导数常见题型与解题方法总结(教师版)

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。

掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。

下面将对导数的20种主要题型进行总结并给出解题方法。

1.求函数在某点的导数。

对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。

导数的定义是取极限,计算函数在这一点的变化率。

基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。

2.求函数的导数表达式。

已知函数表达式,要求其导数表达式。

可以使用基本求导法则,并注意链式法则和乘积法则的应用。

3.求高阶导数。

如果已知函数的导数表达式,要求其高阶导数表达式。

可以反复应用求导法则,每次对函数求导一次得到导数表达式。

4.求导数的导函数。

导数的导函数是指对导数再进行求导的过程。

要求导函数时,可以反复应用求导法则,迭代求取导数的导数。

5.利用导数计算函数极值。

当函数的导数为0或不存在时,可能是函数的极值点。

可以利用导数求函数的极值。

6.利用导数判定函数的增减性。

根据函数的导数正负性可以判定函数的增减性。

如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。

7.利用导数求函数的最大最小值。

当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。

要求函数全局最大最小值时,可以使用导数判定。

当导数从正数变为负数时,可能是函数取得最大值的点。

8.利用导数求函数的拐点。

如果函数的导数在某一点发生变号,该点可能是函数的拐点。

可以使用导数的二阶导数判定。

9.利用导数求函数的弧长。

曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。

通过导数求取弧长元素,并积累求和得到曲线的弧长。

10.利用导数求函数的曲率。

曲率表示曲线弯曲程度的大小,可以通过导数求取。

曲率的求取公式是曲线的二阶导数与一阶导数的比值。

11.利用导数求函数的速度和加速度。

导数大题题型归纳解题方法

导数大题题型归纳解题方法

导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。

下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。

2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。

3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。

4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。

以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。

导数知识点总结题型

导数知识点总结题型

导数知识点总结题型导数是高中数学中的一个重要概念,是微积分的基础知识之一。

在应用数学领域,导数有着广泛的应用,可以解决许多实际问题。

本文将围绕导数知识点总结题型展开讨论。

一、导数的定义与求法1.1 导数的定义:导数是函数在某一点的变化率或斜率,用极限的概念定义。

设函数 f(x) 在点 x0 处有定义,若该极限存在,那么 f(x) 在 x0 处可导。

1.2 导数的求法:基本方法有函数求导法、参数函数求导法和复合函数求导法。

- 函数求导法:按照变量的求导规则,对每一个部分进行求导。

- 参数函数求导法:将参数的导数求解出来,再对函数进行求导。

- 复合函数求导法:利用链式法则求解复合函数。

二、基本导数公式2.1 基本导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等基本函数的导数公式是求解导数题型的基础。

2.2 高阶导数:若函数 f(x) 的导函数 f'(x) 仍然可导,则称 f'(x) 为 f(x) 的一阶导数。

同理,若 f'(x) 的导函数f''(x) 可导,则称 f''(x) 为 f(x) 的二阶导数。

三、导数的基本性质3.1 可导性与连续性的关系:若函数 f(x) 在某一点可导,则在该点必连续;反之,若函数在某一点不连续,则在该点不可导。

3.2 加减和因子法则:若 f(x) 和 g(x) 都在 x 处可导,则(f(x)±g(x))' = f'(x)±g'(x),(f(x)·g(x))' =f'(x)·g(x)+f(x)·g'(x)。

3.3 乘积和商的法则:若 f(x) 和 g(x) 都在 x 处可导,且g(x) ≠ 0,则 (f(x)/g(x))' = [f'(x)·g(x)-f(x)·g'(x)]/g^2(x)。

(整理)导数应用的题型与解题方法.

(整理)导数应用的题型与解题方法.

导数应用的题型与解题方法一、专题概述导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n 次多项式的导数问题属于较难类型。

2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。

3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。

二、知识整合1.导数概念的理解.2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值.复合函数的求导法则是微积分中的重点与难点内容。

课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。

3.要能正确求导,必须做到以下两点:(1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。

(2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。

4.求复合函数的导数,一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x )的函数。

也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。

整个过程可简记为分解——求导——回代。

熟练以后,可以省略中间过程。

若遇多重复合,可以相应地多次用中间变量。

三、例题分析例1.⎩⎨⎧>+≤==11)(2x b ax x x x f y 在1=x 处可导,则=a =b 思路:⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(l i m 1 1)1(=f ∴ 1=+b a2lim 0=∆∆-→∆x y x a xyx =∆∆+→∆0lim ∴ 2=a 1-=b例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)hh a f h a f h 2)()3(lim 0--+→∆; (2)h a f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。

导数经典题型及解答策略

导数经典题型及解答策略

导数经典题型及解答策略对基础典型题进行归类解析,并辅之以同类变式题目进行巩固练习,是老师教学笔记的核心内容与教学精华所在,也是提高学生好题本含金量的试题秘集。

当学生会总结数学题,会对所做的题目分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了学数学的窍门,才能真正做到"任它千变万化,我自岿然不动"。

题型一:利用导数概念求导数例1.已知s=221gt ,求t=3秒时的瞬时速度。

解析:由题意可知某段时间内的平均速度t s ∆∆随t ∆变化而变化,t ∆越小,t s∆∆越接近于一个定值,由极限定义可知,这个值就是0→∆t 时,ts∆∆的极限。

V=0lim →∆x t s ∆∆=0lim →∆x =∆-∆+t s t s )3()3(0lim →∆x t g t g ∆-∆+22321)3(21=g 21lim →∆x (6+)t ∆=3g=29.4(米/秒)。

变式练习:求函数y=24x 的导数。

解析:2222)()2(44)(4x x x x x x x x x y ∆+∆+∆-=-∆+=∆22)(24x x x xx x y ∆+∆+⋅-=∆∆∴00limlim→∆→∆=∆∆x x x y⎥⎦⎤⎢⎣⎡∆+∆+⋅-22)(24x x x x x =-38x 2、例2已知函数y =f (x )在x =x 0处的导数为11,则li mΔx →0f (x 0-2Δx )-f (x 0)Δx=____解析:li mΔx →0 f (x 0-2Δx )-f (x 0)Δx =-2li m-2Δx →0 f (x 0-2Δx )-f (x 0)-2Δx=-2f ′(x 0)=-2×11=-22. 变式练习:若f ′(x 0)=2,求lim k →0 f (x 0-k )-f (x 0)2k的值. 解:令-k =Δx ,∵k →0,∴Δx →0.则原式可变形为lim Δx →0 f (x 0+Δx )-f (x 0)-2Δx=-12lim Δx →0 f (x 0+Δx )-f (x )Δx =-12f ′(x 0)=-12×2=-1. 二、题型二:深入领会导数的几何意义导数的几何意义: 导数值对应函数在该点处的切线斜率。

高考数学题型总结之导数题型分析及解题方法

高考数学题型总结之导数题型分析及解题方法

高考数学题型总结之导数题型分析及解题方法高考数学题型总结之导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析题型一:利用导数研究函数的极值、最值。

1. 在区间上的最大值是22.已知函数处有极大值,则常数c= 6 ;3.函数有极小值-1 ,极大值3题型二:利用导数几何意义求切线方程1.曲线在点处的切线方程是2.若曲线在P点处的切线平行于直线,则P点的坐标为(1,0)3.若曲线的一条切线与直线垂直,则的方程为4.求下列直线的方程:(1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线;解:(1)所以切线方程为(2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为,所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为题型三:利用导数研究函数的单调性,极值、最值1.已知函数的切线方程为y=3x+1(Ⅰ)若函数处有极值,求的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值;(Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围解:(1)由过的切线方程为:而过故由①②③得a=2,b=-4,c=5(2)当又在[-3,1]上最大值是13。

(3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。

依题意在[-2,1]上恒有0,即①当;②当;③当综上所述,参数b的取值范围是教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。

如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。

导数常见题型与解题方法总结(教师版)

导数常见题型与解题方法总结(教师版)

导数题型解题方法总结1、分离变量 -----用分离变量时要特别注意是否需分类讨论( >0,=0,<0)2、变更主元 ----- 已知谁的范围就把谁作为主元3、根分布4、判别式法 -----结合图像分析5、二次函数区间最值求法 ----- (1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令 f ' (x) = 0 得到两个根; 第二步:画两图或列表;第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数) ----- (已知谁的范围就把谁作为主元) 。

例 1:设函数 y = f(x) 在区间 D 上的导数为 f,(x), f,(x) 在区间 D 上的导数为 g(x) ,若在区间 D 上, g(x) < 0 恒 成 立, 则 称 函 数 y = f(x) 在 区 间 D 上 为 “ 凸 函 数 ”, 已 知 实 数 m 是 常 数,x 4 mx 3 3x 212 6 2(1)若 y = f(x) 在区间[0,3] 上为“凸函数”,求 m 的取值范围;(2)若对满足 m 共 2 的任何一个实数m , 函数 f(x) 在区间( a, b ) 上都为“凸函数”, 求b 一 a 的最大.解:由函数 f(x) =x 412 一 mx 36一 3x 22 得 f,(x) = x 33 一 mx 22一 3x :g(x) = x 2 一 mx 一 3(1) y = f(x) 在区间[0,3] 上为“凸函数”,则 :g(x) = x 2 一 mx 一 3 < 0 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于g (x)< 0值 f(x) = 一 一max(g(0) < 0 (_3 < 0〈lg(3) < 0 亭〈l 9 _ 3m _ 3 <0 亭 m > 2解法二: 分离变量法:∵ 当 x = 0 时, :g(x) = x 2 _ mx _ 3 = _3 < 0 恒成立, 当 0 < x 三 3 时, g(x) = x 2 _ mx _ 3 < 0 恒成立等价于 m > x 2 _ 3 = x _ 3的最大值( 0 < x 三 3 )恒成立,x x而 h(x) = x _x( 0 < x 三 3 )是增函数,则 h max (x) = h(3) = 2:m > 2(2)∵当m 三 2 时 f(x) 在区间( a, b ) 上都为“凸函数”则等价于当 m 三 2 时 g(x) = x 2 _ mx _ 3 < 0 恒成立 变更主元法再等价于 F(m) = mx _ x 2 + 3 > 0 在 m 三 2 恒成立 (视为关于 m 的一次函数最值问题)亭〈 亭〈亭 _ 1< x < 1:b _ a = 2-2 2例 2:设函数 f(x) = _ 1x 3 + 2ax 2 _ 3a 2 x + b(0 < a < 1, b =R)3(Ⅰ)求函数 f (x)的单调区间和极值;(Ⅱ)若对任意的 x = [a + 1, a + 2], 不等式f,(x)三 a 恒成立,求 a 的取值范围. 解: (Ⅰ) f,(x) = _x 2 + 4ax _ 3a 2 = _ (x _ 3a )(x _ a )0 < a < 13aaf,(x)3a3a令 f ,(x) > 0, 得 f(x) 的单调递增区间为(a,3a)令 f ,(x) < 0, 得 f(x) 的单调递减区间为(- w , a)和(3a , + w )∴当x=a 时, f(x) 极小值= _ 4a 3+ b; 当 x=3a 时, f(x) 极大值=b.(Ⅱ)由| f ,(x) |≤a,得:对任意的 x = [a + 1, a + 2], _a 共 x 2 _ 4ax + 3a 2 共 a 恒成立①则 等 价 于 g(x) 这 个 二 次 函 数〈(g max (x) 共 ag(x) = x 2 _ 4ax +3a 2 的 对 称 轴 x = 2a0 < a < 1, a +1 > a + a = 2a (放缩法)即定义域在对称轴的右边, g(x) 这个二次函数的最值问题:单调增函数的最值问题。

专题七:函数与导数问题进阶(教师版)自己总结

专题七:函数与导数问题进阶(教师版)自己总结

函数与导数问题进阶(教师版)常见题型及解法1. 常见题型一、 小题: 1. 函数的图象2. 函数的性质(单调性、奇偶性、周期性、对称性);3. 分段函数求函数值;4. 函数的定义域、值域(最值);5. 函数的零点;6. 抽象函数;7. 定积分运算(求面积)二、大题:1. 求曲线()y f x =在某点处的切线的方程;2. 求函数的解析式3. 讨论函数的单调性,求单调区间;4. 求函数的极值点和极值;5. 求函数的最值或值域;6. 求参数的取值范围7. 证明不等式; 8. 函数应用问题2. 在解题中常用的有关结论(需要熟记):(1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+。

(2)若可导函数()y f x =在 0x x = 处取得极值,则0()0f x '=。

反之,不成立。

(3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。

(4)函数()f x 在区间I 上递增(减)的充要条件是:x I ∀∈()f x '0≥(0)≤恒成立(()f x '不恒为0).(5)函数()f x (非常量函数)在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程()0f x '=在区间I 上有实根且为非二重根。

(若()f x '为二次函数且I=R ,则有0∆>)。

(6) ()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或()f x '0≤在I 上恒成立(7)若x I "?,()f x 0>恒成立,则min ()f x 0>; 若x I ∀∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ∃∈,使得0()f x 0>,则max ()f x 0>;若0x I ∃∈,使得0()f x 0<,则min ()f x 0<.(9)设()f x 与()g x 的定义域的交集为D ,若x ∀∈D ()()f x g x >恒成立,则有[]min ()()0f x g x ->.(10)若对11x I ∀∈、22x I ∈ ,12()()f x g x >恒成立,则min max ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,若对11x I ∀∈,22x I ∃∈,使得1()f x =2()g x 成立,则A B ⊆。

导数的大题题型及解题技巧

导数的大题题型及解题技巧

导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。

下面介绍一些解题技巧。

1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。

常见的函数有多项式函数、指数函数、对数函数、三角函数等。

2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。

注意求导的顺序和方法。

3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。

常见的参数方程有直角坐标系和极坐标系。

4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。

然后利用求导公式进行计算,最后求得导数。

5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。

例如,奇偶性、周期性、对称性等。

6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。

例如,物体的位移、速度和加速度。

以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。

导数知识点各种题型归纳方法总结(浦仕国)

导数知识点各种题型归纳方法总结(浦仕国)

《导数》知识点和各种题型归纳方法总结一.导数的定义:2.利用定义求导数的步骤:①求函数的增量:;②求平均变化率:;③取极限得导数:(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式:①;②;;③;④⑤⑥;⑦;⑧法则1:;(口诀:和与差的导数等于导数的和与差).法则2:(口诀:前导后不导相乘+后导前不导相乘)法则3:(口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)(2)复合函数的导数求法:①换元,令,则②分别求导再相乘③回代题型一、导数定义的理解1..已知的值是()A. B. 2 C. D. -2变式1:()A.-1B.-2 C.-3 D.1变式2:()A.B.C.D.题型二:导数运算1、已知,则2、若,则3.=ax3+3x2+2 ,,则a=()三.导数的物理意义1.求瞬时速度:物体在时刻时的瞬时速度就是物体运动规律在时的导数,即有。

2.V=s/(t)表示即时速度。

a=v/(t) 表示加速度。

(了解)四.导数的几何意义:函数在处导数的几何意义,曲线在点处切线的斜率是。

于是相应的切线方程是:。

题型三.用导数求曲线的切线注意两种情况:(1)曲线在点处切线:性质:。

相应的切线方程是:(2)曲线过点处切线:先设切点,切点为,则斜率k=,切点在曲线上,切点在切线上,切点坐标代入方程得关于a,b的方程组,解方程组来确定切点,最后求斜率k=,确定切线方程。

例:在曲线y=x3+3x2+6x-10的切线中,求斜率最小的切线方程;解析:(1)当x0=-1时,k有最小值3,此时P的坐标为(-1,-14)故所求切线的方程为3x-y-11=0五.函数的单调性:设函数在某个区间内可导,(1)该区间内为增函数;(2)该区间内为减函数;注意:当在某个区间内个别点处为零,在其余点处为正(或负)时,在这个区间上仍是递增(或递减)的。

(3)在该区间内单调递增在该区间内恒成立;(4)在该区间内单调递减在该区间内恒成立;题型一、利用导数证明(或判断)函数f(x)在某一区间上单调性:解题模板:(1)求导数(2)判断导函数在区间上的符号(3)下结论①该区间内为增函数;②该区间内为减函数;题型二、利用导数求单调区间求函数单调区间的步骤为:(1)分析的定义域;(2)求导数(3)解不等式,解集在定义域内的部分为增区间(4)解不等式,解集在定义域内的部分为减区间题型三、利用单调性求参数的取值(转化为恒成立问题)思路一:(1)在该区间内单调递增在该区间内恒成立;(2)在该区间内单调递减在该区间内恒成立;思路二:先求出函数在定义域上的单调增或减区间,则已知中限定的单调增或减区间是定义域上的单调增或减区间的子集。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数概述导数是微积分学中的一个重要概念,它描述了函数在某一点的变化率。

具体来说,导数表示函数在某一点的切线斜率。

导数不仅在微积分中有重要应用,而且在物理、经济等领域也有广泛的应用。

二、导数的定义1. 函数f(x)在x=a处可导的充分必要条件是:$$\lim_{x \to a} \frac{f(x)-f(a)}{x-a}$$存在,若该极限存在,则称其为函数f(x)在x=a处的导数,记作$f'(a)$或$\frac{df}{dx}(a)$。

2. 函数f(x)在区间I上可导的充分必要条件是:对于I上任意一点$x_0$,极限$$\lim_{x \to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$存在。

3. 函数f(x)在区间I上可导,则称函数f(x)在I上为可导函数。

若函数f(x)在区间I上每个点都可导,则称函数f(x)在I上为光滑函数。

三、常见的求导法则1. 常数法则:若c为常数,则$(c)'=0$。

2. 幂法则:若$f(x)=x^n$,其中n为正整数,则$f'(x)=nx^{n-1}$。

3. 和差法则:若$f(x)=u(x)+v(x)$,则$f'(x)=u'(x)+v'(x)$。

4. 积法则:若$f(x)=u(x)v(x)$,则$f'(x)=u'(x)v(x)+u(x)v'(x)$。

5. 商法则:若$f(x)=\frac{u(x)}{v(x)}$,其中$v(x)\neq0$,则$$f'(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}$$6. 复合函数求导法则:若$y=f(u), u=g(x)$,则$$\frac{dy}{dx}=\frac{dy}{du} \cdot \frac{du}{dx}=f'(u) \cdot g'(x)$$四、高阶导数1. 函数f的一阶导数为$f'$,二阶导数为$(f')'$或$f''$。

导数常见题型与解题方法总结

导数常见题型与解题方法总结

导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。

2.变更主元:已知谁的范围就把谁作为主元。

3.根分布。

4.判别式法:结合图像分析。

5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。

基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。

2.画两图或列表。

3.由图表可知。

另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。

例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。

已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。

解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。

当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。

根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。

由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。

因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。

高中导数七大题型解题技巧

高中导数七大题型解题技巧

高中导数七大题型解题技巧高中导数七大题型解题技巧1. 导数的定义与计算•理解导数的定义:导数表示函数在某一点的变化率,可以通过极限的方法求得。

•使用导数的基本计算公式:对于常见的函数,可以根据函数的性质和导数的定义来计算导数。

2. 函数的求导法则•使用求导法则简化求导过程:如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。

•注意链式法则的应用:当函数由多个复合函数组成时,可以使用链式法则简化求导过程。

3. 高阶导数的计算•理解高阶导数的概念:高阶导数表示导数的导数,可以通过多次求导得到。

•使用链式法则和求导法则计算高阶导数:根据函数的性质和导数的法则,可以计算出高阶导数。

4. 函数的极值与单调性•寻找函数的极值点:通过判断导数的正负来确定函数的增减性和极值点。

•判断函数的单调性:根据导数的正负判断函数的单调递增和单调递减区间。

5. 函数的凹凸性与拐点•判断函数的凹凸性:通过求导数的二阶导数和符号判断函数的凹凸性。

•寻找函数的拐点:通过判断导数的二阶导数的变化来确定函数的拐点。

6. 函数的渐近线与极限•理解函数的渐近线:渐近线是函数在无穷远点或某一点趋近于无穷时的极限情况。

•计算函数的极限:根据导数和高阶导数的性质计算函数在某一点的极限。

7. 应用题的解题方法•理解应用题的背景和要求:应用题通常涉及到实际问题,需要将问题转化为数学模型进行求解。

•使用导数解决应用题:根据问题的要求,建立函数模型并使用导数来解决问题。

以上是高中导数七大题型解题的一些基本技巧和方法,希望可以帮助到你在学习导数时的理解和应用。

导数大题20种题型讲解

导数大题20种题型讲解

导数大题20种题型讲解1.多项式函数求导:题目描述:求函数f(x)=ax^n的导数。

解答步骤:使用幂函数的导数公式,对函数f(x)进行求导,得到f'(x)=nax^(n-1)。

2.常数函数求导:题目描述:求函数f(x)=c的导数。

解答步骤:常数函数的导数始终为零,即f'(x)=0。

3.指数函数求导:题目描述:求函数f(x)=e^x的导数。

解答步骤:指数函数e^x的导数仍然是e^x,即f'(x)=e^x。

4.对数函数求导:题目描述:求函数f(x)=ln(x)的导数。

解答步骤:对数函数ln(x)的导数为1/x,即f'(x)=1/x。

5.三角函数求导:题目描述:求函数f(x)=sin(x)的导数。

解答步骤:三角函数sin(x)的导数为cos(x),即f'(x)=cos(x)。

6.反三角函数求导:题目描述:求函数f(x)=arcsin(x)的导数。

解答步骤:反三角函数的导数可以通过导数公式计算,即f'(x)=1/sqrt(1-x^2)。

7.复合函数求导:题目描述:求函数f(x)=(2x+1)^3的导数。

解答步骤:使用链式法则,将复合函数拆解成内外两个函数,并分别求导。

对于本题,先对内函数u=2x+1求导,然后乘以外函数v=u^3的导数。

8.分段函数求导:题目描述:求函数f(x)={x^2,x<0;x,x≥0}的导数。

解答步骤:由于该函数在x=0处存在不连续点,需要分别对x<0和x≥0的部分进行求导。

对于x<0的部分,求导结果为2x;对于x≥0的部分,求导结果为1。

9.隐函数求导:题目描述:求函数方程x^2+y^2=25的导数dy/dx。

解答步骤:对方程两边同时求导,并利用隐函数求导法则,最后解出dy/dx的表达式。

10.参数方程求导:题目描述:已知参数方程x=t^2,y=2t+1,求曲线的切线斜率。

解答步骤:对参数方程中的x和y分别求导,然后计算dy/dx的值,即可得到切线斜率。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

导数常见题型及知识点分析(名师总结)

导数常见题型及知识点分析(名师总结)

导数常见题型及知识点分析(名师总结)第⼀部分:导数的运算法则及基本公式应⽤重难点归纳1深刻理解导数的概念,了解⽤定义求简单的导数y表⽰函数的平均改变量,它是Δx 的函数,⽽f ′(x 0)表⽰⼀个数值,即f ′(x )=xyx ??→?lim0,知道导数的等价形式()()(lim)()(lim 0000000x f x x x f x f x x f x x f x x x '=--=?-?+→?→? 2求导其本质是求极限,在求极限的过程中,⼒求使所求极限的结构形式转化为已知极限的形式,即导数的定义,这是顺利求导的关键3对于函数求导,⼀般要遵循先化简,再求导的基本原则,求导时,不但要重视求导法则的应⽤,⽽且要特别注意求导法则对求导的制约作⽤,在实施化简时,⾸先必须注意变换的等价性,避免不必要的运算失误4 复合函数求导法则,像链条⼀样,必须⼀环⼀环套下去,⽽不能丢掉其中的⼀环必须正确分析复合函数是由哪些基本函数经过怎样的顺序复合⽽成的,分清其间的复合关系典型题例⽰范讲解例1求函数的导数)1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y xx x y ω命题意图本题3个⼩题分别考查了导数的四则运算法则,复合函数求导的⽅法,以及抽象函数求导的思想⽅法这是导数中⽐较典型的求导类型知识依托解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数错解分析本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错技巧与⽅法先分析函数式结构,找准复合函数的式⼦特征,按照求导法则进⾏求导22222(1)(1)cos (1)[(1)cos ](1):(1)cos x x x x x x y x x''-+--+'=+-解2222222222222222(1)cos (1)[(1)cos (1)(cos )](1)cos (1)cos (1)[2cos (1)sin ](1)cos (21)cos (1)(1)sin (1)cos x x x x x x x x x x x x x x x x x x x x x x x x x x''-+--+++=+-+---+=+--+-+=+(2)解y =µ3,µ=ax -b sin 2ωx ,µ=av -byv =x ,y =sin γγ=ωxy ′=(µ3)′=3µ2·µ′=3µ2(av -by )′=3µ2(av ′-by ′)=3µ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx )(3)解法⼀设y =f (µ),µ=v ,v =x 2+1,则y ′x =y ′µµ′v ·v ′x =f ′(µ)·21v -21·2x=f ′(12+x )·21112+x ·2x =),1(122+'+x f x x 解法⼆y ′=[f (12+x )]′=f ′(12+x )·(12+x )′=f ′(12+x )·21(x 2+1)21-·(x 2+1)′=f ′(12+x )·21(x 2+1)21-·2x =12+x x f ′(12+x )例2利⽤导数求和(1)S n =1+2x +3x 2+…+nx n -1(x ≠0,n ∈N *)(2)S n =C 1n +2C 2n +3C 3n +…+n C nn ,(n ∈N *)命题意图培养考⽣的思维的灵活性以及在建⽴知识体系中知识点灵活融合的能⼒知识依托通过对数列的通项进⾏联想,合理运⽤逆向思维由求导公式(x n )′=nx n -1,可联想到它们是另外⼀个和式的导数关键要抓住数列通项的形式结构错解分析本题难点是考⽣易犯思维定势的错误,受此影响⽽不善于联想技巧与⽅法第(1)题要分x =1和x ≠1讨论,等式两边都求导解(1)当x =1时S n =1+2+3+…+n =21n (n +1); 当x ≠1时,∵x +x 2+x 3+…+x n =xx x n --+11,两边都是关于x 的函数,求导得(x +x 2+x 3+…+x n)′=(xx x n --+11)′即S n =1+2x +3x 2+…+nx n -1=21)1()1(1x nx x n n n -++-+ (2)∵(1+x )n =1+C 1n x +C 2n x 2+…+C n n x n,两边都是关于x 的可导函数,求导得n (1+x )n -1=C 1n +2C 2n x +3C 3n x 2+…+n C n n x n -1,令x =1得,n ·2n -1=C 1n +2C 2n +3C 3n +…+n C n n ,即S n =C 1n +2C 2n +…+n C n n =n ·2n -1学⽣巩固练习1 y =e sin x cos(sin x ),则y ′(0)等于( ) A 0 B 1 C -1D 22经过原点且与曲线y =59++x x 相切的⽅程是( ) A x +y =0或25x +y =0 B x -y =0或25x+y =0C x +y =0或25x -y =0D x -y =0或25x-y =03若f ′(x 0)=2,kx f k x f k 2)()(lim 000--→ =_________4设f (x )=x (x +1)(x +2)…(x +n ),则f ′(0)=_________5已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的⽅程 6求函数的导数 (1)y =(x 2-2x +3)e 2x ;(2)y 7有⼀个长度为5 m 的梯⼦贴靠在笔直的墙上,假设其下端沿地板以3 m/s 的速度离开墙脚滑动,求当其下端离开墙脚14 m 时,梯⼦上端下滑的速度8求和S n =12+22x +32x 2+…+n 2x n -1 ,(x ≠0,n ∈N *) 参考答案1解析y ′=e sin x [cos x cos(sin x )-cos x sin(sin x )],y ′(0)=e 0(1-0)=1答案B2解析设切点为(x 0,y 0),则切线的斜率为k =00x y ,另⼀⽅⾯,y ′=(59++x x )′=2)5(4+-x , 故y ′(x 0)=k ,即)5(9)5(40000020++==+-x x x x y x 或x 02+18x 0+45=0 得x 0(1)=-3, x 0 (2)=-15,对应有y 0(1)=3,y 0(2)=53515915=+-+-,因此得两个切点A (-3,3)或B (-15,53),从⽽得y ′(A )=3)53(4+-- =-1及y ′(B )=251)515(42-=+-- , 由于切线过原点,故得切线l A :y =-x 或l B :y =25x答案A3解析根据导数的定义f ′(x 0)=kx f k x f k ---+→)()]([(lim 000(这时k x -=?)1)(21)()(lim 21])()(21[lim 2)()(lim 0000000000-='-=----=---?-=--∴→→→x f k x f k x f kx f k x f k x f k x f k k k答案-14解析设g (x )=(x +1)(x +2)……(x +n ),则f (x )=xg (x ),于是f ′(x )=g (x )+xg ′(x ),f ′(0)=g (0)+0·g ′(0)=g (0)=1·2·…n =n !答案n ! 5解设l 与C 1相切于点P (x 1,x 12),与C 2相切于Q (x 2,-(x 2-2)2) 对于C 1y ′=2x ,则与C 1相切于点P 的切线⽅程为 y -x 12=2x 1(x -x 1),即y =2x 1x -x 12 ①对于C 2y ′=-2(x -2),与C 2相切于点Q 的切线⽅程为 y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4 ②∵两切线重合,∴2x 1=-2(x 2-2)且-x 12=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0∴直线l ⽅程为y =0或y =4x -4 6解(1)注意到y >0,两端取对数,得 ln y =ln(x 2-2x +3)+ln e 2x =ln(x 2-2x +3)+2x x xe x x e x x x x x x y x x x x y x x x x x x x x x x x y y 2222222222222)2(2)32(32)2(232)2(232)2(223222232)32(1?+-=?+-?+-+-=?+-+-='∴+-+-=++--=++-'+-='?∴(2)两端取对数,得ln|y |=31(ln|x |-ln|1-x |),两边解x 求导,得 31)1(31)1(131)1(131)111(311xx x x y x x y x x x x y y --=?-?='∴-=---='?7解设经时间t 秒梯⼦上端下滑s ⽶,则s =5-2925t -,当下端移开14 m 时,t 0=157341=?,⼜s ′=-21(25-9t 2)21-·(-9·2t )=9t29251t-, 所以s ′(t 0)=9×2)157(9251157?-?=0875(m/s)8解(1)当x =1时,S n =12+22+32+…+n 2=61n (n +1)(2n +1),当x ≠1时,1+2x +3x 2+…+nx n -1 =21)1()1(1x nx x n n n -++-+,两边同乘以x ,得x +2x 2+3x 2+…+nx n=221)1()1(x nx x n x n n -++-++两边对x 求导,得S n =12+22x 2+32x 2+…+n 2xn -1=322122)1()122()1(1x x n x n n x n x n n n ---+++-+++第⼆部分:⽤导数求切线⽅程的四种类型求曲线的切线⽅程是导数的重要应⽤之⼀,⽤导数求切线⽅程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的⼀点,则以P 的切点的切线⽅程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平⾏于y 轴(即导数不存在)时,由切线定义知,切线⽅程为0x x =.下⾯例析四种常见的类型及解法.类型⼀:已知切点,求曲线的切线⽅程此类题较为简单,只须求出曲线的导数()f x ',并代⼊点斜式⽅程即可.例1 曲线3231y x x =-+在点(11)-,处的切线⽅程为()A.34y x =- B.32y x =-+C.43y x =-+ D.45y x =-解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线⽅程为(1)3(1)y x --=--,即32y x =-+,因⽽选B.例2已知曲线C y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的⽅程及切点坐标解由l 过原点,知k =00x y(x 0≠0),点(x 0,y 0)在曲线C 上,y 0=x 03-3x 02+2x 0,∴00x y =x 02-3x 0+2y ′=3x 2-6x +2,k =3x 02-6x 0+2⼜k =00x y,∴3x 02-6x 0+2=x 02-3x 0+2 2x 02-3x 0=0,∴x 0=0或x 0=23由x ≠0,知x 0=23∴y 0=(23)3-3(23)2+2·23=-83∴k =00x y =-41∴l ⽅程y =-41x 切点(23,-83)类型⼆:已知斜率,求曲线的切线⽅程此类题可利⽤斜率求出切点,再⽤点斜式⽅程加以解决.例3 与直线240x y -+=的平⾏的抛物线2y x =的切线⽅程是()A.230x y -+= B.230x y --=C.210x y -+= D.210x y --=解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|.01x =∴.由此得到切点(11),.故切线⽅程为12(1)y x -=-,即210x y --=,故选D.评注:此题所给的曲线是抛物线,故也可利⽤?法加以解决,即设切线⽅程为2y x b =+,代⼊2y x =,得220x x b --=,⼜因为0?=,得1b =-,故选D.类型三:已知过曲线上⼀点,求切线⽅程过曲线上⼀点的切线,该点未必是切点,故应先设切点,再求切点,即⽤待定切点法.例4 求过曲线32y x x =-上的点(11)-,的切线⽅程.解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|.∴切线⽅程为2000(32)()y y x x x -=--.320000(2)(32)()y x x x x x --=--.⼜知切线过点(11)-,,把它代⼊上述⽅程,得3200001(2)(32)(1)x x x x ---=--.解得01x =,或012x =-.故所求切线⽅程为(12)(32)(1)y x --=--,或13112842y x--+=-+,即20x y --=,或5410x y +-=.评注:可以发现直线5410x y +-=并不以(11)-,为切点,实际上是经过了点(11)-,且以1728??-,为切点的直线.这说明过曲线上⼀点的切线,该点未必是切点,解决此类问题可⽤待定切点法.类型四:已知过曲线外⼀点,求切线⽅程此类题可先设切点,再求切点,即⽤待定切点法来求解.例5 求过点(20),且与曲线1y x=相切的直线⽅程.解:设00()P x y ,为切点,则切线的斜率为0201x x y x ='=-|.∴切线⽅程为00201()y y x x x -=--,即020011()y x x x x -=--.⼜已知切线过点(20),,把它代⼊上述⽅程,得020011(2)x x x -=--.解得000111x y x ===,,即20x y +-=.评注:点(20),实际上是曲线外的⼀点,但在解答过程中却⽆需判断它的确切位置,充分反映出待定切点法的⾼效性.例6 已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线⽅程.解:曲线⽅程为33y x x =-,点(016)A ,不在曲线上.设切点为00()M x y ,,则点M 的坐标满⾜30003y x x =-.因200()3(1)f x x '=-,故切线的⽅程为20003(1)()y y x x x -=--.点(016)A ,在切线上,则有32000016(3)3(1)(0)x x x x --=--.化简得308x =-,解得02x =-.所以,切点为(22)M --,,切线⽅程为9160x y -+=.评注:此类题的解题思路是,先判断点A 是否在曲线上,若点A 在曲线上,化为类型⼀或类型三;若点A 不在曲线上,应先设出切点并求出切点.第三部分:导数的应⽤最⼤值与最⼩值⼀、教学内容导数的应⽤最⼤值与最⼩值⼀般地,在闭区间],[b a 上连续的函数)(x f 在],[b a 上必有最⼤值与最⼩值;在开区间),(b a 内连续的函数)(x f 不⼀定有最⼤值与最⼩值,例如xx f 1)(=在),0(∞+内的图象连续,但⽆最⼤值和最⼩值。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。

给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。

导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。

二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。

一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。

- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。

- 指数函数的导数:(e x )′=e x 。

- 对数函数的导数:(lnx )′=1x 。

- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。

一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。

- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。

3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。

高阶导数可以通过多次使用导数公式和求导法则求解。

4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。

隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。

三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。

2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数题型解题方法总结1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)2、变更主元-----已知谁的范围就把谁作为主元3、根分布4、判别式法-----结合图像分析5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根;第二步:画两图或列表;第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =--(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262x mx x f x =--得32()332x mx f x x '=--2()3g x x mx ∴=--(1)()y f x = 在区间[]0,3上为“凸函数”,则2()30g x x mx ∴=--<在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵当0x =时,2()330g x x mx ∴=--=-<恒成立,当03x <≤时,2()30g x x mx =--<恒成立等价于233x m x x x->=-的最大值(03x <≤)恒成立,而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数”则等价于当2m ≤时2()30g x x mx =--<恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩2b a ∴-=例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-=(Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a << -223aa()f x 'a3a令,0)(>'x f 得)(x f 的单调递增区间为(a ,3a )令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)∴当x=a 时,)(x f 极小值=;433b a +-当x=3a 时,)(x f 极大值=b.(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①则等价于()g x 这个二次函数max min ()()g x a g x a≤⎧⎨≥-⎩22()43g x x ax a =-+的对称轴2x a=01,a << 12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.∴max min ()(2)2 1.()(1)4 4.g x g a a g x g a a =+=-+=+=-+于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于(2)44,41.(1)215g a a a a g a a a+=-+≤⎧≤≤⎨+=-+≥-⎩解得又,10<<a ∴.154<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系例3:已知函数32()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,326()(1)3(0)2t g x x x t x t -=+-++>(Ⅰ)求,a b 的值;(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。

解:(Ⅰ)/2()32f x x ax =+∴/(1)31f b a⎧=-⎨=+⎩,解得32a b =-⎧⎨=-⎩(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减又(1)4,(0)0,(2)4,(4)16f f f f -=-==-=2x a=[]1,2a a ++∴()f x 的值域是[4,16]-(Ⅲ)令2()()()(1)3[1,4]2t h x f x g x x t x x =-=-++-∈思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2(2)26t x x x -≥-分离变量思路2:二次函数区间最值二、参数问题1、题型一:已知函数在某个区间上的单调性求参数的范围解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立,回归基础题型解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;做题时一定要看清楚“在(m ,n )上是减函数”与“函数的单调减区间是(a ,b )”,要弄清楚两句话的区别:前者是后者的子集例4:已知R a ∈,函数x a x a x x f )14(21121)(23++++=.(Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值;(Ⅱ)如果函数)(x f 是),(∞+-∞上的单调函数,求a 的取值范围.解:)14()1(41)(2++++='a x a x x f .(Ⅰ)∵()f x '是偶函数,∴1-=a .此时x x x f 3121)(3-=,341)(2-='x x f ,令0)(='x f ,解得:32±=x .列表如下:x (-∞,-23)-23(-23,23)23(23,+∞))(x f '+0-0+)(x f 递增极大值递减极小值递增可知:()f x 的极大值为34)32(=-f ,()f x 的极小值为34)32(-=f .(Ⅱ)∵函数)(x f 是),(∞+-∞上的单调函数,∴21()(1)(41)04f x x a x a '=++++≥,在给定区间R 上恒成立判别式法则221(1)4(41)204a a a a ∆=+-⋅⋅+=-≤,解得:02a ≤≤.综上,a 的取值范围是}20{≤≤a a .例5、已知函数3211()(2)(1)(0).32f x x a x a x a =+-+-≥(I )求()f x 的单调区间;(II )若()f x 在[0,1]上单调递增,求a 的取值范围。

子集思想解:(I )2()(2)1(1)(1).f x x a x a x x a '=+-+-=++-1、20,()(1)0,a f x x '==+≥当时恒成立当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。

2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且单调增区间:(,1),(1,)a -∞--+∞单调增区间:(1,1)a --(II )当()[0,1],f x 在上单调递增则[]0,1是上述增区间的子集:1、0a =时,()(,)f x -∞+∞在单调递增符合题意2、[]()0,11,a ⊆-+∞,10a ∴-≤1a ∴≤综上,a 的取值范围是[0,1]。

2、题型二:根的个数问题题1函数f(x)与g(x)(或与x 轴)的交点,即方程根的个数问题解题步骤第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;第三步:解不等式(组)即可。

例6、已知函数232)1(31)(x k x x f +-=,kx x g -=31)(,且)(x f 在区间),2(+∞上为增函数.a-1-1()f x '(1)求实数k 的取值范围;(2)若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围.解:(1)由题意x k x x f )1()(2+-='∵)(x f 在区间),2(+∞上为增函数,∴0)1()(2>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k (2)设312)1(3)()()(23-++-=-=kx x k x x g x f x h ,)1)(()1()(2--=++-='x k x k x k x x h 令0)(='x h 得k x =或1=x 由(1)知1≤k ,①当1=k 时,0)1()(2≥-='x x h ,)(x h 在R 上递增,显然不合题意…②当1<k 时,)(x h ,)(x h '随x 的变化情况如下表:x),(k -∞k )1,(k 1),1(+∞)(x h '+—0+)(x h ↗极大值312623-+-k k ↘极小值21-k ↗由于021<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需0312623>-+-k k ,即0)22)(1(2<---k k k ∴⎩⎨⎧>--<02212k k k ,解得31-<k 综上,所求k 的取值范围为31-<k 根的个数知道,部分根可求或已知。

相关文档
最新文档