2020年高考数学解答题基础练(5)
2020年高考数学120分(12+4+3+2)保分练(五)
2020年高考数学120分120分(12+4+3+2)保分练(五)(满分:126分 限时:90分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知U =R ,集合A ={x |y =x -4},B ={x |-1≤2x -1≤0},则∁U A ∩B =( ) A .(4,+∞) B.⎣⎡⎦⎤0,12 C.⎝⎛⎦⎤12,4D .(1,4]解析:选B 由题意得A ={x |y =x -4}={x |x ≥4}, 则∁U A ={x |x <4}.∵B ={x |-1≤2x -1≤0}=⎩⎨⎧⎭⎬⎫x ⎪⎪0≤x ≤12, ∴∁U A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪0≤x ≤12=⎣⎡⎦⎤0,12. 2.命题“∃x 0≤0,使得x 20≥0”的否定是( ) A .∀x ≤0,x 2<0 B .∀x ≤0,x 2≥0 C .∃x 0>0,x 20>0D .∃x 0<0,x 20≤0解析:选A 题中命题是特称命题,故其否定是全称命题,即∀x ≤0,x 2<0.3.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,则符合条件⎪⎪⎪⎪⎪⎪z 1+i -i 2i =0的复数z 对应的点在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意知,⎪⎪⎪⎪⎪⎪ z 1+i -i 2i =2i z +i(1+i)=0,所以z =-i (1+i )2i =-12-12i ,所以z =-12+12i ,复数z 对应的点⎝⎛⎭⎫-12,12位于第二象限. 4.某程序框图如图所示,则该程序运行后输出的值是( )A .2 015B .2 016C .2 017D .2 018解析:选D 由程序框图知最后输出的值为(-1)0+(-1)1+(-1)2+(-1)3+(-1)4+…+(-1)2 014+2 017=1+2 017=2 018.5.曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( ) A .(1,3) B .(-1,3) C .(1,3)或(-1,3)D .(1,-3)解析:选C 设P 点的坐标为(x 0,y 0), 由f (x )=x 3-x +3,得f ′(x )=3x 2-1, 故f ′(x 0)=3x 20-1=2,解得x 0=±1.将x =±1代入f (x )=x 3-x +3知,P 点的坐标为(1,3)或(-1,3).6.经过点(2,1),且渐近线与圆x 2+(y -2)2=1相切的双曲线的标准方程为( ) A.x 2113-y 211=1 B.x 22-y 2=1C.y 2113-x 211=1 D.y 211-x 2113=1解析:选A 设双曲线的渐近线方程为y =kx , 根据题意知圆心坐标为(0,2),半径r =1, 因为渐近线与圆相切,所以2k 2+1=1,解得k =±3, 所以双曲线的渐近线方程为y =±3x , 即可设双曲线方程为x 2-y 23=λ(λ≠0), 因为点(2,1)在双曲线上,∴4-13=λ,即λ=113,所以双曲线的标准方程为x 2113-y 211=1.7.若函数f (x )=x lg(mx +x 2+1)为偶函数,则m =( ) A .-1 B .1 C .-1或1D .0解析:选C 因为函数f (x )为偶函数,所以x lg(mx +x 2+1)=-x lg(-mx +x 2+1), 即mx +x 2+1=1-mx +x 2+1,整理得x 2=m 2x 2,所以m 2=1,即m =±1.8.如图,在等腰直角三角形ABO 中,OA =OB =1,C 为AB 上靠近点A 的四等分点,过点C 作AB 的垂线l ,P 为垂线上任一点,则OP ―→·(OB ―→-OA ―→)=( )A .-12B.12C .-32D.32解析:选A 依题意AB =2,∠OAB =45°. 又CP ―→⊥AB ―→,AC ―→=14AB ―→,∴OP ―→·(OB ―→-OA ―→)=⎝⎛⎭⎫OA ―→+14 AB ―→+CP ―→ ·AB ―→=OA ―→·AB ―→+14AB ―→2+CP ―→·AB ―→=-1+12=-12.9.函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则( )A .函数f (x )在区间⎣⎡⎦⎤0,π2上单调递增 B .函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减 C .函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为-2 D .函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为-1 解析:选D 由已知,可得A =2,T 4=14·2πω=5π6-7π12,所以ω=2.由图象经过点⎝⎛⎭⎫7π12,0,可得2×7π12+φ=k π,k ∈Z , 即φ=k π-7π6,k ∈Z.因为-π2<φ<π2,所以φ=-π6,所以f (x )=2sin ⎝⎛⎭⎫2x -π6. 在区间⎣⎡⎦⎤0,π2上,2x -π6∈⎣⎡⎦⎤-π6,5π6,f (x )∈[-1,2], 所以f (x )在区间⎣⎡⎦⎤0,π2上没有单调性,但f (x )有最小值为-1,故选D.10.已知正项数列{a n }的前n 项的乘积T n =⎝⎛⎭⎫14n 2-6n (n ∈N *),b n =log 2a n ,则数列{b n }的前n 项和S n 中的最大值是( )A .S 6B .S 5C .S 4D .S 3解析:选D 因为S n =b 1+b 2+…+b n =log 2a 1+log 2a 2+…+log 2a n =log 2(a 1a 2·…·a n )=log 2⎝⎛⎭⎫14n 2-6n =log 2212n -2n 2=-2n 2+12n =-2(n -3)2+18,所以当n =3时,S n 最大,即S 3最大.11.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0,设z =ax +y (a <0),若当z 取最大值时对应的点有无数个,则a 等于( )A .-2B .-1C .-4D .-3解析:选B 作出满足约束条件的可行域如图中阴影部分所示,由图可知,当直线y =-ax +z 刚好移动到直线MN 时,将会有无数多个点使直线在y 轴上的截距z 取得最大值,所以-a =1,解得a =-1.12.定义在区间(0,+∞)上的函数f (x )使不等式2f (x )<xf ′(x )<3f (x )恒成立,其中f ′(x )为f (x )的导数,则( )A .8<f (2)f (1)<16B .4<f (2)f (1)<8 C .3<f (2)f (1)<4D .2<f (2)f (1)<3解析:选B 令g (x )=f (x )x 3, 则g ′(x )=f ′(x )·x 3-3x 2f (x )x 6=xf ′(x )-3f (x )x 4.因为xf ′(x )<3f (x ),即xf ′(x )-3f (x )<0, 所以g ′(x )<0在(0,+∞)上恒成立, 所以g (x )在(0,+∞)上单调递减, 可得g (2)<g (1),即f (2)8<f (1)1. 由2f (x )<3f (x ),可得f (x )>0, 则f (2)f (1)<8.令h (x )=f (x )x 2, 则h ′(x )=f ′(x )·x 2-2xf (x )x 4=xf ′(x )-2f (x )x 3.因为xf ′(x )>2f (x ),即xf ′(x )-2f (x )>0, 所以h ′(x )>0在(0,+∞)上恒成立, 所以h (x )在(0,+∞)上单调递增, 可得h (2)>h (1), 所以f (2)4>f (1),即f (2)f (1)>4.综上可得,4<f (2)f (1)<8. 二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上) 13.观察下列等式:1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49照此规律,第n 个等式为________.解析:观察所给等式,等式左边第一个加数与行数相同,加数的个数为2n -1,故第n 行等式左边的数依次是n ,n +1,n +2,…,(3n -2);每一个等式右边的数为等式左边加数个数的平方,从而第n 个等式为n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2.答案:n +(n +1)+(n +2)+…+(3n -2)=(2n -1)214.已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:令ωx =X ,则函数y =2sin X 与y =2cos X 图象交点坐标分别为⎝⎛⎭⎫π4+2k π, 2,⎝⎛⎭⎫5π4+2k π,-2,k ∈Z.因为距离最短的两个交点的距离为23,所以相邻两点横坐标最短距离是2=T 2,所以T =4=2πω,所以ω=π2.答案:π215.已知函数f (x )=22x +1+sin x ,则f (-2 017)+f (-2 016)+f (0)+f (2 016)+f (2 017)=________.解析:因为f (x )=22x +1+sin x ,所以f (-x )=22-x +1-sin x =2·2x 2x +1-sin x ,所以f (x )+f (-x )=2.则f (2 017)+f (-2 017)=2,f (2 016)+f (- 2 016)=2.而f (0)=220+1+sin 0=1,所以f (-2 017)+f (-2 016)+f (0)+f (2 016)+f (2 017)=5.答案:516.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 是双曲线上一点且|PF 1|=2|PF 2|,则此双曲线离心率的取值范围是________.解析:由双曲线定义有|PF 1|-|PF 2|=2a ,而由题意|PF 1|=2|PF 2|,故|PF 2|=2a ,|PF 1|=4a .又|F 1F 2|=2c ,由三角不等式有6a ≥2c .又由定义知c >a ,故离心率e =ca∈(1,3].答案:(1,3]三、解答题(本大题共3小题,共36分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n .解:(1)当n =1时,a 1=32a 1-1,∴a 1=2.S n =32a n -1,①S n -1=32a n -1-1(n ≥2),②①-②得,a n =⎝⎛⎭⎫32a n -1-⎝⎛⎭⎫32a n -1-1, 即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n=11×3+13×5+…+1(2n -3)(2n -1)=12⎝⎛⎭⎫1-13+13-15+…+12n -3-12n -1 =n -12n -1. 18.(本小题满分12分)某中学环保社团参照国家环境标准,制订了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过300):空气质量指数(0,50](50,100](100,150](150,200](200,250](250,300]空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染空气质量指数频数频率(0,50]x a(50,100]y b(100,150]250.25(150,200]200.2(200,250]150.15(250,300]100.1该社团将该校区在率分布表,将频率视为概率.估算得全年空气质量等级为2级良的天数为73天(全年以365天计算).(1)求x,y,a,b的值;(2)请将频率分布直方图补全,并估算这100天空气质量指数监测数据的平均数.解:(1)∵365b=73,∴b=0.2,又a+b=0.3,故a=0.1,x=10,y=20.(2)补全频率分布直方图如图所示:由频率分布直方图,可估算这100天空气质量指数监测数据的平均数为25×0.1+75×0.2+125×0.25+175×0.2+225×0.15+275×0.1=145.19.(本小题满分12分)如图所示,在四棱锥P ABCD 中,PD ⊥平面ABCD ,底面ABCD 为矩形,PD =DC =4,AD =2,E 为PC 的中点.(1)求证:AD ⊥PC .(2)求三棱锥A PDE 的体积.(3)AC 边上是否存在一点M ,使得PA ∥平面EDM ?若存在,求出AM 的长;若不存在,请说明理由.解:(1)证明:因为PD ⊥平面ABCD , 所以PD ⊥AD .又因为底面ABCD 是矩形, 所以AD ⊥CD . 因为PD ∩CD =D ,所 以AD ⊥平面PCD . 又因为PC ⊂平面PCD , 所以AD ⊥PC .(2)因为AD ⊥平面PCD , 所以AD 是三棱锥A PDE 的高. 因为E 为PC 的中点,且PD =DC =4. 所以S △PDE =12S △PDC =12×⎝⎛⎭⎫12×4×4=4. 又AD =2,所以V A PDE =13AD ·S △PDE =13×2×4=83.(3)取AC 中点M ,连接EM ,DM .因为E 为PC 的中点,M 是AC 的中点,所以EM ∥PA . 又因为EM ⊂平面EDM , PA ⊄平面EDM , 所以PA ∥平面EDM , 且AM =12AC = 5.即在AC 边上存在一点M ,使得PA ∥平面EDM ,AM 的长为 5.四、选做题(请在第22~23题中任选一题作答,如果多做,则按所做的第一题计分) 22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线L 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=21+3cos 2θ.(1)直接写出直线L 的极坐标方程和曲线C 的直角坐标方程;(2)过曲线C 上任意一点P 作与直线L 夹角为π3的直线l ,设直线l 与直线L 的交点为A ,求|PA |的最大值.解:(1)直线L 的极坐标方程为2ρcos θ+ρsin θ-6=0, 曲线C 的直角坐标方程为x 2+y 24=1. (2)直线L 的普通方程为2x +y -6=0, 设曲线C 上任意一点P (cos α,2sin α), 点P 到直线L 的距离d =|2cos α+2sin α-6|5,由题意得|PA |=dsin π3=415⎪⎪⎪⎪2sin ⎝⎛⎭⎫α+π4-315.∴当sin ⎝⎛⎭⎫α+π4=-1时,|PA |最大, 最大值为415(3+2)15.23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x +a |+|x -2|.(1)当a =5时,解关于x 的不等式f (x )>9;(2)设关于x 的不等式f (x )≤|x -4|的解集为A ,B ={x ||2x -1|≤3},如果A ∪B =A ,求实数a 的取值范围.解:(1)当a =5时,f (x )=|x +5|+|x -2|.当x ≥2时,由f (x )>9,得2x +3>9,解得x >3; 当-5≤x <2时,由f (x )>9得7>9,此时不等式无解; 当x <-5时,由f (x )>9得-2x -3>9,解得x <-6.综上所述,当a =5时,不等式f (x )>9的解集为{x |x <-6或x >3}. (2)∵A ∪B =A ,∴B ⊆A .∵B ={x ||2x -1|≤3}={x |-1≤x ≤2}. ∴当-1≤x ≤2时,f (x )≤|x -4|恒成立, 即|x +a |≤|x -4|-|x -2|在-1≤x ≤2时恒成立. ∴当-1≤x ≤2时,|x +a |≤2恒成立, 即-2-x ≤a ≤2-x 恒成立.∴实数a的取值范围为[-1,0].。
解析几何(解答题)--五年(2020-2024)高考数学真题分类汇编(解析版)
专题解析几何(解答题)考点五年考情(2020-2024)命题趋势考点01椭圆及其性质2024Ⅰ甲卷北京卷天津卷2023北京乙卷天津2022乙卷北京卷浙江卷2021北京卷Ⅱ卷2020ⅠⅡ卷新ⅠⅡ卷椭圆轨迹标准方程问题,有关多边形面积问题,定值定点问题,新结构中的新定义问题是高考的一个高频考点考点02双曲线及其性质2024Ⅱ卷2023Ⅱ新课标Ⅱ2022Ⅰ卷2021Ⅰ双曲线离心率问题,轨迹方程有关面积问题,定值定点问题以及斜率有关的证明问题以及新结构中的新定义问题是高考的高频考点考点03抛物线及其性质2023甲卷2022甲卷2021浙江甲卷乙卷2020浙江抛物线有关三角形面积问题,关于定直线问题,有关P 的证明类问题考点01:椭圆及其性质1(2024·全国·高考Ⅰ卷)已知A (0,3)和P 3,32 为椭圆C :x 2a 2+y 2b 2=1(a >b >0)上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且△ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3x -2y -6=0或x -2y =0.【详解】(1)由题意得b =39a 2+94b2=1,解得b 2=9a 2=12 ,所以e =1-b 2a2=1-912=12.(2)法一:k AP =3-320-3=-12,则直线AP 的方程为y =-12x +3,即x +2y -6=0,AP =0-3 2+3-322=352,由(1)知C :x 212+y 29=1,设点B到直线AP的距离为d,则d=2×9352=1255,则将直线AP沿着与AP垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B,设该平行线的方程为:x+2y+C=0,则C+65=1255,解得C=6或C=-18,当C=6时,联立x212+y29=1x+2y+6=0,解得x=0y=-3或x=-3y=-32,即B0,-3或-3,-3 2,当B0,-3时,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当B-3,-3 2时,此时k l=12,直线l的方程为y=12x,即x-2y=0,当C=-18时,联立x212+y29=1x+2y-18=0得2y2-27y+117=0,Δ=272-4×2×117=-207<0,此时该直线与椭圆无交点.综上直线l的方程为3x-2y-6=0或x-2y=0.法二:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B x0,y0,则x0+2y0-65=1255x2012+y209=1,解得x0=-3y0=-32或x0=0y0=-3,即B0,-3或-3,-3 2,以下同法一.法三:同法一得到直线AP的方程为x+2y-6=0,点B到直线AP的距离d=125 5,设B23cosθ,3sinθ,其中θ∈0,2π,则有23cosθ+6sinθ-65=1255,联立cos2θ+sin2θ=1,解得cosθ=-32sinθ=-12或cosθ=0sinθ=-1,即B0,-3或-3,-3 2,以下同法一;法四:当直线AB的斜率不存在时,此时B0,-3,S△PAB=12×6×3=9,符合题意,此时k l=32,直线l的方程为y=32x-3,即3x-2y-6=0,当线AB的斜率存在时,设直线AB的方程为y=kx+3,联立椭圆方程有y =kx +3x 212+y 29=1,则4k 2+3 x 2+24kx =0,其中k ≠k AP ,即k ≠-12,解得x =0或x =-24k 4k 2+3,k ≠0,k ≠-12,令x =-24k 4k 2+3,则y =-12k 2+94k 2+3,则B -24k 4k 2+3,-12k 2+94k 2+3同法一得到直线AP 的方程为x +2y -6=0,点B 到直线AP 的距离d =1255,则-24k4k 2+3+2×-12k 2+94k 2+3-65=1255,解得k =32,此时B -3,-32 ,则得到此时k l =12,直线l 的方程为y =12x ,即x -2y =0,综上直线l 的方程为3x -2y -6=0或x -2y =0.法五:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当l 的斜率存在时,设PB :y -32=k (x -3),令P x 1,y 1 ,B x 2,y 2 ,y =k (x -3)+32x 212+y 29=1 ,消y 可得4k 2+3 x 2-24k 2-12k x +36k 2-36k -27=0,Δ=24k 2-12k 2-44k 2+3 36k 2-36k -27 >0,且k ≠k AP ,即k ≠-12,x 1+x 2=24k 2-12k 4k 2+3x 1x 2=36k 2-36k -274k 2+3,PB =k 2+1x 1+x 2 2-4x 1x 2=43k 2+13k 2+9k +2744k 2+3 ,A 到直线PB 距离d =3k +32k 2+1,S △PAB =12⋅43k 2+13k 2+9k +2744k 2+3⋅3k +32k 2+1=9,∴k =12或32,均满足题意,∴l :y =12x 或y =32x -3,即3x -2y -6=0或x -2y =0.法六:当l 的斜率不存在时,l :x =3,B 3,-32,PB =3,A 到PB 距离d =3,此时S △ABP =12×3×3=92≠9不满足条件.当直线l 斜率存在时,设l :y =k (x -3)+32,设l 与y 轴的交点为Q ,令x =0,则Q 0,-3k +32,联立y =kx -3k +323x 2+4y 2=36,则有3+4k 2 x 2-8k 3k -32x +36k 2-36k -27=0,3+4k2x2-8k3k-3 2x+36k2-36k-27=0,其中Δ=8k23k-3 22-43+4k236k2-36k-27>0,且k≠-1 2,则3x B=36k2-36k-273+4k2,x B=12k2-12k-93+4k2,则S=12AQx P-x B=123k+3212k+183+4k2=9,解的k=12或k=32,经代入判别式验证均满足题意.则直线l为y=12x或y=32x-3,即3x-2y-6=0或x-2y=0.2(2024·全国·高考甲卷)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点为F,点M1,32在C上,且MF⊥x轴.(1)求C的方程;(2)过点P4,0的直线交C于A,B两点,N为线段FP的中点,直线NB交直线MF于点Q,证明:AQ⊥y 轴.【答案】(1)x24+y23=1(2)证明见解析【详解】(1)设F c,0,由题设有c=1且b2a=32,故a2-1a=32,故a=2,故b=3,故椭圆方程为x24+y23=1.(2)直线AB的斜率必定存在,设AB:y=k(x-4),A x1,y1,B x2,y2,由3x2+4y2=12y=k(x-4)可得3+4k2x2-32k2x+64k2-12=0,故Δ=1024k4-43+4k264k2-12>0,故-12<k<12,又x1+x2=32k23+4k2,x1x2=64k2-123+4k2,而N52,0,故直线BN:y=y2x2-52x-52,故y Q=-32y2x2-52=-3y22x2-5,所以y1-y Q=y1+3y22x2-5=y1×2x2-5+3y22x2-5=k x1-4×2x2-5+3k x2-42x2-5=k 2x1x2-5x1+x2+82x2-5=k2×64k2-123+4k2-5×32k23+4k2+82x2-5=k 128k2-24-160k2+24+32k23+4k22x2-5=0,故y1=y Q,即AQ⊥y轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为x 1,y 1 ,x 2,y 2 ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意Δ的判断;(3)列出韦达定理;(4)将所求问题或题中的关系转化为x 1+x 2、x 1x 2(或y 1+y 2、y 1y 2)的形式;(5)代入韦达定理求解.3(2024·北京·高考真题)已知椭圆E :x 2a 2+y 2b 2=1a >b >0 ,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点0,t t >2 且斜率存在的直线与椭圆E 交于不同的两点A ,B ,过点A 和C 0,1 的直线AC 与椭圆E 的另一个交点为D .(1)求椭圆E 的方程及离心率;(2)若直线BD 的斜率为0,求t 的值.【答案】(1)x 24+y 22=1,e =22(2)t =2【详解】(1)由题意b =c =22=2,从而a =b 2+c 2=2,所以椭圆方程为x 24+y 22=1,离心率为e =22;(2)直线AB 斜率不为0,否则直线AB 与椭圆无交点,矛盾,从而设AB :y =kx +t ,k ≠0,t >2 ,A x 1,y 1 ,B x 2,y 2 ,联立x 24+y 22=1y =kx +t,化简并整理得1+2k 2 x 2+4ktx +2t 2-4=0,由题意Δ=16k 2t 2-82k 2+1 t 2-2 =84k 2+2-t 2 >0,即k ,t 应满足4k 2+2-t 2>0,所以x 1+x 2=-4kt 1+2k 2,x 1x 2=2t 2-42k 2+1,若直线BD 斜率为0,由椭圆的对称性可设D -x 2,y 2 ,所以AD :y =y 1-y 2x 1+x 2x -x 1 +y 1,在直线AD 方程中令x =0,得y C =x 1y 2+x 2y 1x 1+x 2=x 1kx 2+t +x 2kx 1+t x 1+x 2=2kx 1x 2+t x 1+x 2 x 1+x 2=4k t 2-2 -4kt +t =2t =1,所以t =2,此时k 应满足4k 2+2-t 2=4k 2-2>0k ≠0 ,即k 应满足k <-22或k >22,综上所述,t =2满足题意,此时k <-22或k >22.4(2024·天津·高考真题)已知椭圆x 2a 2+y 2b 2=1(a >b >0)椭圆的离心率e =12.左顶点为A ,下顶点为B ,C 是线段OB 的中点,其中S △ABC =332.(1)求椭圆方程.(2)过点0,-32 的动直线与椭圆有两个交点P ,Q .在y 轴上是否存在点T 使得TP ⋅TQ ≤0.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.【答案】(1)x 212+y 29=1(2)存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.【详解】(1)因为椭圆的离心率为e =12,故a =2c ,b =3c ,其中c 为半焦距,所以A -2c ,0 ,B 0,-3c ,C 0,-3c 2 ,故S △ABC =12×2c ×32c =332,故c =3,所以a =23,b =3,故椭圆方程为:x 212+y 29=1.(2)若过点0,-32 的动直线的斜率存在,则可设该直线方程为:y =kx -32,设P x 1,y 1 ,Q x 2,y 2 ,T 0,t ,由3x 2+4y 2=36y =kx -32可得3+4k 2 x 2-12kx -27=0,故Δ=144k 2+1083+4k 2 =324+576k 2>0且x 1+x 2=12k 3+4k 2,x 1x 2=-273+4k2,而TP =x 1,y 1-t ,TQ=x 2,y 2-t ,故TP ⋅TQ =x 1x 2+y 1-t y 2-t =x 1x 2+kx 1-32-t kx 2-32-t =1+k 2 x 1x 2-k 32+t x 1+x 2 +32+t 2=1+k 2 ×-273+4k 2-k 32+t ×12k 3+4k 2+32+t 2=-27k 2-27-18k 2-12k 2t +332+t 2+3+2t 2k 23+4k 2=3+2t2-12t -45 k 2+332+t 2-273+4k 2,因为TP ⋅TQ ≤0恒成立,故3+2t 2-12t -45≤0332+t 2-27≤0,解得-3≤t ≤32.若过点0,-32的动直线的斜率不存在,则P 0,3 ,Q 0,-3 或P 0,-3 ,Q 0,3 ,此时需-3≤t ≤3,两者结合可得-3≤t ≤32.综上,存在T 0,t -3≤t ≤32,使得TP ⋅TQ ≤0恒成立.5(2023年全国乙卷理科)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率是53,点A -2,0 在C 上.(1)求C方程;(2)过点-2,3 的直线交C 于P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)y 29+x 24=1(2)证明见详解解析:(1)由题意可得b =2a 2=b 2+c 2e =c a =53,解得a =3b =2c =5,所以椭圆方程为y 29+x 24=1.(2)由题意可知:直线PQ 的斜率存在,设PQ :y =k x +2 +3,P x 1,y 1 ,Q x 2,y 2 ,联立方程y =k x +2 +3y 29+x 24=1,消去y 得:4k 2+9 x 2+8k 2k +3x +16k 2+3k =0,则Δ=64k 22k +3 2-644k 2+9 k 2+3k =-1728k >0,解得k <0,可得x 1+x 2=-8k 2k +34k 2+9,x 1x 2=16k 2+3k 4k 2+9,因为A -2,0 ,则直线AP :y =y 1x 1+2x +2 ,令x =0,解得y =2y 1x 1+2,即M 0,2y 1x 1+2,同理可得N 0,2y 2x 2+2,则2y 1x 1+2+2y2x 2+22=k x 1+2 +3 x 1+2+k x 2+2 +3 x 2+2=kx 1+2k +3 x 2+2 +kx 2+2k +3 x 1+2x 1+2 x 2+2=2kx 1x 2+4k +3 x 1+x 2 +42k +3x 1x 2+2x 1+x 2 +4=32k k 2+3k 4k 2+9-8k 4k +3 2k +34k 2+9+42k +3 16k 2+3k 4k 2+9-16k 2k +34k 2+9+4=10836=3,所以线段MN 的中点是定点0,3 .6(2020年高考课标Ⅱ)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)C 1:x 236+y 227=1,C 2:y 2=12x .解析:(1)∵F c ,0 ,AB ⊥x 轴且与椭圆C 1相交于A 、B 两点,则直线AB 的方程为x =c ,联立x =c x 2a 2+y 2b 2=1a 2=b 2+c 2,解得x =c y =±b 2a,则AB =2b 2a ,抛物线C 2的方程为y 2=4cx ,联立x =cy 2=4cx ,解得x =cy =±2c,∴CD =4c ,∵CD =43AB ,即4c =8b 23a ,2b 2=3ac ,即2c 2+3ac -2a 2=0,即2e 2+3e -2=0,∵0<e <1,解得e =12,因此,椭圆C 1的离心率为12;(2)由(1)知a =2c ,b =3c ,椭圆C 1的方程为x 24c 2+y 23c 2=1,联立y 2=4cxx24c2+y 23c 2=1,消去y 并整理得3x 2+16cx -12c 2=0,解得x =23c 或x =-6c (舍去),由抛物线的定义可得MF =23c +c =5c3=5,解得c =3.因此,曲线C 1的标准方程为x 236+y 227=1,曲线C 2的标准方程为y 2=12x .7(2021年新高考全国Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |=3.【答案】解析:(1)由题意,椭圆半焦距c =2且e =c a =63,所以a =3,又b 2=a 2-c 2=1,所以椭圆方程为x 23+y 2=1;(2)由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不合题意;当直线MN 的斜率存在时,设M x 1,y 1 ,N x 2,y 2 ,必要性:若M ,N ,F 三点共线,可设直线MN :y =k x -2 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得2kk 2+1=1,解得k =±1,联立y =±x -2x23+y 2=1 可得4x 2-62x +3=0,所以x 1+x 2=322,x 1⋅x 2=34,所以MN =1+1⋅x 1+x 22-4x 1⋅x 2=3,所以必要性成立;充分性:设直线MN :y =kx +b ,kb <0 即kx -y +b =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得bk 2+1=1,所以b 2=k 2+1,联立y =kx +bx 23+y 2=1可得1+3k 2 x 2+6kbx +3b 2-3=0,所以x 1+x 2=-6kb 1+3k 2,x 1⋅x 2=3b 2-31+3k 2,所以MN =1+k 2⋅x 1+x 22-4x 1⋅x 2=1+k2-6kb 1+3k22-4⋅3b 2-31+3k 2=1+k 2⋅24k 21+3k 2=3,化简得3k 2-1 2=0,所以k =±1,所以k =1b =-2或k =-1b =2 ,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),M ,N ,F 三点共线,充分性成立;所以M ,N ,F 三点共线的充要条件是|MN |=3.8(2020年高考课标Ⅰ卷)已知A 、B 分别为椭圆E :x 2a2+y 2=1(a >1)左、右顶点,G 为E 的上顶点,AG ⋅GB =8,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E方程;(2)证明:直线CD 过定点.【答案】(1)x 29+y 2=1;(2)证明详见解析.【解析】(1)依据题意作出如下图象:由椭圆方程E :x 2a2+y 2=1(a >1)可得:A -a ,0 , B a ,0 ,G 0,1∴AG =a ,1 ,GB =a ,-1 ∴AG ⋅GB =a 2-1=8,∴a 2=9∴椭圆方程为:x 29+y 2=1(2)证明:设P 6,y 0 ,则直线AP 的方程为:y =y 0-06--3x +3 ,即:y =y 09x +3 联立直线AP 的方程与椭圆方程可得:x 29+y 2=1y =y 09x +3 ,整理得:y 02+9 x 2+6y 02x +9y 02-81=0,解得:x =-3或x =-3y 02+27y 02+9将x =-3y 02+27y 02+9代入直线y =y 09x +3 可得:y =6y 0y 02+9所以点C 的坐标为-3y 02+27y 02+9,6y 0y 02+9 .同理可得:点D 的坐标为3y 02-3y 02+1,-2y 0y 02+1∴直线CD 的方程为:y --2y 0y 02+1=6y 0y 02+9--2y 0y 02+1-3y 02+27y 02+9-3y 02-3y 02+1x -3y 02-3y 02+1,整理可得:y +2y 0y 02+1=8y 0y 02+3 69-y 04x -3y 02-3y 02+1 =8y 063-y 02 x -3y 02-3y 02+1整理得:y =4y 033-y 02 x +2y 0y 02-3=4y 033-y 02x -32故直线CD 过定点32,09(2020年新高考全国Ⅰ卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.【答案】(1)x 26+y 23=1;(2)详见解析.解析:(1)由题意可得:c a =324a 2+1b 2=1a 2=b 2+c 2,解得:a 2=6,b 2=c 2=3,故椭圆方程为:x 26+y 23=1.(2)设点M x 1,y 1 ,N x 2,y 2 .因为AM ⊥AN ,∴AM·AN=0,即x 1-2 x 2-2 +y 1-1 y 2-1 =0,①当直线MN 的斜率存在时,设方程为y =kx +m ,如图1.代入椭圆方程消去y 并整理得:1+2k 2 x 2+4kmx +2m 2-6=0x 1+x 2=-4km 1+2k 2,x 1x 2=2m 2-61+2k 2②,根据y 1=kx 1+m ,y 2=kx 2+m ,代入①整理可得:k 2+1 x 1x 2+km -k -2 x 1+x 2 +m -1 2+4=0将②代入,k 2+1 2m 2-61+2k 2+km -k -2 -4km1+2k2+m -1 2+4=0,整理化简得2k +3m +1 2k +m -1 =0,∵A (2,1)不在直线MN 上,∴2k +m -1≠0,∴2k +3m +1=0,k ≠1,于是MN 的方程为y =k x -23 -13,所以直线过定点直线过定点E 23,-13.当直线MN 的斜率不存在时,可得N x 1,-y 1 ,如图2.代入x 1-2 x 2-2 +y 1-1 y 2-1 =0得x 1-2 2+1-y 22=0,结合x 216+y 213=1,解得x 1=2舍 ,x 1=23,此时直线MN 过点E 23,-13,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,所以AE 中点Q 满足QD 为定值(AE 长度的一半122-232+1+132=423).由于A 2,1 ,E 23,-13 ,故由中点坐标公式可得Q 43,13.故存在点Q 43,13,使得|DQ |为定值.10(2022年高考全国乙卷)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A 0,-2 ,B 32,-1两点.(1)求E 的方程;(2)设过点P 1,-2 的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT =TH.证明:直线HN 过定点.【答案】(1)y 24+x 23=1(2)(0,-2)解析:设椭圆E 的方程为mx 2+ny 2=1,过A 0,-2 ,B 32,-1,则4n =194m +n =1 ,解得m =13,n =14,所以椭圆E 的方程为:y 24+x 23=1.【小问2详解】A (0,-2),B 32,-1,所以AB :y +2=23x ,①若过点P (1,-2)的直线斜率不存在,直线x =1.代入x 23+y 24=1,可得M 1,-263 ,N 1,263 ,代入AB 方程y =23x -2,可得T -6+3,-263 ,由MT =TH 得到H -26+5,-263 .求得HN 方程:y =2+263x -2,过点(0,-2).②若过点P (1,-2)的直线斜率存在,设kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立kx -y -(k +2)=0x 23+y 24=1,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0,可得x 1+x 2=6k (2+k )3k 2+4x 1x 2=3k (4+k )3k 2+4,y 1+y 2=-8(2+k )3k 2+4y 2y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k 3k 2+4(*)联立y =y 1y =23x -2,可得T 3y12+3,y 1 ,H (3y 1+6-x 1,y 1).可求得此时HN :y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2),将(0,-2),代入整理得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0,将(*)代入,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立,综上,可得直线HN 过定点(0,-2).11(2020年新高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.【答案】(1)x 216+y 212=1;(2)18.解析:(1)由题意可知直线AM 的方程为:y -3=12(x -2),即x -2y =-4.当y =0时,解得x =-4,所以a =4,椭圆C :x 2a 2+y 2b 2=1a >b >0 过点M (2,3),可得416+9b 2=1,解得b 2=12.所以C 的方程:x 216+y 212=1.(2)设与直线AM 平行的直线方程为:x -2y =m ,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程x -2y =m 与椭圆方程x 216+y 212=1,可得:3m +2y 2+4y 2=48,化简可得:16y 2+12my +3m 2-48=0,所以Δ=144m 2-4×163m 2-48 =0,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:x -2y =8,直线AM 方程为:x -2y =-4,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d =8+41+4=1255,由两点之间距离公式可得|AM |=(2+4)2+32=35.所以△AMN 的面积的最大值:12×35×1255=18.12(2020年高考课标Ⅲ卷)已知椭圆C :x 225+y 2m 2=1(0<m <5)的离心率为154,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,求△APQ 的面积.【答案】(1)x 225+16y 225=1;(2)52.解析:(1)∵C :x 225+y 2m 2=1(0<m <5)∴a =5,b =m ,根据离心率e =ca=1-b a2=1-m 5 2=154,解得m =54或m =-54(舍),∴C 的方程为:x 225+y 2542=1,即x 225+16y 225=1;(2)不妨设P ,Q 在x 轴上方∵点P 在C 上,点Q 在直线x =6上,且|BP |=|BQ |,BP ⊥BQ ,过点P 作x 轴垂线,交点为M ,设x =6与x 轴交点为N 根据题意画出图形,如图∵|BP |=|BQ |,BP ⊥BQ ,∠PMB =∠QNB =90°,又∵∠PBM +∠QBN =90°,∠BQN +∠QBN =90°,∴∠PBM =∠BQN ,根据三角形全等条件“AAS ”,可得:△PMB ≅△BNQ ,∵x 225+16y 225=1,∴B (5,0),∴PM =BN =6-5=1,设P 点为(x P ,y P ),可得P 点纵坐标为y P =1,将其代入x 225+16y 225=1,可得:x P 225+1625=1,解得:x P =3或x P =-3,∴P 点为(3,1)或(-3,1),①当P 点为(3,1)时,故MB =5-3=2,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=2,可得:Q 点为(6,2),画出图象,如图∵A (-5,0),Q (6,2),可求得直线AQ 的直线方程为:2x -11y +10=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =2×3-11×1+1022+112=5125=55,根据两点间距离公式可得:AQ =6+52+2-0 2=55,∴△APQ 面积为:12×55×55=52;②当P 点为(-3,1)时,故MB =5+3=8,∵△PMB ≅△BNQ ,∴|MB |=|NQ |=8,可得:Q 点为(6,8),画出图象,如图∵A (-5,0),Q (6,8),可求得直线AQ 的直线方程为:8x -11y +40=0,根据点到直线距离公式可得P 到直线AQ 的距离为:d =8×-3 -11×1+4082+112=5185=5185,根据两点间距离公式可得:AQ =6+52+8-0 2=185,∴△APQ 面积为:12×185×5185=52,综上所述,△APQ 面积为:52.1313(2023年北京卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)离心率为53,A 、C 分别是E 的上、下顶点,B ,D 分别是E 的左、右顶点,|AC |=4.(1)求E 的方程;(2)设P 为第一象限内E 上的动点,直线PD 与直线BC 交于点M ,直线PA 与直线y =-2交于点N .求证:MN ⎳CD .【答案】(1)x 29+y 24=1(2)证明见解析:(1)依题意,得e =c a =53,则c =53a ,又A ,C 分别为椭圆上下顶点,AC =4,所以2b =4,即b =2,所以a 2-c 2=b 2=4,即a 2-59a 2=49a 2=4,则a 2=9,所以椭圆E 的方程为x 29+y 24=1.(2)因为椭圆E 的方程为x 29+y 24=1,所以A 0,2 ,C 0,-2 ,B -3,0 ,D 3,0 ,因为P 为第一象限E 上的动点,设P m ,n 0<m <3,0<n <2 ,则m 29+n 24=1,易得k BC =0+2-3-0=-23,则直线BC 的方程为y =-23x -2,k PD =n -0m -3=n m -3,则直线PD 的方程为y =n m -3x -3 ,联立y =-23x -2y =n m -3x -3,解得x =33n -2m +63n +2m -6y =-12n 3n +2m -6,即M 33n -2m +6 3n +2m -6,-12n 3n +2m -6,而k PA =n -2m -0=n -2m ,则直线PA 的方程为y =n -2mx +2,令y =-2,则-2=n -2m x +2,解得x =-4m n -2,即N -4mn -2,-2 ,又m 29+n 24=1,则m 2=9-9n 24,8m 2=72-18n 2,所以k MN =-12n3n +2m -6+233n -2m +6 3n +2m -6--4mn-2=-6n +4m -12 n -29n -6m +18 n -2 +4m 3n +2m -6=-6n 2+4mn -8m +249n 2+8m 2+6mn -12m -36=-6n 2+4mn -8m +249n 2+72-18n 2+6mn -12m -36=-6n 2+4mn -8m +24-9n 2+6mn -12m +36=2-3n 2+2mn -4m +12 3-3n 2+2mn -4m +12 =23,又k CD =0+23-0=23,即k MN =k CD ,显然,MN 与CD 不重合,所以MN ⎳CD .14(2023年天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左右顶点分别为A 1,A 2,右焦点为F ,已知A 1F =3,A 2F =1.(1)求椭圆方程及其离心率;(2)已知点P 是椭圆上一动点(不与端点重合),直线A 2P 交y 轴于点Q ,若三角形A 1PQ 的面积是三角形A 2FP 面积的二倍,求直线A 2P 的方程.【答案】(1)椭圆的方程为x 24+y 23=1,离心率为e =12.(2)y =±62x -2 .解析:(1)如图,由题意得a +c =3a -c =1,解得a =2,c =1,所以b =22-12=3,所以椭圆的方程为x 24+y 23=1,离心率为e =c a =12.(2)由题意得,直线A 2P 斜率存在,由椭圆的方程为x 24+y 23=1可得A 22,0 ,设直线A 2P 的方程为y =k x -2 ,联立方程组x 24+y 23=1y =k x -2,消去y 整理得:3+4k 2 x 2-16k 2x +16k 2-12=0,由韦达定理得x A 2⋅x P =16k 2-123+4k 2,所以x P =8k 2-63+4k 2,所以P 8k 2-63+4k 2,--12k3+4k 2,Q 0,-2k .所以S △A 2QA 1=12×4×y Q ,S △A 2PF =12×1×y P ,S △A 1A 2P =12×4×y P ,所以S △A 2QA 1=S △A 1PQ +S △A 1A 2P =2S △A 2PF +S △A 1A 2P ,所以2y Q =3y P ,即2-2k =3-12k3+4k 2,解得k =±62,所以直线A 2P 的方程为y =±62x -2 .15(2022高考北京卷)已知椭圆:E :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),焦距为23.(1)求椭圆E 的方程;(2)过点P (-2,1)作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当|MN |=2时,求k 的值.【答案】解析:(1)依题意可得b =1,2c =23,又c 2=a 2-b 2,所以a =2,所以椭圆方程为x 24+y 2=1;(2)解:依题意过点P -2,1 的直线为y -1=k x +2 ,设B x 1,y 1 、C x 2,y 2 ,不妨令-2≤x 1<x 2≤2,由y -1=k x +2x 24+y 2=1,消去y 整理得1+4k 2 x 2+16k 2+8k x +16k 2+16k =0,所以Δ=16k 2+8k 2-41+4k 2 16k 2+16k >0,解得k <0,所以x 1+x 2=-16k 2+8k 1+4k 2,x 1⋅x 2=16k 2+16k1+4k2,直线AB 的方程为y -1=y 1-1x 1x ,令y =0,解得x M =x 11-y 1,直线AC 的方程为y -1=y 2-1x 2x ,令y =0,解得x N =x 21-y 2,所以MN =x N -x M =x 21-y 2-x 11-y 1=x 21-k x 2+2 +1 -x 11-k x 1+2 +1=x 2-k x 2+2 +x 1k x 1+2=x 2+2 x 1-x 2x 1+2k x 2+2 x 1+2=2x 1-x 2k x 2+2 x 1+2=2,所以x 1-x 2 =k x 2+2 x 1+2 ,即x 1+x 22-4x 1x 2=k x 2x 1+2x 2+x 1 +4即-16k 2+8k 1+4k22-4×16k 2+16k 1+4k 2=k 16k 2+16k 1+4k 2+2-16k 2+8k 1+4k2+4 即81+4k 22k 2+k 2-1+4k 2 k 2+k =k1+4k216k2+16k -216k 2+8k +41+4k 2整理得8-k =4k ,解得k =-416(2022年浙江省高考)如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q 0,12 在线段AB 上,直线PA ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值;(2)求|CD |的最小值.【答案】解析:(1)设Q (23cos θ,sin θ)是椭圆上任意一点,P (0,1),则|PQ |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=-11sin θ+111 2+14411≤14411,当且仅当sin θ=-111时取等号,故|PQ |的最大值是121111.(2)设直线AB :y =kx +12,直线AB 方程与椭圆x 212+y 2=1联立,可得k 2+112 x 2+kx -34=0,设A x 1,y 1 ,B x 2,y 2 ,所以x 1+x 2=-kk 2+112x 1x 2=-34k 2+112 ,因为直线PA :y =y 1-1x 1x +1与直线y =-12x +3交于C ,则x C=4x 1x 1+2y 1-2=4x 1(2k +1)x 1-1,同理可得,x D =4x 2x 2+2y 2-2=4x 2(2k +1)x 2-1.则|CD |=1+14x C -x D =524x 1(2k +1)x 1-1-4x 2(2k +1)x 2-1=25x 1-x 2(2k +1)x 1-1 (2k +1)x 2-1=25x 1-x 2(2k +1)2x 1x 2-(2k +1)x 1+x 2 +1=352⋅16k 2+13k +1=655⋅16k 2+1916+13k +1≥655×4k ×34+1×123k +1=655,当且仅当k =316时取等号,故CD 的最小值为655.17(2021高考北京)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)一个顶点A (0,-2),以椭圆E 的四个顶点为顶点的四边形面积为45.(1)求椭圆E 的方程;(2)过点P (0,-3)的直线l 斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与直线交y =-3交于点M ,N ,当|PM |+|PN |≤15时,求k 的取值范围.【答案】(1)x 25+y 24=1;(2)[-3,-1)∪(1,3].解析:(1)因为椭圆过A 0,-2 ,故b =2,因为四个顶点围成的四边形的面积为45,故12×2a ×2b =45,即a =5,故椭圆的标准方程为:x 25+y 24=1.(2)设B x 1,y 1 ,C x 2,y 2 , 因为直线BC 的斜率存在,故x 1x 2≠0,故直线AB :y =y 1+2x 1x -2,令y =-3,则x M =-x1y 1+2,同理x N =-x 2y 2+2直线BC :y =kx -3,由y =kx -34x 2+5y 2=20可得4+5k 2 x 2-30kx +25=0,故Δ=900k 2-1004+5k 2 >0,解得k <-1或k >1.又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2,故x 1x 2>0,所以x M x N >0又PM +PN =x M +x N =x 1y 1+2+x 2y 2+2=x1kx1-1+x2kx2-1=2kx1x2-x1+x2k2x1x2-k x1+x2+1=50k4+5k2-30k4+5k225k24+5k2-30k24+5k2+1=5k故5k ≤15即k ≤3,综上,-3≤k<-1或1<k≤3.考点02双曲线及其性质1(2024·全国·高考Ⅱ)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...:过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n .(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x=2k y n-kx n1-k2-x n=2ky n-x n-k2x n1-k2,相应的y=k x-x n+y n=y n+k2y n-2kx n1-k2.所以该直线与C 的不同于P n 的交点为Q n2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n ,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k 1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV ⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV⋅UW 1-UV ⋅UWUV ⋅UW 2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2c 2+d 2-ac +bd2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n=121-k 1+k m -1+k 1-k mx 2n -y 2n=921-k 1+k m -1+k 1-k m .而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2=x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1 =12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1 =12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k-921-k 1+k 2-1+k 1-k 2.这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n 1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k 的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k mx n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m .这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k=x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.2(2023年新课标全国Ⅱ卷)已知双曲线C 的中心为坐标原点,左焦点为-25,0 ,离心率为5.(1)求C的方程;(2)记C左、右顶点分别为A1,A2,过点-4,0的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.【答案】(1)x24-y216=1(2)证明见解析.解析:(1)设双曲线方程为x2a2-y2b2=1a>0,b>0,由焦点坐标可知c=25,则由e=ca=5可得a=2,b=c2-a2=4,双曲线方程为x24-y216=1.(2)由(1)可得A1-2,0,A22,0,设M x1,y1,N x2,y2,显然直线的斜率不为0,所以设直线MN的方程为x=my-4,且-12<m<12,与x24-y216=1联立可得4m2-1y2-32my+48=0,且Δ=64(4m2+3)>0,则y1+y2=32m4m2-1,y1y2=484m2-1,直线MA1的方程为y=y1x1+2x+2,直线NA2的方程为y=y2x2-2x-2,联立直线MA1与直线NA2的方程可得:x+2 x-2=y2x1+2y1x2-2=y2my1-2y1my2-6=my1y2-2y1+y2+2y1my1y2-6y1=m⋅484m2-1-2⋅32m4m2-1+2y1m×484m2-1-6y1=-16m4m2-1+2y148m4m2-1-6y1=-13,由x+2x-2=-13可得x=-1,即x P=-1,据此可得点P在定直线x=-1上运动.3(2022新高考全国II卷)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±3x.(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点P x1,y1,Q x2,y2在C上,且.x1>x2>0,y1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】(1)x 2-y 23=1(2)见解析:(1)右焦点为F (2,0),∴c =2,∵渐近线方程为y =±3x ,∴ba=3,∴b =3a ,∴c 2=a 2+b 2=4a 2=4,∴a =1,∴b =3.∴C 的方程为:x 2-y 23=1;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而x 1=x 2,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为y =k x -2 ,则条件①M 在AB 上,等价于y 0=k x 0-2 ⇔ky 0=k 2x 0-2 ;两渐近线方程合并为3x 2-y 2=0,联立消去y 并化简整理得:k 2-3 x 2-4k 2x +4k 2=0设A x 3,y 3 ,B x 3,y 4 ,线段中点N x N ,y N ,则x N =x 3+x 42=2k 2k 2-3,y N =k x N -2 =6kk 2-3,设M x 0,y 0 , 则条件③AM =BM 等价于x 0-x 3 2+y 0-y 3 2=x 0-x 4 2+y 0-y 4 2,移项并利用平方差公式整理得:x 3-x 4 2x 0-x 3+x 4 +y 3-y 4 2y 0-y 3+y 4 =0,2x 0-x 3+x 4 +y 3-y 4x 3-x 42y 0-y 3+y 4 =0,即x 0-x N +k y 0-y N =0,即x 0+ky 0=8k 2k 2-3;由题意知直线PM 的斜率为-3, 直线QM 的斜率为3,∴由y 1-y 0=-3x 1-x 0 ,y 2-y 0=3x 2-x 0 ,∴y 1-y 2=-3x 1+x 2-2x 0 ,所以直线PQ 的斜率m =y 1-y 2x 1-x 2=-3x 1+x 2-2x 0 x 1-x 2,直线PM :y =-3x -x 0 +y 0,即y =y 0+3x 0-3x ,代入双曲线的方程3x 2-y 2-3=0,即3x +y 3x -y =3中,得:y 0+3x 0 23x -y 0+3x 0 =3,解得P 的横坐标:x 1=1233y 0+3x 0+y 0+3x 0,。
2020届高考数学基础训练(一)
2020届高考数学基础训练(一)一、选择题(本大题共8小题,共40.0分)1.设(1+i)x=1+yi,其中x,y是实数,则|x+yi|=()A. 1B.C.D. 22.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=()A. B. C. D.3.执行如图程序框图,如果输入的a=4,b=6,那么输出的n=()A.3B. 4C. 5D. 64.将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A. B.C. D.5.已知向量=(1,m),=(3,-2),且(+)⊥,则m=()A. B. C. 6 D. 86.设a∈R,则“a>1”是“a2>1”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A. B. C. D.8.已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A. B. C. D.二、填空题(本大题共3小题,共15.0分)9.△ABC的内角A,B,C的对边分别为a,b,c,若cos A=,cos C=,a=1,则b=______.10.在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为______.11.设等比数列{a n}满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为______.三、解答题(本大题共4小题,共48.0分)12.在△ABC中,a2+c2=b2+ac.(Ⅰ)求∠B的大小;(Ⅱ)求cos A+cos C的最大值.13.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.14.20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(Ⅰ)求频率分布直方图中a的值;(Ⅱ)分别求出成绩落在[50,60)与[60,70)中的学生人数;(Ⅲ)从成绩在[50,70)的学生任选2人,求此2人的成绩都在[60,70)中的概率.15.已知直线l:(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.(1)将曲线C的极坐标方程化为直坐标方程;(2)设点M的直角坐标为(5,),直线l与曲线C的交点为A,B,求|MA|•|MB|的值.答案和解析1.【答案】B【解析】【分析】本题主要考查复数模长的计算,根据复数相等求出x,y的值是解决本题的关键.根据复数相等求出x,y的值,结合复数的模长公式进行计算即可.【解答】解:∵(1+i)x=1+yi,∴x+xi=1+yi,即,解得,即|x+yi|=|1+i|=,故选B.2.【答案】D【解析】【分析】解不等式求出集合A,B,结合交集的定义,可得答案.本题考查的知识点是集合的交集及其运算,难度不大,属于基础题.【解答】解:∵集合A={x|x2-4x+3<0}=(1,3),B={x|2x-3>0}=(,+∞),∴A∩B=(,3),故选D.3.【答案】B【解析】解:模拟执行程序,可得a=4,b=6,n=0,s=0执行循环体,a=2,b=4,a=6,s=6,n=1不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=10,n=2 不满足条件s>16,执行循环体,a=2,b=4,a=6,s=16,n=3 不满足条件s>16,执行循环体,a=-2,b=6,a=4,s=20,n=4 满足条件s>16,退出循环,输出n的值为4.故选:B.模拟执行程序,根据赋值语句的功能依次写出每次循环得到的a,b,s,n的值,当s=20时满足条件s>16,退出循环,输出n的值为4.本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的a,b,s的值是解题的关键,属于基础题.4.【答案】D【解析】【分析】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题,求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x-)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x-)+],即有y=2sin(2x-).故选D.5.【答案】D【解析】解:∵向量=(1,m),=(3,-2),∴+=(4,m-2),又∵(+)⊥,∴12-2(m-2)=0,解得:m=8,故选:D.求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.本题考查的知识点是向量垂直的充要条件,难度不大,属于基础题.6.【答案】A【解析】解:由a2>1得a>1或a<-1,即“a>1”是“a2>1”的充分不必要条件,故选:A.根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.7.【答案】A【解析】【分析】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选A.8.【答案】A 【解析】【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选A.9.【答案】【解析】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.本题考查正弦定理的运用,同时考查两角和的正弦公式和诱导公式,以及同角的平方关系的运用,考查运算能力,属于中档题.10.【答案】【解析】【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键是弄清概率类型,同时考查了计算能力,属于基础题.【解析】解:圆(x-5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x-5)2+y2=9相交,则<3,解得-<k <.∴在区间[-1,1]上随机取一个数k,使直线y=kx与圆(x-5)2+y2=9相交的概率为=.故答案为.11.【答案】64【解析】解:等比数列{a n}满足a1+a3=10,a2+a4=5,可得q(a1+a3)=5,解得q=.a1+q2a1=10,解得a1=8.则a1a2…a n=a1n•q1+2+3+…+(n-1)=8n •==,当n=3或4时,表达式取得最大值:=26=64.故答案为:64.求出数列的等比与首项,化简a1a2…a n,然后求解最值.本题考查数列的性质数列与函数相结合的应用,转化思想的应用,考查计算能力.12.【答案】解:(Ⅰ)∵在△ABC中,a2+c2=b2+ac.∴a2+c2-b2=ac,∴cos B===,∴B=;(Ⅱ)由(I)得:C=-A,∴cos A+cos C=cos A+cos(-A)=cos A-cos A+sin A=cos A+sin A=sin(A+),∵A∈(0,),∴A+∈(,π),故当A+=时,sin(A+)取最大值1,即cos A+cos C的最大值为1.【解析】本题考查的知识点是余弦定理,和差角公式,正弦型函数的图象和性质,难度中档.(Ⅰ)根据已知和余弦定理,可得cosB=,进而得到答案;(Ⅱ)由(I)得:C=-A,结合正弦型函数的图象和性质,可得cosA+cosC的最大值.13.【答案】解:(1)∵D,E分别为AB,BC的中点,∴DE为△ABC的中位线,∴DE∥AC,∵ABC-A1B1C1为棱柱,∴AC∥A1C1,∴DE∥A1C1,∵A1C1⊂平面A1C1F,且DE⊄平面A1C1F,∴DE∥A1C1F;(2)在ABC-A1B1C1的直棱柱中,∴AA1⊥平面A1B1C1,∴AA1⊥A1C1,又∵A1C1⊥A1B1,且AA1∩A1B1=A1,AA1、A1B1⊂平面AA1B1B,∴A1C1⊥平面AA1B1B,∵DE∥A1C1,∴DE⊥平面AA1B1B,又∵A1F⊂平面AA1B1B,∴DE⊥A1F,又∵A1F⊥B1D,DE∩B1D=D,且DE、B1D⊂平面B1DE,∴A1F⊥平面B1DE,又∵A1F⊂平面A1C1F,∴平面B1DE⊥平面A1C1F.【解析】(1)通过证明DE∥AC,进而DE∥A1C1,据此可得直线DE∥平面A1C1F1;(2)通过证明A1F⊥DE结合题目已知条件A1F⊥B1D,进而可得平面B1DE⊥平面A1C1F.本题考查直线与平面平行的证明,以及平面与平面相互垂直的证明,把握常用方法最关键,难度不大.14.【答案】解:(Ⅰ)根据直方图知组距=10,由(2a+3a+6a+7a+2a)×10=1,解得a=0.005;(Ⅱ)成绩落在[50,60)中的学生人数为2×0.005×10×20=2,成绩落在[60,70)中的学生人数为3×0.005×10×20=3;(Ⅲ)记成绩落在[50,60)中的2人为A,B,成绩落在[60,70)中的3人为C,D,E,则成绩在[50,70)的学生任选2人的基本事件有AB,AC,AD,AE,BC,BD,BE,CD,CE,DE共10个,其中2人的成绩都在[60,70)中的基本事件有CD,CE,DE共3个,故所求概率为P=.【解析】本题考查频率分布直方图的应用以及古典概型的概率的应用,属于中档题.(Ⅰ)根据频率分布直方图求出a的值;(Ⅱ)由图可知,成绩在[50,60)和[60,70)的频率分别为0.1和0.15,用样本容量20乘以对应的频率,即得对应区间内的人数,从而求出所求;(Ⅲ)分别列出满足[50,70)的基本事件,再找到在[60,70)的事件个数,根据古典概率公式计算即可.15.【答案】解:(1)∵ρ=2cosθ,∴ρ2=2ρcosθ,∴x2+y2=2x,故它的直角坐标方程为(x-1)2+y2=1;(2)直线l:(t为参数),普通方程为,(5,)在直线l上,过点M作圆的切线,切点为T,则|MT|2=(5-1)2+3-1=18,由切割线定理,可得|MT|2=|MA|•|MB|=18.【解析】(1)曲线的极坐标方程即ρ2=2ρcosθ,根据极坐标和直角坐标的互化公式得x2+y2=2x,即得它的直角坐标方程;(2)直线l的方程化为普通方程,利用切割线定理可得结论.本题主要考查把极坐标方程化为直角坐标方程的方法,属于基础题.。
2020年高考山东版高考理科数学 第五节 生活中的优化问题举例(数学建模二)
第五节生活中的优化问题举例(数学建模二)A组基础题组1.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-x3+81x-234,则使该生产厂家获得最大年利润的年产量为()A.13万件B.11万件C.9万件D.7万件答案C由题意得,y'=-x2+81,令y'=0,解得x=9或x=-9(舍去).当0<x<9时,y'>0;当x>9时,y'<0.故当x=9时,y取最大值.2.(2019孝感模拟)某品牌小汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式为y=x3-x+18(0<x≤120).要使该汽车行驶200千米时的油耗最低,则汽车匀速行驶的速度应为()A.60千米/时B.80千米/时C.90千米/时D.100千米/时答案C当速度为x千米/小时时,该汽车行驶200千米时行驶了小时,设耗油量为h(x)升,y=x3-x+18(0<x≤120).依题意得h(x)=-·=x2+-20(0<x≤120),h'(x)=x-=-(0<x≤120).令h'(x)=0,得x=90.当x∈(0,90)时,h'(x)<0,h(x)是减函数;当x∈(90,120]时,h'(x)>0,h(x)是增函数.所以当x=90时,h(x)取得极小值h(90)=18.因为h(x)在(0,120]上只有一个极值,所以当x=90时取得最小值.故选C.3.设底面为正三角形的直棱柱的体积为V,那么其表面积最小时,底面正三角形的边长为()A. B. C. D.2答案C设底面正三角形的边长为x,侧棱长为l,则V=x2·sin60°·l,∴l=,∴S表=2S底+S侧=x2sin60°+3xl=x2+.令S'表=x-=0,得x=,又当x∈(0,)时,S'表<0;x∈(,+∞)时,S'表>0,∴当x=时,表面积最小.4.在半径为r的半圆内作一内接梯形,使其下底为直径,其他三边为圆的弦,则梯形的面积最大时,梯形的上底长为()A. B.r C.r D.r答案D设梯形的上底长为2x,高为h,面积为S,∵h=-,∴S=-=(r+x)·-.∴S'=---=-=-.令S'=0,得x=(x=-r舍去),∴h=r.当x∈时,S'>0;当x∈时,S'<0,∴当x=时,S取最大值,即当梯形的上底长为r 时,它的面积最大.5.某厂生产某种产品x件的总成本c(x)=1200+x3(万元),已知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为件时,总利润最大.答案25解析设产品的单价为p万元,根据已知,可设p2=,其中k为比例系数.因为当x=100时,p=50,所以k=250000,所以p2=,p=(x>0).设总利润为y万元,则y=·x-1200-x3=500-x3-1200.y'=-x2.令y'=0,得x=25.当0<x<25时,y'>0;当x>25时,y'<0.因此当x=25时,函数y取得极大值,也是最大值.6.要做一个圆锥形的漏斗,其母线长为20cm,要使其体积最大,则高为cm.答案解析设该漏斗的高为x cm,则其底面半径为-cm,体积V=π(202-x2)x=π(400x-x3)(0<x<20),则V'=π(400-3x2).令V'=0,解得x1=,x2=-(舍去).当0<x<时,V'>0;当<x<20时,V'<0,所以当x=时,V取得最大值.7.统计表明,某种型号的汽车在匀速行驶过程中的耗油量y(L/h)关于行驶速度x(km/h)的解析式可以表示为y=x3-x+8(0<x≤120).已知甲、乙两地相距100km.(1)当汽车以40km/h的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少?解析(1)汽车以40km/h的速度从甲地匀速行驶到乙地需=2.5(h),要耗油-×2.5=17.5(L).(2)当匀速行驶速度为x km/h时,汽车从甲地行驶到乙地需h,设耗油量为h L,依题意得h(x)=-=-+(0<x≤120),则h'(x)=-=-(0<x≤120).令h'(x)=0,得x=80.当x∈(0,80)时,h'(x)<0,h(x)是减函数;当x∈(80,120]时,h'(x)>0,h(x)是增函数.所以当x=80时,h(x)取得极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极小值,所以它也是最小值.所以当汽车以80km/h的速度匀速行驶时,从甲地到乙地耗油最少,为11.25L.8.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h 米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率).(1)将V表示成r的函数V(r),并求该函数的定义域;(2)讨论函数V(r)的单调性,并确定r和h为何值时,该蓄水池的体积最大.解析(1)因为蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又据题意知200πrh+160πr2=12000π,所以h=(300-4r2),从而V(r)=πr2h=(300r-4r3).又由r>0,h>0可得r<5,故函数V(r)的定义域为(0,5).(2)因V(r)=(300r-4r3),故V'(r)=(300-12r2).令V'(r)=0,解得r1=5,r2=-5(舍去).当r∈(0,5)时,V'(r)>0,故V(r)在(0,5)上为增函数;当r∈(5,5)时,V'(r)<0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r=5处取得最大值,此时h=8.即当r=5,h=8时,该蓄水池的体积最大.B组提升题组1.某商店经销一种奥运纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交a(a为常数,4≤a≤5)元的税收,设每件产品的日售价为x(35≤x≤41)元,根据市场调查,日销售量与e x(e为自然对数的底数)成反比.已知每件产品的日售价为40元时,日销量为10件.(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大?并求出L(x)的最大值.解析(1)设日销售量为,则=10,所以k=10e40,则日销售量为件.则日利润L(x)=(x-30-a)=--(35≤x≤41).(2)由(1)可得L'(x)=-,因为4≤a≤5,所以35≤a+31≤36.令L'(x)=0,得x=a+31,故L(x)在[35,a+31]上为增函数,在(a+31,41]上为减函数.所以当x=a+31时,L(x)取得最大值,最大值为10e9-a.2.某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售单价每上涨1元,每天的销售量就减少10件,而降价后,日销售量Q(单位:件)与实际销售单价x(单位:元)满足关系:Q(x)=---(1)试写出该商家的销售利润y与销售单价x的函数关系式;(利润=销售额-成本)(2)当实际销售单价为多少元时,日销售利润最大?并求出最大利润.解析(1)根据题意得y=--------=-----(2)由(1)得当5<x<7时,y=39(2x3-39x2+252x-535),y'=39(6x2-78x+252),令y'=0,则6x2-78x+252=0,解得x=6或x=7(舍去).当5<x<6时,y'>0;当6<x<7时,y'<0,故当x=6时,y max=195.当7≤x<8时,y=6(33-x),故当x=7时,y max=156.当8≤x≤13时,y=-10x2+180x-650=-10(x-9)2+160,故当x=9时,y max=160.综上可知,当实际销售单价定为6元时,日销售利润最大,最大利润为195元.3.如图,点C为某沿海城市的高速公路出入口,直线BD为海岸线,∠CAB=,AB⊥BD,是以A 为圆心,半径为1km的圆弧形小路.该市拟修建一条从C通往海岸的观光专线-PQ,其中P 为上异于B,C的一点,PQ与AB平行,设∠PAB=θ.(1)证明:观光专线-PQ的总长度随θ的增大而减小;(2)已知新建道路PQ的单位成本是翻新道路的单位成本的2倍,当θ取何值时,观光专线-PQ的修建总成本最低?请说明理由.解析(1)证明:由题意,∠CAP=-θ,所以=-θ.又PQ=AB-APcosθ=1-cosθ,所以观光专线的总长度f(θ)=-θ+1-cosθ=-θ-cosθ++1,0<θ<.因为当0<θ<时,f'(θ)=-1+sin θ<0,所以f(θ)在上单调递减,即观光专线-PQ的总长度随θ的增大而减小.(2)设翻新道路的单位成本为a(a>0),则总成本g(θ)=a--=a(-θ-2cosθ++2),0<θ<,g'(θ)=a(-1+2sinθ),令g'(θ)=0,得sinθ=,因为0<θ<,所以θ=.当0<θ<时,g'(θ)<0;当<θ<时,g'(θ)>0.所以,当θ=时,g(θ)最小,即当θ=时,观光专线-PQ的修建总成本最低.。
2020年高考数学解答题大题规范练(2.17-2.23)
规范练1 三角函数与解三角形 规范练2 数列 规范练3 概率与统计 规范练4 立体几何 规范练5 解析几何 规范练6 函数与导数 规范练7 极坐标与参数方程编者:张 科2020年2月现场阅卷靠细则 答题模板保高分2020高考解答题1——三角函数及解三角形第一部分规范答题示范【典例】(本小题满分12分)△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为a2 3sin A.(1)求sin B sin C;(2)若6cos B cos C=1,a=3,求△ABC的周长. [信息提取]❶看到△ABC的面积为a23sin A,想到三角形的面积公式,利用正弦定理进行转化;❷看到sin B sin C和6cos B cos C=1,想到两角和的余弦公式. [规范解答][高考状元满分心得]❶写全得分步骤:对于解题过程中是得分点的步骤有则给分,无则没分,所以得分点步骤一定要写全,如第(1)问中只要写出12ac sin B =a 23sin A就有分,第(2)问中求出cos B cos C -sin B sin C =-12就有分.❷写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时要写清得分关键点,如第(1)问中由正弦定理得12sin C sin B =sin A3sin A ;第(2)问由余弦定理得b 2+c 2-bc =9.❸计算正确是得分保证:解题过程中计算准确,是得满分的根本保证,如cos B cos C -sin B sin C =-12化简如果出现错误,本题的第(2)问就全错了,不能得分.[解题程序]第一步:由面积公式,建立边角关系;第二步:利用正弦定理,将边统一为角的边,求sin B sin C 的值; 第三步:利用条件与(1)的结论,求得cos(B +C ),进而求角A ; 第四步:由余弦定理与面积公式,求bc 及b +c ,得到△ABC 的周长; 第五步:检验易错易混,规范解题步骤,得出结论.第二部分 大题规范练2020年2月17日【题目1】 (本小题满分12分)已知函数f (x )=23sin x cos x +2cos 2x -1(x ∈R ). (1)求函数f (x )的最小正周期及在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(2)若f (x 0)=65,x 0∈⎣⎢⎡⎦⎥⎤π4,π2,求cos 2x 0的值.【题目2】(本小题满分12分)在△ABC中,角A,B,C的对边分别为a,b,c.(1)若23cos2A+cos 2A=0,且△ABC为锐角三角形,a=7,c=6,求b的值;(2)若a=3,A=π3,求b+c的取值范围.【题目3】(本小题满分12分)已知a,b,c分别是△ABC内角A,B,C的对边,函数f(x)=3+23sin x cos x+2cos2x且f(A)=5.(1)求角A的大小;(2)若a=2,求△ABC面积的最大值.【题目4】(本小题满分12分)已知f(x)=a·b,其中a=(2cos x,-3sin 2x),b =(cos x,1),x∈R.(1)求f(x)的单调递增区间;(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=-1,a=72,且向量m=(3,sin B)与n=(2,sin C)共线,求边长b和c的值.【题目5】(本小题满分12分)已知函数f(x)=32sin 2x-cos2x-12(x∈R).(1)求f(x)的最小值,并写出取得最小值时的自变量x的集合;(2)设△ABC的内角A,B,C所对的边分别为a,b,c,且c=3,f(C)=0,若sin B=2sin A,求a,b的值.【题目6】(本小题满分12分)如图,△ABC为正三角形,AC∥DB,AC=2,cos∠ACD=6 3.(1)求CD的长;(2)求△ABD的面积.高考解答题2——数列第一部分规范答题示范【典例】(本小题满分12分)已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4-2a1,S11=11b4.(1)求{a n}和{b n}的通项公式;(2)求数列{a2n b n}的前n项和(n∈N*).[信息提取]❶看到求等差数列{a n}和等比数列{b n}的通项公式,想到利用基本量法分别求等差、等比数列的公差和公比;❷看到求数列{a2n b n}的前n项和,想到利用错位相减法求数列的前n项和.[规范解答][高考状元满分心得]❶牢记等差、等比数列的相关公式:熟记等差、等比数列的通项公式及前n项和公式,解题时结合实际情况合理选择.如第(1)问运用了等差、等比数列的通项公式.❷注意利用第(1)问的结果:在题设条件下,如第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题即是在第(1)问的基础上得出数列{a2n b n},分析数列特征,想到用错位相减法求数列的前n项和.[解题程序]第一步:利用基本量法求{b n}的通项;第二步:由b3=a4-2a1,S11=11b4构建关于a1与d方程(组),求a n;第三步:由第(1)问结论,表示出{a2n b n}的通项;第四步:利用错位相减法求数列前n项和T n.第五步:反思检验,规范解题步骤.第二部分大题规范练2020年2月18日【题目1】(本小题满分12分)已知等差数列{a n}的公差d>0,其前n项和为S n,且a2+a4=8,a3,a5,a8成等比数列.(1)求数列{a n}的通项公式;(2)令b n=1a n·a n+1,求数列{b n}的前n项和T n.【题目2】(本小题满分12分)已知数列{a n}的前n项和S n=3n+1-32.(1)求数列{a n}的通项公式;(2)设数列{b n}满足b n=2log3a n-1,求数列{(-1)n a n+b n}的前n项和T n.【题目3】(本小题满分12分)已知数列{a n}满足a n=2+2cos2nπ2,n∈N*,等差数列{b n}满足a1=2b1,a2=b2.(1)求b n;(2)记c n=a2n-1b2n-1+a2n b2n,求c n;(3)求数列{a n b n}前2n项和S2n.【题目4】(本小题满分12分)S n为数列{a n}的前n项和.已知a n>0,a2n+2a n=4S n +3.(1)求{a n}的通项公式;(2)设b n=1a n a n+1,求数列{b n}的前n项和.【题目5】(本小题满分12分)已知数列{a n}满足a1=-2,a n+1=2a n+4.(1)证明数列{a n+4}是等比数列;(2)求数列{|a n|}的前n项和S n.【题目6】(本小题满分12分)在单调递增的等差数列{b n}中,前n项和为S n,已知b3=6,且b2,S5+2,b4成等比数列.(1)求{b n}的通项公式;(2)设a n=b n2(e)b n,求数列{a n}的前n项和T n.高考解答题3——概率与统计第一部分规范答题示范【典例】(本小题满分12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50),[50,60),…,[80,90),[90,100].(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.[信息提取]❶(1)、(2)中求a和评分不低于80的概率,联想到频率分布直方图的面积为1,利用频率估计概率.❷看到计算评分在[40,50)的概率,联想到由频率表确定各区间的人数,进而利用古典概型计算概率.[规范解答][高考状元满分心得]❶得步骤分:步骤规范,求解完整,解题步骤常见的失分点,第(2)问中,不能用频率估计概率,第(3)问中步骤不完整,没有指出“基本事件总数”与“事件M”包含的基本事件个数,或者只指出事件个数,没有一一列举10个基本事件及事件M包含的基本事件,导致扣3分或2分.❷得关键分:如第(1)问中,正确求得a=0.006;第(3)问中列出10个基本事件,错写或多写,少写均不得分.❸得计算分:如第(1)、(2)问中,要理清频率直方图的意义,计算正确,否则导致后续皆错大量失分,第(3)问中利用“频数、样本容量、频率之间的关系”求得各区间的人数,准确列出基本事件,正确计算概率.[解题程序]第一步:由各矩形的面积之和等于1,求a的值.第二步:由样本频率分布估计概率.第三步:设出字母,列出基本事件总数及所求事件M所包含的基本事件.第四步:利用古典概型概率公式计算.第五步:反思回顾,查看关键点,易错点和答题规范.第二部分大题规范练2020年2月19日【题目1】(本小题满分12分)《中国诗词大会》是央视推出的一档以“赏中华诗词,寻文化基因,品生活之美”为宗旨的大型文化类竞赛节目,邀请全国各个年龄段、各个领域的诗词爱好者共同参与诗词知识比拼.“百人团”由一百多位来自全国各地的选手组成,成员上至古稀老人,下至垂髫小儿,人数按照年龄分组统计如下表:(1)用分层抽样的方法从“百人团”中抽取6人参加挑战,求从这三个不同年龄组中分别抽取的挑战者的人数;(2)从(1)中抽出的6人中任选2人参加一对一的对抗比赛,求这2人来自同一年龄组的概率.【题目2】(本小题满分12分)某服装批发市场1-5月份的服装销售量x与利润y的统计数据如下表:(1)从这五个月的利润中任选2个,分别记为m,n,求事件“m,n均不小于30”的概率;(2)已知销售量x与利润y大致满足线性相关关系,请根据前4个月的数据,求出y关于x的线性回归方程y^=b^x+a^;(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想?(参考公式:b^=∑ni=1x i y i-nx-y-∑ni=1x2i-nx-2,a^=y--b^x-)【题目3】(本小题满分12分)“微信运动”是手机APP推出的多款健康运动软件中的一款,杨老师的微信朋友圈内有600位好友参与了“微信运动”.他随机选取了40位好友(女20人,男20人),统计他们在某一天的走路步数作为样本.其中,女性好友的走路步数数据记录如下:5 8608 5207 326 6 7987 3258 430 3 216 7 453 11 754 9 8608 753 6 450 7 290 4 850 10 2239 763 7 988 9 176 6 421 5 980男性好友走路的步数情况可分为五个类别:A(0~2 000步)(说明:“0~2 000”表示大于等于0,小于等于2 000,下同),B(2 001~5 000步),C(5 001~8 000步),D(8 001~10 000步),E(10 001步及以上),且B,D,E三种类型人数比例1∶3∶4,将统计结果绘制成如图所示的柱状图.男性好友各类别人数的条形统计图若某人一天的走路步数超过8 000被系统认定为“卫健型”,否则被系统认定为“进步型”.(1)若以杨老师抽取的好友当天行走步数的频率分布来估计所有微信好友每日走路步数的概率分布,请估计杨老师的微信朋友圈里参与“微信运动”的600名好友中,每天走路步数在5 001~10 000步的人数;(2)请根据选取的样本数据完成下面的2×2列联表,并据此判断能否有95%以上的把握认为“认定类型”与“性别”有关?(3)若从杨老师当天选取的步数大于10 000的好友中按男女比例分层选取5人进行身体状况调查,然后再从这5位好友中选取2人进行访谈,求有一位女性好友的概率.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),【题目4】(本小题满分12分)通过随机询问100名性别不同的大学生是否爱好某项运动,得到如下2×2列联表:(1)能否有99%的把握认为是否爱好该项运动与性别有关?请说明理由;(2)利用分层抽样的方法从以上爱好该项运动的大学生中抽取6人组建“运动达人社”,现从“运动达人社”中选派2人参加某项校际挑战赛,求选出的2人中恰有1名女大学生的概率.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),且n=a+b+c+d.【题目5】(本小题满分12分)某部门为了解该企业在生产过程中的用水量情况,对日用水量做了记录,得到了大量该企业的日用水量的统计数据,从这些统计数据中随机抽取12天的日用水量的数据作为样本,得到的统计结果如下表:(1)求m,n,p的值;(2)已知样本中日用水量在[80,90)内的这6个数据分别为83,85,86,87,88,89.从这6个数据中随机抽取2个,求抽取的2个数据中至少有一个大于86的概率.【题目6】(本小题满分12分)为了迎接“十九大”的胜利召开,某市中小学校准备举行一场《喜迎十九大,共筑中国梦》的歌唱比赛,某班为了选出一人参加比赛,挑选班上甲、乙两位同学进行了8次预赛,且每次预赛之间是相互独立的.他们成绩的茎叶图如下:(单位:分,满分100分)(1)设甲、乙两位同学成绩的方差分别为s2甲,s2乙,求s2甲,s2乙的值,并从统计学的角度考虑,你认为选派哪位学生参加比赛更合适,请说明理由?(2)从甲乙两位同学预赛成绩大于等于85分的成绩中,随机抽取2个,求这2个预赛成绩分别来自不同同学的概率.高考解答题4——立体几何第一部分规范答题示范【典例】(本小题满分12分)如图,在四棱锥P-ABCD中,侧面P AD为等边三角形且垂直于底面ABCD,AB=BC=12AD,∠BAD=∠ABC=90°.(1)证明:直线BC∥平面P AD;(2)若△PCD的面积为27,求四棱锥P-ABCD的体积.[信息提取]❶看到结论(1),联想到线面平行的判定定理;❷看到求四棱锥P-ABCD的体积,在△P AD中作出棱锥的高线,联系到S△PCD=27,进一步利用条件求梯形ABCD的面积,得到结论. [规范解答][高考状元满分心得]❶写全得分步骤:在立体几何类解答题中,对于证明与计算过程中得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写.如第(1)问中的BC∥AD,第(2)问中CM⊥AD,PM⊥CM,PN=142x等.❷注意利用第(1)问的结果:在题设条件下,在第(2)问的求解过程中,证明CM⊥AD 时,利用第(1)问证明的结果BC∥AD.❸写明得分关键:对于解题过程中的关键点,有则给分,无则没分.所以在解立体几何类解答题时,一定要写清得分关键点,如第(1)问中一定要写出BC⊄平面P AD,AD⊂平面P AD两个条件,否则不能得全分.在第(2)问中,证明PM⊥平面ABCD时,一定写全三个条件,如平面P AD∩平面ABCD=AD,PM⊥AD一定要有,否则要扣分.再如第(2)问中,一定要分别求出BC,AD及PM,再计算几何体的体积.[解题程序]第一步:根据平面几何性质,证BC∥AD.第二步:由线面平行判定定理,证线BC∥平面P AD.第三步:判定四边形ABCM为正方形,得CM⊥AD.第四步:证明直线PM⊥平面ABCD.第五步:利用面积求边BC,并计算相关量.第六步:计算四棱锥P-ABCD的体积.第二部分大题规范练2020年2月20日【题目1】(本小题满分12分)如图,四棱锥P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分别为线段AD,PC的中点.(1)求证:AP∥平面BEF;(2)求证:BE⊥平面P AC.【题目2】(本小题满分12分)已知正三棱柱ABC-A1B1C1的底面边长为3,E,F分别为CC1,BB1上的点,且EC=3FB=3,点M是线段AC上的动点.(1)试确定点M的位置,使BM∥平面AEF,并说明理由;(2)若M为满足(1)中条件的点,求三棱锥M-AEF的体积.【题目3】 (本小题满分12分)如图,在平行六面体ABCD -A 1B 1C 1D 1中,AB =BC ,AA 1=DA 1,∠ABC =120°.(1)证明:AD ⊥BA 1;(2)若AD =DA 1=4,BA 1=26,求多面体BCD -A 1B 1C 1D 1的体积.【题目4】 (本小题满分12分)如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图2.在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.【题目5】(本小题满分12分)如图,在四面体P ABC中,P A=PC=AB=BC=5,AC=6,PB=42,线段AC,AP的中点分别为O,Q.(1)求证:平面P AC⊥平面ABC;(2)求四面体POBQ的体积.【题目6】(本小题满分12分)如图,几何体中的四边形ABCD为长方形,BB1⊥平面ABCD,AA1⊥平面ABCD,且BB1=13AA1.E为CD上一点,且CE=13CD.(1)求证:CB1∥平面A1BE;(2)若BB1=1,CB=3,AB=6,求此多面体的表面积.高考解答题5——解析几何 第一部分 规范答题示范【典例 】 (本小题满分12分)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →=2NM →. (1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . [信息提取]❶看到求点P 的轨迹方程,想到先设出点的坐标,然后利用已知条件,采用代入法求轨迹方程;❷看到过点P 且垂直于OQ 的直线l 过C 的左焦点F ,想到证明OQ →⊥PF →. [规范解答][高考状元满分心得]❶写全得分步骤:对于解题过程中是得分点的步骤,有则给分,无则没分,所以对于得分点步骤一定要写全,如第(1)问,设P (x ,y ),M (x 0,y 0),N (x 0,0),就得分,第(2)问中求出-3m -m 2+tn -n 2=1就得分.❷写明得分关键:对于解题过程中的关键点,有则给分,无则没分,所以在答题时一定要写清得分关键点,如第(1)问中一定要写出x 0=x ,y 0=22y ,没有则不得分;第(2)问一定要写出OQ →·PF →=0,即OQ →⊥PF →,否则不得分,因此步骤才是关键的,只有结果不得分.[解题程序]第一步:设出点的坐标,表示向量NP →,NM →; 第二步:由NP →=2NM →,确定点P ,N 坐标等量关系; 第三步:求点P 的轨迹方程x 2+y 2=2; 第四步:由条件确定点P ,Q 坐标间的关系; 第五步:由OQ →·PF →=0,证明OQ ⊥PF ; 第六步:利用过定点作垂线的唯一性得出结论.第二部分 大题规范练2020年2月21日【题目1】 (本小题满分12分)(2018·日照一模)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的焦距为23,且C 与y 轴交于A (0,-1),B (0,1)两点. (1)求椭圆C 的标准方程;(2)设P 点是椭圆C 上的一个动点且在y 轴的右侧,直线P A ,PB 与直线x =3交于M ,N 两点.若以MN 为直径的圆与x 轴交于E ,F 两点,求P 点横坐标的取值范围.【题目2】(本小题满分12分)(2018·烟台模拟)已知动圆C与圆E:x2+(y-1)2=14外切,并与直线y=12相切.(1)求动圆圆心C的轨迹方程Γ;(2)若从点P(m,-4)作曲线Γ的两条切线,切点分别为A,B,求证:直线AB恒过定点.【题目3】(本小题满分12分)(2018·郑州质量检测)已知平面上动点P到点F(3,0)的距离与到直线x=433的距离之比为32,记动点P的轨迹为曲线E.(1)求曲线E的方程;(2)设M(m,n)是曲线E上的动点,直线l的方程为mx+ny=1.①设直线l与圆x2+y2=1交于不同两点C,D,求|CD|的取值范围;②求与动直线l恒相切的定椭圆E′的方程;并探究:若M(m,n)是曲线Γ:Ax2+By2=1(A·B≠0)上的动点,是否存在与直线l:mx+ny=1恒相切的定曲线Γ′?若存在,直接写出曲线Γ′的方程;若不存在,说明理由.【题目4】 (本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 24+y 2=1,点P (x 1,y 1),Q (x 2,y 2)是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为k 1,k 2,若m =⎝ ⎛⎭⎪⎫x 12,y 1,n =⎝ ⎛⎭⎪⎫x 22,y 2,m·n =0.(1)求证:k 1·k 2=-14;(2)试探求△OPQ 的面积S 是否为定值,并说明理由.【题目5】 (本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),长半轴与短半轴的比值为2. (1)求椭圆C 的方程;(2)设经过点A (1,0)的直线l 与椭圆C 相交于不同的两点M ,N .若点B (0,1)在以线段MN 为直径的圆上,求直线l 的方程.【题目6】 (本小题满分12分)已知动圆C :(x -a )2+(y -b )2=r 2过点F (1,0)且与直线l :x =-1相切,记圆心C (a ,b )的轨迹为G . (1)求轨迹G 的方程;(2)已知M 是轨迹G 上的动点,过M 作垂直于x 轴的直线m ,与直线n :y =x 交于点A ,点B 满足MB →=2MA →,连接OB (其中O 为原点)交轨迹G 于点N ,求证:直线MN 恒过定点.高考解答题6——函数与导数第一部分规范答题示范【典例】(本小题满分12分)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论函数f(x)的单调性;(2)当a<0时,证明f(x)≤-34a-2.[信息提取]❶看到讨论f(x)的单调性,想到先确定函数的定义域,然后对函数f(x)进行求导.❷看到要证f(x)≤-34a-2成立,想到利用导数求函数的最大值.[规范解答][高考状元满分心得]❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求g(x)的最大值和不等式性质的运用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f(x)的定义域,f′(x)在(0,+∞)上单调性的判断;第(2)问,f(x)在x=-12a处最值的判定,f(x)≤-34a-2等价转化为ln⎝⎛⎭⎪⎫-12a+12a+1≤0等.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f′(x)准确,否则全盘皆输,第(2)问中,准确计算f(x)在x=-12a处的最大值.[解题程序]第一步:求函数f(x)的导函数f′(x);第二步:分类讨论f(x)的单调性;第三步:利用单调性,求f(x)的最大值;第四步:根据要证的不等式的结构特点,构造函数g(x);第五步:求g(x)的最大值,得出要证的不等式.第六步:反思回顾,查看关键点、易错点和解题规范.第二部分大题规范练2020年2月22日【题目1】(本小题满分12分)已知函数g(x)=ax-a-ln x,f(x)=xg(x),且g(x)≥0.(1)求实数a的值;(2)证明:存在x0,f′(x0)=0且0<x0<1时,f(x)≤f(x0).【题目2】(本小题满分12分)已知函数f(x)=(2x-1)e x-a(x2+x),a∈R.(1)当a<e-12时,讨论函数f(x)的单调性;(2)设g(x)=-ax2-a,若对任意的x≤1时,恒有f(x)≥g(x),求实数a的取值范围.【题目3】(本小题满分12分)设f(x)=ln x,g(x)=12x|x|.(1)求g(x)在x=-1处的切线方程;(2)令F(x)=x·f(x)-g(x),求F(x)的单调区间;(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求实数m的取值范围.【题目4】 (本小题满分12分)已知a 为实数,函数f (x )=a ln x +x 2-4x . (1)若x =3是函数f (x )的一个极值点,求实数a 的值;(2)设g (x )=(a -2)x ,若存在x 0∈⎣⎢⎡⎦⎥⎤1e ,e ,使得f (x 0)≤g (x 0)成立,求实数a 的取值范围.【题目5】 (本小题满分12分)已知函数f (x )=(x -1)e x -mx 2+2,其中m ∈R ,e =2.718 28…为自然对数的底数. (1)当m =1时,求函数f (x )的单调区间;(2)当常数m ∈(2,+∞)时,函数f (x )在[0,+∞)上有两个零点x 1,x 2(x 1<x 2),证明:x 2-x 1>ln 4e .【题目6】 (本小题满分12分)已知函数f (x )=(x -a )e x -12ax 2+a (a -1)x (x ∈R ). (1)若曲线y =f (x )在点(0,f (0))处的切线为l ,l 与x 轴的交点坐标为(2,0),求a 的值;(2)讨论f (x )的单调性.高考解答题7——极坐标与参数方程第一部分 规范答题示范[学规范](1)消去参数t 得l 1的普通方程l 1:y =k (x -2);………………………………………1分 消去参数m 得l 2的普通方程l 2:y =1k (x +2). …………………………………………2分设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k(x +2).消去k 得x 2-y 2=4(y ≠0)❶. ………………………………………………………………3分 所以C 的普通方程为x 2-y 2=4(y ≠0). ………………………………………………4分 (2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π). ………………………5分联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0❷………………………………………………………6分得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,……………………………………………………………………………7分从而cos 2θ=910,sin 2θ=110.………………………………………………………………8分 代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,……………………………………………………9分 所以交点M 的极径为 5. ……………………………… 10分[防失误]①处消去k 后,注意等价性,易忽视y ≠0而失误.②处联立极坐标方程后,注意运算技巧,先求cos 2θ,sin 2θ,再求ρ.若直接消去θ不太容易做到.[通技法]求解极坐标方程与参数方程综合问题需过“三关”一是互化关,即会把曲线的极坐标方程、直角坐标方程、参数方程进行互化;二是几何意义关,即理解参数方程中的参数的几何意义,在解题中能加快解题速度; 三是运算关,思路流畅,还需运算认真,才能不失分.第二部分 大题规范练2020年2月23日【题目1】(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =4cos α+2,y =4sin α(α为参数),以O 为极点,以x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为θ=π6(ρ∈R ).(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|AB |的值.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+22t ,y =12-22t (t 为参数),椭圆C 的参数方程为⎩⎨⎧x =2cos α,y =sin α(α为参数).在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,点A 的极坐标为⎝ ⎛⎭⎪⎫2,π3. (1)求椭圆C 的直角坐标方程和点A 在直角坐标系下的坐标.(2)若直线l 与椭圆C 交于P ,Q 两点,求△APQ 的面积.【题目3】 (本小题满分10分)选修4-4:极坐标与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos θ,y =2sin θ(θ为参数),M 为曲线C 1上的动点,动点P 满足OP →=aOM →(a >0且a ≠1),P 点的轨迹为曲线C 2.(1)求曲线C 2的方程,并说明C 2是什么曲线;(2)在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,A 点的极坐标为⎝ ⎛⎭⎪⎫2,π3,射线θ=α与C 2的异于极点的交点为B ,已知△AOB 面积的最大值为4+23,求a 的值.在平面直角坐标系xOy 中,曲线C 1过点P (a ,1),其参数方程为⎩⎪⎨⎪⎧x =a +22t ,y =1+22t (t 为参数,a ∈R ).以O 为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+4cos θ-ρ=0.(1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)已知曲线C 1与曲线C 2交于A ,B 两点,且|AB |=8,求实数a 的值.【题目5】 (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+12t ,y =2+32t(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρsin 2θ+4sin θ=ρ.(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)已知点M 在直角坐标系中的坐标为(2,2).若直线l 与曲线C 相交于不同的两点A ,B ,求|MA |·|MB |的值.已知曲线C 1的参数方程为⎩⎨⎧x =1+2cos t ,y =2sin t(t 为参数),以射线Ox 为极轴建立极坐标系,曲线C 2的极坐标方程为2ρcos θ-ρsin θ-4=0.(1)将曲线C 1的参数方程化为普通方程,将曲线C 2的极坐标方程化为直角坐标方程,并分别指出是何种曲线;(2)曲线C 1,C 2是否有两个不同的公共点?若有,求出两公共点间的距离;若没有,请说明理由.。
2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)
2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。
2020届高考数学(理)大一轮复习:专题突破练(5) 立体几何的综合问题
专题突破练(5)立体几何的综合问题2.如图,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,A1A=AB=2,BC=1,AC=5,若规定正视方向垂直平面ACC1A1,则此三棱柱的侧视图的面积为()45C.5 D.6答案C折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°5.[2018·河南豫东、豫北十校测试]鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,原为木质结构,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经90度榫卯起来,若正四棱柱体的高为4,底面正方形的边长为1,则该鲁班锁的表面积为 ( )A.48 B .60 C .72 D .846.如图所示,已知在多面体ABC -DEFG 中,AB ,AC ,AD 两两垂直,平面ABC ∥平面DEFG ,平面BEF ∥平面ADGC ,AB =AD =DG =2,AC =EF =1,则该多面体的体积为( )A.2 B .4 C .6 D .8答案 B解析 如图所示,将多面体补成棱长为2的正方体,那么显然所求的多面体的体积即为该正方体体积的一半,于是所求几何体的体积为V =12×23=4.选B.7.[2017·湖北黄冈中学二模]一个几何体的三视图如图所示,其中正视图是边长为2的等边三角答案 B解析 由三视图可知,该几何体是半圆锥,其展开图如图所示,则依题意,点A ,M 的最短距离,即为线段AM .∵P A =PB =2,半圆锥的底面半圆的弧长为π,∴展开图中的∠BPM =πPB=π2, π5π5π答案 B解析 如图所示,为组合体的轴截面,记BO 1的长度为x ,由相似三角形的比例关系,得PO 13R=x R,则PO 1=3x ,圆柱的高为3R -3x ,所以圆柱的表面积为S =2πx 2+2πx ·(3R -3x )=-4πx 2+6πRx ,则当x =34R 时,S 取最大值,S max =94πR 2.选B.9.在正方体ABCD -A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD的中心,M ,N 分别为AB ,BC 边的中点,点Q 为平面ABCD 内一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ的值有( )A.0个 B .1个 C .2个 D .3个10. [2017·东北三省三校二模]已知三棱柱ABC -A 1B 1C 1,侧棱BB 1⊥平面ABC ,AB =2,AC =3,AA 1=14,AC ⊥BC ,将其放入一个水平放置的水槽中,使AA 1在水槽底面内,平面ABB 1A 1与水槽底面垂直,且水面恰好经过棱BB 1,现水槽底面出现一个小洞,水位下降,则在水位下降过程中,几何体露出水面部分的面积S 关于水位下降的高度h 的函数图象大致为( )答案 A1x 时,正四棱锥的体积最大,则x 为 ( )A .0.5B .0.8C .0.2D .1答案 C二、填空题13.如图,在正方体ABCD-A1B1C1D1中,P为棱DC的中点,则D1P与BC1所在直线所成角的余弦值等于________.10514.如图,已知球O的面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=2,则球O的体积等于________.答案6π解析如图,以DA,AB,BC为棱长构造正方体,设正方体的外接球球O的半径为R,则正方体的体对角线长即为球O的直径,所以64πR315.如图,用一个边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个巢,将半径为1的球体放入其中,则球心与巢底面的距离为__________.3+12解析 由题意知,折起后原正方形顶点间最远的距离为1,如图中的DC ;折起后原正方形顶点到底面的距离为12,如图中的BC .由图知球心与巢底面的距离OF =1-122+12=3+12. 16.[2017·安徽黄山第二次质检]如图所示,正方体ABCD -A ′B ′C ′D ′的棱长为1,E ,F 分别是棱AA ′,CC ′的中点,过直线EF 的平面分别与棱BB ′,DD ′交于点M ,N ,设BM=x ,x ∈[0,1].给出以下五个命题:①当且仅当x =0时,四边形MENF 的周长最大;17.[2017·河南洛阳月考]如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=4.(1)若点P为AA的中点,求证:平面B CP⊥平面B C P;值;若不存在,说明理由.解(1)证明:如图,以C为原点,CA,CB,CC1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(2,0,0),B1(0,4,4),C1(0,0,4),P(2,0,2),B(0,4,0),→→118.719.[2018·广东韶关调研]已知四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为菱形,∠ABC(2)由(1)得AE,AD,AP两两垂直,连接AM,以AE,AD,AP所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系.520.[2017·湖北黄冈期末]如图,在各棱长均为2的三棱柱ABC-A1B1C1中,侧面A1ACC1⊥底面ABC,∠A1AC=60°.(1)求侧棱AA与平面AB C所成角的正弦值的大小;1故以O为坐标原点,建立如图所示的空间直角坐标系Oxyz,。
2020年高考数学 导数 解答题专项练习(含答案详解)
2020年高考数学导数解答题专项练习(含答案解析)1.已知函数f(x)=x2-mln x,h(x)=x2-x+a.(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.2.设函数已知函数f(x)=ae x-x+1.(1)求函数f(x)的单调区间;(2)若f(x)在(0,3) 上只有一个零点,求a的取值范围;3.已知函数f(x)=lnx+a(x-1)2(a>0).(1)讨论f(x)的单调性;(2)若f(x)在区间(0,1)内有唯一的零点x0,证明:.4.已知函数f(x)=ae2x+(a﹣2) e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.5.已知函数f(x)=2lnx-2mx+x2(m>0).(1)讨论函数f(x)的单调性;(2)当时,若函数f(x)的导函数f/(x)的图象与x轴交于A,B两点,其横坐标分别为x1,x2(x1<x2),线段AB的中点的横坐标为x0,且x1,x2恰为函数h(x)=lnx-cx2-bx的零点.求证:.6.已知函数,g(x)=mx.(1)求函数f(x)的单调区间;(2)当a=0时,f(x)≤g(x)恒成立,求实数m的取值范围;(3)当a=1时,求证:当x>1时,.7.已知函数f(x)=x-alnx+a-1(a∈R).(I)讨论f(x)的单调性;(Ⅱ)若x∈[e a,+∞]时,f(x)≥0恒成立,求实数a的取值范围.8.已知函数R.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求实数a的取值范围.9.已知函数f(x)=ln x-kx,其中k∈R为常数.(1)讨论函数f(x)的单调性;(2)若f(x)有两个相异零点x1,x2(x1<x2),求证:ln x2>2-ln x1.10.已知函数f(x)=x-alnx,a∈R.(1)研究函数f(x)的单调性;(2)设函数f(x)有两个不同的零点x1,x2,且x1<x2.①求a的取值范围;②求证:x1x2>e2.11.设函数f(x)=ex-1-x-ax2.(1)若a=0,求f(x)的单调区间;(2)若当x≥0时f(x)≥0恒成立,求a的取值范围.12.已知函数f(x)=lnx-mx2,g(x)=0.5mx2+x,mϵR,令F(x)=f(x)+g(x).(1)求函数f(x)的单调区间;(2)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.13.已知函数f(x)=lnx-mx(m为常数).(1)讨论函数f(x)的单调区间;(2)当时, 设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx-cx2-bx的零点, 求的最小值.14.设函数f(x)=(x-1)e x-kx2.(1)当k=1时,求函数f(x)的单调区间;(2)若f(x)在x∈[0,+∞)上是增函数,求实数k的取值范围.15.已知函数f(x)=ln x+-1.(1)求函数f(x)的单调区间;(2)设m∈R,对任意的a∈(-1,1),总存在x0∈[1,e],使得不等式ma-f(x0)<0成立,求实数m的取值范围.16.已知函数.(1)求的单调区间;(2)设,若对任意,均存在,使得,求的取值范围.17.设函数f(x)=alnx﹣bx2.(1)当b=1时,讨论函数f(x)的单调性;(2)当a=1,b=0时,函数g(x)=f(x)﹣kx,k为常数,若函数g(x)有两个相异零点x1,x2,证明:.18.已知函数f(x)=axlnx﹣x+1(a≥0).(1)当a=1时,求f(x)的最小值;(3)证明:当m>n>1时,m n﹣1<n m﹣1.19.已知函数在处的切线与轴平行,()(1)试讨论f(x)在上的单调性;(2)①设,求g(x)的最小值;②证明:.20.已知函数f(x)=(x﹣1)2+a(lnx﹣x+1)(其中a∈R,且a为常数)(1)当a=4时,求函数y=f(x)的单调区间;(2)若对于任意的x∈(1,+∞),都有f(x)>0成立,求a的取值范围;(3)若方程f(x)+a+1=0在x∈(1,2)上有且只有一个实根,求a的取值范围.2020年高考数学 导数 解答题专项练习(含答案解析)答案解析1.解:(1)由f(x)≥h(x),得m ≤x ln x 在(1,+∞)上恒成立.令g(x)=x ln x ,则g ′(x)=ln x -1ln x 2,当x ∈(1,e)时,g ′(x)<0;当x ∈(e ,+∞)时,g ′(x)>0,所以g(x)在(1,e)上递减,在(e ,+∞)上递增.故当x=e 时,g(x)的最小值为g(e)=e.所以m ≤e.即m 的取值范围是(-∞,e].(2)由已知可得k(x)=x-2ln x-a.函数k(x)在(1,3)上恰有两个不同零点,相当于函数φ(x)=x-2ln x 与直线y=a 有两个不同的交点.φ′(x)=1-2x =x -2x ,当x ∈(1,2)时,φ′(x)<0,φ(x)递减,当x ∈(2,3)时,φ′(x)>0,φ(x)递增.又φ(1)=1,φ(2)=2-2ln 2,φ(3)=3-2ln 3,要使直线y=a 与函数φ(x)=x-2ln x 有两个交点,则2-2ln 2<a <3-2ln 3.即实数a 的取值范围是(2-2ln 2,3-2ln 3).2.解:3.解:4.解:5.解:6.解:7.解:8.解:9.解:10.解:11.解:(1)a=0时,f(x)=e x-1-x,f′(x)=e x-1.当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.故f(x)在(-∞,0)单调减少,在(0,+∞)单调增加(2)f′(x)=e x-1-2ax.由(1)知e x≥1+x,当且仅当x=0时等号成立.故f′(x)≥x-2ax=(1-2a)x,从而当1-2a≥0,即a≤0.5时,f′(x)≥0(x≥0),而f(0)=0,于是当x≥0时,f(x)≥0.由e x>1+x(x≠0)得e-x>1-x(x≠0),从而当a>时,f′(x)<e x-1+2a(e-x-1)=e-x(e x-1)(e x-2a),故当x∈(0,ln2a)时, f′(x)<0,而f(0)=0,于是当x∈(0,ln2a)时,f(x)<0,综上可得a的取值范围为(-∞,0.5].12.解:13.解:14.15.16.17.18.19.解:20.解:。
2020高考数学(文)冲刺刷题首先练辑:第三部分 2020高考仿真模拟卷(五) Word版含解析
2020高考仿真模拟卷(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合A ={x |(2x -1)(x -3)<0},B ={x |(x -1)(x -4)≤0},则(∁U A )∩B =( )A .[1,3)B .(-∞,1)∪[3,+∞)C .[3,4]D .(-∞,3)∪(4,+∞) 答案 C 解析 因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,B ={x |1≤x ≤4}, 所以∁U A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥3,所以(∁U A )∩B ={x |3≤x ≤4}. 2.在复平面内,复数z =4-7i2+3i (i 是虚数单位),则z 的共轭复数z -在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 答案 B解析 因为z =4-7i 2+3i =(4-7i )(2-3i )13=-13-26i13=-1-2i ,所以z 的共轭复数z -=-1+2i 在复平面内对应的点(-1,2)位于第二象限.3.在△ABC 中,点D 在边AB 上,且BD→=12DA →,设CB →=a ,CA →=b ,则CD →=( )A.13a +23bB.23a +13bC.35a +45bD.45a +35b 答案 B解析 因为BD→=12DA →,CB →=a ,CA →=b ,故CD →=a +BD →=a +13BA →=a +13(b -a )=23a +13b .4.(2019·济南模拟)在平面直角坐标系xOy 中,与双曲线x 24-y 23=1有相同的渐近线,且位于x 轴上的焦点到渐近线的距离为3的双曲线的标准方程为( )A.x 29-y 24=1B.x 28-y 29=1 C.x 212-y 29=1 D.x 216-y 212=1 答案 C解析 与双曲线x 24-y 23=1有相同的渐近线的双曲线的方程可设为x 24-y 23=λ(λ≠0),因为该双曲线的焦点在x 轴上,故λ>0.又焦点(7λ,0)到渐近线y =32x 的距离为3,所以21λ7=3,解得λ=3.所以所求双曲线的标准方程为x 212-y 29=1.5.若正项等比数列{a n }满足a n a n +1=22n (n ∈N *),则a 6-a 5的值是( ) A. 2 B .-16 2 C .2 D .162 答案 D解析 因为a n a n +1=22n(n ∈N *),所以a n +1a n +2=22n +2(n ∈N *),两式作比可得a n +2an=4(n ∈N *),即q 2=4,又a n >0,所以q =2,因为a 1a 2=22=4,所以2a 21=4,所以a 1=2,a 2=22,所以a 6-a 5=(a 2-a 1)q 4=16 2.6.某几何体的三视图如图所示(单位:cm),其俯视图为等边三角形,则该几何体的体积(单位:cm 3)是( )A .4 3 B.1033 C .2 3 D.833 答案 B解析 由三视图还原几何体如图所示,该几何体为直三棱柱截去一个三棱锥H -EFG ,三角形ABC 的面积S =12×2×22-12= 3.∴该几何体的体积V =3×4-13×3×2=1033.7.执行如图所示的程序框图,若输出的结果是59,则判断框中可填入的条件是( )A .i <10?B .i <9?C .i >8?D .i <8? 答案 B解析 由程序框图的功能可得S =1×⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-132×…×⎣⎢⎡⎦⎥⎤1-1(i +1)2=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1+12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1+13×…×⎝ ⎛⎭⎪⎫1-1i +1⎝ ⎛⎭⎪⎫1+1i +1=12×32×23×43×…×ii +1×i +2i +1=i +22i +2=59,所以i =8,i +1=9,故判断框中可填入i <9?.8.现有大小形状完全相同的4个小球,其中红球有2个,白球与蓝球各1个,将这4个小球排成一排,则中间2个小球不都是红球的概率为( )A.16B.13C.56D.23 答案 C解析 设白球为A ,蓝球为B ,红球为C ,则不同的排列情况为ABCC ,ACBC ,ACCB ,BACC ,BCAC ,BCCA ,CABC ,CACB ,CBCA ,CBAC ,CCAB ,CCBA 共12种情况,其中红球都在中间的有ACCB ,BCCA 两种情况,所以红球都在中间的概率为212=16,故中间两个小球不都是红球的概率为1-16=56.9.(2019·东北三省三校一模)圆周率是圆的周长与直径的比值,一般用希腊字母π表示.早在公元480年左右,南北朝时期的数学家祖冲之就得出精确到小数点后7位的结果,他是世界上第一个把圆周率的数值计算到小数点后第七位的人,这比欧洲早了约1000年.在生活中,我们也可以通过设计下面的实验来估计π的值:从区间[-1,1]内随机抽取200个数,构成100个数对(x ,y ),其中满足不等式y > 1-x 2的数对(x ,y )共有11个,则用随机模拟的方法得到的π的近似值为( )A.7825B.7225C.257D.227 答案 A解析 在平面直角坐标系中作出边长为1的正方形和单位圆,则符合条件的数对表示的点在x 轴上方、正方形内且在圆外的区域,区域面积为2-π2,由几何概型概率公式可得2-π22×2≈11100,解得π≈7825.故选A.10.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A.15B.55C.56D.22 答案 B解析 解法一:(平行线法)如图1,取DB 1的中点O 和AB 的中点M ,连接OM ,DM ,则MO ∥AD 1,∠DOM 为异面直线AD 1与DB 1所成的角.依题意得DM 2=DA 2+AM 2=1+⎝ ⎛⎭⎪⎫122=54.OD 2=⎝ ⎛⎭⎪⎫12DB 12=14×(1+1+3)=54,OM 2=⎝ ⎛⎭⎪⎫12AD 12=14×(1+3)=1.∴cos ∠DOM =OD 2+OM 2-DM 22·OD ·OM =54+1-542×52×1=15=55.解法二:(割补法)如图2,在原长方体后面补一个全等的长方体CDEF -C 1D 1E 1F 1,连接DE 1,B 1E 1.∵DE 1∥AD 1,∴∠B 1DE 1就是异面直线AD 1与DB 1所成的角.DE 21=AD 21=4,DB 21=12+12+(3)2=5. B 1E 21=A 1B 21+A 1E 21=1+4=5.∴在△B 1DE 1中,由余弦定理得cos ∠B 1DE 1=DE 21+DB 21-B 1E 212·DE 1·DB 1=4+5-52×2×5=445=55,即异面直线AD 1与DB 1所成角的余弦值为55.11.如图所示,椭圆有这样的光学性质:从椭圆的一个焦点发出的光线,经椭圆反射后,反射光线经过椭圆的另一个焦点.根据椭圆的光学性质解决下题:已知曲线C 的方程为x 2+4y 2=4,其左、右焦点分别是F 1,F 2,直线l 与椭圆C切于点P ,且|PF 1|=1,过点P 且与直线l 垂直的直线l ′与椭圆长轴交于点M ,则|F 1M |∶|F 2M |=()A.2∶ 3 B .1∶ 2 C .1∶3 D .1∶3 答案 C解析 由椭圆的光学性质可知,直线l ′平分∠F 1PF 2, 因为S △PF 1M S △PF 2M =|F 1M ||F 2M |,又S △PF 1M S △PF 2M =12|PF 1||PM |sin ∠F 1PM 12|PF 2||PM |sin ∠F 2PM =|PF 1||PF 2|,故|F 1M ||F 2M |=|PF 1||PF 2|.由|PF 1|=1,|PF 1|+|PF 2|=4,得|PF 2|=3,故|F 1M |∶|F 2M |=1∶3.12.设x 1,x 2分别是函数f (x )=x -a -x 和g (x )=x log a x -1的零点(其中a >1),则x 1+4x 2的取值范围是( )A .[4,+∞)B .(4,+∞)C .[5,+∞)D .(5,+∞) 答案 D解析 令f (x )=x -a -x =0,则1x =a x ,所以x 1是指数函数y =a x (a >1)的图象与y =1x 的图象的交点A 的横坐标,且0<x 1<1,同理可知x 2是对数函数y =log a x (a >1)的图象与y =1x 的图象的交点B 的横坐标.由于y =a x 与y =log a x 互为反函数,从而有x 1=1x 2,所以x 1+4x 2=x 1+4x 1.由y =x +4x 在(0,1)上单调递减,可知x 1+4x 2>1+41=5,故选D.二、填空题:本题共4小题,每小题5分,共20分.13.设某总体是由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.1818 0792 4544 1716 5809 7983 8619...第1行6206 7650 0310 5523 6405 0526 6238 (2)答案 19解析 由题意,从随机数表第1行的第3列数字1开始,从左到右依次选取两个数字的结果为:18,07,17,16,09,19,…,故选出来的第6个个体编号为19.14.(2019·湖南师范大学附中模拟三)若函数f (x )=2sin(ωx +φ)(ω>0,φ>0,0<φ<π)的图象经过点⎝ ⎛⎭⎪⎫π6,2,且相邻两条对称轴间的距离为π2,则f ⎝ ⎛⎭⎪⎫π4的值为________.答案3解析 由题意得2πω=π,∴ω=2,则f (x )=2sin(2x +φ),又函数的图象经过点⎝ ⎛⎭⎪⎫π6,2,则sin ⎝ ⎛⎭⎪⎫π3+φ=1,∵0<φ<π,∴φ=π6,即f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6,则f ⎝ ⎛⎭⎪⎫π4=2sin ⎝ ⎛⎭⎪⎫π2+π6= 3.15.已知抛物线y 2=2px (p >0)的准线方程为x =-2,点P 为抛物线上的一点,则点P 到直线y =x +3的距离的最小值为________.答案 22解析 由题设得抛物线方程为y 2=8x , 设P 点坐标为P (x ,y ), 则点P 到直线y =x +3的距离为 d =|x -y +3|2=|8x -8y +24|82=|y 2-8y +24|82=|(y -4)2+8|82≥22,当且仅当y =4时取最小值22.16.(2019·南宁摸底考试)在数列{a n }中,a 1=-2,a n a n -1=2a n -1-1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1,则数列{a n }的通项公式为a n =________,数列{b n }的前n 项和S n 的最小值为________.答案3n -13n -4-13 解析 由题意知,a n =2-1a n -1(n ≥2,n ∈N *),∴b n =1a n -1=1⎝ ⎛⎭⎪⎫2-1a n -1-1=a n -1a n -1-1=1+1a n -1-1=1+b n -1,即b n -b n -1=1(n ≥2,n ∈N *).又b 1=1a 1-1=-13,∴数列{b n }是以-13为首项,1为公差的等差数列,∴b n =n -43,即1a n -1=n -43,∴a n =3n -13n -4.又b 1=-13<0,b 2=23>0,∴S n 的最小值为S 1=b 1=-13.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知A ≠π2,且3sin A cos B +12b sin2A =3sin C .(1)求a 的值;(2)若A =2π3,求△ABC 周长的最大值.解 (1)由3sin A cos B +12b sin2A =3sin C ,得3sin A cos B +b sin A cos A =3sin C ,由正弦定理,得3a cos B +ab cos A =3c ,由余弦定理,得3a ·a 2+c 2-b 22ac +ab ·b 2+c 2-a 22bc =3c ,整理得(b 2+c 2-a 2)(a -3)=0,因为A ≠π2,所以b 2+c 2-a 2≠0,所以a =3.(另解:由sin C =sin(A +B )=sin A cos B +cos A sin B 代入条件变形即可)6分 (2)在△ABC 中,A =2π3,a =3,由余弦定理得,9=b 2+c 2+bc ,因为b 2+c 2+bc =(b +c )2-bc ≥(b +c )2-⎝⎛⎭⎪⎫b +c 22=34(b +c )2,所以34(b +c )2≤9,即(b +c )2≤12,所以b +c ≤23,当且仅当b =c =3时,等号成立.故当b =c =3时,△ABC 周长的最大值为3+2 3.12分18.(2019·黑龙江齐齐哈尔市二模)(本小题满分12分)某县共有户籍人口60万,经统计,该县60岁及以上、百岁以下的人口占比为13.8%,百岁及以上老人15人.现从该县60岁及以上、百岁以下的老人中随机抽取230人,得到如下频数分布表:解他们的生活状况,则80岁及以上老人应抽多少人?(2)从(1)中所抽取的80岁及以上老人中,再随机抽取2人,求抽到90岁及以上老人的概率;(3)该县按省委办公厅、省人民政府办公厅《关于加强新时期老年人优待服务工作的意见》精神,制定如下老年人生活补贴措施,由省、市、县三级财政分级拨款:①本县户籍60岁及以上居民,按城乡居民养老保险实施办法每月领取55元基本养老金;②本县户籍80岁及以上老年人额外享受高龄老人生活补贴. (a)百岁及以上老年人,每人每月发放345元的生活补贴;(b)90岁及以上、百岁以下老年人,每人每月发放200元的生活补贴; (c)80岁及以上、90岁以下老年人,每人每月发放100元的生活补贴. 试估计政府执行此项补贴措施的年度预算.解 (1)样本中70岁及以上老人共105人,其中80岁及以上老人30人,所以应抽取的21人中,80岁及以上老人应抽30×21105=6人.3分(2)在(1)中所抽取的80岁及以上的6位老人中,90岁及以上老人1人,记为A ,其余5人分别记为B ,C ,D ,E ,F ,从中任取2人,基本事件共15个:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),这15个基本事件发生的可能性相等.6分记“抽到90岁及以上老人”为事件M ,则M 包含5个基本事件, 所以P (M )=515=13.8分(3)样本中230人的月预算为230×55+25×100+5×200=16150(元),10分 用样本估计总体,年预算为⎝ ⎛⎭⎪⎫16150×6×105×13.8%230+400×15×12=6984×104(元).所以政府执行此项补贴措施的年度预算为6984万元.12分19.(2019·湖南长沙长郡中学一模)(本小题满分12分)如图,在多边形ABPCD 中(图1),四边形ABCD 为长方形,△BPC 为正三角形,AB =3,BC =32,现以BC 为折痕将△BPC 折起,使点P 在平面ABCD 内的射影恰好在AD 上(图2).(1)证明:PD ⊥平面P AB ;(2)若点E 在线段PB 上,且PE =13PB ,当点Q 在线段AD 上运动时,求三棱锥Q -EBC 的体积.解 (1)证明:过点P 作PO ⊥AD ,垂足为O . 由于点P 在平面ABCD 内的射影恰好在AD 上,∴PO ⊥平面ABCD ,∴PO ⊥AB ,∵四边形ABCD 为矩形,∴AB ⊥AD ,又AD ∩PO =O ,∴AB ⊥平面P AD ,2分∴AB ⊥PD ,AB ⊥P A ,又由AB =3,PB =32,可得P A =3,同理PD =3,又AD =32,∴P A 2+PD 2=AD 2, ∴P A ⊥PD ,且P A ∩AB =A , ∴PD ⊥平面P AB .5分(2)设点E 到底面QBC 的距离为h ,则V Q -EBC =V E -QBC =13S △QBC ×h ,由PE =13PB ,可知BE BP =23,7分∴h PO =23,∵P A ⊥PD ,且P A =PD =3, ∴PO =P A ·PD AD =322,∴h =23×322=2,9分 又S △QBC =12×BC ×AB =12×32×3=922, ∴V Q -EBC =13S △QBC ×h =13×922×2=3.12分20.(本小题满分12分)抛物线y 2=4x 的焦点为F ,过F 的直线交抛物线于A ,B 两点.(1)若点T (-1,0),且直线AT ,BT 的斜率分别为k 1,k 2,求证:k 1+k 2为定值; (2)设A ,B 两点在抛物线的准线上的射影分别为P ,Q ,线段PQ 的中点为R ,求证:AR ∥FQ .证明 (1)设直线AB :my =x -1,A (x 1,y 1),B (x 2,y 2), ⎩⎨⎧ my =x -1,y 2=4x ,可得y 2-4my -4=0,⎩⎨⎧y 1+y 2=4m ,y 1y 2=-4,3分 k 1+k 2=y 1x 1+1+y 2x 2+1=y 1(x 2+1)+y 2(x 1+1)(x 1+1)(x 2+1)=y 1x 2+y 2x 1+(y 1+y 2)(x 1+1)(x 2+1)=y 1(my 2+1)+y 2(my 1+1)+(y 1+y 2)(my 1+1+1)(my 2+1+1)=2my 1y 2+2(y 1+y 2)(my 1+2)(my 2+2)=2m (-4)+2×4m(my 1+2)(my 2+2)=0.6分(2)A (x 1,y 1),P (-1,y 1),Q (-1,y 2),R ⎝ ⎛⎭⎪⎫-1,y 1+y 22,F (1,0), k AR =y 1+y 22-y 1-1-x 1=y 1-y 221+x 1=y 1-y 22(1+x 1),k QF =y 2-0-1-1=-y 22,8分k AR -k QF =y 1-y 22(1+x 1)+y 22=y 1-y 2+y 2(1+x 1)2(1+x 1)=y 1-y 2+y 2(my 1+2)2(1+x 1)=(y 1+y 2)+my 1y 22(1+x 1)=4m +m ×(-4)2(1+x 1)=0,即k AR =k QF ,所以直线AR 与直线FQ 平行.12分21.(2019·山东潍坊一模)(本小题满分12分)已知函数f (x )=x ln x -(a +1)x ,g (x )=f (x )-a ⎝ ⎛⎭⎪⎫12x 2-x -1,a ∈R .(1)当x >1时,求f (x )的单调区间;(2)设F (x )=e x +x 3+x ,若x 1,x 2为函数g (x )的两个不同极值点,证明:F (x 1x 22)>F (e 2).解 (1)f ′(x )=1+ln x -a -1=ln x -a ,若a ≤0,x ∈(1,+∞),f ′(x )>0,f (x )单调递增, 若a >0,由ln x -a =0,解得x =e a ,2分 且x ∈(1,e a ),f ′(x )<0,f (x )单调递减, x ∈(e a ,+∞),f ′(x )>0,f (x )单调递增.综上,当a ≤0时,f (x )的单调递增区间为(1,+∞);当a >0时,f (x )的单调递增区间为()e a,+∞,单调递减区间为(1,e a ).5分 (2)证明:F ′(x )=e x +3x 2+1>0,故F (x )在R 上单调递增,即证x 1x 22>e 2,也即证ln x 1+2ln x 2>2,又g (x )=x ln x -ax -x -a 2x 2+ax +a =x ln x -a2x 2-x +a ,g ′(x )=1+ln x -ax -1=ln x -ax ,所以x 1,x 2为方程ln x =ax 的两根,即⎩⎨⎧ln x 1=ax 1, ①ln x 2=ax 2, ②即证ax 1+2ax 2>2,即a (x 1+2x 2)>2, 而①-②得a =ln x 1-ln x 2x 1-x 2,8分即证ln x 1-ln x 2x 1-x 2·(x 1+2x 2)>2,则证ln x 1x 2·x 1+2x 2x 1-x 2>2,变形得ln x 1x 2·x 1x 2+2x 1x 2-1>2,不妨设x 1>x 2,t =x 1x 2>1,即证ln t ·t +2t -1>2,整理得ln t -2(t -1)t +2>0,设h (t )=ln t -2(t -1)t +2,则h ′(t )=1t -6(t +2)2=t 2-2t +4t (t +2)2=(t -1)2+3t (t +2)2>0,∴h (t )在(1,+∞)上单调递增,h (t )>h (1)=0,即结论成立.12分(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的方程为x 22+y 2=1,曲线C 2的参数方程为⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),曲线C 3的方程为y =x tan α⎝ ⎛⎭⎪⎫0<α<π2,x >0,曲线C 3与曲线C 1,C 2分别交于P ,Q 两点.(1)求曲线C 1,C 2的极坐标方程; (2)求|OP |2·|OQ |2的取值范围.解 (1)因为x =ρcos θ,y =ρsin θ,所以曲线C 1的极坐标方程为 ρ2cos 2θ2+ρ2sin 2θ=1,即ρ2=21+sin 2θ,2分由⎩⎨⎧x =cos φ,y =1+sin φ(φ为参数),消去φ, 即得曲线C 2的直角坐标方程为x 2+(y -1)2=1, 将x =ρcos θ,y =ρsin θ,代入化简, 可得曲线C 2的极坐标方程为ρ=2sin θ.5分 (2)曲线C 3的极坐标方程为θ=α⎝ ⎛⎭⎪⎫ρ>0,0<α<π2.6分由(1)得|OP |2=21+sin 2α,|OQ |2=4sin 2α, 即|OP |2·|OQ |2=8sin 2α1+sin 2α=81sin 2α+1,8分因为0<α<π2,所以0<sin α<1, 所以|OP |2·|OQ |2∈(0,4).10分23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -5|-|x +3|. (1)解关于x 的不等式f (x )≥x +1;(2)记函数f (x )的最大值为m ,若a >0,b >0,e a ·e 4b =e 2ab -m ,求ab 的最小值. 解 (1)当x ≤-3时,由5-x +x +3≥x +1,得x ≤7,所以x ≤-3;当-3<x <5时,由5-x -x -3≥x +1,得x ≤13,所以-3<x ≤13;当x ≥5时,由x -5-x -3≥x +1,得x ≤-9,无解.4分综上可知,x ≤13,即不等式f (x )≥x +1的解集为⎝ ⎛⎦⎥⎤-∞,13.5分(2)因为|x -5|-|x +3|≤|x -5-x -3|=8,所以函数f (x )的最大值m =8.6分 因为e a ·e 4b =e 2ab -8,所以a +4b =2ab -8.又a >0,b >0,所以a +4b ≥24ab =4ab ,当且仅当a =4b 时,等号成立,7分所以2ab -8-4ab ≥0,即ab -4-2ab ≥0. 所以有(ab -1)2≥5.8分又ab >0,所以ab ≥1+5或ab ≤1-5(舍去),ab≥6+25,即ab的最小值为6+2 5.10分。
2020年山东省高考数学试卷试卷及解析(26页)
2020年山东省高考数学试卷试卷及解析(26页)一、选择题(每小题5分,共50分)1. 设集合A={x|x^25x+6=0},B={x|x^23x+2=0},则A∩B=()A. {1}B. {2}C. {1,2}D. { }2. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最大值为M,则M的取值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 54. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√35. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i6. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为()A. 0B. 1C. 2D. 37. 已知函数f(x)=x^33x+1,若f(x)在区间[1,1]上的最小值为n,则n的取值为()A. 0B. 1C. 2D. 38. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为()A. 2B. 3C. 4D. 59. 已知正三角形ABC的边长为2,点D在边AB上,且AD=1,则三角形ACD的面积S为()A. √3/2B. √3C. 3√3/2D. 2√310. 已知复数z满足|z|=1,且z^2+z+1=0,则z的值为()A. 1+iB. 1+iC. 1iD. 1i二、填空题(每小题5分,共20分)11. 若log2(3x2)=1,则x的值为_________。
12. 已知函数f(x)=x^24x+3,若f(x)在区间[1,3]上的最小值为m,则m的取值为_________。
13. 已知等差数列{an}的前n项和为Sn,若S4=28,S8=88,则数列{an}的公差d为_________。
2020年高考文科数学新课标第一轮总复习练习:5_3等比数列及其前n项和
课时规范练A组基础对点练1.已知等比数列{a n}满足a1=3,a1+a3+a5=21,则a3+a5+a7=(B) A.21 B.42C.63 D.842.(2018·石家庄质检)在等比数列{a n}中,a2=2,a5=16,则a6=(C) A.14 B.28C.32 D.643.(2017·邢台摸底考试)已知数列{a n}为等比数列,a5=1,a9=81,则a7=(B) A.9或-9 B.9C.27或-27 D.27解析:∵数列{a n}为等比数列,且a5=1,a9=81,∴a27=a5a9=1×81=81,∴a7=±9.当a7=-9时,a26=1×(-9)=-9不成立,舍去.∴a7=9.故选B.4.(2018·昆明调研测试)已知等差数列{a n}的公差为2,且a4是a2与a8的等比中项,则{a n}的通项公式a n=(B)A.-2n B.2nC.2n-1 D.2n+1解析:由题意,得a2a8=a24,又a n=a1+2(n-1),所以(a1+2)(a1+14)=(a1+6)2,解得a1=2,所以a n=2n.故选B.5.在等比数列{a n}中,S n表示前n项和,若a3=2S2+1,a4=2S3+1,则公比q 等于(D)A.-3 B.-1C.1 D.3解析:在等比数列{a n}中,∵a3=2S2+1,a4=2S3+1,∴a4-a3=2S3+1-(2S2+1)=2(S3-S2)=2a3,∴a4=3a3,=3.故选D.∴q=a4a36.我国古代有用一首诗歌形式提出的数列问题:远望巍巍塔七层,红灯向下成倍增.共灯三百八十一,请问塔顶几盏灯?(C)A.5 B.4C.3 D.27.若等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=(D)A.5 B.9C.log345 D.10解析:由等比数列性质知a5a6=a4a7,又a5a6+a4a7=18,∴a5a6=9,则原式=log3a1a2…a10=log3(a5a6)5=10.8.已知等比数列{a n}的前n项和为S n,若a25=2a3a6,S5=-62,则a1的值是__-2__.9.(2018·重庆调研)在各项均为正数的等比数列{a n}中,若a5=5,则log5a1+log5a2+…+log5a9=__9__.解析:因为数列{a n}是各项均为正数的等比数列,所以由等比数列的性质,可得a1·a9=a2·a8=a3·a7=a4·a6=a25=52,则log5a1+log5a2+…+log5a9=log5(a1·a2·…·a9) =log5[(a1·a9)·(a2·a8)·(a3·a7)·(a4·a6)·a5]=log5a95=log559=9. 10.(2018·洛阳统考)已知各项均不为零的数列{a n}的前n项和为S n,且满足a1=3S n+4(n∈N*).=4,a n+1(1)求数列{a n}的通项公式;(2)设数列{b n }满足a n b n =log 2a n ,数列{b n }的前n 项和为T n ,求证:T n <89. 解析:(1)因为a n +1=3S n +4, 所以a n =3S n -1+4(n ≥2),两式相减,得a n +1-a n =3a n ,即a n +1=4a n (n ≥2). 又a 2=3a 1+4=16=4a 1,所以数列{a n }是首项为4,公比为4的等比数列,所以a n =4n . (2)证明:因为a n b n =log 2a n ,所以b n =2n4n , 所以T n =241+442+643+ (2)4n , 14T n =242+443+644+…+2n 4n +1, 两式相减得,34T n =24+242+243+244+…+24n -2n 4n +1=2⎝ ⎛⎭⎪⎫14+142+143+144+…+14n -2n 4n +1 =2×14⎝ ⎛⎭⎪⎫1-14n 1-14-2n 4n +1=23-23×4n -2n 4n +1 =23-6n +83×4n +1, 所以T n =89-6n +89×4n <89.11.(2017·合肥质检)在数列{a n }中,a 1=12,a n +1=n +12n a n ,n ∈N *. (1)求证:数列{a nn }为等比数列; (2)求数列{a n }的前n 项和S n .解析:(1)证明:由a n +1=n +12n a n ,知a n +1n +1=12·a nn ,∴⎩⎨⎧⎭⎬⎫a n n 是以12为首项,12为公比的等比数列. (2)由(1)知⎩⎨⎧⎭⎬⎫a n n 是首项为12,公比为12的等比数列,∴a n n =⎝ ⎛⎭⎪⎫12n ,∴a n =n 2n ,∴S n =121+222+…+n2n ,①则12S n =122+223+…+n2n +1,②①-②,得12S n =12+122+123+…+12n -n2n +1=1-n +22n +1,∴S n =2-n +22n .B 组 能力提升练1.已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2=( C ) A .2 B.1 C.12D.18解析:设等比数列{a n }的公比为q ,a 1=14,a 3a 5=4(a 4-1),由题可知q ≠1,则a 1q 2×a 1q 4=4(a 1q 3-1),∴116×q 6=4⎝ ⎛⎭⎪⎫14×q 3-1,∴q 6-16q 3+64=0,∴(q 3-8)2=0,∴q 3=8,∴q =2,∴a 2=12.故选C.2.(2018·安徽质检)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗.羊主曰:“我羊食半马,”马主曰:“我马食半牛,”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我的羊所吃的禾苗只有马的一半.”马主人说:“我的马所吃的禾苗只有牛的一半.”打算按此比率偿还,他们各应偿还多少?已知牛、马、羊的主人各应偿还粟a 升,b 升,c 升,1斗为10升,则下列判断正确的是( D )A .a ,b ,c 依次成公比为2的等比数列,且a =507 B .a ,b ,c 依次成公比为2的等比数列,且c =507 C .a ,b ,c 依次成公比为12的等比数列,且a =507 A .a ,b ,c 依次成公比为12的等比数列,且c =507解析:由题意,可得a ,b ,c 依次成公比为12的等比数列,b =12a ,c =12b ,故4c +2c +c =50,解得c =507.故选D.3.在各项均为正数的等比数列{a n }中,若a m +1·a m -1=2a m (m ≥2),数列{a n }的前n 项积为T n ,若T 2m -1=512,则m 的值为( B ) A .4 B.5 C .6D.7解析:由等比数列的性质,可知a m +1·a m -1=a 2m =2a m (m ≥2),所以a m =2,即数列{a n }为常数列,a n =2,所以T 2m -1=22m -1=512=29,即2m -1=9,所以m =5,故选B.4.(2018·贵阳适应性考试)已知等比数列{a n }的前n 项和为S n ,且a 1=12,a 2a 6=8(a 4-2),则S 2 018=( A ) A .22 017-12 B.1-⎝ ⎛⎭⎪⎫12 2 017C .22 018-12D.1-⎝ ⎛⎭⎪⎫12 2 018解析:由a 1=12,a 2a 6=8(a 4-2),得q 6-16q 3+64=0,所以q 3=8,即q =2,所以S 2 018=a 1(1-q 2 018)1-q=22 017-12.故选A.5.(2016·高考天津卷)设{a n }是首项为正数的等比数列,公比为q ,则“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的( C ) A .充要条件 B.充分而不必要条件 C .必要而不充分条件D.既不充分也不必要条件解析:由题意,得a n =a 1q n -1(a 1>0),a 2n -1+a 2n =a 1q 2n -2+a 1q 2n -1=a 1q 2n -2(1+q ).若q <0,因为1+q 的符号不确定,所以无法判断a 2n -1+a 2n 的符号;反之,若a 2n -1+a 2n <0,即a 1q 2n -2(1+q )<0,可得q <-1<0.故“q <0”是“对任意的正整数n ,a 2n -1+a 2n <0”的必要而不充分条件,故选C.6.若等比数列{a n }的各项均为正数,前4项的和为9,积为814,则前4项倒数的和为( D ) A.32 B.94 C .1D.2解析:设等比数列{a n }的首项为a 1,公比为q ,则第2,3,4项分别为a 1q ,a 1q 2,a 1q 3,依题意得a 1+a 1q +a 1q 2+a 1q 3=9①,a 1·a 1q ·a 1q 2·a 1q 3=814⇒a 21q 3=92②,①÷②得a 1+a 1q +a 1q 2+a 1q 3a 21q 3=1a 1+1a 1q +1a 1q 2+1a 1q 3=2.故选D. 7.已知等比数列{a n }的各项都是正数,且3a 1,12a 3,2a 2成等差数列,则a 8+a 9a 6+a 7=( D ) A .6 B.7 C .8D.9解析:∵3a 1,12a 3,2a 2成等差数列,∴a 3=3a 1+2a 2, ∴q 2-2q -3=0,∴q =3或q =-1(舍去).∴a 8+a 9a 6+a 7=a 1q 7+a 1q 8a 1q 5+a 1q 6=q 2+q 31+q=q 2=32=9.故选D. 8.(2018·合肥质检)已知数列{a n }的前n 项和为S n ,若3S n =2a n -3n ,则a 2 018=( A ) A .22 018-1 B.32 018-6 C.⎝ ⎛⎭⎪⎫12 2 018-72 D.⎝ ⎛⎭⎪⎫13 2 018-103 解析:因为3S n =2a n -3n ,所以当n =1时,3S 1=3a 1=2a 1-3,所以a 1=-3;当n ≥2时,3a n =3S n -3S n -1=(2a n -3n )-(2a n -1-3n +3),所以a n =-2a n -1-3,即a n +1=-2(a n -1+1),所以数列{a n +1}是以-2为首项,-2为公比的等比数列.则a n +1=-2×(-2)n -1=(-2)n ,所以a n =(-2)n -1,所以a 2 018=(-2)2 018-1=22 018-1,故选A.9.(2018·郑州质量预测)已知数列{a n }满足log 2a n +1=1+log 2a n (n ∈N *),且a 1+a 2+a 3+…+a 10=1,则log 2(a 101+a 102+…+a 110)=__100__.解析:由log 2a n +1=1+log 2a n ,可得log 2a n +1=log 22a n ,即a n +1=2a n ,所以数列{a n }是以a 1为首项,2为公比的等比数列.又a 1+a 2+…+a 10=1,所以a 101+a 102+…+a 110=(a 1+a 2+…+a 10)×2100=2100, 所以log 2(a 101+a 102+…+a 110)=log 22100=100.10.已知等比数列{a n }中,a 2=1,则其前3项的和S 3的取值范围是__(-∞,-1]∪[3,+∞)__.解析:当q >0时,S 3=a 1+a 2+a 3=1+a 1+a 3≥1+2a 1a 3=1+2a 22=3; 当q <0时,S 3=a 1+a 2+a 3=1+a 1+a 3≤1-2a 1a 3=1-2a 22=-1, 所以S 3的取值范围是(-∞,-1]∪[3,+∞).11.(2018·石家庄质检)已知数列{a n }是各项均为正数的等比数列,若a 1=1,a 2·a 4=16.(1)设b n =log 2a n ,求数列{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和S n . 解析:(1)设数列{a n }的公比为q (q >0),由⎩⎪⎨⎪⎧a 1=1,a 2a 4=16,得q 4=16,所以q =2,则a n =2n -1. 又b n =log 2a n ,所以b n =n -1. (2)由(1)可知a n ·b n =(n -1)·2n -1,则S n =0×20+1×21+2×22+…+(n -1)·2n -1, 2S n =0×21+1×22+2×23+…+(n -1)·2n , 两式相减,得-S n =2+22+23+…+2n -1-(n -1)·2n =2-2n 1-2-(n -1)·2n =2n (2-n )-2, 所以S n =2n (n -2)+2.12.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0. 由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0,得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)由(1)得S n =1-⎝⎛⎭⎪⎫λλ-1n. 由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132, 即⎝ ⎛⎭⎪⎫λλ-15=132,解得λ=-1.。
2020年高考数学 大题专项练习 导数与函数 五(15题含答案解析)
2020年高考数学 大题专项练习导数与函数 五1.已知函数f(x)=lnx -x ,g(x)=ax 2+2x(a<0).(1)求函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最值; (2)求函数h(x)=f(x)+g(x)的极值点. 2.已知函数f(x)=x 3-3x 2+2x ,g(x)=tx ,.(1)求函数的单调增区间;(2)令h(x)=f(x)-g(x),且函数h(x)有三个彼此不相等的零点0,m,n ,其中m<n . ①若n=2m ,求函数h(x)在x=m 处的切线方程; ②若对,恒成立,求实数t 的取值范围.3.已知函数f(x)=xlnx.(1)若函数,求g(x)的极值;(2)证明:f(x)+1<e x-x 2. (参考数据:,,,)4.已知函数f(x)=(x -1)e x+1,x ∈[0,1].(1)证明:f(x)≥0;(2)若a<e x-1x<b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.5.已知函数f(x)=e x (x -ae x).(1)当a=0时,求f(x)的极值;(2)若f(x)有两个不同的极值点,求a 的取值范围. 6.已知函数,.(1)当m<1时,讨论函数f(x)的单调性; (2)若函数f(x)有两个极值点x 1,x 2,且x 1<x 2.求证.7.已知(1)求函数的单调区间; (2)求函数在上的最小值;(3)对一切的,恒成立,求实数的取值范围.8.已知函数f(x)=ln x,g(x)=21ax+b. (1)若曲线f(x)与g(x)在x=1处相切,求g(x)的表达式; (2)若φ(x)=1)1(+-x x m -f(x)在[1,+∞)上是减函数,求实数m 的取值范围.9.设函数f(x)=(1-x 2)e x.(1)讨论f(x)的单调性;(2)当x≥0时,f(x)≤ax+1,求实数a 的取值范围.10.已知函数,(为自然对数的底数).(1)求函数的最小值;(2)若对任意的恒成立,求实数的值;(3)在(2)的条件下,证明:.11.已知函数f(x)=xlnx+ax+1-a.(1)求证:对任意实数a,都有[f(x)]min≤1;(2)若a=2,是否存在整数k,使得在x∈(2,+∞)上,恒有f(x)>(k+1)x-2k-1成立?若存在,请求出k的最大值;若不存在,请说明理由.(e=2.71828)12.已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处有公共切线,求a,b的值;(2)当a=3,b=﹣9时,函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.13.已知函数f(x)=x +ax+b(x≠0),其中a ,b ∈R.(1)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=3x +1,求函数f(x)的解析式; (2)讨论函数f(x)的单调性;(3)若对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立,求b 的取值范围. 14.已知函数(1)求函数的极值;(2)设函数,其中k ∈R ,求函数在区间[1,e]上的最大值.15.已知函数f (x )=a x +x 2﹣xlna (a >0,a ≠1).(Ⅰ)当a >1时,求证:函数f (x )在(0,+∞)上单调递增; (Ⅱ)若函数y=|f (x )﹣t|﹣1有三个零点,求t 的值.答案解析1.解:(1)依题意,f′(x)=1x -1,令1x-1=0,解得x=1.因为f(1)=-1,f ⎝ ⎛⎭⎪⎫1e =-1-1e ,f(e)=1-e ,且1-e<-1-1e <-1, 故函数f(x)在区间⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为-1,最小值为1-e. (2)依题意,h(x)=f(x)+g(x)=lnx +ax 2+x(x>0),h′(x)=1x +2ax +1=2ax 2+x +1x,当a<0时,令h′(x)=0,则2ax 2+x +1=0. 因为Δ=1-8a>0,所以h′(x)=2ax 2+x +1x =2a (x -x 1)(x -x 2)x ,其中x 1=-1-1-8a 4a ,x 2=-1+1-8a4a.因为a<0,所以x 1<0,x 2>0,所以当0<x<x 2时,h′(x)>0; 当x>x 2时,h′(x)<0,所以函数h(x)在区间(0,x 2)内是增函数,在区间(x 2,+∞)内是减函数,故x 2=-1+1-8a4a为函数h(x)的极大值点,无极小值点.2.解:(1),所以,令 得到,所以的单调增区间是.(2)由方程得是方程的两实根,故,且由判别式得, ①若,得,故,得,因此,故函数在处的切线方程为. ②若对任意的,都有成立,所以,因为,所以, 当时,对有,所以,解得,又因为,得,则有;当时,,则存在的极大值点,且,由题意得,将代入得,进而得到,得,又因为,得,综上可知t的取值范围是或.3.解:(1),,当,,当,,在上递增,在上递减,在取得极大值,极大值为,无极大值.(2)要证f(x)+1<e x﹣x2.即证e x﹣x2﹣xlnx﹣1>0,先证明lnx≤x﹣1,取h(x)=lnx﹣x+1,则h′(x)=,易知h(x)在(0,1)递增,在(1,+∞)递减,故h(x)≤h(1)=0,即lnx≤x﹣1,当且仅当x=1时取“=”,故xlnx≤x(x﹣1),e x﹣x2﹣xlnx≥e x﹣2x2+x﹣1,故只需证明当x>0时,e x﹣2x2+x﹣1>0恒成立,令k(x)=e x﹣2x2+x﹣1,(x≥0),则k′(x)=e x﹣4x+1,令F(x)=k′(x),则F′(x)=e x﹣4,令F′(x)=0,解得:x=2ln2,∵F′(x)递增,故x∈(0,2ln2]时,F′(x)≤0,F(x)递减,即k′(x)递减,x∈(2ln2,+∞)时,F′(x)>0,F(x)递增,即k′(x)递增,且k′(2ln2)=5﹣8ln2<0,k′(0)=2>0,k′(2)=e2﹣8+1>0,由零点存在定理,可知∃x1∈(0,2ln2),∃x2∈(2ln2,2),使得k′(x1)=k′(x2)=0,故0<x <x 1或x >x 2时,k ′(x )>0,k (x )递增,当x 1<x <x 2时,k ′(x )<0,k (x )递减,故k (x )的最小值是k (0)=0或k (x 2),由k ′(x 2)=0,得=4x 2﹣1, k (x 2)=﹣2+x 2﹣1=﹣(x 2﹣2)(2x 2﹣1),∵x 2∈(2ln2,2),∴k (x 2)>0,故x >0时,k (x )>0,原不等式成立. 4.解:(1)证明:因为f ′(x)=xe x≥0,即f(x)在[0,1]上单调递增, 所以f(x)≥f(0)=0,即结论成立.(2)令g(x)=e x -1x ,则g ′(x)=x -1e x +1x2>0,x ∈(0,1), 所以当x ∈(0,1)时,g(x)<g(1)=e -1,要使e x-1x <b ,只需b≥e-1.要使e x-1x >a 成立,只需e x-ax -1>0在x ∈(0,1)恒成立,令h(x)=e x -ax -1,x ∈(0,1),则h ′(x)=e x-a.由x ∈(0,1),得e x∈(1,e). ①当a≤1时,h ′(x)>0,此时x ∈(0,1),有h(x)>h(0)=0成立,所以a≤1满足条件; ②当a≥e 时,h′(x)<0,此时x ∈(0,1),有h(x)<h(0)=0,不符合题意,舍去; ③当1<a<e 时,令h′(x)=0,得x=ln a . 当x ∈(0,ln a)时,h′(x)<0,即x ∈(0,ln a)时,h(x)<h(0)=0,不符合题意,舍去. 综上,a≤1.又b≥e-1,所以b -a 的最小值为e -2. 5.解:(1)当a=0时,f(x)=xe x ,f′(x)=(x +1)e x,令f′(x)>0,可得x>-1,故f(x)在(-1,+∞)上单调递增, 同理可得f(x)在(-∞,-1)上单调递减,故f(x)在x=-1处有极小值f(-1)=-1e .(2)依题意,可得f′(x)=(x +1-2ae x )e x=0有两个不同的实根.设g(x)=x +1-2ae x ,则g(x)=0有两个不同的实根x 1,x 2,g′(x)=1-2ae x,若a≤0,则g′(x)≥1,此时g(x)为增函数,故g(x)=0至多有1个实根,不符合要求;若a>0,则当x<ln 12a 时,g′(x)>0,当x>ln 12a时,g′(x)<0,故此时g(x)在-∞,ln 12a 上单调递增,在ln 12a ,+∞上单调递减,g(x)的最大值为gln 12a =ln 12a -1+1=ln 12a,又当x→-∞时,g(x)→-∞,当x→+∞时,g(x)→-∞,故要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0,得0<a<12或作图象知要使g(x)=0有两个不同实根,则gln 12a =ln 12a>0.设g(x)=0的两个不同实根为x 1,x 2(x 1<x 2), 当x<x 1时,g(x)<0,此时f′(x)<0; 当x 1<x<x 2时,g(x)>0,此时f′(x)>0; 当x>x 2时,g(x)<0,此时f′(x)<0.故x 1为f(x)的极小值点,x 2为f(x)的极大值点,0<a<12符合要求.综上所述,a 的取值范围为(0,0.5). 6.解:, ,令,,, 令则, 当,即时, 令则;令则.此时函数在上单调递减;在上单调递增.当,即时, 令,则; 令则, 此时函数在上单调递减; 在和上单调递增. 由知,若有两个极值点, 则且,又,是的两个根,则, ,令,则, 令,则,令,则,所以在上单调递减;在上单调递增.,,,得证.7.8.解析:9.解:(1)f′(x)=(1-2x-x2)e x,令f′(x)=0,得x=-1±2,当x∈(-∞,-1-2)时,f′(x)<0;当x∈(-1-2,-1+2)时,f′(x)>0;当x∈(-1+2,+∞)时,f′(x)<0.所以f(x)在(-∞,-1-2),(-1+2,+∞)上单调递减,在(-1-2,-1+2)上单调递增.(2)令g(x)=f(x)-ax-1=(1-x2)e x-(ax+1),令x=0,可得g(0)=0.g′(x)=(1-x2-2x)e x-a,令h(x)=(1-x2-2x)e x-a,则h′(x)=-(x2+4x+1)e x,当x≥0时,h′(x)<0,h(x)在[0,+∞)上单调递减,故h(x)≤h(0)=1-a,即g′(x)≤1-a,要使f(x)-ax-1≤0在x≥0时恒成立,需要1-a≤0,即a≥1,此时g(x)≤g(0)=0,故a≥1.综上所述,实数a的取值范围是[1,+∞).10.(1);(2);(3)证明见解析.11.解:(1)证明:由已知易得,所以令得:显然,时,<0,函数f(x)单调递减;时,>0,函数f(x)单调递增,所以,令,则由得,时,>0,函数t()单调递增;时,<0,函数t()单调递减,所以,即结论成立.(2)由题设化简可得,令,所以 由=0得①若,即时,在上,有,故函数单调递增所以 ②若,即时, 在上,有,故函数在上单调递减, 在上,有.故函数在上单调递增, 所以,在上,故欲使,只需即可令, 由得所以,时,,即单调递减又,故12.解:(1)f(x)=ax 2+1(a >0),则f ′(x)=2ax ,k 1=2a ,g(x)=x 3+bx ,则g ′(x)=3x 2+b ,k 2=3+b , 由(1,c)为公共切点,可得:2a=3+b ①又f(1)=a+1,g(1)=1+b ,∴a+1=1+b ,即a=b ,代入①式,可得:a=3,b=3. (2)当a=3,b=﹣9时,设h(x)=f(x)+g(x)=x 3+3x 2﹣9x+1则h ′(x)=3x 2+6x ﹣9, 令h'(x)=0,解得:x 1=﹣3,x 2=1;∴k ≤﹣3时,函数h(x)在(﹣∞,﹣3)上单调增,在(﹣3,1]上单调减,(1,2)上单调增,所以在区间[k ,2]上的最大值为h(﹣3)=28﹣3<k <2时,函数h(x)在区间[k ,2]上的最大值小于28 所以k 的取值范围是(﹣∞,﹣3] 13.解:(1)f′(x)=1-ax2(x≠0),由已知及导数的几何意义得f′(2)=3,则a=-8.由切点P(2,f(2))在直线y=3x +1上可得-2+b=7,解得b=9,所以函数f(x)的解析式为f(x)=x -8x+9.(2)由(1)知f′(x)=1-ax2(x≠0).当a≤0时,显然f′(x)>0,这时f(x)在(-∞,0),(0,+∞)上是增函数. 当a>0时,令f′(x)=0,解得x=±a ,当x 变化时,f′(x),f(x)的变化情况如下表:所以当a>0时,f(x)在(-∞,-a),(a ,+∞)上是增函数, 在(-a ,0),(0,a)上是减函数.(3)由(2)知,对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2,不等式f(x)≤10在⎣⎢⎡⎦⎥⎤14,1上恒成立等价于 ⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫14≤10,f 1≤10,即⎩⎪⎨⎪⎧b ≤394-4a ,b≤9-a对于任意的a ∈⎣⎢⎡⎦⎥⎤12,2成立,从而得b≤74,所以满足条件的b 的取值范围是⎝⎛⎦⎥⎤-∞,74.14.15.。
2020年高考数学浙江卷附答案解析版
c 2 , a 1 可得, b2 c2 a2 4 1 3 ,即双曲线的右支方程为 x 2 y2 1x>0 ,而点 P 还在函数
(Ⅱ)若数列 bn为等差数列,且公差d>0 ,证明:c 1c 2
c <n1
1 (n N
d
) .*
此
卷
21.如图,已知椭圆C1:
x2 y 2
12,抛物线C
:y
2 2 p2x p
>0 ,点 A 是椭圆C 1与抛物线
C2 的交点,过点 A 的直线l 交椭圆C1 于点 B ,交抛物线C2 于 M( B ,M 不同于 A ).
故选:B 【考点】交集概念 【考查能力】基本分析求解 2. 【答案】C
【解析】因为a 1 a 2i 为实数,所以a 2 0 ,∴a 2
故选:C 【考点】复数概念 【考查能力】基本分析求解 3. 【答案】B 【解析】绘制不等式组表示的平面区域如图所示,
目标函数即: y 1 x 1 z , 22
,则
z
x
2
y
的取值范围是
A. (,4] C.[5, )
B.[4, ) D. (, )
4.函数 y xcosx sinx (,) 区间[–π, π] 的图象大致为
() ()
A
B
C
D
5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm3 )是( )
A. 7
B. 14
3
3
C.3
毕业学校
姓名
考生号
2020年高考数学真题(共13套)后附解析
2020年高考数学真题(共13套)后附解析一、2020年全国甲卷高考数学真题1. 选择题(1)设a,b为实数,若|a|=b,则a的值为()A. a=bB. a=±bC. a=0D. a=±1(2)已知函数f(x)=2x+1,则f(f(1))的值为()A. 5B. 6C. 7D. 8(3)下列函数中,既是奇函数又是减函数的是()A. y=x^3B. y=x^2C. y=|x|D. y=x^3-x(4)在等差数列{an}中,若a1=1,a3=3,则数列的公差d为()A. 1B. 2C. 3D. 4(5)已知复数z=(1+i)^5,则z的实部为()A. 0B. 1C. 2D. 4(6)若点P在直线y=2x+1上,且P到原点的距离等于5,则点P的坐标为()A. (2, 5)B. (3, 7)C. (4, 9)D. (5, 11)2. 填空题(7)已知函数f(x)=x^2-2x+1,则f(x)的最小值为______。
(8)若向量a=(2, 3),b=(-1, 2),则2a-3b=______。
(9)在三角形ABC中,a=3,b=4,cosA=3/5,则sinB的值为______。
(10)已知等比数列{an}中,a1=1,公比q=2,则数列的前5项和为______。
3. 解答题(11)求函数f(x)=x^3-3x的最小值。
(12)已知函数f(x)=ax^2+bx+c(a≠0),且f(1)=3,f(-1)=5,f(2)=10,求f(x)的表达式。
(13)在△ABC中,a=5,b=8,C=120°,求△ABC的面积。
(14)已知数列{an}的通项公式为an=2^n,求证数列{an}是递增数列。
二、2020年全国乙卷高考数学真题1. 选择题(1)若函数f(x)=lg(x^2-2x),则f(x)的定义域为()A. (-∞, 0)∪(2, +∞)B. (-∞, 1)∪(1, +∞)C. (0, 2)D. (-∞, 0)∪(0, 2)(2)在等差数列{an}中,若a1=3,a5=15,则数列的公差d为()A. 3B. 4C. 5D. 6(3)已知点A(2, 3),点B在直线y=-x上,且AB的长度为5,则点B的坐标为()A. (-3, 3)B. (-3, 4)C. (-2, 2)D. (-1, 1)(4)下列函数中,既是偶函数又是周期函数的是()A. y=sinxB. y=cosxC. y=tanxD. y=e^x(5)若复数z满足|z|=1,且z的实部为正数,则z在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限(6)已知△ABC的三边长分别为a,b,c,若a^2+b^2=c^2,则△ABC是()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形2. 填空题(7)已知函数f(x)=x^2-4x+3,则f(x)的零点为______。
【每日一练】经典高考数学基础训练(5)(含参考答案)
【每日一练】经典高考数学基础训练(5)(含参考答案)一、选择题:1.已知全集U=R ,集合}{|A x y ==,集合{|0B x =<x <2},则()U C A B ⋃=A .[1,)+∞B .()1+∞,C .[0)∞,+D .()0∞,+ 2.设复数121212z i z bi z =+=+⋅,,若z 为实数,则b= A .2 B .1 C .-1 D .-2 3.在等比数列{}n a 中,如果12344060a a a a +=+=,,那么78a a += A .135 B .100 C .95 D .804.在边长为1的等边△ABC 中,设,,BC a CA b AB c a b b c c a ===⋅+⋅+⋅= ,则A .32-B .0C .32D .35.在△ABC 中,222b c a +=,则A ∠等于 A .6πB .3πC .23π D .56π 6.已知直线l m n ,,及平面α,下列命题中是假命题的是 A .若l ∥m ,m ∥n ,则l ∥n ; B .若l ∥α,n ∥α,则l ∥n . C .若l m ⊥,m ∥n ,则l n ⊥;D .若,l n α⊥∥α,则l n ⊥;7.已知函数2()f x x x c =++,若(0)f >0,()f p <0,则必有 A .(1)f p +>0 B .(1)f p +<0C .(1)f p +=0D .(1)f p +的符号不能确定8.曲线32y x x =-在横坐标为-1的点处的切线为l ,则点(3,2)P 到直线l 的距离为A .2 B .2C .2 D 9.已知{}(,)|6,0,0x y x y x y Ω=+≤≥≥,{}(,)|4,0,20A x y x y x y =≤≥-≥,若向区域Ω上随机投一点P ,则点P 落在区域A 的概率为 A .13B .23 C .19D .2910.对于函数①()|2|f x x =+,②2()(2)f x x =-,③()cos(2)f x x =-,判断如下两个命题的真假:命题甲:(2)f x +是偶函数;命题乙:()f x 在(,2)-∞上是减函数,在(2,)+∞上是增函数;能使命题甲、乙均为真的所有函数的序号是A .①②B .①③C .②D .③ 二、填空题:11.在),(41,,,,,,222a cb Sc b a C B A ABC -+=∆若其面积所对的边分别为角中A ∠则= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解答题基础练(5)
1.(2019·南昌市江西师范大学附属中学模拟)为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工月工资的中位数为39百元(假设这100名农民工的月工资均在[25,55](百元)内)且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:
(1)求m,n的值;
(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名,则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?
参考公式及数据:K2=n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
解(1)∵月工资收入在[45,50)(百元)内的人数为15,
∴月工资收入在[45,50)(百元)内的频率为15
100
=0.15.
由频率分布直方图得(0.02+2m+4n+0.01)×5+0.15=1,化简得m+2n=0.07,①由中位数可得0.02×5+2m×5+2n×(39-35)=0.5,
化简得5m+4n=0.2,②
由①②解得m =0.02,n =0.025. (2)根据题意得到列联表如下:
∴K 2=
100×(19×19-31×31)2
50×50×50×50
=5.76<10.828,
∴不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.
2.(2019·葫芦岛模拟)已知数列{a n }是公比为q 的正项等比数列,{b n }是公差d 为负数的等差数列,且满足1a 2-1a 3=d
a 1,
b 1+b 2+b 3=21,b 1b 2b 3=315.
(1)求数列{a n }的公比q 与数列{b n }的通项公式; (2)求数列{|b n |}的前10项和S 10.
解 (1)由已知得,b 1+b 2+b 3=3b 2=21,得b 2=7,
又b 1b 2b 3=(b 2-d )·b 2·(b 2+d )=(7-d )·7·(7+d )=343-7d 2=315, 得d =-2或2(舍),
所以b 1=7+2=9,b n =-2n +11(n ∈N *), 于是1a 2-1a 3=-2a 1
,
又{a n }是公比为q 的等比数列,故1a 1q -1
a 1q 2=-2a 1,
所以2q 2+q -1=0,q =-1(舍)或1
2,
综上,q =1
2,b n =11-2n (n ∈N *).
(2)设{b n }的前n 项和为T n . 令b n ≥0,11-2n ≥0,得n ≤5,
于是S 5=T 5=5(b 1+b 5)
2
=25,
易知,当n >6时,b n <0,|b 6|+|b 7|+…+|b 10| =-b 6-b 7-…-b 10=-(b 6+b 7+…+b 10) =-(T 10-T 5)=-(0-25)=25, 所以S 10=50.
3.(2019·栖霞模拟)如图,在多面体ABCDEF 中,ABCD 是菱形,∠ABC =60°,F A ⊥平面ABCD ,ED ∥F A ,且AB =F A =2ED =2.
(1)求证:平面F AC ⊥平面EFC ; (2)求多面体ABCDEF 的体积. (1)证明 连接BD 交AC 于点O ,
设FC 的中点为P ,连接OP ,EP , ∵O ,P 分别为AC ,FC 的中点, ∴OP ∥F A ,且OP =1
2F A ,
∴OP ∥ED 且OP =ED , ∴四边形OPED 为平行四边形, ∴OD ∥EP ,即BD ∥EP ,
∵F A ⊥平面ABCD ,BD ⊂平面ABCD ,∴F A ⊥BD , ∵四边形ABCD 是菱形,∴BD ⊥AC , ∵F A ∩AC =A ,F A ,AC ⊂平面F AC , ∴BD ⊥平面F AC ,即EP ⊥平面F AC , 又EP ⊂平面EFC ,∴平面F AC ⊥平面EFC . (2)解 V F -ABC =1
3S △ABC ·F A
=13×34×4×2=233, ∵平面ADEF ⊥平面ABCD , ∴C 到平面ADEF 的距离为
3
2
CD =3, ∴V C -ADEF =13×(1+2)×2
2
×3=3,
∴V ABCDEF =V F -ABC +V C -ADEF =
53
3
. 4.[选修4-4:坐标系与参数方程]
在平面直角坐标系xOy 中,已知曲线C 1:x 23+y 2
4=1,以平面直角坐标系xOy 的原点O 为极
点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :ρ(2cos α-sin α)=6.
(1)试写出直线l 的直角坐标方程和曲线C 1的参数方程;
(2)在曲线C 1上求一点P ,使点P 到直线l 的距离最大,并求出此最大值. 解 (1)由条件得ρ(2cos α-sin α)=2ρcos α-ρsin α=6, 将ρcos α=x ,ρsin α=y 代入上式得2x -y -6=0, ∴直线l 的直角坐标方程为2x -y -6=0.
由⎩⎨⎧
x
3
=cos θ,y
2=sin θ,
得⎩⎪⎨⎪⎧
x =3cos θ,y =2sin θ,
∴曲线C 1的参数方程为⎩
⎪⎨⎪⎧
x =3cos θ,
y =2sin θ(θ为参数).
(2)设点P 的坐标为(3cos θ,2sin θ), 则点P 到直线l 的距离为
d =
|23cos θ-2sin θ-6|5
=
⎪⎪⎪
⎪
4sin ⎝⎛⎭⎫π3-θ-65
,
∴当sin ⎝⎛⎭⎫π3-θ=-1,即θ=56π时,d max =|4+6|5=25,
此时点P 的坐标为⎝⎛⎭⎫-3
2,1. 5.[选修4-5:不等式选讲]
(2019·四川省名校联盟联考)已知函数f (x )=|x -a |+2a ,g (x )=|x +1|. (1)当a =1时,解不等式f (x )-g (x )≤3;
(2)当x ∈R 时,f (x )+g (x )≥4恒成立,求实数a 的取值范围. 解 (1)当a =1时,不等式f (x )-g (x )≤3, 等价于|x -1|-|x +1|≤1;
当x ≤-1时,不等式化为-(x -1)+(x +1)≤1, 即2≤1,解集为∅;
当-1<x <1时,不等式化为-(x -1)-(x +1)≤1, 解得-1
2
≤x <1;
当x ≥1时,不等式化为(x -1)-(x +1)≤1, 即-2≤1,解得x ≥1.
综上,不等式的解集为⎣⎡⎭⎫-1
2,+∞. (2)当x ∈R 时,f (x )+g (x )=|x -a |+2a +|x +1| ≥|x -a -x -1|+2a =|a +1|+2a , f (x )+g (x )≥4等价于|a +1|+2a ≥4, 若a <-1,则-(a +1)+2a ≥4,∴a ∈∅; 若a ≥-1,则a +1+2a ≥4,∴a ≥1. 综上,实数a 的取值范围为[1,+∞).。