高考数学答题技巧及方法模板
高中数学解答题8个答题模板与做大题的方法
高中数学解答题8个答题模板与做大题的方法高中数学解答题是每一位学生都要面对的考试难题,要想在考场上取得好成绩,就需要掌握一些答题模板和技巧。
本文将为大家分享一些高中数学解答题的8个答题模板以及做大题的方法。
一、直接套公式有些题目只需要把已知条件代入公式求解即可。
例如:已知正方形的一条对角线长度为10,求正方形面积。
解答:根据正方形对角线公式可知,正方形的边长等于对角线长度的平方除以2,即$a=\frac{\sqrt{2}}{2} \times 10=5\sqrt{2}$正方形面积为$a^2=50$。
二、代数相加减有些题目需要转换成代数式,通过相加减化简后求解。
例如:已知$\frac{x+2}{a}=\frac{4}{x-2}$,求$\frac{x^2+2x}{a^2}$的值。
解答:将已知条件转换为代数式,得到$x+2=\frac{4a}{x-2}$将$x^2+2x$用$x+2$和$x-2$表示出来,可得:$x^2+2x=(x+2)(x-2)+6$代入上式可得:$\frac{x^2+2x}{a^2}=\frac{(x+2)(x-2)+6}{a^2}=\frac{4a^2+6}{ a^2}=4+\frac{6}{a^2}$三、代数移项有些题目需要进行代数移项以消去未知量,例如:已知2x-3y=9,求y。
解答:将未知量y移至等式左侧,可得$2x-9=3y$将等式两侧同时除以3,即得y的值:$y=\frac{2x-9}{3}$。
四、因式分解有些题目需要通过因式分解来求解,例如:已知$x^2+3x-10=0$,求x。
解答:将$x^2+3x-10$进行因式分解,可得$(x+5)(x-2)=0$因此,$x=-5$或$x=2$。
五、有理化有些题目涉及分数,需要进行有理化操作,例如:已知$\frac{1}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}=a+b\sqrt{3}$,求a和b的值。
解答:分别对两个分数进行有理化,可得:$\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$,$\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$将上式代入原式,可得:$a+b\sqrt{3}=\frac{\sqrt{3}+1}{2}+\sqrt{3}-1=2\sqrt{3}-\frac{ 1}{2}$因此,a= -1/2,b= 2。
高考数学答题万能模板
高考数学答题万能模板一、问题分析在高考数学答题过程中,我们常常遇到各种类型的题目,而每个题目又有不同的解题思路和方法。
为了提高答题效率和准确性,我们可以使用以下的万能模板来辅助解答。
二、万能模板1. 解决方案模板当遇到复杂的数学问题时,我们可以使用以下的解决方案模板来有条理地解答问题:- 问题陈述:清晰地陈述题目所给的条件和要求。
问题陈述:清晰地陈述题目所给的条件和要求。
- 思路分析:分析问题的关键点和难点,明确解题思路。
思路分析:分析问题的关键点和难点,明确解题思路。
- 公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。
公式运用:根据问题所涉及的数学知识,选择适当的公式或定理进行运用。
- 计算过程:按照步骤进行计算,注意每一步的细节和注意事项。
计算过程:按照步骤进行计算,注意每一步的细节和注意事项。
- 最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。
最终结果:得出最终的答案,并且注意核对答案的有效性和合理性。
2. 图形解析模板当遇到涉及图形的题目时,我们可以使用以下的图形解析模板来进行问题分析和解答:- 给定图形的特点描述。
- 根据特点分析,确定所需解题的步骤和方法。
- 运用几何相关定理和公式,进行计算和推理。
- 最后给出答案及解答的过程。
3. 数据分析模板当遇到涉及数据分析的题目时,我们可以使用以下的数据分析模板来进行问题分析和解答:- 给定数据的描述和要求。
- 理清问题的思路和逻辑,确定解题的步骤。
- 运用统计学知识和相关公式,进行数据分析和计算。
- 最后给出答案及解答的过程。
三、总结高考数学答题万能模板可以提供一个结构化的解题方法和思路,帮助我们更有效地解答各种类型的数学题目。
在使用模板时,我们要根据实际题目的要求和题型,灵活运用模板的内容,以达到解题的目的。
希望这份高考数学答题万能模板能对您有所帮助!。
高考数学各题型答题技巧
高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。
2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。
3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。
4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。
5.了解随机事件的发生存在着规律性和随机事件概率的意义。
6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。
三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。
高考数学常考题型答题技巧
高考数学常考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)a_+b=0对于任意_都成立关于_的方程a_+b=0有无数个解a=0且b=0。
2024年高考数学的答题技巧与方法.doc
2024年高考数学的答题技巧与方法高考数学答题技巧方法1、高考数学提前进入数学情境高考数学考前要摒弃杂念,排除干扰思绪,使大脑处于“空白”状态,创设数学情境,进而酝酿高考数学思维,提前进入“角色”,通过清点用具、暗示重要知识和方法、提醒常见解题误区和自己易出现的错误等,进行针对性的自我安慰,从而减轻压力,轻装上阵,稳定情绪、增强信心,使思维单一化、数学化、以平稳自信、积极主动的心态准备应考,保证数学满分答题状态。
2、高考数学集中注意,消除焦虑怯场集中注意力是高考数学满分的基础,一定的神经亢奋和紧张,能加速神经联系,有益于积极思维,要使注意力高度集中,思维异常积极,这叫内紧,但紧张程度过重,则会走向反面,形成怯场,产生焦虑,抑制思维,所以又要清醒愉快,放得开,这叫外松好的情绪可以帮助考试在高考数学时取得满分。
3、高考数学要沉着应战良好的开端是成功的一半,从高考考试的心理角度来说,这确实是很有道理的,拿到试题后,不要急于求成、立即下手答题,而应通览一遍整套试题,摸透题情,然后稳操一两个易题熟题,让自己产生“旗开得胜”的快意,从而有一个良好的开端,以振奋精神,鼓舞信心,很快进入最佳思维状态,即发挥心理学所谓的“门坎效应”,之后做一题得一题,不断产生正激励,稳拿中低,见机攀高,冲击数学满分。
高考数学解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。
在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。
2、特殊值检验法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
3、顺推破解法利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。
4、极端性原则将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。
高考数学答题模板
高考数学答题模板
1. 解法一:代数法
解题步骤:
(1)分析题目,根据所给条件设定变量;
(2)建立方程或不等式,表示已知的条件和要求的关系;(3)求解方程或不等式,得到结果;
(4)结合题意判断答案是否合理;
(5)若需求解区间或范围,还需分析边界条件。
2. 解法二:几何法
解题步骤:
(1)绘制清晰准确的图形,标注已知条件和要求的关系;(2)根据已知条件和要求,运用几何定理推导、引理等,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
3. 解法三:综合法
解题步骤:
(1)综合分析题目条件,确定使用代数法或几何法或两者结合进行解答;
(2)根据分析的方法,进行相应的计算和推导;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
4. 解法四:特殊问题解法
解题步骤:
(1)针对特殊问题的特点,寻找相应的解题技巧;
(2)应用特殊问题解法,进行求解;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
5. 解法五:分类讨论法
解题步骤:
(1)将题目所给条件进行分类讨论;
(2)对不同情况分别进行解答;
(3)结合题意判断答案是否合理;
(4)若需求解区间或范围,还需分析边界条件。
注意:上述为解题模板的基本框架,具体情况下可根据题目的要求和条件进行适当的调整和变化。
备考高考数学最好用的策略与方法精选3篇
备考高考数学最好用的策略与方法精选3篇【篇1】备考高考数学最好用的策略与方法1、课后一分钟回忆及时复习上完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题;分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。
然后打开笔记与书本,对照一下还有哪些没记清的,赶紧补完,这样不仅能把当天上课内容巩固下来,而且也能检查当天课堂听课的效果如何,同时也可改进听课方法及提高听课效果。
我们可以简记为“一分钟的回忆法”。
2、避免“会而不对”的错误习惯解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。
部分同学(尤其是脑子比较好的同学)自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。
但在正规考试中即使答案对了,由于过程不完整而扣分较多。
还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。
这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。
这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。
“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。
可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。
必要时要作些记录,也就是“错题笔记”。
每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。
在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。
3、重视“一题多解”“多题同解”学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。
50个高考数学解题技巧
50个高考数学解题技巧1 . 适用条件[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注:上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2 . 函数的周期性问题(记忆三个)(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3 . 关于对称问题(无数人搞不懂的问题)总结如下(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4 . 函数奇偶性(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5 . 数列爆强定律(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立(4)等比数列爆强公式:S(n+m)=S(m)+q?mS(n)可以迅速求q6 . 数列的终极利器,特征根方程首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p?(n-1)+x,这是一阶特征根方程的运用。
高考的数学答题技巧(推荐8篇)
高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进展函数与方程间的互相转化。
2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
高考数学答题技巧与套路精选
高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。
说到去年高考数学和理科综合,周洁娴仍心有余悸。
数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。
她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。
“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。
”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。
陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。
做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。
“既然得不到难题分,一定要保证简单题不错。
”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。
结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。
三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。
周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。
当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。
好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。
毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。
答题时,应先做自己最拿手的科目。
四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。
”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。
他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。
“要留意题目的所有条件。
”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。
这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。
“文科综合更是重在审题。
”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。
高考数学答题技巧方法及易错知识点
高考数学答题技巧方法及易错知识点高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,今天小编在这给大家整理了一些高考数学答题的技巧及方法_高考数学易错的知识点,我们一起来看看吧!高考数学答题的技巧及方法1.调整好状态,控制好自我(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。
建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘乎所以。
面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4.审题要慢,做题要快,下手要准题目本身就是破_这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。
谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
高中数学万能解题模板
高中数学万能解题模板高中数学万能解题模板 1①特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
②极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
③剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
④数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。
数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
⑤递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
⑥顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
⑦逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
⑧正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
⑨特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
⑩⑩估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高中数学万能解题模板 2模板1 三角函数计算问题第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板2 对称轴、距离第一步找到周期和对称轴第二步确定对称轴距离第三步写出关系式模板3 拼凑计算问题第一步化简第二步通过拼凑,写出我们想要的诱导公式第三步求出结果模板4 三角等式的证明第一步找到三角函数值或关系式第二步化简第三步将三角函数值或关系式代入,求出结果模板5 求三角函数的定义域第三步结合定义域求出最值模板7 二次函数求最值第一步化简成二次函数的形式第二步配方第三步考虑定义域求出最值模板8 均值求最值第一步化简第二步转化为均值不等式的形式第三步当且仅当求出最值模板9 构造函数求最值第一步化简第二步构造函数第三步转化成见过的形式模板10 放缩求最值第一步找到或者创造放缩点第二步转化为我们见过的形式第三步搞定模板11 解三角形求最值第一步利用解三角形,一般是余弦定理第二步均值不等式第三步搞定模板12 向量问题第一步把向量问题转化为三角函数问题第二步利用三角函数解决模板13 判断形状第一步正弦或余弦定理第二步角化边或边化角第三步判断形状模板14 求面积第一步化简第二步求出夹角和临边第三步利用公式计算面积模板15 找规律第一步观察,找到见过的或会做的形式第二步利用见过的东西写出规律第三步生疏不可怕,只要计算对,肯定没问题模板16 实际问题第一步将实际问题转化为数学问题第二步利用三角函数,求出结果第三步将数学问题转化为实际问题。
高考数学选择题、填空题的六大解题方法和技巧
高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。
2023年高考数学考试技巧记忆口诀
2023年高考数学考试技巧记忆口诀一、基础知识记忆:1. 二次函数求顶点:x = -b / (2a),y = c - b^2 / (4a)。
2. 三角函数正弦公式:a / sinA = b / sinB = c / sinC。
3. 平行四边形面积:S = 底边长度 ×高。
4. 相似三角形定理:对应边成比例,对应角相等。
5. 圆的面积公式:S = πr^2,周长公式:C = 2πr。
二、解题方法记忆:1. 代入法:将已知条件代入方程进行求解。
2. 分类讨论法:根据不同的情况进行分类讨论,找到解决问题的方法。
3. 逆向推理法:从答案往已知条件反推,找到解题思路。
4. 图形法:将问题转化为几何图形,通过观察图形来解答问题。
5. 等价变形法:根据已知条件,将问题进行等价变形,从而简化解题过程。
三、答题技巧记忆:1. 面积题技巧:根据已知条件,选用适当的面积公式计算。
2. 几何图形分类:熟记各种几何图形的性质和特征,根据题目信息进行分类解答。
3. 快速计算技巧:掌握快速计算加减乘除的技巧,提高解题速度。
4. 注意单位转换:在题目中出现单位转换时,注意将相应的值进行转换。
5. 多角度思考:对于复杂问题,多角度思考,换位思考,寻找多种解题思路。
四、备考建议记忆:1. 制定复计划:合理安排每天的复时间,错题集、题册是必备的复材料。
2. 分段复:将数学知识进行分段复,有助于深化记忆。
3. 真题训练:多做真题,熟悉考试形式和题型,提高应试能力。
4. 积极解疑答疑:遇到困难及时向老师、同学请教,解决问题。
5. 自信心培养:相信自己的能力,保持积极心态,充满自信地面对考试。
以上是2023年高考数学考试技巧记忆口诀,希望对你的备考有所帮助!加油!。
数学考试高考经典答题技巧与方法
数学考试高考经典答题技巧与方法数学考试高考经典答题技巧与方法(实用)高考是分步计分,多写一步可能多得些分。
那么高考数学又有哪些答题技巧呢?以下是小编整理的一些数学考试高考经典答题技巧与方法,欢迎阅读参考。
高考数学答题技巧一、巧解选择、填空题数学解选择、填空题的基本原则是“小题不可大做”。
思路:第一、直接从题干出发考虑,探求结果;第二、从题干和选择联合考虑;第三、从选择出发探求满足题干的条件。
解数学填空题基本方法有:直接求解法、图像法、构造法和特殊化法(如特殊值、特殊函数、特殊角、特殊数列、图形的特殊位置、特殊点、特殊方程、特殊模型等)。
二、细答解答题1、数学规范答题很重要,找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。
即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。
2、分步列式,尽量避免用综合或连等式。
高考数学评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。
有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。
对于没有得出最后结果的数学试题,分步列式也可以得到相应的过程分,由此增加得分机会。
数学高考答题注意什么恰当分解结论有些问题,解题的主要困难,来自结论的抽象概括,难以直接和条件联系起来,这时,不妨猜想一下,能否把结论分解为几个比较简单的部分,以便各个击破,解出原题。
确保运算准确,立足一次成功数学高考题的容量在120分钟时间内完成大小26个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。
解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。
所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
2024高考数学答题技巧及方法
2024高考数学答题技巧及方法2024高考数学:答题技巧及方法一、熟悉试卷在开始答题前,应该花几分钟时间浏览一下试卷的内容,这可以让你对每个题型、题目难度以及分布有一个基本的了解。
这样,你就能更好地规划答题策略,合理分配时间,避免在某个难题上过度纠结。
二、仔细审题在开始解答每道题目之前,请务必认真阅读题目,理解清楚问题的要求和条件。
数学题目中常常包含一些隐藏的信息,需要你仔细挖掘。
在理解题意的基础上,再寻找合适的解题方法。
三、答题策略1、由易到难:按照题目的难易程度,优先解答那些你能快速解答的题目。
这样,你可以为解答较难的题目留出更多的时间和精力。
2、稳定心态:面对难题,不要感到恐慌和焦虑。
要保持冷静,相信自己的能力,尝试从不同角度去思考问题。
有时候,难题只是需要你理解其中的一个关键点,一旦突破,整个问题就迎刃而解了。
3、草稿纸的使用:在答题过程中,充分利用草稿纸。
将题目中的关键信息、数据和思考过程记录下来,这有助于你保持思路清晰,避免出错。
同时,草稿纸还可以帮助你在解答复杂问题时,回头检查和核对解题步骤。
4、不留空白:即使遇到不会的题目,也不要空着不做。
你可以将自己能想到的任何信息或思路都写下来,这有可能为你的解答提供一些启示。
四、检查和复查在完成答题后,预留一些时间用于检查和复查。
检查可以从以下几个方面入手:计算是否准确、解题步骤是否严谨、公式使用是否正确等。
通过仔细的检查和复查,可以避免因粗心大意或计算错误而失分。
总之,高考数学答题技巧及方法需要平时的积累和练习。
通过熟悉试卷、仔细审题、合理的答题策略以及检查和复查,大家将能够在高考中更加从容和自信地应对数学考试。
希望以上建议能对大家的备考有所帮助,祝大家考试顺利,取得优异的成绩!。
高考数学28个答题模板及答题技巧汇总(真的超精细哦)
高考数学28个答题模板及答题技巧汇总(真的超精细哦)本文总结了高考数学中常见的28个题型、解题模板和解题技巧,希望能够对考生提供参考和帮助。
单选题1. 未知数的代值:将题目中给定的条件代入方程中,解方程即可;未知数的代值:将题目中给定的条件代入方程中,解方程即可;2. 因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;因式分解求值:将式子进行因式分解,再将已知的值代入求得答案;3. 图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;图像与解析式配对:通过画图或分析图像,找到图像对应的解析式,再求得答案;4. 二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;二次函数:将二次函数用顶点式表示或通过配方法将二次函数转化为标准式,再根据已知条件求解;5. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;6. 数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;数列求和:根据数列的首项、公比、项数等已知条件,利用数列求和公式求解;7. 圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;圆的性质:根据圆的定义、性质,以及圆内接、外接三角形性质进行判断和计算;8. 统计与概率:根据统计数据和概率公式进行计算。
统计与概率:根据统计数据和概率公式进行计算。
填空题9. 比例求值:根据已知值和比例关系,通过求解等式来求得答案;比例求值:根据已知值和比例关系,通过求解等式来求得答案;10. 三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;三角函数:根据三角函数的性质以及三角恒等式进行变形,再根据已知条件求解;11. 函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;函数求值:根据函数的定义和已知条件,将函数进行变形,得出结果;12. 平面几何:根据平面几何的定义、定理和公式,进行计算;平面几何:根据平面几何的定义、定理和公式,进行计算;13. 空间几何:根据空间几何的定义、定理和公式,进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学答题技巧及方法模板
高考数学答题技巧及方法模板
对学习内容越熟悉,对解题的基本思路和方法就越熟悉,能背的数字和公式就越多,能把局部和整体有机地结合成一个整体,形成跳跃式思维,能大大加快解题速度。
下面是为大家整理的有关2021年度高考数学答题技巧及方法模板,希望对你们有帮助!
高考数学答题模板
1选择填空题
1、答题方法
高考数学选择题速解方法:排除法、假设条件法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;数学填空题速解方法:直接法、特殊化法、数形结合法、等价转化法。
2、易错点归纳
数学易混淆难记忆考点分析:概率和频率概念混淆、数列求和公式记忆错误等,强化基础知识点记忆,避开因为知识点失误造成的客观性解题错误。
2解答题
数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题。
1、三角函数
考察正弦、余弦公式、三角形基本性质、三种基本三角函数之间的转化与角度的化简。
三角函数是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
常见的三角函数包括正弦函数、余弦函数和正切函数。
不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
答题方法:巧用数形结合、化归转化等方法解题。
例1:设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2sinabA
(1)求B的大小。
(2)求cosA+sinC的取值范围。
2、概率统计
考察排列、组合运用分布列罗列、期望计算等知识点。
概率所研究的内容一般包括随机事件的概率、统计独立性和更深层次上的规律性。
对于任何事件的概率值一定介于0和1之间。
有一类随机事件,它具有两个特点:第一,只有有限个可能的结果;第二,各个结果发生的可能性相同。
具有这两个特点的随机现象叫做“古典概型”。
3、数列
考察通项公式和求和公式的运用。
数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。
数列中的每一个数都叫做这个数列的项。
排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项……排在第n位的数称为这个数列的第n。