注入模具中,经过冷却后成型。
MIIM注射成型工艺与传统注射成型工艺相比,具有以下几个特点:•金属注射成型:MIIM注射成型工艺主要应用于金属材料的成型,例如铝合金、钛合金等。
相比于传统的塑料注射成型工艺,MIIM注射成型工艺可以制造出更高强度、更坚固的金属制品。
•高温高压成型:MIIM注射成型工艺中,熔融金属被注入后,模具会经过高温高压的作用,使得材料更加均匀的充填模具,从而获得更高精度的成型品。
•复杂形状的制造:MIIM注射成型工艺可以用于制造复杂形状的制品。
由于金属材料容易形变,所以MIIM注射成型可以制造出更加复杂、细致的金属制品。
2. MIIM注射成型工艺的优势MIIM注射成型工艺相比于传统的工艺方法,具有以下几个优势:•高精度:由于MIIM注射成型工艺中采用高温高压的成型方式,使得注射成型品的尺寸精度更高,可以满足更严苛的工程要求。
•高效率:MIIM注射成型工艺在成型过程中可以同时制造多个产品,提高了生产效率。
同时,由于采用了自动化设备和先进的控制系统,可以减少人工操作,进一步提高了生产效率。
•成本节约:MIIM注射成型工艺相比于其他金属加工工艺,可以减少材料浪费以及工序繁杂的情况,从而降低了制造成本。
•可持续发展:MIIM注射成型工艺采用了可回收的材料,并且能够减少能源的消耗,降低了对环境的影响,符合可持续发展的要求。
3. MIIM注射成型工艺在制造业中的应用MIIM注射成型工艺在制造业中有广泛的应用,涉及到多个行业领域。
以下是几个典型的应用案例:•汽车制造业:MIIM注射成型工艺可以制造出汽车零部件,例如发动机支架、刹车盘等。
mim工艺硬度
mim工艺硬度
【原创实用版】
目录
1.MIM 工艺简介
2.MIM 工艺的硬度优势
3.MIM 工艺的应用领域
4.MIM 工艺的未来发展前景
正文
一、MIM 工艺简介
MIM(Metal Injection Molding,金属注射成形)工艺是一种将金属粉末与粘结剂混合,通过注射成形技术制作出各种金属零件的高新技术。
MIM 工艺具有很高的生产效率和较低的生产成本,逐渐成为制造业中的重要技术之一。
二、MIM 工艺的硬度优势
1.高强度:MIM 工艺利用高压注射成形技术,使金属粉末在模具内均匀分布,提高了零件的密度和强度。
2.均匀硬度:由于金属粉末在粘结剂中的分散性较好,MIM 工艺制得的零件具有较高的均匀硬度,减少了零件的磨损和失效风险。
3.良好的耐腐蚀性:MIM 工艺可以制备出高纯度的金属零件,具有良好的耐腐蚀性能,延长了零件的使用寿命。
三、MIM 工艺的应用领域
1.电子行业:MIM 工艺可用于制造手机、电脑等电子产品的各类金属零部件,如手机壳、散热片等。
2.汽车行业:MIM 工艺在汽车制造领域的应用十分广泛,包括发动机
零件、传动系统零件、悬挂系统零件等。
3.医疗器械:MIM 工艺可用于制造医疗器械的金属零部件,如手术器械、牙科器械等。
4.航空航天:MIM 工艺可用于制造航空航天器的各种金属零部件,如涡轮叶片、机翼等。
四、MIM 工艺的未来发展前景
随着科技的发展和制造业对高效率、低成本生产技术的需求,MIM 工艺在未来将会得到更广泛的应用。
MIM工艺简介-01
MIM与传统工艺的比较 (挑战和取代什么工艺技术)
• 二。MIM与机械加工的比较 • 1.设计方案上可以减少材料,减少工艺,节约成本,实现基本 • 无切削而获得复杂结构和功能部件,根据不同形状和尺寸节约 • 材料50%-95%; • 2材料可以重复使用20次以上,材料成形利用率100%,成品废 • 品可以象处理日常钢铁合金材料一样处理; • 3利用现代模具加工技术和全数字化的成形设备,可以成形机 • 械加工无法想象的复杂结构件;
MIM与传统工艺的比较 (挑战和取代什么工艺技术)
• MIM技术:挑战以上5种技术,随着原料技术的提高,工艺技术 的成熟和普及将
• 逐步取代部分复杂小型零件的机械加工技术; • 逐步淘汰微小零件的精密铸造加工技术(大件不可能); • 取代部分有色低熔点合金的热压铸技术(大件不可能) ; • 补充传统粉末冶金制造工艺在性能和零件形状上的工艺缺陷; • 补充塑料注射成形零件在机械强度方面的不足和耐候性不足的 • 缺点。 • 解决陶瓷,磁性材料等功能材料和零件在加工方面的困难。
MIM工艺过程示意图
MIM工艺过程的图例说明(制造手表外壳)
MIM与传统工艺的比较 (挑战和取代什么工艺技术)
MIM与传统工艺的比较 (挑战谁和取代谁?)
• 一。MIM技术与传统粉末冶金技术比较 • 1。可以制造形状极端复杂(与高分子塑料产品同样复杂程度 几乎不需要后续加工的制品; • 2.产品材料性能不同于于传统粉末冶金(多空,密度不高 )制品, • 密度接近全致密(≧99%TD),机械性能与锻造材料基本一致; • 3.可以将一个或者几个小产品组合成一个零件,减少材料加工 • 和浪费。 • 4传统的粉末冶金工艺几受到工艺和设备限制,能加工的材料 • 品种有限,MIM能加工几乎所有的合金材料品种甚至包括铝合金。
mim生产工艺流程
mim生产工艺流程
MIM(金属注模成型)是一种集合了金属粉末冶金和塑料注
射成型技术的先进制造工艺。
下面给出MIM生产工艺流程的
详细介绍:
1. 材料准备:首先根据产品要求,选择适合的金属粉末以及添加剂。
这些粉末经过混合、颗粒筛选等处理,以确保粉末的均匀性和流动性。
2. 粉末注射:将混合好的金属粉末以及添加剂放入注射机中。
注射机通过高压将粉末注射到注射模具中,形成零件的初始形状。
3. 烧结预处理:注射成型后的零件通过特殊的烧结窑进行烧结预处理。
在烧结过程中,金属粉末与添加剂结合,形成固体结构。
4. 精加工:烧结后的零件表面可能存在一些不平整的地方,需要进行精加工。
精加工包括切割、铣削、打磨等操作,以提高零件的精度和表面质量。
5. 烧结终处理:经过精加工后,零件经过再次烧结终处理。
这个过程中零件的尺寸会略微缩小,同时也会提升零件的密度和硬度。
6. 表面处理:烧结终处理后的零件经过一系列的表面处理,以提高零件的防锈性和装饰性。
常用的表面处理包括镀铬、电镀、
喷涂等。
7. 质检和包装:最后,对生产出来的零件进行质量检测。
这包括尺寸测量、强度测试等。
合格的零件将进行包装,并准备出厂。
以上就是MIM生产工艺流程的简要介绍。
MIM工艺具有高精度、复杂形状、高材料利用率等优点,已被广泛应用于汽车、航空航天、电子等领域。
MIM金属注射成型工艺
MIM金属注射成型工艺金属注射成型(Metal Injection Molding),简称MIM。
是一种将金属、陶瓷或复合材料通过粉末冶金工艺和塑料注射成型工艺相结合加工成型的先进制造工艺。
相对于传统的金属加工方式,MIM工艺具有高精度、高效率、低成本和复杂几何形状加工等优点。
MIM工艺的工作原理是先将金属粉末与绑定剂混合,形成可注射的糊状物。
然后,将糊状物充填进注射模具中,在高温高压的条件下,将糊状物注射成模具所需的形状。
经过烧结、退bind剂和后处理等步骤,最终得到高密度、高强度的金属零件。
MIM工艺的特点如下:1.高精度:MIM工艺可以制造出精度高的复杂零件,其精度可达到0.1mm。
与传统的金属加工方式相比,MIM工艺无需进行额外的加工,能够大大提高生产效率。
2.高效率:MIM工艺能够一次性完成复杂零件的成型,无需多次加工。
同时,每次注射可以注射多个零件,大大提高了生产效率。
3.低成本:相对于传统的金属加工方式,MIM工艺不需要额外加工,可以减少人工和设备投入。
另外,由于MIM工艺采用粉末冶金工艺,材料的浪费也相对较少。
4.适用范围广:MIM工艺适用于多种材料,包括不锈钢、钛合金、铁基合金、镍基合金等。
同时,MIM工艺还能够制造涂层、多孔和镶嵌等复合材料,并且能够制造具有种类繁多的零件。
MIM工艺在多个领域得到应用,包括汽车、医疗设备、航空航天、电子等。
例如,汽车领域,MIM工艺可以制造发动机零件、传动装置零件等。
医疗设备领域,MIM工艺可以制造外科器械、植入器械等。
航空航天领域,MIM工艺可以制造航天器零件、航空发动机零件等。
电子领域,MIM工艺可以制造电子连接器、电子器件外壳等。
然而,MIM工艺也存在一些挑战和限制。
其中之一是材料选择的限制,因为不同材料的烧结温度和性能要求不同,这对生产过程的稳定性和成本有一定的影响。
另外,由于注射模具的制造和维护成本高,对于小批量生产和复杂形状的零件来说,MIM工艺的成本可能较高。
MIM(金属粉末注塑成型)技术介绍
MIM(金属粉末注塑成型)技术介绍MIM是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。
MIM的工艺步骤是:首先选取符合MIM要求的金属粉末与有机粘结剂在一定温度条件下采用适当的方法混合成均匀的喂料,然后经制粒后在加热塑化状态下用注射成形机注入模具型腔内获得成形坯,再经过化学或溶剂萃取的方法脱脂处理,最后经烧结致密化得到最终产品。
MIM产品的特点:1、零部件几何形状的自由度高,能像生产塑料制品一样,一次成形生产形状复杂的金属零部件;2、MIM产品密度均匀、光洁度好,表面粗糙度可达到Ra 0.80~1.6μm,重量范围在0.1~200g。
尺寸精度高(±0.1%~±0.3%),一般无需后续加工;3、适用材料范围宽,应用领域广,原材料利用率高,生产自动化程度高,工序简单,可实现连续大批量生产;4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。
产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。
MIM技术优势MIM 与传统粉末冶金相对比MIM可以制造复杂形状的产品,避免更多的二次机加工。
MIM 产品密度高、耐蚀性好、强度高、延展性好。
MIM 可以将2个或更多PM 产品组合成一个MIM产品,节省材料和工序。
MIM与机械加工相对比MIM 设计可以节省材料、降低重量。
MIM 可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。
MIM通过模具一次成形复杂产品,避免多道加工工序。
MIM可以制造难以机械加工材料的复杂形状零件。
MIM 与精密铸造相对比MIM 可以制造薄壁产品,最薄可以做到0.2mm。
MIM 产品表面粗糙度更好。
金属粉末注射成型技术
金属粉末注射成型技术金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是一种先进的制造工艺,结合了粉末冶金和塑料注射成型技术,广泛应用于金属零件的制造。
MIM技术以其高精度、高复杂性和高效率的特点,成为近年来制造业领域的热门技术。
一、MIM工艺简介金属粉末注射成型技术是将金属粉末与有机材料(通常为热熔型塑料)混合,经过塑化、成型、脱脂和烧结等多个工艺步骤,最终形成具有金属特性的零件。
该技术的基本步骤包括:原料准备、混合、注射成型、脱脂和烧结。
1. 原料准备金属粉末是MIM技术的关键原料,其粒径通常为10~20μm,且具有良好的流动性和可压缩性。
可以使用的金属粉末有不锈钢、合金钢、铁基合金、钛合金等。
同时,还需准备有机材料(通常是聚丙烯、聚氨酯或类似材料)作为粘结剂。
2. 混合将金属粉末和有机材料进行混合,通常采用机械搅拌或球磨的方法,确保金属粉末均匀分布在有机材料中。
3. 注射成型混合料经过塑化,放入注射成型机中进行注射成型。
注射成型机通过加热熔融的混合料,并将其注入模具中,在一定的温度和压力下形成所需的零件形状。
4. 脱脂注射成型后,零件经过脱脂工艺,将有机材料从混合料中去除。
通常使用热处理或溶剂处理方法进行脱脂。
5. 烧结脱脂后的零件被置于特定的高温环境中,金属粉末与有机材料经过烧结而成。
在烧结过程中,金属颗粒之间发生冶金结合,形成致密的金属零件。
二、MIM技术的优势金属粉末注射成型技术相比其他金属加工方式具有以下几个显著优势:1. 复杂形状MIM技术可以制造复杂形状的金属零件,包括细小孔洞、薄壁结构、内部腔体等。
这种高精度和高复杂性的加工能力,使得MIM技术在航空航天、医疗器械、汽车零部件等领域得到广泛应用。
2. 材料多样性MIM技术可以使用多种金属粉末制造零件,涵盖广泛的金属材料,包括不锈钢、合金钢、铁基合金、钛合金等。
这使得MIM技术具有较大的材料选择范围,满足不同应用领域对材料性能的需求。
金属粉末注射成型技术(MIM)
金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是将现代塑料注射成形技术引入粉末冶金领域而形成的一门新型粉末冶金近净形成形技术。
其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃)用注射成形机注入模腔内固化成形,然后用化学或热分解的方法将成形坯中的粘结剂脱除,最后经烧结致密化得到最终产品。
与传统工艺相比,具有精度高、组织均匀、性能优异,生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。
因此,国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。
美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并得到迅速推广。
特别是八十年代中期,这项技术实现产业化以来更获得突飞猛进的发展,每年都以惊人的速度递增。
到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。
日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工业的推广,这些公司包括有太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工--爱普生、大同特殊钢等。
目前日本有四十多家专业从事MIM产业的公司,其MIM工业产品的销售总值早已超过欧洲并直追美国。
到目前为止,全球已有百余家公司从事该项技术的产品开发、研制与销售工作,MIM技术也因此成为新型制造业中最为活跃的前沿技术领域,被世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向MIM技术金属粉末注射成型技术是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。
MIM金属粉末注射成型技术简介
MIM金属粉末注射成型技术简介MIM(Metal Injection Molding)金属粉末注射成型技术是一种将金属粉末与聚合物混合并注射成型的成型工艺。
这种工艺结合了传统金属粉末冶金和塑料注射成型技术的优势,可以生产出复杂形状、高精度和高强度的金属零件。
MIM工艺的基本原理是将金属粉末与适当比例的聚合物混合,并在高温下注射进模具中。
注射后,模具中的混合物经过固化和烧结两个步骤。
首先,在固化阶段,聚合物在高温下固化成强度较低的绿坯。
然后,在烧结阶段,通过加热使聚合物燃烧脱除,金属粉末颗粒在密实的绿坯中结合成金属零件。
MIM工艺具有以下几个优点。
首先,它可以实现复杂形状的金属零件的制作,包括内腔、细槽和细孔等特殊结构。
其次,MIM可以生产出精度高、表面光滑的零件。
此外,在同样强度要求下,MIM制件的重量通常比传统制造工艺更轻。
最后,MIM工艺适用于大批量生产,可以实现高效率、低成本的生产。
MIM工艺的主要应用领域包括电子、汽车、医疗、军工等行业。
在电子领域,MIM可以制作出细小的电子器件,如连接器、电池片和耳机插头等。
在汽车领域,MIM可以制作出复杂的发动机零件、传动系统部件和刹车系统组件等。
在医疗领域,MIM可以制作出高精度的人工关节、牙科器械和手术工具等。
在军工领域,MIM可以制作出高强度、耐磨的武器部件和飞行器部件等。
然而,MIM工艺也存在一些限制。
首先,MIM工艺的设备和材料成本较高,需要更高的投资。
其次,MIM的制造周期较长,通常需要数周至数月的时间。
最后,MIM工艺的材料种类有限,只适用于可烧结金属粉末,如不锈钢、合金钢和钛合金等。
总的来说,MIM金属粉末注射成型技术是一种高效、精密和经济的金属制造工艺。
随着对金属零件的需求不断增加,MIM有望在各行业中得到更广泛的应用。
未来,随着新材料的发展和工艺改进,MIM技术将进一步提升零件的性能和质量,为各行业的发展带来更多的机遇和挑战。
金属注塑成型工艺
金属注塑成型工艺一、金属注塑成型工艺概述金属注塑成型(Metal Injection Molding,MIM)是一种将金属粉末与聚合物混合后,通过注塑机将其注入模具中,并在高温下烧结成型的工艺。
该工艺具有高精度、高复杂度、高效率等特点,被广泛应用于汽车零部件、医疗器械、航空航天等领域。
二、金属注塑成型工艺步骤1.原料制备将所需的金属粉末和聚合物按比例混合,并加入溶剂进行混合。
混合时间和速度需要根据不同的材料进行调整,以保证混合均匀。
2.注射成型将混合后的原料装入注塑机中,经过加热和压力作用下,将其注入模具中。
在模具中形成所需的形状后,冷却并取出。
3.脱模处理取出模具后,需要进行脱模处理。
该过程包括振动脱模、水冷脱模或气体喷射脱模等方法。
脱模后得到的产品需要进行去除余料和打磨处理。
4.烧结处理将脱模后的产品放入烧结炉中进行高温处理。
该过程需要根据不同材料的特性进行调整,以确保烧结后得到的产品具有所需的物理和化学性质。
5.表面处理经过烧结后,得到的产品需要进行表面处理。
该过程包括抛光、电镀、喷漆等方法,以提高产品的美观度和耐腐蚀性能。
三、金属注塑成型工艺优缺点优点:1.可以制造出形状复杂、精度高的零部件;2.生产效率高,可以大批量生产;3.原料利用率高,可以减少废料产生;4.生产过程中无需加工,可以节约成本。
缺点:1.设备投资较大;2.原料成本较高;3.对模具和设备要求较高;4.生产周期长。
四、金属注塑成型工艺应用领域1.汽车零部件:如变速器齿轮、离合器片等;2.医疗器械:如手术器械、牙科器械等;3.航空航天:如导弹零部件、发动机零部件等;4.电子产品:如手机外壳、电脑散热器等。
五、金属注塑成型工艺未来发展趋势1.材料的多样化:随着技术的不断发展,将会有更多种类的材料被应用于金属注塑成型中;2.精度的提高:随着生产技术的不断提高,金属注塑成型可以制造出更加精密的零部件;3.环保性能的提高:随着环保意识的不断增强,金属注塑成型将会在原料和生产过程中更加注重环保性能。
金属粉末注射成型技术
金属粉末注射成型技术金属粉末注射成型(Metal Powder Injection Molding,简称MIM)技术是一种通过将金属粉末与热塑性聚合物射出成型技术相结合,制造复杂形状的金属制品。
MIM技术结合了传统的注射成型和金属粉末冶金技术的优点,能够高效、精确地制造出形状复杂的金属部件。
下面将从工艺原理、材料特点、工艺流程以及应用领域等方面详细介绍MIM技术。
一、工艺原理MIM技术主要包括四个步骤,即粉末混合、注射成型、烧结和后处理。
首先,将金属粉末与增塑剂、溶剂等辅助剂混合均匀,形成可塑性的混合料。
然后,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中,得到近成型的部件。
接下来,通过烧结工艺,将成型的部件进行加热,使金属粉末颗粒之间相互扩散,实现部件的致密化和结合。
最后,进行去脱模、表面处理等后处理工艺,使得最终制品达到所需的精度和表面质量。
二、材料特点MIM技术可以制造多种金属的制品,包括不锈钢、钛合金、铜合金、铁合金等。
这些材料具有良好的机械性能、耐磨、耐腐蚀等特点,可以满足各种应用领域的需求。
金属粉末的粒度一般在5-20μm之间,可以根据制品要求进行选择。
此外,MIM制品可以采用多种表面处理工艺,如抛光、电镀、喷涂等,进一步提高产品的表面质量和装饰效果。
三、工艺流程MIM技术的工艺流程相对复杂,包括原料准备、混合、注射、烧结和后处理等环节。
首先,需要根据制品要求选择合适的金属粉末和添加剂,并对其进行筛选和处理。
然后,将金属粉末与增塑剂、溶剂等辅助剂进行混合,形成可塑性的混合料。
接下来,将混合料装入注射机中,通过高压力将混合料注射至模具腔穴中。
然后,将近成型的部件进行烧结,使其实现致密化和结合。
最后,通过去脱模、除渣、表面处理等后处理工艺,得到最终的金属部件。
四、应用领域MIM技术的应用领域非常广泛,包括电子通讯、汽车工业、医疗器械、军工等领域。
在电子通讯领域,MIM技术可以制造小型高精度的连接器、插件等零部件,满足电子设备不断减小体积和提高性能的需求。
粉末冶金注射成型工艺
粉末冶金注射成型工艺
粉末冶金注射成型,简称MIM(Metal Injection Molding),是一种将金属粉末与粘结剂混合进行注射成型的方法。
它首先将所选粉末与粘结剂进行混合,然后将混合料进行制粒再注射成形所需要的形状,经过脱脂烧结将粘结剂处理掉,从而得到我们想要的金属产品,或再经过后续的整形、表面处理、热处理、机加工等方式使产品更加完美。
MIM是典型的学科跨界产物,将两种完全不同的加工工艺(粉末冶金和塑料注塑成型)融为一体,使得工程师能够摆脱传统束缚,以塑料注塑成型的方式获得低价、异型的不锈钢、镍、铁、铜、钛和其它金属零件,从而拥有比很多其它生产工艺更大的设计自由度。
MIM工艺过程主要分为四个阶段,包括造粒、注射、脱脂和烧结,如有需要后续可以进行机加工或者拉丝、电镀等二次加工工艺。
mim工艺——精选推荐
1、MIM 技术概述金属(陶瓷)粉末注射成型技术(Metal Injection Molding ,简称MIM 技术)是集塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科相互渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速准确的将设计思想物化为具有一定结构、功能特性的制品并可直接批量生产出零件,是制造技术行业一次新的变革。
该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品密度低、材质不均匀、机械性能低、不易成型薄壁、复杂结构的缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。
2 、MIM 工艺过程2.12.2 过程简介 2.2.1金属粉末MIM 工艺所用金属粉末颗粒尺寸一般在0.5~20μm;从理论上讲,颗粒越细,比表面积也越大,易于成型和烧结。
而传统的粉末冶金工艺则采用大于40μm 的较粗的粉末。
2.2.2有机胶粘剂有机粘接剂作用是粘接金属粉末颗粒,使混合料在注射机料筒中加热具有流变性和润滑性,也就是说带动粉末流动的载体。
因此,粘接剂的选择是整个粉末注射成型的关键。
对有机粘接剂要求:①用量少,即用较少的粘接剂能使混合料产生较好的流变性;②不反应,在去除粘接剂的过程中与金属粉末不起任何化学反应;③易去除,在制品内不残留碳。
2.2.3混练与制粒混练时把金属粉末与有机粘接剂均匀掺混在一起,将其流变性调整到适于注射成形状态的作用。
混合料的均匀程度直接影响其流动性,因而影响注射成型工艺参数乃至最终材料的密度及其它性能。
注射成形过程中产生的下角料、废品都可重新破碎、制粒,回收再用。
2.2.4注射成形本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。
在注射成型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。
mim工艺硬度
mim工艺硬度1. 简介MIM工艺(Metal Injection Molding)是一种将金属粉末与塑料注射成型工艺相结合的先进制造技术。
它将金属粉末与有机粘结剂混合,经过注射成型、脱脂和烧结等工艺步骤,最终得到具有金属特性的零件。
MIM工艺广泛应用于各个领域,例如汽车、电子、医疗等,并且在硬度方面也具有很高的要求。
2. MIM工艺的硬度测试方法2.1 维氏硬度测试维氏硬度测试是常用的测试方法之一,通过在测试材料表面施加标准压力,然后测量压痕的大小来评估材料的硬度。
对于MIM工艺制造的零件,维氏硬度测试通常是在烧结后进行的。
2.2 洛氏硬度测试洛氏硬度测试是另一种常用的硬度测试方法,它通过在测试材料表面施加标准压力,然后测量压痕的深度来评估材料的硬度。
与维氏硬度测试不同的是,洛氏硬度测试使用的钻头是圆锥形的。
2.3 布氏硬度测试布氏硬度测试也是一种常用的硬度测试方法,它通过在测试材料表面施加标准压力,然后测量压痕的大小来评估材料的硬度。
与维氏硬度测试不同的是,布氏硬度测试使用的压头是球形的。
3. MIM工艺硬度的影响因素3.1 材料成分MIM工艺硬度受到材料成分的影响。
不同的金属粉末和有机粘结剂的配比会导致不同的硬度结果。
例如,添加更多的金属粉末可能会增加材料的硬度。
3.2 烧结温度烧结温度是MIM工艺中一个重要的参数,它会直接影响到材料的硬度。
较高的烧结温度可以提高材料的硬度,但如果温度过高,可能会导致材料变形或烧结不完全。
3.3 烧结时间烧结时间也是影响MIM工艺硬度的因素之一。
适当的烧结时间可以使材料充分烧结,从而提高硬度。
然而,过长的烧结时间可能会导致材料的晶粒长大,从而降低硬度。
3.4 烧结气氛烧结气氛对MIM工艺硬度有一定的影响。
适当的烧结气氛可以减少材料的氧化,从而提高硬度。
常用的烧结气氛包括氢气、氮气等。
4. MIM工艺硬度的优化方法4.1 材料优化通过调整金属粉末和有机粘结剂的配比,可以优化MIM工艺硬度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烧结技术
• 金属粉末注射成型技术(Metal Injection Molding,简称MIM)是近年来粉末 冶金学科和工业中发展最迅猛的领域,是现代先进的塑料注射成型技术和传 统粉末冶金技术相结合而形成的一项新型粉末冶金近净型成形技术。一、 MIM成型技术MIM基本丁艺过程是:将微细的金属或陶瓷粉末与有机黏结剂 均匀混合成为具有流变性的物质,采用先进的注射机注入具有零件形状的模 腔形成坯件,新技术脱除黏结剂并经烧结,使其高度质密成为制品,必要时 还可以进行后处理。i亥技术不仅具有常规粉末冶金技术生产效率高,产品一 致性好,少切削或无切削,经济高效的优点,而且克服r传统粉末冶金制品密 度低,材质不均匀,力学性能低,不易成型薄壁复杂件的缺点,特别适合大 批量、小型、复杂以及具有特殊要求的金属零部件的生产加工.该工艺技术在 20世纪8O年代中期实现产业化以来,已获得突飞猛进的发展,注射成型的产 品已遍及计算机信息产业、汽车摩托车产业、医疗卫生器械、家用电器、仪 器仪表、机械制造、化工、纺织、国防军工等领域。到目前为止,已有20多 个国家和地区的几百家公司从事该工艺技术的产品开发、研制与销售工作, 粉末注射成型工艺技术也因此成为新型制造业中开发最为活跃的前沿技术领 域,被誉为世界粉末冶金领域中的开拓性技术,代表着粉末冶金技术发展的 主方向。该工艺的主要特点如下:(1)可成型复杂结构的零件该工艺技术利用 注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件复 杂结构的实现。这一点是传统机械加工和常规粉末冶金工艺技术所无法比拟 的,是注射成型工艺发展的坚强基础。(2)注射成型制品
MIM简介
• MIM 简介 • 金属注射成形 • (Metal Injection Molding ,MIM) • • 是一种将金属粉末与其粘结剂的增塑混合料注射于模型中的成形方法。它是先将所选
粉末与粘结剂进行混合,然后将混合料进行制粒再注射成形所需要的形状。聚合物将 其粘性流动的特征赋予混合料,而有助于成形、模腔填充和粉末装填的均匀性。成形 以后排除粘结剂,再对脱脂坯进行烧结。有的烧结产品还可能要进行进一步致密化处 理、热处理或机加工。烧结产品不仅具有与塑料注射成形法所得制品一样的复杂形状 和高精度,而且具有与锻件接近的物理、化学与机械性能。该工艺技术适合大批量生 产小型、精密、三维形状复杂以及具有特殊性能要求的金属零部件的制造。
• • MIM 是 PIM (Powder Injection Molding,粉末注射成型)的一种,作为一种制造高质
量精密零件的近净成形技术,具有常规粉末冶金和机加工方法无法比拟的优势。MIM 能制造许多具有复杂形状特征的零件:如各种外部切槽,外螺纹,锥形外表面,交叉 通孔、盲孔,凹台与键销,加强筋板,表面滚花等等,具有以上特征的零件都是无法 用常规粉末冶金方法得到的。由于通过MIM制造的零件几乎不需要再进行机加工,所 以减少了材料的消耗,因此在所要求生产的复杂形状零件数量高于一定值时,MIM就 会比机加工方法更为经济。
MIM工艺介绍
东莞市锐意金属 制品有限公司
• 平生 邮箱:rejnmetal@ QQ:50160307
• 电 话: 0769 89791622 • 移动电话: 18929419917 • 传 真: 0769 27206426 • 地 址: 中国 广东 东莞市 塘厦镇清湖头工业区清风路2号 • 邮 编: 523710 • 公司主页:
MIM 技术优点2
• PIM和精密铸造成形能力的比较
MIM 技术优点3
• MIM技术与其他成型工艺技术比较
MIM 应用材质范围
• 现已拥有包括不锈钢系列、铁基系列、镍 基系列、铜基系列、软磁系列等较为完整 的材料体系,并可依据客户要求开发与改 造新的材料体系。
MIM 应用材质范围
• 较新材料体系应用
• 尺寸精度高,注射成型工艺可直接成型薄壁、复杂结构件,制品形状已能够达 到或接近最终产品要求,产品不必进行二次加工或只少罱精加工。零件尺寸 公差一般保持在±0.1%~±0.3%左右。特别对于降低难于进行机械加工 的硬质合金的加工成本,减少贵重金属的加工损失尤其具有重要意义。(3)与 传统粉末压制工艺相比注射成制品微观组织均匀,密度高,性能好。二、连 续烧结设备的必要性随着MIM技术的规模产业化,传统粉末冶金和注塑行业 的通用生产设备以及各种专门的金属注射成型:工业生产设备已广泛应用于 金属注射成型的产业化生产中。企业对产业生产效率和设备自动化,加工连 续化程度及设备性能要求的提高促进了金属注射成型产业化进程。MIM产业 的全面发展更需通过生产设备来提高企业的生产效率。正确选择和掌握MIM 生产过程中的各种设备,可提高产品的质量、产量以及劳动生产率,加速产 业化发展。目前,混合工序主要采用传统的双行星混料机、单螺杆挤出机、 活塞挤压机、双螺杆挤出机、偏心轮混料器、z形叶轮混料器等,能够保证 混料的均匀性与高效率。注射工序也可以借鉴传统的注射设备,如双回路注 射成型机、双模板注射机、无拉杆注射机、全自动注射机、电磁动态注射成 型机等,都能够较好地满足充填的技术要求。对于脱脂工序,由于脱脂是相 关行业中以前从未涉及过的领域,其原理为:在保证注射成型所得的零件不 变形的前提下,运用黏结剂中各种成分随着温度的升高不断的发生物理、化 学变化的原理,逐渐变为气态或液态物质,脱离开注射成型毛坯,以达到把 黏结剂脱出的目的。因而,该工序在整个MIM技术中的地位得尤其的特殊和 重要。脱脂后的零件几乎没有任何强度,稍微有些振动都有可能使零件遭到 破坏。同时考虑脱脂、烧结阶段尽町能地减少零件重复加热造成的能源浪费, 考虑将传统的脱脂、烧结、热处理等单一工序集成为综合工序,这样可以减 少生产中不确定的因素,提高成型
MIM 应用领域
• MIM的典型产品及应用领域 • • (1)计算机及其辅助设施:如打印机零件、磁芯、撞针轴销、驱动零件等;
(2)工具:如钻头、刀头、喷嘴、枪钻、螺旋铣刀、冲头、套筒、扳手、电工工具,手工具等; (3)家用器具:如表壳、表链、电动牙刷、剪刀、风扇、高尔夫球头、珠宝链环、圆珠笔卡箍、刃具刀头等零部件; (4)医疗机械用零件:如牙矫形架、剪刀、镊子等; (5)军用零件:导弹尾翼、枪支零件、弹头、药型罩、引信用零件等; (6)电器用零件:电子封装,微型马达、电子零件、传感器件等; (7)机械用零件:如松棉机、纺织机、卷边机、办公机械等; (8)汽车船舶用零件:如离合器内环、拔叉套、分配器套、汽门导管、同步毂、安全气囊件等。 • • MIM由于其技术和经济两方面的优势得到了国内外的高度重视,其产品已广泛应用于军品和民品从多领域。MIM生 产厂家越来越多,目前世界上MIM产值的年增长率为20%-30%,2000年全球MIM产品市场总值达到7亿美元。预计 到2010年,全球MIM的总产值可增加到24亿美元。 • • 上列出了用MIM技术生产的典型产品及应用领域。几种主要材料的MIM产品的应用正在拓展,例如不锈钢是一种高 合金含量的特殊钢种,它具有一系列优异的性能,但由于用于汽车零件、航天航空部件、小型枪械零件、牙齿矫正 托套、外科手术机械、医用气体集流腔、电动牙刷齿轮、手表壳带、眼镜框、锁芯、驱动盘轴壳、半导体生产设备 的加工工具、日用镊、钳、钻等工具、饮料分装系统的“丁”字和“十”字接头、轴承保持架、阀件、装饰件等。 MIM工艺的出现为高熔点、难加工的硬质合金材料的推广应用带来了契机,MIM硬质合金的产品利润率高于大部分 Fe-Ni和不锈钢材质的产品,可望成为继20世纪80年代不锈钢注射成形后MIM新的发展热点。硬质合金的MIM工艺成 功生产的制品包括硬质合金刀具、微型钻头、离心器、喷嘴、各种泵用零件、活塞、过滤器、各种体育用品、纺织 机械用导线器、高尔夫球头、表带、表壳等。陶瓷材料在国防高科技工业以及民用工业领域都有着广泛的应用和发 展潜力,但是陶瓷材料本身因有的脆性和一些特殊陶瓷材料的高硬质,使得采用传统的粉末冶金工艺路线难以制备 体积微小、形状复杂、尺寸精度高的陶瓷零部件,在很大程度上限制了其应用范围。而粉末注射成形技术能够生产 形状复杂、产品精度高的陶瓷零部件。注射成形技术已用于制造陶瓷气轮机部件如动叶片、静叶片、燃烧器、圆锥 鼻等,还有汽车零件、柴油机零件、理发推剪、光纤连接器等。特别是氧化锆陶瓷光纤连接器乃目前最理想的光纤 连接器,随着光通讯事业的高速发展,光纤连接器的用量越来越大,市场前景非常广阔,目前光通讯技术较发达押 家已采用粉末注射成形工艺生产光纤连接器。 • • 随着MIM技术研究的深入和诱人的投资回报,MIM产品的种类和规格将不断增加,应用将会越来越广泛,市场总值 一定会稳定上升
最大深度可达20mm、最小壁厚可以做到<1mm、厚大壁厚10mm、4mm直径的公差可 精确到±0.06mm、表面粗糙度(Ra)可做到1μm的优点; • • ☆PIM工艺与传统批量工业化与自动化零件加工工艺,例如机械加工、冲压、锻造、粉 末冶金相比,具有零件密度可达98%、零件拉伸强度高、零件表面光洁度高、零件微 小化能力强、零件薄壁能力高、零件复杂程度高、零件设计宽容度大、批量生产能力 强、适应材质范围广,供货能力强等明显的优势:
MIM 工艺流程 1
• 东莞锐意经过近20年的发展,已经具备成熟的全系列产品生产、 加工、质检、模具等设备。
• 我们从产品设计、模具设计制作,到产品生产、质量检验,为 客户提供综合一站式服务。
MIM 工艺流程 2
• (1)金属粉末 MIM工艺所用的金属粉末颗粒尺寸一般在0.5~20μm。从理论上讲,颗粒越细,比表面积也越大,越易于成型和烧 结。而传统的粉末冶金工艺则采用大于40μm的较粗粉末。 (2)有机粘结剂 有机粘结剂的作用是粘结金属粉末颗粒,使混合料在注射机料筒中加热后具有流变性和润滑性,即粘结剂是带动粉 末流动的载体。因此,粘结剂的选择是整个粉末注射成型的关键。对有机粘结剂的要求为:①用量少,用较少的粘 结剂能使混合料产生较好的流变性;②不反应,在去除粘结剂的过程中与金属粉末不起任何化学反应;③易去除, 在制品内不残留碳。 (3)混料 把金属粉末与有机粘结剂均匀掺混在一起,使各种原料成为注射成型用混合料。混合料的均匀程度直接影响其流动 性,从而影响注射成型工艺参数以及最终材料的密度及其它性能。 (4)注射成型 本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。在注射成型过程中,混合料在 注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。注射成型毛坯在 外观上应均匀一致,从而使制品在烧结过程中均匀收缩。 (5)萃取成型毛坯 在烧结前必须去除毛坯内所含有的有机粘结剂,该过程称为萃取。萃取工艺必须保证粘结剂从毛坯的不同部位沿着 颗料之间的微小通道逐渐排出,而不降低毛坯的强度。粘结剂的排除速率一般遵循扩散方程。 (6)烧结 烧结能使多孔的脱脂毛坯收缩密化成为具有一定组织和性能的制品。尽管制品的性能与烧结前的许多工艺因素有关, 但在许多情况下,烧结工艺对最终制品的金相组织和性能有着很大甚至决定性的影响。 (7)后处理 对于尺寸要求较为精密的零件,需要进行必要的后处理。这工序与常规金属制品的热处理工序相同