高考数学解答题答题模板
【高考宝典】高考数学解答题常考公式及答题模板
高考数学解答题常考公式及答题模板题型一:解三角形1、正弦定理:R CcB b A a 2sin sin sin === (R 是ABC ∆外接圆的半径) 变式①:⎪⎩⎪⎨⎧===C R c B R b A R a sin 2sin 2sin 2 变式②:⎪⎪⎪⎩⎪⎪⎪⎨⎧===Rc C R bB R a A 2sin 2sin 2sin 变式③:C B A c b a sin :sin :sin ::=2、余弦定理:⎪⎪⎩⎪⎪⎨⎧-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 2222222222 变式:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧-+=-+=-+=ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2222222223、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 4、射影定理:⎪⎩⎪⎨⎧+=+=+=A b B a c A c C a b Bc C b a cos cos cos cos cos cos (少用,可以不记哦^o^)5、三角形的内角和等于 180,即π=++C B A6、诱导公式:奇变偶不变,符号看象限利用以上关系和诱导公式可得公式:⎪⎩⎪⎨⎧=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和⎪⎩⎪⎨⎧-=+-=+-=+A C B B C A CB A cos )cos(cos )cos(cos )cos(7、平方关系和商的关系:①1cos sin 22=+θθ ②θθθcos sin tan = 奇:2π的奇数倍 偶:2π的偶数倍8、二倍角公式:①θθθcos sin 22sin =②θθθθθ2222sin 211cos 2sin cos 2cos -=-=-= ⇒降幂公式:22cos 1cos 2θθ+=,22cos 1sin 2θθ-= ③θθθ2tan 1tan 22tan -=8、和、差角公式:①⎩⎨⎧-=-+=+βαβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(②⎩⎨⎧+=--=+βαβαβαβαβαβαsin sin cos cos cos(sin sin cos cos cos())③⎪⎪⎩⎪⎪⎨⎧+-=--+=+βαβαβαβαβαβαtan tan 1tan tan )tan(tan tan 1tan tan )tan( 9、基本不等式:①2ba ab +≤),(+∈R b a ②22⎪⎭⎫ ⎝⎛+≤b a ab ),(+∈R b a ③222b a ab +≤ ),(R b a ∈注意:基本不等式一般在求取值范围或最值问题中用到,比如求ABC ∆面积的最大值时。
高考数学答题万能模板
高考数学答题万能模板一、问题分析在高考数学答题过程中,我们常常遇到各种类型的题目,而每个题目又有不同的解题思路和方法。
为了提高答题效率和准确性,我们可以使用以下的万能模板来辅助解答。
二、万能模板1. 解决方案模板当遇到复杂的数学问题时,我们可以使用以下的解决方案模板来有条理地解答问题:- 问题陈述:清晰地陈述题目所给的条件和要求。
问题陈述:清晰地陈述题目所给的条件和要求。
- 思路分析:分析问题的关键点和难点,明确解题思路。
思路分析:分析问题的关键点和难点,明确解题思路。
- 公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。
公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。
- 计算过程:按照步骤进行计算,注意每一步的细节和注意事项。
计算过程:按照步骤进行计算,注意每一步的细节和注意事项。
- 最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。
最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。
2. 图形解析模板当遇到涉及图形的题目时,我们可以使用以下的图形解析模板来进行问题分析和解答:- 给定图形的特点描述。
- 根据特点分析,确定所需解题的步骤和方法。
- 运用几何相关定理和公式,进行计算和推理。
- 最后给出答案及解答的过程。
3. 数据分析模板当遇到涉及数据分析的题目时,我们可以使用以下的数据分析模板来进行问题分析和解答:- 给定数据的描述和要求。
- 理清问题的思路和逻辑,确定解题的步骤。
- 运用统计学知识和相关公式,进行数据分析和计算。
- 最后给出答案及解答的过程。
三、总结高考数学答题万能模板可以提供一个结构化的解题方法和思路,帮助我们更有效地解答各种类型的数学题目。
在使用模板时,我们要根据实际题目的要求和题型,灵活运用模板的内容,以达到解题的目的。
希望这份高考数学答题万能模板能对您有所帮助!。
高考数学答题模板
高考数学答题模板
1. 解法一:代数法
解题步骤:
(1)分析题目,根据所给条件设定变量;
(2)建立方程或不等式,表示已知的条件和要求的关系;(3)求解方程或不等式,得到结果;
(4)结合题意判断答案是否合理;
(5)若需求解区间或范围,还需分析边界条件。
2. 解法二:几何法
解题步骤:
(1)绘制清晰准确的图形,标注已知条件和要求的关系;(2)根据已知条件和要求,运用几何定理推导、引理等,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
3. 解法三:综合法
解题步骤:
(1)综合分析题目条件,确定使用代数法或几何法或两者结合进行解答;
(2)根据分析的方法,进行相应的计算和推导;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
4. 解法四:特殊问题解法
解题步骤:
(1)针对特殊问题的特点,寻找相应的解题技巧;
(2)应用特殊问题解法,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
5. 解法五:分类讨论法
解题步骤:
(1)将题目所给条件进行分类讨论;
(2)对不同情况分别进行解答;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
注意:上述为解题模板的基本框架,具体情况下可根据题目的要求和条件进行适当的调整和变化。
高中数学解答题答题模板(11个)
Asin(ωx+φ)+h 的形式或 y=Acos(ωx+φ)+h 的形式. π 如:f(x)=2sin2x+3 +1.
第二步:根据 f(x)的表达式求其周期、最值.
第三步:由 sin x、cos x 的单调性,将“ωx+φ”看作一个整体,转 化为解不等式问题.
第四步:明确规范表述结论.
π (2)∵-1≤sin2x+3≤1, π ∴-1≤2sin2x+3+1≤3.
π π π ∴当 2x+3=2+2kπ,k↔Z,即 x=12+kπ,k↔Z 时,f(x)取得最大值 3; π π 5π 当 2x+ =- +2kπ,k↔Z,即 x=- +kπ,k↔Z 时,f(x)取得最小值-1. 3 2 12
高中数学解答题答题模板 (11个)
【模板特征概述】 数学解答题是高考数学试卷中的一类重要题型, 通常是高考的把关题 和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单 纯的知识综合型转化为知识、 方法和能力的综合型解答题. 在高考考场上, 能否做好解答题, 是高考成败的关键, 因此, 在高考备考中学会怎样解题, 是一项重要的内容. 本节以著名数学家波利亚的 《怎样解题》 为理论依据, 结合具体的题目类型,来谈一谈解答数学解答题的一般思维过程、解题程 序和答题格式,即所谓的“答题模板”. “答题模板”就是首先把高考试题纳入某一类型, 把数学解题的思维过 程划分为一个个小题,按照一定的解题程序和答题格式分步解答,即化整 为零.强调解题程序化,答题格式化,在最短的时间内拟定解决问题的最 佳方案,实现答题效率的最优化.
模板 1 【例 1】
三角函数的周期性、单调性及最值问题
已知函数 f(x)=2cos x· π sinx+3 - 3sin2x+sin xcos x+1. (1)求函数 f(x)的最小正周期; (2)求函数 f(x)的最大值及最小值; (3)写出函数 f(x)的单调递增区间. 审题路线图 规范解答 不同角化同角→降幂扩角→化 f(x)=Asin(ωx+φ) +h→结合性质求解.
高中数学解答题通用答题模板
高中数学解答题通用答题模板1. 三角变换与三角函数的性质问题①解题路线图§ 不同角化同角。
§ 降幂扩角。
§ 化f(x)=Asin(ωx+φ)+h。
§ 结合性质求解。
②构建答题模板§ 化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
§ 整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x的性质确定条件。
§ 求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
§ 反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
2. 解三角函数问题①解题路线图§ 化简变形;用余弦定理转化为边的关系;变形证明。
§ 用余弦定理表示角;用基本不等式求范围;确定角的取值范围。
②构建答题模板§ 定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
§ 定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
§ 求结果。
§ 再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
3. 数列的通项、求和问题①解题路线图§ 先求某一项,或者找到数列的关系式。
§ 求通项公式。
§ 求数列和通式。
②构建答题模板§ 找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
§ 求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
§ 定方法:根据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
§ 写步骤:规范写出求和步骤。
§ 再反思:反思回顾,查看关键点、易错点及解题规范。
2020年高考数学答题步骤模板
6、诱导公式:奇变偶不变,符号看象限
sin( A B) sin C
cos( A B) cos C
利用以上关系和诱导公式可得公式: sin( A C) sin B 和 cos( A C) cos B
sin(B C) sin A
cos(B C) cos A
奇: 的奇数倍 2
高考数学解答题常考公式及答题模板
(文理通用)
题型一:解三角形
1、正弦定理: a b c 2R ( R 是 ABC 外接圆的半径) sin A sin B sin C
a 2R sin A 变式①: b 2R sin B
c 2R sin C
sin
A
a 2R
变式②:
sin
B
b 2R
sin C
Sn
a1 2, a2 a4 8
an a1 (n 1)d
a2 a4 (a1 d ) (a1 3d ) 2a1 4d 8
a1 2d 4 d 1
an a1 (n 1)d n 1
a3 am
a1 3d 4 a1 (m 1)d
m
1
a1, a3 , am
9、基本不等式:① ab a b (a,b R ) 2
② ab a b 2 (a,b R ) 2
③ ab a2 b2 (a, b R) 2
注意:基本不等式一般在求取值范围或最值问题中用到,比如求 ABC 面积的最大值时。
说明:颜色加深的是重点记忆的公式哦!
第 1 页 共 33 页
②若已知
an 1 an
q 和 a1
a ,则用等比数列通项公式 an
a1q n1
(2) an 与 Sn 的关系: an
S1 Sn
(完整版)【精排打印版】新课标高考数学答题卡模板
一般高等学校招生全国一致考试
数学答题卡
姓名_______________________________
准考据号
考生禁填:缺考考生由监考员填涂右条形码粘贴处边的缺考标志.
正确填涂1.答题前,考生先将自己的姓名、准考据号填写清楚,并仔细检
填注查监考员所粘贴的条形码;
2.选择题一定用 2B 铅笔填涂,解答题一定用0.5 毫米黑色署名涂意
错误填涂笔书写,字体工整,字迹清楚;
样事3.请依据题号次序在各题目的答题地区内作答,高出答题地区书
例√ ×○项写的答案无效;在底稿纸、试题卷上答题无效。
●4.保持卡面洁净,不要折叠、不要弄破。
一、选择题(每题 5 分,共 60 分)
1 A B C D 5ABCD 9 ABCD
2 A B C D
6ABCD 10 A B C D
3 ABCD 7ABCD 11ABCD
4 ABCD 8ABCD 12ABCD
二、填空题(每题 5 分,共 20 分)
13、____________________ 14、____________________
15、____________________ 16、____________________
三、解答题(共70 分,解答应写出文字说明,证明过程或演算步骤)
17、(本小题满分12 分)
请在各题目的答题地区内作答,高出黑色矩形边框限制地区的答案无效请在各题目的答题地区内作答,高出黑色矩形边框
19、(本小题满分12 分)
18、(本小题满分12 分)。
高考数学答题模板12个
高考数学答题模板12个高考数学答题模板12个选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集情况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题方法:选择题十大速解方法:排除法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特殊化法、数形结合法、等价转化法。
解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h的性质,写出结果。
④反思:反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
2024年新课标全国卷高考数学答题卡模板
2024年新课标全国卷高考数学答题卡模板2024年新课标全国卷高考数学答题卡模板一、选择题1、【填涂答题卡】首先,请在答题卡上的相应位置正确填涂自己的姓名、考生号、座位号等个人信息。
请注意,填涂时要仔细,避免影响后续阅卷。
2、【答题提示】接下来,请在答题卡上认真阅读答题提示,了解答题要求和注意事项。
3、【选择题答题区域】在答题卡上,选择题的答题区域位于页面的左侧。
请注意,每个小题都有单独的答题区域,不要误涂到其他题目。
4、【审题】在答题前,请认真审题,了解每个小题的考察内容,避免因理解错误而导致失分。
5、【选择答案】根据题目要求,在答题卡上选择相应的答案。
请注意,选择题的答案选项是固定的,不要选错。
二、填空题1、【填涂答题卡】在答题卡上填写相应的个人信息,包括姓名、考生号、座位号等。
2、【答题提示】认真阅读答题提示,了解答题要求和注意事项。
3、【填空题答题区域】填空题的答题区域位于答题卡的右侧。
请注意,每个小题都有单独的答题区域,不要误涂到其他题目。
4、【审题】仔细阅读题目,了解题目要求和考察内容。
5、【填写答案】根据题目要求,在答题卡上填写正确的答案。
请注意,答案要清晰、明了。
三、解答题1、【填涂答题卡】在答题卡上填写相应的个人信息,包括姓名、考生号、座位号等。
2、【答题提示】认真阅读答题提示,了解答题要求和注意事项。
3、【解答题答题区域】解答题的答题区域位于答题卡的左侧。
请注意,每个小题都有单独的答题区域,不要误涂到其他题目。
4、【审题】仔细阅读题目,了解题目要求和考察内容。
5、【解答过程】根据题目要求,在答题卡上写出完整的解答过程。
请注意,步骤要清晰、逻辑要严谨。
6、【检查】在完成解答后,请务必检查解答的正确性,确保无遗漏或错误。
四、附加题1、【填涂答题卡】在答题卡上填写相应的个人信息,包括姓名、考生号、座位号等。
2、【答题提示】认真阅读答题提示,了解答题要求和注意事项。
3、【附加题答题区域】附加题的答题区域位于答题卡的右侧。
高考数学答题模板12个
高考数学答题模板12个1500字高考数学答题模板12个1. 解方程模板:首先列出方程:a(x - m)^2 + n = b然后展开方程:ax^2 - 2amx + am^2 + n = b移项并化简:ax^2 - 2amx + am^2 + n - b = 0将方程视为一元二次方程,使用求根公式:x = (2am ±√(4a(b-n) + 4a^2m^2))/ (2a)化简并整理得最终答案。
2. 圆的相关模板:圆的标准方程:(x - a)^2 + (y - b)^2 = r^2其中,圆心为 (a, b),半径为 r。
根据题目给出的条件,代入方程中求解。
3. 三角形的模板:勾股定理:a^2 + b^2 = c^2 (三角形中,a、b 为直角边,c 为斜边)根据给出的条件,利用勾股定理求解。
4. 几何图形的模板:首先画出几何图形,标出已知的条件和需要求解的量。
根据已知条件,利用几何定理、相似性原理等,搭建等式或者比例关系,并解方程求解。
5. 求导模板:根据给出的函数关系,利用求导公式对函数进行求导。
注意计算过程的细节,利用链式法则、乘积法则等进行计算。
最后化简求解得结果。
6. 极限求解模板:对于一般的函数极限求解,可以利用函数极限的性质进行求解。
根据题目的要求,利用夹逼准则、洛必达法则等方法求解极限。
7. 统计问题模板:根据题目的要求计算平均数、方差、标准差等统计量。
注意计算过程的细节,并进行适当的整理和化简。
8. 概率问题模板:根据已知的概率模型和条件,利用概率公式计算概率。
注意计算过程的细节,并进行适当的整理和化简。
9. 计算题模板:根据题目给出的计算式和条件,一步一步进行计算。
注意计算的细节,进行适当的化简和整理。
10. 综合题模板:综合题一般包含多个题目要求,根据每个小题的要求进行分析和求解。
先分析每个小题的要求,并给出解题思路。
然后分别解答每个小题,并按照题目要求进行整理和化简。
高中数学九个答题模板
第2讲
规范解答 解 (1)依题意,直线 AB 的斜率存在,设直线 AB 的方程为 y=k(x+1), 将 y=k(x+1)代入 x2+3y2=5, 消去 y 整理得(3k2+1)x2+6k2x+3k2-5=0. 设 A(x1,y1),B(x2,y2),
则Δx1=+3x62=k4--43k362kk+22+1.13k2-5>0,
x12sin
x+
3 2 cos
x-
3sin2x+sin x·cos x+1
=2sin xcos x+ 3(cos2x-sin2x)+1
=sin 2x+ 3cos 2x+1
=2sin2x+π3+1. (1)函数 f(x)的最小正周期为22π=π.
(2)∵-1≤sin2x+3π≤1, ∴-1≤2sin2x+3π+1≤3. ∴当 2x+π3=2π+2kπ,k∈Z,即 x=1π2+kπ,k∈Z 时,f(x)取得最大值 3;
椭圆相交于 A,B 两点. (1)若线段 AB 中点的横坐标是-12,求直线 AB 的方程; (2)在 x 轴上是否存在点 M,使M→A·M→B为常数?若存在,求出点 M 的坐标;若不存在,请说明理由. 审题路线图 设 AB 的方程 y=k(x+1)→待定系数法求 k→写出 方程;设 M 存在即为(m,0)→求M→A·M→B→在M→A·M→B为常数的条件 下求 m.
∴Tn=n·3n.
第2讲
构建答题模板 第一步:令 n=1,由 Sn=f(an)求出 a1. 第二步:令 n≥2,构造 an=Sn-Sn-1,用 an 代换 Sn-Sn-1(或用 Sn- Sn-1 代换 an,这要结合题目特点),由递推关系求通项.
第三步:验证当 n=1 时的结论是否适合当 n≥2 时的结论. 如果适合,则统一“合写”;如果不适合,则应分段表示. 第四步:写出明确规范的答案.
精排打印版】新课标高考数学答题卡模板
精排打印版】新课标高考数学答题卡模板请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
普通高等学校招生全国统一考试数学答题卡姓名:_______________________________准考证号:__________________________注:条形码粘贴处缺考考生由监考员填涂右边的缺考标记。
1.答题前,考生先将自己的姓名、准考证号填写清楚,并认真检查监考员所粘贴的条形码。
2.选择题必须用2B铅笔填涂,解答题必须用0.5毫米黑色签字笔书写,字体工整,笔迹清楚;样式错误填涂无效。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠、不要弄破。
一、选择题(每小题5分,共60分)1.ABCD2.ABCD3.ABCD4.ABCD5.ABCD6.ABCD7.ABCD8.ABCD9.ABCD10.ABCD11.ABCD12.ABCD二、填空题(每小题5分,共20分)13、____________________14、____________________15、____________________16、____________________三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分12分)请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
18、删除明显有问题的段落。
19、小幅度改写每段话:1.在作答前,考生需认真填写自己的姓名和准考证号,并仔细核对监考员所粘贴的条形码。
2.选择题必须使用2B铅笔填涂,解答题必须使用0.5毫米黑色签字笔书写,字迹清晰、工整,样式错误的填涂无效。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题也无效。
4.请保持答题卡面清洁,不要折叠或弄破。
20、请在各题目的答题区域内作答,超出黑色矩形边框限定区域的答案无效。
新高考数学试卷答题卡模板
一、基本信息1. 姓名:___________2. 准考证号:___________3. 考试科目:数学二、选择题部分(共20题,每题5分,共100分)1. ()若a、b、c为等差数列,且a+c=2b,则b的值为:A. 2B. 1C. 0D. -12. ()下列函数中,有最小值的是:A. y=2x+1B. y=x^2C. y=x^3D. y=x^43. ()若向量a=(2,3),向量b=(-1,2),则向量a与向量b的夹角θ的余弦值为:A. 1/5B. 2/5C. 3/5D. 4/54. ()已知函数f(x)=x^2-2ax+1,若f(x)的图像关于直线x=a对称,则a的值为:A. 1B. 2C. 3D. 45. ()下列命题中,正确的是:A. 平方根为正数的数一定是正数B. 平方根为负数的数一定是负数C. 平方根为0的数一定是0D. 平方根为1的数一定是16. ()已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,则S10的值为:A. 55B. 60C. 65D. 707. ()若复数z满足|z+1|=|z-1|,则复数z的实部为:A. 0B. 1C. -1D. 28. ()下列函数中,是奇函数的是:A. y=x^2B. y=x^3C. y=x^4D. y=x^59. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S6的值为:A. 63B. 64C. 65D. 6610. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的模长分别为:A. 1,2B. 2,3C. 3,4D. 4,511. ()下列命题中,正确的是:A. 等差数列的通项公式为an=a1+(n-1)dB. 等比数列的通项公式为an=a1q^(n-1)C. 等差数列的前n项和公式为Sn=n(a1+an)/2D. 等比数列的前n项和公式为Sn=n(a1-an)/q12. ()若复数z满足|z|=1,则复数z的实部与虚部的和为:A. 0B. 1C. -1D. 213. ()下列函数中,是偶函数的是:A. y=x^2B. y=x^3D. y=x^514. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S7的值为:A. 127B. 128C. 129D. 13015. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的数量积为:A. 5B. 6C. 7D. 816. ()下列命题中,正确的是:A. 平方根为正数的数一定是正数B. 平方根为负数的数一定是负数C. 平方根为0的数一定是0D. 平方根为1的数一定是117. ()若复数z满足|z+1|=|z-1|,则复数z的虚部为:A. 0B. 1C. -1D. 218. ()下列函数中,是奇函数的是:B. y=x^3C. y=x^4D. y=x^519. ()若等比数列{an}的前n项和为Sn,若a1=1,公比q=2,则S8的值为:A. 255B. 256C. 257D. 25820. ()若向量a=(1,2),向量b=(2,3),则向量a与向量b的模长分别为:A. 1,2B. 2,3C. 3,4D. 4,5三、解答题部分(共2题,共50分)21. (20分)已知函数f(x)=x^3-3x^2+2,求:(1)函数f(x)的图像的顶点坐标;(2)函数f(x)在区间[0,2]上的最大值和最小值。
解答题的八个答题模板PPT课件
(1)令 cn=abnn,求数列{an}的通项公式; (2)若 bn=3n-1,求数列{an}的前 n 项和 Sn.
审题路线图
(1) anbn+1-an+1bn+2bn+1bn=0 → abnn++11-abnn=2
第22页/共70页
所以四边形AMC1D1为平行四边形, 因为C1M∥D1A. 又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1, 所以C1M∥平面A1ADD1. (2)解 方法一 如图(2),连接AC,MC. 由(1)知CD∥AM且CD=AM, 所以四边形AMCD为平行四边形,
第23页/共70页
(1)因为 0<α<π2,sin α= 22,所以 α=π4, 从而 f(α)= 22sin(2α+π4)= 22sin34π=12. (2)T=22π=π.
由 2kπ-π2≤2x+π4≤2kπ+π2,k∈Z, 得 kπ-38π≤x≤kπ+π8,k∈Z.
所以 f(x)的单调递增区间为[kπ-38π,kπ+π8],k∈Z.
可得BC=AD=MC, 由题意得∠ABC=∠DAB=60°,
所以△MBC为正三角形,
因此 AB=2BC=2,CA= 3,
以C为坐标原点,建立如图(2)所示的空间直角坐
标系C-xyz,
因此CA⊥CB.
所以 A( 3,0,0),B(0,1,0),D1(0,0, 3),
因此 M 23,21,0,所以M→D1=- 23,-12, 3,
由正弦定理,得
sin
C=bcsin
B=23×23
2=49
2 .
高考数学试卷题型模板
一、选择题1. 简答题:此类题目通常要求学生在给定的选项中选择正确答案,考查学生对基础知识的掌握程度。
2. 解答题:此类题目要求学生在给定的选项中选择正确答案,并给出简要解释或计算过程。
题目示例:(1)已知函数f(x) = 2x - 1,求f(3)的值。
A. 5B. 4C. 3D. 2(2)下列命题中,正确的是:A. 对于任意实数a,a² ≥ 0B. 对于任意实数a,a³ ≥ aC. 对于任意实数a,a² ≤ aD. 对于任意实数a,a³ ≤ a二、填空题1. 简答题:此类题目要求学生在给定的空格中填写正确答案,考查学生对基础知识的掌握程度。
2. 解答题:此类题目要求学生在给定的空格中填写答案,并给出简要解释或计算过程。
题目示例:(1)若等差数列{an}的公差为d,首项为a₁,则第n项an = __________。
(2)若函数f(x) = x² + 2x + 1在区间[0, 1]上递增,则f(0) + f(1) =__________。
三、解答题1. 计算题:此类题目要求学生进行计算,考查学生对基本运算和运算技巧的掌握程度。
题目示例:(1)计算:√(3² + 4²)。
(2)计算:(-1/2)×(-1/3)×(-1/4)×…×(-1/100)。
2. 函数题:此类题目要求学生研究函数的性质,考查学生对函数概念、图像和性质的理解程度。
题目示例:(1)已知函数f(x) = x² - 4x + 3,求f(x)的零点。
(2)设函数f(x) = x² - 2ax + a²,若f(x)的图像关于x = a对称,求a的值。
3. 数列题:此类题目要求学生研究数列的性质,考查学生对数列概念、通项公式和数列极限的理解程度。
题目示例:(1)已知数列{an}的通项公式an = n² - 2n,求前n项和Sₙ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典例1 (12分)已知m =(cos ωx ,3cos(ωx +π)),n =(sin ωx ,cos ωx ),其中ω>0,f (x )=m·n ,且f (x )相邻两条对称轴之间的距离为π2.(1)若f (α2)=-34,α∈(0,π2),求cos α的值;(2)将函数y =f (x )的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,然后向左平移π6个单位长度,得到函数y =g (x )的图象,求函数y =g (x )的单调递增区间. 审题路线图 (1)f (x )=m·n ――――→数量积运算辅助角公式得f (x )――→对称性周期性求出ω()2f α−−−−和差公式cos α (2)y =f (x )―――→图象变换y =g (x )―――→整体思想g (x )的递增区间评分细则 1.化简f (x )的过程中,诱导公式和二倍角公式的使用各给1分;如果只有最后结果没有过程,则给1分;最后结果正确,但缺少上面的某一步过程,不扣分;2.计算cos α时,算对cos(α-π3)给1分;由cos(α-π3)计算sin(α-π3)时没有考虑范围扣1分;3.第(2)问直接写出x 的不等式没有过程扣1分;最后结果不用区间表示不给分;区间表示式中不标出k ∈Z 不扣分;没有2k π的不给分.跟踪演练1 已知函数f (x )=3sin ωx cos ωx +cos 2ωx -12(ω>0),其最小正周期为π2.(1)求f (x )的表达式;(2)将函数f (x )的图象向右平移π8个单位长度,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y =g (x )的图象,若关于x 的方程g (x )+k =0在区间[0,π2]上有且只有一个实数解,求实数k 的取值范围. 解 (1)f (x )=3sin ωx cos ωx +cos 2ωx -12=32sin 2ωx +cos 2ωx +12-12=sin(2ωx +π6), 由题意知f (x )的最小正周期T =π2,T =2π2ω=πω=π2,所以ω=2,所以f (x )=sin(4x +π6).(2)将f (x )的图象向右平移π8个单位长度后,得到y =sin(4x -π3)的图象;再将所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x -π3)的图象,所以g (x )=sin(2x -π3),因为0≤x ≤π2,所以-π3≤2x -π3≤2π3,所以g (x )∈[-32,1]. 又g (x )+k =0在区间[0,π2]上有且只有一个实数解,即函数y =g (x )与y =-k 在区间[0,π2]上有且只有一个交点,由正弦函数的图象可知-32≤-k <32或-k =1, 解得-32<k ≤32或k =-1,所以实数k 的取值范围是(-32,32]∪{-1}.典例2 (12分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2.(1)求b 的值; (2)求△ABC 的面积.审题路线图 (1)利用同角公式、诱导公式→求得sin A 、sin B →利用正弦定理求b (2)方法一余弦定理求边c →S =12ac sin B方法二用和角正弦公式求sin C →S =12ab sin C评分细则 1.第(1)问:没求sin A 而直接求出sin B 的值,不扣分;写出正弦定理,但b 计算错误,得1分.2.第(2)问:写出余弦定理,但c 计算错误,得1分;求出c 的两个值,但没舍去,扣2分;面积公式正确,但计算错误,只给1分;若求出sin C ,利用S =12ab sin C 计算,同样得分.跟踪演练2 已知a ,b ,c 分别为△ABC 三个内角的对边,且3cos C +sin C =3a b, (1)求B 的大小;(2)若a +c =57,b =7,求AB →·BC →的值. 解 (1)∵3cos C +sin C =3ab, 由正弦定理可得:3cos C +sin C =3sin Asin B, ∴3cos C sin B +sin B sin C =3sin A , 3cos C sin B +sin B sin C =3sin(B +C )3cos C sin B +sin B sin C =3sin B cos C +3cos B sin C , sin B sin C =3sin C cos B , ∵sin C ≠0,∴sin B =3cos B , ∴tan B =3,又0<B <π,∴B =π3.(2)由余弦定理可得:2ac cos B =a 2+c 2-b 2=(a +c )2-2ac -b 2, 整理得:3ac =(a +c )2-b 2, 即:3ac =175-49. ∴ac =42,∴AB →·BC →=-BA →·BC →=-|BA →||BC →|·cos B =-ac ·cos B =-21.典例3 (12分)下表是一个由n 2个正数组成的数表,用a ij 表示第i 行第j 个数(i ,j ∈N *),已知数表中第一列各数从上到下依次构成等差数列,每一行各数从左到右依次构成等比数列,且公比都相等.已知a 11=1,a 31+a 61=9,a 35=48.a 11 a 12 a 13 … a 1n a 21 a 22 a 23 … a 2n a 31 a 32 a 33 … a 3n … … … … … a n 1 a n 2 a n 3 … a nn(1)求a n 1和a 4n ;(2)设b n =a 4n(a 4n -2)(a 4n -1)+(-1)n ·a n 1(n ∈N *),求数列{b n }的前n 项和S n .审题路线图 数表中项的规律―→确定a n 1和a 4n ――→化简b n 分析b n 的特征―――――→选定求和方法分组法及裂项法、公式法求和评分细则 (1)求出d 给1分,求a n 1时写出公式结果错误给1分;求q 时没写q >0扣1分; (2)b n 写出正确结果给1分,正确进行裂项再给1分; (3)缺少对b n 的变形直接计算S n ,只要结论正确不扣分; (4)当n 为奇数时,求S n 中间过程缺一步不扣分.跟踪演练3 已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a 2n =S 2n -1,n ∈N *.数列{b n }满足b n =1a n ·a n +1,n ∈N *,T n 为数列{b n }的前n 项和. (1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,不等式λT n <n +8·(-1)n 恒成立,求实数λ的取值范围. 解 (1)a 21=S 1=a 1,∵a 1≠0,∴a 1=1. ∵a 22=S 3=a 1+a 2+a 3,∴(1+d )2=3+3d ,解得d =-1或2.当d =-1时,a 2=0不满足条件,舍去,∴d =2. ∴数列{a n }的通项公式为a n =2n -1. (2)∵b n =1a n a n +1=1(2n -1)(2n +1)=12(12n -1-12n +1), ∴T n =12(1-13+13-15+…+12n -1-12n +1)=n 2n +1. ①当n 为偶数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n +8)(2n +1)n =2n +8n +17恒成立即可.∵2n +8n≥8,等号在n =2时取得,∴λ<25.②当n 为奇数时,要使不等式λT n <n +8·(-1)n 恒成立,只需不等式λ<(n -8)(2n +1)n =2n -8n -15恒成立即可.∵2n -8n 是随n 的增大而增大,∴n =1时,2n -8n 取得最小值-6,∴λ<-21.综上①②可得λ的取值范围是(-∞,-21).典例4 (12分)如图,四棱锥P —ABCD 的底面为正方形,侧面P AD ⊥底面ABCD ,P A ⊥AD ,E ,F ,H 分别为AB ,PC ,BC 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AH ⊥平面DEF .审题路线图 (1)条件中各线段的中点――――→设法利用中位线定理取PD 中点M ―――――→考虑平行关系长度关系 平行四边形AEFM ―→AM ∥EF ――――→线面平行的判定定理EF ∥平面P AD (2)平面P AD ⊥平面ABCD P A ⊥AD ―――→面面垂直的性质P A ⊥平面ABCD ―→P A ⊥DE ――――――――→正方形ABCD 中E 、H 为AB 、BC 中点DE ⊥AH ――――→线面垂直的判定定理DE ⊥平面P AH ――――→面面垂直的判定定理平面P AH ⊥平面DEF评分细则 1.第(1)问证出AE綊FM给2分;通过AM∥EF证线面平行时,缺1个条件扣1分;利用面面平行证明EF∥平面P AD同样给分;2.第(2)问证明P A⊥底面ABCD时缺少条件扣1分;证明DE⊥AH时只要指明E,H分别为正方形边AB,BC中点得DE⊥AH不扣分;证明DE⊥平面P AH只要写出DE⊥AH,DE⊥P A,缺少条件不扣分.跟踪演练4(2015·北京)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V -ABC 的体积.(1)证明 因为O ,M 分别为AB ,VA 的中点, 所以OM ∥VB ,又因为VB ⊄平面MOC ,OM ⊂平面MOC , 所以VB ∥平面MOC .(2)证明 因为AC =BC ,O 为AB 的中点, 所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC , 所以OC ⊥平面VAB . 又OC ⊂平面MOC , 所以平面MOC ⊥平面VAB .(3)解 在等腰直角三角形ACB 中,AC =BC =2, 所以AB =2,OC =1,所以等边三角形VAB 的面积S △VAB = 3. 又因为OC ⊥平面VAB .所以三棱锥C -VAB 的体积等于13·OC ·S △VAB =33,又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等, 所以三棱锥V -ABC 的体积为33.典例5 (12分)如图,AB 是圆O 的直径,C 是圆O 上异于A ,B 的一个动点,DC 垂直于圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)求证:DE⊥平面ACD;(2)若AC=BC,求平面AED与平面ABE所成的锐二面角的余弦值.审题路线图(1)(2)CA、CB、CD两两垂直―→建立空间直角坐标系―→写各点坐标―→求平面AED与平面ABE的法向量―→将所求二面角转化为两个向量的夹角评分细则 1.第(1)问中证明DC ⊥BC 和AC ⊥BC 各给1分;证明DE ∥BC 给1分;证明BC ⊥平面ACD 时缺少AC ∩DC =C ,AC ,DC ⊂平面ACD ,不扣分.2.第(2)问中建系给1分;两个法向量求出1个给2分;没有最后结论扣1分;法向量取其他形式同样给分.跟踪演练5 如图,在几何体ABCDQP 中,AD ⊥平面ABPQ ,AB ⊥AQ ,AB ∥CD ∥PQ ,CD =AD =AQ =PQ =12AB ,(1)证明:平面APD ⊥平面BDP ; (2)求二面角A —BP —C 的正弦值.方法一 (1)证明 设AQ =QP =1,则AB =2, 易求AP =BP =2, 由勾股定理可得BP ⊥AP ,而AD ⊥平面ABPQ ,所以BP ⊥DA , 又AP ∩AD =A ,故BP ⊥平面APD .而BP ⊂平面BDP ,所以平面APD ⊥平面BDP .(2)解 设M 、N 分别为AB 、PB 的中点,连接CM ,MN ,CN .易得CM ⊥平面APB ,MN ⊥PB , 故∠CNM 为二面角A —BP —C 的平面角. 结合(1)计算可得,CM ⊥MN ,CM =1, MN =22,CN =62, 于是在Rt △CMN 中,sin ∠CNM =63. 所以二面角A —BP —C 的正弦值为63. 方法二 (1)证明 如图所示,建立空间直角坐标系,点A 为坐标原点,设AB =2,依题意得A (0,0,0),B (0,2,0),C (0,1,1),D (0,0,1), Q (1,0,0), P (1,1,0),BP →=(1,-1,0),AP →=(1,1,0),AD →=(0,0,1),那么BP →·AP →=0,BP →·AD →=0,因此,BP ⊥AP ,BP ⊥AD .又AP ∩AD =A ,故BP ⊥平面APD , 而BP ⊂平面BDP , 所以平面APD ⊥平面BDP .(2)解 设平面CPB 的一个法向量为n =(x ,y ,z ), 而BC →=(0,-1,1),则BP →·n =0,BC →·n =0, 那么x -y =0,-y +z =0,令x =1可得n =(1,1,1). 又由题设,平面ABP 的一个法向量为m =(0,0,1). 所以,cos 〈m ,n 〉=m·n|m||n |=33, 可得sin 〈m ,n 〉=63. 所以二面角A —BP —C 的正弦值为63.典例6 (12分)2015年12月10日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y +z 的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一块,其综合指标为m ,从长势等级不是一级的人工种植地中任取一块,其综合指标为n ,记随机变量X =m -n ,求X 的分布列及其均值. 审题路线图 (1)对事件进行分解―→求出从10块地中任取两块的方法总数―→求出空气湿度指标相同的方法总数―→利用古典概型求概率(2)确定随机变量X的所有取值―→计算X取各个值的概率―→写分布列―→求均值评分细则 1.第(1)问中,列出空气湿度相同的情况给2分;计算概率只要式子正确给2分;2.第(2)问中,列出长势等级的给2分,只要结果正确无过程不扣分;计算概率时每个式子给1分;分布列正确写出给1分.跟踪训练6(2016·课标全国乙)某公司计划购买2台机器,该种机器使用三年后即被淘汰,机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2,从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P((3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040(元). 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080(元). 可知当n =19时所需费用的均值小于n =20时所需费用的均值,故应选n =19.典例7 (12分)(2015·山东)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q . (ⅰ)求|OQ ||OP |的值;(ⅱ)求△ABQ 面积的最大值.审题路线图 (1)椭圆C上点满足条件―→求出a 222e a b c =+已知离心率 基本量法求得椭圆C 方程(2)①P 在C 上,Q 在E 上――→P 、Q 共线设坐标代入方程―→求出|OQ ||QP |. ②直线y =kx +m 和椭圆E 方程联立――→通法研究判别式Δ并判断根与系数的关系―→ 用m ,k 表示S △OAB ―→求S △OAB 最值―――――――→利用①得S △ABQ和S △OAB关系得S △ABQ 最大值评分细则 1.第(1)问中,求a 2-c 2=b 2关系式直接得b =1,扣1分;2.第(2)问中,求|OQ ||OP |时,给出P ,Q 坐标关系给1分;无“Δ>0”和“Δ≥0”者,每处扣1分;联立方程消元得出关于x 的一元二次方程给1分;根与系数的关系写出后再给1分;求最值时,不指明最值取得的条件扣1分.跟踪演练7 已知中心在原点O ,焦点在x 轴上,离心率为32的椭圆过点(2,22).(1)求椭圆的方程;(2)设不过原点O 的直线l 与该椭圆交于P ,Q 两点,满足直线OP ,PQ ,OQ 的斜率依次成等比数列,求△OPQ 面积的取值范围.解 (1)由题意可设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则c a =32(其中c 2=a 2-b 2,c >0),且2a 2+12b 2=1,故a =2,b =1. 所以椭圆的方程为x 24+y 2=1.(2)由题意可知,直线l 的斜率存在且不为0.故可设直线l :y =kx +m (m ≠0),设P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4, 消去y ,得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 则Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,且x 1+x 2=-8km1+4k 2,x 1x 2=4(m 2-1)1+4k 2,故y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2, 因为直线OP ,PQ ,OQ 的斜率依次成等比数列, 所以y 1x 1·y 2x 2=k 2x 1x 2+km (x 1+x 2)+m 2x 1x 2=k 2,即m 2-4k 24(m 2-1)=k 2. 又m ≠0,所以k 2=14,即k =±12.由于直线OP ,OQ 的斜率存在,且Δ>0, 得0<m 2<2,且m 2≠1,设d 为点O 到直线l 的距离,则d =|2m |5,|PQ |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=5(2-m 2), 所以S =12|PQ |d =m 2(2-m 2)<m 2+2-m 22=1(m 2≠1),故△OPQ 面积的取值范围为(0,1).典例8 (12分)已知定点C (-1,0)及椭圆x 2+3y 2=5,过点C 的动直线与椭圆相交于A ,B 两点.(1)若线段AB 中点的横坐标是-12,求直线AB 的方程;(2)在x 轴上是否存在点M ,使MA →·MB →为常数?若存在,求出点M 的坐标;若不存在,请说明理由.审题路线图 (1)设AB 的方程y =k (x +1)→待定系数法求k →写出方程(2)设M 存在即为(m ,0)→求MA →·MB →→在MA →·MB →为常数的条件下求m →下结论评分细则 (1)不考虑直线AB 斜率不存在的情况扣1分; (2)不验证Δ>0,扣1分;(3)直线AB 方程写成斜截式形式同样给分; (4)没有假设存在点M 不扣分;(5)MA →·MB →没有化简至最后结果扣1分,没有最后结论扣1分.跟踪演练8 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,以原点为圆心,椭圆的短半轴长为半径的圆与直线7x -5y +12=0相切. (1)求椭圆C 的方程;(2)设A (-4,0),过点R (3,0)作与x 轴不重合的直线l 交椭圆C 于P ,Q 两点,连接AP ,AQ 分别交直线x =163于M ,N 两点,若直线MR ,NR 的斜率分别为k 1,k 2,试问:k 1k 2是否为定值?若是,求出该定值,若不是,请说明理由.解 (1)由题意得⎩⎨⎧c a =12,127+5=b ,a 2=b 2+c 2,∴⎩⎪⎨⎪⎧a =4,b =23,c =2,故椭圆C 的方程为x 216+y 212=1.(2)设直线PQ 的方程为x =my +3, P (x 1,y 1),Q (x 2,y 2),由⎩⎪⎨⎪⎧x 216+y 212=1,x =my +3,∴(3m 2+4)y 2+18my -21=0. ∴y 1+y 2=-18m 3m 2+4,y 1y 2=-213m 2+4,由A ,P ,M 三点共线可知y M 163+4=y 1x 1+4,∴y M =28y 13(x 1+4).同理可得y N =28y 23(x 2+4),∴k 1k 2=y M 163-3×y N 163-3=9y M y N 49=16y 1y 2(x 1+4)(x 2+4)∵(x 1+4)(x 2+4)=(my 1+7)(my 2+7) =m 2y 1y 2+7m (y 1+y 2)+49∴k 1k 2=16y 1y 2m 2y 1y 2+7m (y 1+y 2)+49=-127,为定值.典例9 (12分)(2015·课标全国Ⅱ)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.审题路线图 求f ′(x )――→讨论f ′(x )的符号f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.(2)分类讨论,每种情况给2分,结论1分;(3)求出最大值给2分;(4)构造函数g(a)=ln a+a-1给2分;(5)通过分类讨论得出a的范围,给2分.跟踪演练9已知函数f(x)=(ax2+bx+c)e x在[0,1]上单调递减且满足f(0)=1,f(1)=0.(1)求a的取值范围;(2)设g(x)=f(x)-f′(x),求g(x)在[0,1]上的最大值和最小值.解(1)由f(0)=1,f(1)=0,得c=1,a+b=-1,则f(x)=[ax2-(a+1)x+1]e x,f′(x)=[ax2+(a-1)x-a]e x.依题意对任意x∈(0,1),有f′(x)<0.当a>0时,因为二次函数f(x)=ax2+(a-1)x-a的图象开口向上,而f′(0)=-a<0,所以有f′(1)=(a-1)e<0,即0<a<1;当a=1时,对任意x∈(0,1)有f′(x)=(x2-1)e x<0,f(x)符合条件;当a=0时,对于任意x∈(0,1),f′(x)=-x e x<0,f(x)符合条件;当a <0时,因f ′(0)=-a >0,f (x )不符合条件. 故a 的取值范围为0≤a ≤1. (2)因g (x )=(-2ax +1+a )e x , g ′(x )=(-2ax +1-a )e x .(ⅰ)当a =0时,g ′(x )=e x >0,g (x )在x =0处取得最小值g (0)=1,在x =1处取得最大值g (1)=e.(ⅱ)当a =1时,对于任意x ∈(0,1)有g ′(x )=-2x e x <0,g (x )在x =0处取得最大值g (0)=2, 在x =1取得最小值g (1)=0.(ⅲ)当0<a <1时,由g ′(x )=0得x =1-a2a>0.①若1-a 2a ≥1,即0<a ≤13时,g (x )在[0,1]上单调递增,g (x )在x =0处取得最小值g (0)=1+a ,在x =1处取得最大值g (1)=(1-a )e.②若1-a 2a <1,即13<a <1时,g (x )在x =1-a 2a 处取得最大值121()2e ,2aaa g a a--=在x =0或x =1处取得最小值,而g (0)=1+a ,g (1)=(1-a )e ,则当13<a ≤e -1e +1时,g (x )在x =0处取得最小值g (0)=1+a ;当e -1e +1<a <1时,g (x )在x =1处取得最小值g (1)=(1-a )e.典例10 (12分)(2015·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x →讨论m 确定f ′(x )符号→证明结论(2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1――→结合(1)知f (x )min =f (0)⎩⎪⎨⎪⎧f (1)-f (0)≤e -1f (-1)-f (0)≤e -1→⎩⎪⎨⎪⎧e m -m ≤e -1e -m+m ≤e -1→构造函数g (t )=e t-t -e +1→研究g (t )单调性→寻求⎩⎪⎨⎪⎧g (m )≤0g (-m )≤0的条件→对m 讨论得适合条件的范围评分细则(1)求出导数给1分;(2)讨论时漏掉m=0扣1分;两种情况只讨论正确一种给2分;(3)确定f′(x)符号时只有结论无中间过程扣1分;(4)写出f(x)在x=0处取得最小值给1分;(5)无最后结论扣1分;(6)其他方法构造函数同样给分.跟踪演练10已知函数f(x)=ln x+1x.(1)求函数f(x)的单调区间和极值;(2)若对任意的x>1,恒有ln(x-1)+k+1≤kx成立,求k的取值范围;(3)证明:ln 222+ln 332+…+ln n n 2<2n 2-n -14(n +1) (n ∈N *,n ≥2).(1)解 f ′(x )=-ln xx2,由f ′(x )=0⇒x =1,列表如下:因此函数f (x )的增区间为(0,1),减区间为(1,+∞), 极大值f (1)=1,无极小值. (2)解 因为x >1,ln(x -1)+k +1≤kx ⇔ln (x -1)+1x -1≤k ⇔f (x -1)≤k ,所以f (x -1)max ≤k ,∴k ≥1,(3)证明 由(1)可得f (x )=ln x +1x ≤f (x )max =f (1)=1⇒ln x x ≤1-1x ,当且仅当x =1时取等号. 令x =n 2 (n ∈N *,n ≥2). 则ln n 2n 2<1-1n 2⇒ln n n 2<12(1-1n2)<12(1-1n (n +1))=12(1-1n +1n +1)(n ≥2), ln 222+ln 332+…+ln n n2 <12(1-12+13)+12(1-13+14)+…+12(1-1n +1n +1) =12(n -1+1n +1-12)=2n 2-n -14(n +1).。