机器人和机器人传感器毕业论文中英文资料外文翻译文献

合集下载

机器人结构论文中英文对照资料外文翻译文献

机器人结构论文中英文对照资料外文翻译文献

中英文对照资料外文翻译文献FEM Optimization for Robot StructureAbstractIn optimal design for robot structures, design models need to he modified and computed repeatedly. Because modifying usually can not automatically be run, it consumes a lot of time. This paper gives a method that uses APDL language of ANSYS 5.5 software to generate an optimal control program, which mike optimal procedure run automatically and optimal efficiency be improved.1)IntroductionIndustrial robot is a kind of machine, which is controlled by computers. Because efficiency and maneuverability are higher than traditional machines, industrial robot is used extensively in industry. For the sake of efficiency and maneuverability, reducing mass and increasing stiffness is more important than traditional machines, in structure design of industrial robot.A lot of methods are used in optimization design of structure. Finite element method is a much effective method. In general, modeling and modifying are manual, which is feasible when model is simple. When model is complicated, optimization time is longer. In the longer optimization time, calculation time is usually very little, a majority of time is used for modeling and modifying. It is key of improving efficiency of structure optimization how to reduce modeling and modifying time.APDL language is an interactive development tool, which is based on ANSYS and is offered to program users. APDL language has typical function of some large computer languages. For example, parameter definition similar to constant and variable definition, branch and loop control, and macro call similar to function and subroutine call, etc. Besides these, it possesses powerful capability of mathematical calculation. The capability of mathematical calculation includes arithmetic calculation, comparison, rounding, and trigonometric function, exponential function and hyperbola function of standard FORTRAN language, etc. By means of APDL language, the data can be read and then calculated, which is in database of ANSYS program, and running process of ANSYS program can be controlled.Fig. 1 shows the main framework of a parallel robot with three bars. When the length of three bars are changed, conjunct end of three bars can follow a given track, where robot hand is installed. Core of top beam is triangle, owing to three bars used in the design, which is showed in Fig.2. Use of three bars makes top beam nonsymmetrical along the plane that is defined by two columns. According to a qualitative analysis from Fig.1, Stiffness values along z-axis are different at three joint locations on the top beam and stiffness at the location between bar 1 and top beam is lowest, which is confirmed by computing results of finite element, too. According to design goal, stiffness difference at three joint locations must he within a given tolerance. In consistent of stiffness will have influence on the motion accuracy of the manipulator under high load, so it is necessary to find the accurate location of top beam along x-axis.To the questions presented above, the general solution is to change the location of the top beam many times, compare the results and eventually find a proper position, The model will be modified according to the last calculating result each time. It is difficult to avoid mistakes if the iterative process is controlled manually and the iterative time is too long. The outer wall and inner rib shapes of the top beam will be changed after the model is modified. To find the appropriate location of top beam, the model needs to be modified repetitiously.Fig. 1 Solution of Original DesignThis paper gives an optimization solution to the position optimization question of the top beam by APDL language of ANSYS program. After the analysis model first founded, the optimization control program can be formed by means of modeling instruction in the log file. The later iterative optimization process can be finished by the optimization control program and do not need manual control. The time spent in modifying the model can be decreased to the ignorable extent. The efficiency of the optimization process is greatly improved.2)Construction of model for analysisThe structure shown in Fig. 1 consists of three parts: two columns, one beam and three driving bars. The columns and beam are joined by the bolts on the first horizontal rib located on top of the columns as shown in Fig.1. Because the driving bars are substituted by equivalentforces on the joint positions, their structure is ignored in the model.The core of the top beam is three joints and a hole with special purpose, which can not be changed. The other parts of the beam may be changed if needed. For the convenience of modeling, the core of the beam is formed into one component. In the process of optimization, only the core position of beam along x axis is changed, that is to say, shape of beam core is not changed. It should be noticed that, in the rest of beam, only shape is changed but the topology is not changed and which can automatically be performed by the control program.Fig.1, six bolts join the beam and two columns. The joint surface can not bear the pull stress in the non-bolt joint positions, in which it is better to set contact elements. When the model includes contact elements, nonlinear iterative calculation will be needed in the process of solution and the computing time will quickly increase. The trial computing result not including contact element shows that the outside of beam bears pulling stress and the inner of beam bears the press stress. Considering the primary analysis object is the joint position stiffness between the top beam and the three driving bars, contact elements may not used, hut constructs the geometry model of joint surface as Fig.2 showing. The upper surface and the undersurface share one key point in bolt-joint positions and the upper surface and the under surface separately possess own key points in no bolt positions. When meshed, one node will be created at shared key point, where columns and beam are joined, and two nodes will be created at non shared key point, where column and beam are separated. On right surface of left column and left surface of right column, according to trial computing result, the structure bears press stress. Therefore, the columns and beam will share all key points, not but at bolts. This can not only omit contact element but also show the characteristic of bolt joining. The joining between the bottoms of the columns and the base are treated as full constraint. Because the main aim of analysis is the stiffness of the top beam, it can be assumed that the joint positions hear the same as load between beam and the three driving bars. The structure is the thin wall cast and simulated by shell element . The thickness of the outside wall of the structure and the rib are not equal, so two groups of real constant should he set. For the convenience of modeling, the two columns are alsoset into another component. The components can create an assembly. In this way, the joint positions between the beam core and columns could he easily selected, in the modifying the model and modifying process can automatically be performed. Analysis model is showed Fig.1. Because model and load are symmetric, computing model is only half. So the total of elements is decreased to 8927 and the total of nodes is decreased to 4341. All elements are triangle.3.)Optimization solutionThe optimization process is essentially a computing and modifying process. The original design is used as initial condition of the iterative process. The ending condition of the process is that stiffness differences of the joint locations between three driving bars and top beam are less than given tolerance or iterative times exceed expected value. Considering the speciality of the question, it is foreseen that the location is existent where stiffness values are equal. If iterative is not convergent, the cause cannot be otherwise than inappropriate displacement increment or deficient iterative times. In order to make the iterative process convergent quickly and efficiently, this paper uses the bisection searching method changing step length to modify the top beam displacement. This method is a little complex but the requirement on the initial condition is relatively mild.The flow chart of optimization as follows:1. Read the beam model data in initial position from backup file;2. Modify the position of beam;3. Solve;4. Read the deform of nodes where beam and three bars are joined;5. Check whether the convergent conditions are satisfied, if not, then continue to modify the beam displacement and return to 3, otherwise, exit the iteration procedure.6. Save the results and then exit.The program's primary control codes and their function commentaries are given in it, of which the detailed modeling instructions are omitted. For the convenience of comparing with the control flow, the necessary notes are added.the flag of the batch file in ANSYSBATCH RESUME, robbak.db, 0read original data from the backupfile robbak,.db/PREP7 enter preprocessordelete the joint part between beam core and columnsmove the core of the beam by one :step lengthapply load and constraint on the geometry meshing thejoint position between beam core and columns FINISH exit the preprocessorISOLU enter solverSOLVE solveFINISH exit the solverPOST1 enter the postprocessor*GET ,front,NODE,2013,U,Z read the deformation of first joint node on beam*GET,back,NODE, 1441 ,U,Z read the deformation of second joint node on beam intoparameter hacklastdif-1 the absolute of initial difference between front and hacklast timeflag=- 1 the feasibility flag of the optimizationstep=0.05 the initial displacement from initial position to the currentposition*D0,1,1,10,1 the iteration procedure begin, the cycle variable is I andits value range is 1-10 and step length is 1dif=abs(front-back) the absolute of the difference between front and hack inthe current result*IF,dif,LE,l .OE-6,THEN check whether the absolute difference dif satisfies therequest or noflag=l yes, set flag equal to 1*EXIT exit the iterative calculation*ELSEIF,dif,GE,lastdif,THEN check whether the dif value becomes great or not flag=2yes, set flag 2 modify step length by bisection methodperform the next iterative calculation, use the lastposition as the current position and modified last steplength as the current step lengthELSE if the absolute of difference value is not less thanexpected value and become small gradually, continue tomove top beam read the initial condition from back upfile enter the preprocessorMEN, ,P51X, , , step,, , ,1 move the core of the beam by one step length modify thejoint positions between beam core and column applyload and constraint meshingFINISH exit preprocessorISOLU enter solverSOLVE solveFINISH exit the solver/POST1 exit the postprocessor*GET,front,NODE,201 3,U,Z read the deformation of first joint node to parameter front *GET,back,NODE, 144 1,U,Z read the deformation of second joint node to parameter back lastdif-dif update the value of last dif*ENDIF the end of the if-else*ENDDO the end of the DO cycleMost of the control program above is copied from log file, which is long. The total of lines is up to about 1000 lines. Many codes such as modeling and post-process codes are used repeatedly. To make the program construct clear, these instructions can he made into macros, which are called by main program. This can efficiently reduce the length of the main program. In addition, modeling instructions from log file includes lots of special instructions that are only used under graphic mode but useless under hatch mode. Deleting and modifying these instructions when under batch mode in ANSYS can reduce the length of the file, too.In the program above, the deformation at given position is read from node deformation. In meshing, in order to avoid generating had elements, triangle mesh is used. In optimization, the shape of joint position between columns and beam continually is changed. This makes total of elements different after meshing each time and then element numbering different, too. Data read from database according to node numbering might not he data to want. Therefore, beam core first needs to he meshed, then saved. When read next time, its numbering is the same as last time.Evaluating whether the final result is a feasible result or not needs to check the flag value. If only the flag value is I, the result is feasible, otherwise the most proper position is not found. The total displacement of top beam is saved in parameter step. If the result is feasible, the step value is the distance from initial position to the most proper position. The sum of iterative is saved in parameter 1. According to the final value of I, feasibility of analysis result and correctness of initial condition can he evaluated.4)Optimization resultsThe sum of iterative in optimization is seven, and it takes about 2 hour and 37 minutes to find optimal position. Fig.3 shows the deformation contour of the half-construct. In Fig.3, the deformations in three joints between beam and the three driving bars is the same as level, and the corresponding deformation range is between -0.133E-04 and -0.1 15E-O4m, the requirement of the same stiffness is reached. At this time, the position of beam core along x-axis as shown in Fig. 1 has moved -0.71E-01m compared with the original designed positionBecause the speed of computer reading instruction is much faster than modifying model manually, the time modifying model can be ignored. The time necessary foroptimization mostly depends on the time of solution. Compared with the optimization procedure manually modifying model, the efficiency is improved and mistake operating in modeling is avoided.5)ConclusionThe analyzing result reveals that the optimization method given in this paper is effective and reaches the expected goal. The first advantage of this method is that manual mistakes do not easily occur in optimization procedure. Secondly, it is pretty universal and the control codes given in this paper may he transplanted to use in similar structure optimization design without large modification. The disadvantage is that the topology structure of the optimization object can not be changed. The more the workload of modifying the model, the more the advantages of this method are shown. In addition, the topology optimization function provided in ANSYS is usedto solve the optimization problem that needs to change the topology structure.The better optimization results can he achieved if the method in this paper combined with it.中文译文:机器人机构优化设计有限元分析摘要机器人结构最优化设计,设计模型需要反复的修正和计算。

传感器技术论文中英文对照资料外文翻译文献

传感器技术论文中英文对照资料外文翻译文献

传感器技术论文中英文对照资料外文翻译文献Development of New Sensor TechnologiesSensors are devices that can convert physical。

chemical。

logical quantities。

etc。

into electrical signals。

The output signals can take different forms。

such as voltage。

current。

frequency。

pulse。

etc。

and can meet the requirements of n n。

processing。

recording。

display。

and control。

They are indispensable components in automatic n systems and automatic control systems。

If computers are compared to brains。

then sensors are like the five senses。

Sensors can correctly sense the measured quantity and convert it into a corresponding output。

playing a decisive role in the quality of the system。

The higher the degree of n。

the higher the requirements for sensors。

In today's n age。

the n industry includes three parts: sensing technology。

n technology。

and computer technology。

机器人技术发展中英文对照外文翻译文献

机器人技术发展中英文对照外文翻译文献

机器人技术发展中英文对照外文翻译文献(文档含英文原文和中文翻译)外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need.Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, for instance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide.Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now I have a brief account of China's robot development of the basic profiles. As our country there are many other factors that problem. Our country in robotics research of the 20th century the late 1970s. At that time, we organized at the national, a Japanese industrial automation products exhibition. In this meeting, there are two products, is a CNC machine tools, an industrial robot, this time, our country's many scholars see such a direction, has begun to make a robot research But this time, are basically confined to the theory of phase .Then the real robot research, in 7500 August 5, 1995, 15 nearly 20 years of development, The most rapid development, in 1986 we established a national plan of 863 high-technology development plan, As robot technology will be an important theme of the development of The state has invested nearly Jiganyi funds begun to make a robot, We made the robot in the field quickly and rapid development.At present, units like the CAS ShenYng Institute of Automation, the original machinery, automation of the Ministry, as of Harbin Industrial University, Beijing University of Aeronautics and Astronautics, Qinghua University, Chinese Academy of Sciences, also includes automation of some units, and so on have done a very important study, also made a lot of achievements Meanwhile, in recent years, we end up in college, a lot of flats in robot research, Many graduate students and doctoral candidates are engaged in robotics research, we are more representative national study Industrial robots, underwater robots, space robots, robots in the nuclear industry are on the international level should be taking the lead .On the whole of our country Compared with developed countries, there is still a big gap, primarily manifested in the We in the robot industry, at present there is no fixed maturity product, but in theseunderwater, space, the nuclear industry, a number of special robots, we have made a lot of achievements characteristics.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wrist posture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue,relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign t o complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, people would not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through amanipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.We regard this country excel, it should be said that the United States, Russia and France, in our nation, also to the international forefront, which is the CAS ShenYang Institute of Automation of developing successful, 6,000 meters underwater without cable autonomous underwater robot, the robot to 6,000 meters underwater, can be conducted without cable operations. His is 2000, has been obtained in our country one of the top ten scientific and technological achievements. This indicates that our country in this underwater robot, have reached the advanced international level, 863 in the current plan, the development of 7,000 meters underwater in a manned submersible to the ocean further development and operation, This is a great vote of financial and material resources.In this space robotics research has also been a lot of development. In Europe, including 16 in the United States space program, and the future of this space capsule such a scheme, One thing is for space robots, its main significance lies in the development of the universe and the benefit of mankind and the creation of new human homes, Its main function is to scientific investigation, as production and space scientific experiments, satellites and space vehicles maintenance and repair, and the construction of the space assembly. These applications, indeed necessary, for example, scientific investigation, as if to mock the ground some physical and chemical experiments do not necessarily have people sitting in the edge of space, because the space crew survival in the day the cost is nearly one million dollars. But also very dangerous, in fact, some action is very simple, through the ground, via satellite control robot, and some regularly scheduled completion of the action is actually very simple. Include the capsule as control experiments, some switches, buttons, simple flange repair maintenance, Robot can be used to be performed by robots because of a solar battery, then the robot will be able to survive, we will be able to work, We have just passed the last robot development on the application of the different areas ofapplication, and have seen the robots in industry, medical, underwater, space, mining, construction, service, entertainment and military aspects of the application .Also really see that the application is driven by the development of key technologies, a lack of demand, the robot can not, It is because people in understanding the natural transformation of the natural process, the needs of a wide range of robots, So this will promote the development of key technologies, the robot itself for the development of From another aspect, as key technology solutions, as well as the needs of the application, on the promotion of the robot itself a theme for the development of intelligent, and from teaching reappearance development of the current local perception of the second-generation robot, the ultimate goal, continuously with other disciplines and the development of advanced technology, the robot has become rich, eventually achieve such an intelligent robot mainstream.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。

人形机器人中英文对照外文翻译文献

人形机器人中英文对照外文翻译文献

中英文对照翻译最小化传感级别不确定性联合策略的机械手控制摘要:人形机器人的应用应该要求机器人的行为和举止表现得象人。

下面的决定和控制自己在很大程度上的不确定性并存在于获取信息感觉器官的非结构化动态环境中的软件计算方法人一样能想得到。

在机器人领域,关键问题之一是在感官数据中提取有用的知识,然后对信息以及感觉的不确定性划分为各个层次。

本文提出了一种基于广义融合杂交分类(人工神经网络的力量,论坛渔业局)已制定和申请验证的生成合成数据观测模型,以及从实际硬件机器人。

选择这个融合,主要的目标是根据内部(联合传感器)和外部( Vision 摄像头)感觉信息最大限度地减少不确定性机器人操纵的任务。

目前已被广泛有效的一种方法论就是研究专门配置5个自由度的实验室机器人和模型模拟视觉控制的机械手。

在最近调查的主要不确定性的处理方法包括加权参数选择(几何融合),并指出经过训练在标准操纵机器人控制器的设计的神经网络是无法使用的。

这些方法在混合配置,大大减少了更快和更精确不同级别的机械手控制的不确定性,这中方法已经通过了严格的模拟仿真和试验。

关键词:传感器融合,频分双工,游离脂肪酸,人工神经网络,软计算,机械手,可重复性,准确性,协方差矩阵,不确定性,不确定性椭球。

1 引言各种各样的机器人的应用(工业,军事,科学,医药,社会福利,家庭和娱乐)已涌现了越来越多产品,它们操作范围大并呢那个在非结构化环境中运行 [ 3,12,15]。

在大多数情况下,如何认识环境正在发生变化且每个瞬间最优控制机器人的动作是至关重要的。

移动机器人也基本上都有定位和操作非常大的非结构化的动态环境和处理重大的不确定性的能力[ 1,9,19 ]。

每当机器人操作在随意性自然环境时,在给定的工作将做完的条件下总是存在着某种程度的不确定性。

这些条件可能,有时不同当给定的操作正在执行的时候。

导致这种不确定性的主要的原因是来自机器人的运动参数和各种确定任务信息的差异所引起的。

机器人技术的发展论文中英文对照资料外文翻译文献

机器人技术的发展论文中英文对照资料外文翻译文献

机器人技术的发展论文中英文对照资料外文翻译文献摘要随着科技的不断发展,机器人技术在各个领域得到了广泛的应用。

本文翻译了几篇关于机器人技术的发展的文献,这些文献包括中文和英文内容。

其中,有关于机器人对人类生活的影响的讨论,也有机器人在工业、医疗等领域中的应用。

这些文献为大家提供了对机器人技术的深入了解,对于有关机器人技术的研究具有一定的参考价值。

正文中文文献机器人与人类生活随着机器人技术的不断发展,机器人已经开始逐渐进入人们的日常生活。

机器人从一开始的只能执行简单的任务,到现在已经能够和人类进行交互,甚至是取代人类在某些领域的工作。

随着机器人不断普及,对于机器人技术的伦理问题也越来越引人注目。

例如,机器人将如何与人类共存?机器人将如何对人类的生活产生影响?这些问题都亟待解决。

工业领域中的机器人工业领域是机器人技术得到广泛应用的领域之一。

机器人在工业生产中的应用不仅可以提高生产效率,还能减少人工操作对环境造成的影响。

目前,工业机器人已经能够完成许多需要人脑思考的任务,例如对产品进行分类、贴标签等。

随着机器人技术的不断发展,相信未来机器人在工业领域中的应用也会越来越广泛。

医疗领域中的机器人医疗领域是机器人技术应用的另一个重要领域。

机器人在医疗中的应用包括手术机器人、护理机器人等。

手术机器人可以进行精细的手术操作,并且可以通过微创手术减少患者的痛苦。

护理机器人可以为需要护理的人提供便利和帮助,减轻护理人员的负担。

这些机器人的出现,不仅提高了医疗领域的工作效率,还帮助了许多需要医疗服务的人。

英文文献Advances in Robotics TechnologyThis article reviews the recent advances in robotics technology. One of the biggest usages of robots is in the industrial sector, where the use in manufacturing process yields benefits such as increased efficiency and reduced costs. There are also a variety of robots for medical purposes, such as surgery and rehabilitation. In addition, robots are being used in the military and exploration of hostile environments to reduce risk to human life. The article concludes that robotics technology will continue to evolve and transform various industries with the potential to improve efficiency and reduce human error.Social Interaction with Robots结论本文翻译了关于机器人技术发展的中英文文献,并提供了机器人对人类生活的影响,机器人在工业、医疗中的应用等信息。

工业机器人的介绍外文文献翻译、中英文翻译、外文翻译

工业机器人的介绍外文文献翻译、中英文翻译、外文翻译

外文原文Introduction to Industrial RobotsIndustrial robets became a reality in the early 1960’s when Joseph Engelberger and George Devol teamed up to form a robotics company they called “Unimation”. Engelberger and Devol were not the first to dream of machines that could perform the unskilled, repetitive jobs in manufacturing. The first use of the word “robots” was by the Czechoslovakian philosopher and playwright Karel Capek in his play R.U.R.(Rossum’s Universal Robot). The word “robot” in Czech means “worker” or “slave.” The play was written in 1922.In Capek’s play , Rossum and his son discover the chemical formula for artificial protoplasm. Protoplasm forms the very basis of life.With their compound,Rossum and his son set out to make a robot.Rossum and his son spend 20 years forming the protoplasm into a robot. After 20 years the Rossums look at what theyhave created and say, “It’s absurd to spend twenty years making a man if we can’t make him quicker than nature, you might as w than nature, you might as well shut up shop.” ell shut up shop.”The young Rossum goes back to work eliminating organs he considers unnecessary for the ideal worker. The young Rossum says, “A man is something that feels happy , plays piano ,likes going for a walk, and in fact wants to do a whole lot of things that are unnecessary … but a working machine must not play piano, must not feel happy, must not do a whole lot of other things. Everything that doesn’t contribute directly to the progress of work should be eliminated.”A half century later, engi neers began building Rossum’s robot, not out of artificial protoplasm, but of silicon, hydraulics, pneumatics, and electric motors. Robots that were dreamed of by Capek in 1922, that work but do not feel, that perform unhuman or subhuman, jobs in manufacturing plants, are available and are in operation around the world.The modern robot lacks feeling and emotions just as Rossum’s son thought it should. It can only respond to simple “yes/no” questions. The moderrn robot is normally bolted to the floor. It has one arm and one hand. It is deaf, blind, and dumb. In spite of all of these handicaps, the modern robot performs its assigned task hour after hour without boredom or complaint.A robot is not simply another automated machine. Automation began during the industrial revolution with machines that performed jobs that formerly had been done by human workers. Such a machine, however , can do only the specific job for which it was designed, whereas a robot can perform a variety of jobs.A robot must have an arm. The arm must be able to duplicate the movements of a human worker in loading and unloading other automated machines, spraying paint, welding, and performing hundreds of other jobs that cannot be easily done with conventional automated machines.DEFINITION OF A ROBOTThe Robot Industries Association(RIA) has published a definition for robots in an attempt to clarify which machines are simply automated machines and which machines are truly robots. The RIA definition is as follows:“A robot is a reprogrammabl reprogrammable e multifunctional manipulator designed to move material, parts, tools, or specialized devices through variable programmed motions for the performance of a variety of tasks.”This definition, which is more extensive than the one in the RIA glossary at the end of this book, is an excellent definition of a robot. We will look at this definition, one phrase at a time, so as to understand which machines are in fact robots and which machines are little more than specialized automation.First, a robot is a “reprogrammable multifunctional manipulator.” In this phrase RIA tells us that a robot can be taught (“reprogrammed”) to do more than one job by changing the informaion stored in its memory. A robot can be reprogrammed to load and unload machines, weld, and do ma and unload machines, weld, and do many other jobs (“multifunctional”). A robot is a ny other jobs (“multifunctional”). A robot is a“manipulator”. A manipulator is an arm( or hand ) that can pick up or move things. At this point we know that a robot is an arm that can be taught to do different jobs.The definition goes on to say that a ro The definition goes on to say that a robot is “designed to move material, parts, bot is “designed to move material, parts, tools, or specialized devices.” Material includes wood,steel, plastic, cardboard… anything that is used in the manufacture of a product.A robot can also handle parts that have been manufactured. For example, a robot can load a piece of steel into an automatic lathe and unload a finished part out of the lathe. In addition to handling material and parts, a robot can be fitted with tools such as grinders, buffers, screwdrivers, and welding torches to perform useful work.Robots can also be fitted with specialized instruments or devices to do special jobs in a manufacturing plant. Robots can be fitted with television cameras for inspection of parts or products. They can be fitted with lasers to accurately mearure the size of parts being manufactured.The RIA definition closes with the phrase,”…through variable programmed motions for the performance of a variety of tasks.” This phrase emphasizes the fact that a robot can do many different jobs in a manufacturing plant. The variety of jobs that a robot can do is limited only by the creativity of the application engineer. JOBS FOR ROBOTSJobs performed by robots can be divided into two major categories:hazardous jobs and repetitive jobs. Hazardous JobsMany applications of robots are in jobs that are hazardous to humans. Such jobs may be considered hazardous because of toxic fumes, the weight of the material being handled, the temperature of the material being handled, the danger of working near rotating or press machinery, or environments containing high levels of radiation. Repetitive JobsIn addition to taking over hazardous jobs, robots are well suited to doingextremely repetitive jobs that must be done in manufacturing plants.many jobs in manufacturing plants require a person to act more like a machine than like a human.The job may be to pick a piece up from here and place it there. The same job is donehundreds of times each day. The job requires little or no judgment and little or no skill.This is not said as a criticism of the person who does the job , but is intended simplyto point out that many of these jobs exist in industry and must be done to complete themanufacture of products. A robot can be placed at such a work station and can perform the job admirably without complaining or experiencing the fatigue and boredom normally associated with such a job.Although robots eliminate some jobs in industry, they normally eliminate jobs thathumans should never have been asked to do. Machines should perform as machines doing machine jobs, and humans should be placed in jobs that require the use of their ability,creativity, and special skills.POTENTIAL FOR INCREASED PRODUCTIVITYIn addition to removing people from jobs they should not have been placed in,robots offer companies the opportunity of achieving increased productivity. Whenrobots are placed in repetitive jobs they continue to operate at their programmed pacewithout fatigue. Robots do not take either scheduled or unscheduled breaks from thejob. The increase in productivity can result in at least 25% more good parts beingproduced in an eight-hour shift. This increase in productivity increases the company'sprofits, which can be reinvested in additional plants and equipment. This increase in productivity results in more jobs in other departments in the plant. With more parts being produced, additional people are needed to deliver the raw materials to the plant, to complete the assembly of the finished products, to sell the finished products, and to deliver the products to their destinations.ROBOT SPEEDAlthough robots increase productivity in a manufacturing plant, they are notexceptionally fast. At present, robots normally operate at or near the speed of a human operator. Every major move of a robot normally takes approximately one second. Fora robot to pick up a piece of steel from a conveyor and load it into a lathe may requireten different moves taking as much as ten seconds. A human operator can do the samejob in the same amount of time . The increase in productivity is a result of theconsistency of operation. As the human operator repeats the same job over and overduring the workday, he or she begins to slow down. The robot continues to operate at its programmed speed and therefore completes more parts during the workday.Custom-built automated machines can be built to do the same jobs that robots do.An automated machine can do the same loading operation in less than half the timerequired by a robot or a human operator. The problem with designing a special machine is that such a machine can perform only the specific job for which it was built. If any change is made in the job, the machine must be completely rebuilt, or the machine must be scrapped and a new machine designed and built. A robot, on the other hand, could be reprogrammed and could start doing the new job the same day.Custom-built automated machines still have their place in industry. If a companyknows that a job will not change for many years, the faster custom-built machine isstill a good choice.Other jobs in factories cannot be done easily with custom-built machinery. For these applications a robot may be a good choice. An example of such an application is spray painting. One company made cabinets for the electronics industry. They made cabinets of many different sizes, all of which needed painting. It was determined that it was not economical for the company to build special spray painting machines for each of the different sizes of enclosures that were being built. Until robots were developed, the company had no choice but to spray the various enclosures by hand.Spray painting is a hazardous job , because the fumes from many paints are both toxic and explosive. A robot is now doing the job of spraying paint on the enclosures.A robot has been “taught” to spray all the different sizes of enclosures that thecompany builds. In addition, the robot can operate in the toxic environment of the spray booth without any concern for the long-term effect the fumes might have on aperson working in the booth.FLEXIBLE AUTOMATIONRobots have another advantage: they can be taught to do different jobs in the manufacturing plant. If a robot was originally purchased to load and unload a punch press and the job is no longer needed due to a change in product design, the robot can be moved to another job in the plant. For example, the robot could be moved to the end of the assembly operation and be used to unload the finished enclosures from a conveyor and load them onto a pallet for shipment.ACCURACY AND REPEATABILITYOne very important characteristic of any robot is the accuracy with which it can perform its task. When the robot is programmed to perform a specific task, it is led to specific points and programmed to remember the locations of those points. After programming has been completed, the robot is switched to “run” and the program is executed. Unfortunately, the robot will not go to the exact location of any programmed point. For example, the robot may miss the exact point by 0.025 in. If 0.025 in. is the greatest error by which the robot misses any point- during the first execution of the program, the robot is said to have an accuracy of 0.025 in.In addition to accuracy , we are also concerned with the robot’s s repeatability. The In addition to accuracy , we are also concerned with the robot’repeatability of a robot is a measure of how closely it returns to its programmed points every time the program is executed. Say , for example, that the robot misses a programmed point by 0.025 in. the first time the program is executed and that, during the next execution of the program, the robot misses the point it reached during the previous cycle by 0.010 in. Although the robot is a total of 0.035 in. from the original programmed point, its accuracy is 0.025 in. and its repeatability is 0.010 in.THE MAJOR PARTS OF A ROBOTThe major parts of a robot are the manipulator, the power supply, and the controller.The manipulator is used to pick up material, parts, or special tools used in manufacturing. The power supply suppplies the power to move the manipulator. The controller controls the power supply so that the manipulator can be taught to perform its task.外文翻译工业机器人的介绍工业机器人的介绍20世纪60年代当约瑟夫和乔治合作创立了名为Unimation 的机器公司,工业机器人便成为了一个事实。

机器人外文文献翻译、中英文翻译

机器人外文文献翻译、中英文翻译

外文资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could be welding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off.The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer ,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中文翻译机器人工业机器人是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害放射线的辐射。

机器人传感器中英文对照外文翻译文献

机器人传感器中英文对照外文翻译文献

中英文对照翻译机器人和机器人传感器介绍工业机器人以及它的运行是本文的主题。

工业机器人是应用于制造环境下以提高生产率的一种工具。

它可用于承担常规的、冗长乏味的装配线工作,或执行那些对工人也许有危害的工作。

例如,在第一代工业机器人中,曾有一台被用于更换核电厂的核燃料棒。

从事这项工作的工人可能会暴露在有害量的放射线下。

工业机器人也能够在装配线上操作——安装小型元件,例如将电子元件安装在线路板上。

为此,工人可以从这种冗长乏味任务的常规操作中解放出来。

通过编程的机器人还能去掉炸弹的雷管、为残疾者服务以及在我们社会的众多应用中发挥作用。

机器人可被看作将臂端执行工具、传感器以及/或夹爪移动到某个预定位置的一台机器。

当机器人到达该位置,它将执行某个任务。

该任务可能是焊接、密封、机械装载、机械卸载,或许多装配工作。

除了编程以及打开和关闭系统之外,一般情况下,均不需要人们的参与就能完成这类工作。

机器人专业术语机器人是一台可再编程的多功能机械手,它可通过可编程运动移动零件、物料、工具或特殊装置以执行某种不同任务。

由这项定义可导致下面段落中被阐述的其他定义,它们为机器人系统提供了完整的写照。

预编程位置是机器人为了完成工作必须遵循和通过的途径。

在这些位置的某点,机器人会停下来并执行某种操作,例如装配零件,喷漆或焊接。

这些预编程位置被存储在机器人的记忆装置中供以后继续操作时使用。

此外,当工作的要求发生变化时,不仅其他编程数据而且这些预编程位置均可作修改。

因此,正由于这种编程的特点,一台工业机器人与一台可存储数据、以及可回忆及编辑的计算机十分相似。

机械手是机器人的手臂,它允许机器人俯仰、伸缩和转动。

这种动作是由机械手的轴所提供的,机械手的轴又称为机器人的自由度。

一台机器人可以具有3至16根轴。

在本人的后面部分,自由度这个术语总与一台机器人轴的数目相关联。

工具及夹爪并非属于机器人系统的本身,它们是装在机器人手臂端部的附件。

有了与机器人手臂端部相连接的这些附件,机器人就可以提起零件、点焊、喷漆、弧焊、钻孔、去毛刺,还可以根据所提要求指向各种类型的任务。

人形机器人论文中英文资料对照外文翻译

人形机器人论文中英文资料对照外文翻译

人形机器人论文中英文资料对照外文翻译| |在获取信息和感觉器官的非结构化动态环境中,后续的决策和对自身不确定性的控制在很大程度上共存。

软件计算方法也可以被人们想象出来。

在机器人领域,关键问题之一是从感觉数据中提取有用的知识,然后将信息和感觉的不确定性分成不同的层次本文提出了一种基于广义融合混合分类(人工神经网络的力量,论坛渔业局)的生成合成数据的观察模型,该模型已经制定并应用于验证,以及一种从实际硬件机器人生成合成数据的模型当选择这种融合时,主要目标是根据内部(关节传感器)和外部(视觉摄像机)的感觉信息最小化机器人操作的不确定性任务目前,一种被广泛有效使用的方法是研究具有5个自由度的实验室机器人和具有模型模拟视觉控制的机械手。

最近研究的处理不确定性的主要方法包括选择加权参数(几何融合),并且指出在标准机械手控制器设计中训练的神经网络是不可用的。

这些方法大大降低了机械手控制的不确定性,在不同层次的混合配置中更快更准确。

这些方法通过了严格的模拟和实验。

关键词:传感器融合、频分双工、游离脂肪酸、人工神经网络、软计算、操纵器、重复性、准确性、协方差矩阵、不确定性、不确定性椭球1简介越来越多的产品出现在各种机器人的应用中(工业、军事、科学、医学、社会福利、家庭和娱乐)。

它们在广泛的范围内运行,哪一个在非结构化环境中运行在大多数情况下,了解环境是如何变化的以及如何在每一瞬间最佳地控制机器人的动作是非常重要的。

移动机器人基本上也有能力定位和操作非常大的非结构化动态环境,并处理重大的不确定性。

对于机器人运动的最佳控制来说,了解周围环境在每一瞬间的变化是至关重要的。

移动机器人本质上还必须在非常大的未成熟的动态环境中导航和操作,并处理显著的不确定性。

当机器人在自然的不确定环境中工作时,给定工作的完成条件总是存在一定程度的不确定性。

在执行给定的操作时,这些条件有时会发生变化。

导致不确定性的主要原因是机器人运动参数和各种任务定义信息中出现的差异。

机器人外文翻译(中英文翻译)

机器人外文翻译(中英文翻译)

机器人外文翻译(中英文翻译)机器人外文翻译(中英文翻译)With the rapid development of technology, the use of robots has become increasingly prevalent in various industries. Robots are now commonly employed to perform tasks that are dangerous, repetitive, or require a high level of precision. However, in order for robots to effectively communicate with humans and fulfill their intended functions, accurate translation between different languages is crucial. In this article, we will explore the importance of machine translation in enabling robots to perform translation tasks, as well as discuss current advancements and challenges in this field.1. IntroductionMachine translation refers to the use of computer algorithms to automatically translate text or speech from one language to another. The ultimate goal of machine translation is to produce translations that are as accurate and natural as those generated by human translators. In the context of robots, machine translation plays a vital role in allowing them to understand and respond to human commands, as well as facilitating communication between robots of different origins.2. Advancements in Machine TranslationThe field of machine translation has experienced significant advancements in recent years, thanks to breakthroughs in artificial intelligence and deep learning. These advancements have led to the development of neural machine translation (NMT) systems, which have greatly improved translation quality. NMT models operate by analyzinglarge amounts of bilingual data, allowing them to learn the syntactic and semantic structures of different languages. As a result, NMT systems are capable of providing more accurate translations compared to traditional rule-based or statistical machine translation approaches.3. Challenges in Machine Translation for RobotsAlthough the advancements in machine translation have greatly improved translation quality, there are still challenges that need to be addressed when applying machine translation to robots. One prominent challenge is the variability of language use, including slang, idioms, and cultural references. These nuances can pose difficulties for machine translation systems, as they often require a deep understanding of the context and cultural background. Researchers are currently working on developing techniques to enhance the ability of machine translation systems to handle such linguistic variations.Another challenge is the real-time requirement of translation in a robotic setting. Robots often need to process and translate information on the fly, and any delay in translation can affect the overall performance and efficiency of the robot. Optimizing translation speed without sacrificing translation quality is an ongoing challenge for researchers in the field.4. Applications of Robot TranslationThe ability for robots to translate languages opens up a wide range of applications in various industries. One application is in the field of customer service, where robots can assist customers in multiple languages, providing support and information. Another application is in healthcare settings, where robots can act as interpreters between healthcare professionals and patientswho may speak different languages. Moreover, in international business and diplomacy, robots equipped with translation capabilities can bridge language barriers and facilitate effective communication between parties.5. ConclusionIn conclusion, machine translation plays a crucial role in enabling robots to effectively communicate with humans and fulfill their intended functions. The advancements in neural machine translation have greatly improved translation quality, but challenges such as language variability and real-time translation requirements still exist. With continuous research and innovation, the future of machine translation for robots holds great potential in various industries, revolutionizing the way we communicate and interact with technology.。

传感器技术外文文献及中文翻译

传感器技术外文文献及中文翻译

传感器技术外文文献及中文翻译Sensor technologyA sensor is a device which produces a signal in response to its detecting or measuring a property ,such as position , force , torque , pressure , temperature , humidity , speed , acceleration , or vibration .Traditionally ,sensors (such as actuators and switches )have been used to set limits on the performance of machines .Common examples are (a) stops on machine tools to restrict work table movements ,(b) pressure and temperature gages with automatics shut-off features , and (c) governors on engines to prevent excessive speed of operation . Sensor technology has become an important aspect of manufacturing processes and systems .It is essential for proper data acquisition and for the monitoring , communication , and computer control of machines and systems .Because they convert one quantity to another , sensors often are referred to as transducers .Analog sensors produce a signal , such as voltage ,which is proportional to the measured quantity .Digital sensors have numeric or digital outputs that can be transferred to computers directly .Analog-to-coverter(ADC) is available for interfacing analog sensors with computers .Classifications of SensorsSensors that are of interest in manufacturing may be classified generally as follows:Machanical sensors measure such as quantities aspositions ,shape ,velocity ,force ,torque , pressure , vibration , strain , andmass .Electrical sensors measure voltage , current , charge , and conductivity .Magnetic sensors measure magnetic field ,flux , and permeablity .Thermal sensors measure temperature , flux ,conductivity , and special heat .Other types are acoustic , ultrasonic , chemical , optical , radiation ,laser ,and fiber-optic .Depending on its application , a sensor may consist of metallic , nonmetallic , organic , or inorganic materials , as well as fluids ,gases ,plasmas , or semiconductors .Using the special characteristics of these materials , sensors covert the quantity or property measured to analog or digital output. The operation of an ordinary mercury thermometer , for example , is based on the difference between the thermal expansion of mercury and that of glass.Similarly , a machine part , a physical obstruction , or barrier in a space can be detected by breaking the beam of light when sensed by a photoelectric cell . A proximity sensor ( which senses and measures the distance between it and an object or a moving member of a machine ) can be based on acoustics , magnetism , capacitance , or optics . Other actuators contact the object and take appropriate action ( usually by electromechanical means ) . Sensors are essential to the conduct of intelligent robots , and are being developed with capabilities that resemble those of humans ( smart sensors , see the following ).This is America, the development of such a surgery Lin Bai an example,through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Tactile sensing is the continuous of variable contact forces , commonly by an array of sensors . Such a system is capable of performing within an arbitrary three-dimensional space .has gradually shifted from manufacturing tonon-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristicsIn visual sensing (machine vision , computer vision ) , cameral optically sense the presence and shape of the object . A microprocessor then processes the image ( usually in less than one second ) , the image is measured , and the measurements are digitized ( image recognition ) .Machine vision is suitable particularly for inaccessible parts , in hostile manufacturing environments , for measuring a large number of small features , and in situations where physics contact with the part may cause damage .Small sensors have the capability to perform a logic function , to conduct two-way communication , and to make a decisions and take appropriate actions . The necessary input and the knowledge required to make a decision can be built into a smart sensor . For example , a computer chip with sensors can be programmed to turn a machine tool off when a cutting tool fails . Likewise , a smart sensor can stop a mobile robot or a robot arm from accidentally coming in contact with an object or people by using quantities such as distance , heat , and noise .Sensor fusion . Sensor fusion basically involves the integration of multiple sensors in such a manner where the individual data from each of the sensors ( such as force , vibration , temperature , and dimensions ) are combined to provide a higher level of information and reliability . A common application ofsensor fusion occurs when someone drinks a cup of hot coffee . Although we take such a quotidian event for granted ,it readily can be seen that this process involves data input from the person's eyes , lips , tongue , and hands .Through our basic senses of sight , hearing , smell , taste , and touch , there is real-time monitoring of relative movements , positions , and temperatures . Thus if the coffee is too hot , the hand movement of the cup toward the lip is controlled and adjusted accordingly .The earliest applications of sensor fusion were in robot movement control , missile flight tracking , and similar military applications . Primarily because these activities involve movements that mimic human behavior . Another example of sensor fusion is a machine operation in which a set of different but integrated sensors monitors (a) the dimensions and surface finish of workpiece , (b) tool forces , vibrations ,and wear ,(c) the temperature in various regions of the tool-workpiece system , and (d) the spindle power .An important aspect in sensor fusion is sensor validation : the failure of one particular sensor is detected so that the control system maintains high reliability . For this application ,the receiving of redundant data from different sensors is essential . It can be seen that the receiving , integrating of all data from various sensors can be a complex problem .With advances in sensor size , quality , and technology and continued developments in computer-control systems , artificial neural networks , sensor fusion has become practical and available at low cost .Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wrist posture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom Fiber-optic sensors are being developed for gas-turbine engines . These sensors will be installed in critical locations and will monitor the conditions inside the engine , such as temperature , pressure , and flow of gas . Continuous monitoring of the signals from thes sensors will help detect possible engine problems and also provide the necessary data for improving the efficiency of the engines .传感器技术传感器一种通过检测某一参数而产生信号的装置。

机器人外文文献翻译、中英文翻译

机器人外文文献翻译、中英文翻译

外文资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could be welding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off.The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer ,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中文翻译机器人工业机器人是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害放射线的辐射。

关于现代工业机械手外文文献翻译@中英文翻译@外文翻译

关于现代工业机械手外文文献翻译@中英文翻译@外文翻译

附录About Modenr Industrial Manipulayor Robot is a type of mechantronics equipment which synthesizes the last research achievement of engine and precision engine, micro-electronics and computer, automation control and drive, sensor and message dispose and artificial intelligence and so on. With the development of economic and the demand for automation control, robot technology is developed quickly and all types of the robots products are come into being. The practicality use of robot not only solves the problems which are difficult to operate for human being, but also advances the industrial automation program. Modern industrial robots are true marvels of engineering. A robot the size of a person can easily carry a load over one hundred pounds and move it very quickly with a repeatability of 0.006inches. Furthermore these robots can do that 24hours a day for years on end with no failures whatsoever. Though they are reprogrammable, in many applications they are programmed once and then repeat that exact same task for years.At present, the research and development of robot involves several kinds of technology and the robot system configuration is so complex that the cost at large is high which to a certain extent limit the robot abroad use. To development economic practicality and high reliability robot system will be value to robot social application and economy development. With he rapid progress with the control economy and expanding of the modern cities, the let of sewage is increasing quickly; with the development of modern technology and the enhancement of consciousness about environment reserve, more and more people realizedthe importance and urgent of sewage disposal. Active bacteria method is an effective technique for sewage disposal. The abundance requirement for lacunaris plastic makes it is a consequent for plastic producing with automation and high productivity. Therefore, it is very necessary to design a manipulator that can automatically fulfill the plastic holding. With the analysis of the problems in the design of the plasticholding manipulator and synthesizing the robot research and development condition in recent years, a economic scheme is concluded on the basis of the analysis of mechanical configuration, transform system, drive device and control system and guided by the idea of the characteristic and complex of mechanical configuration, electronic, software and hardware. In this article, the mechanical configuration combines the character of direction coordinate which can improve the stability and operation flexibility of the system. The main function of the transmission mechanism is to transmit power to implement department and complete the necessary movement. In this transmission structure, the screw transmission mechanism transmits the rotary motion into linear motion. Worm gear can give vary transmission ratio. Both of the transmission mechanisms have a characteristic of compact structure. The design of drive system often is limited by the environment condition and the factor of cost and technical lever. The step motor can receive digital signal directly and has the ability to response outer environment immediately and has no accumulation error, which often is used in driving system. In this driving system, open-loop control system is composed of stepping motor, which can satisfy the demand not only for control precision but also for the target of economic and practicality. On this basis, the analysis of stepping motor in power calculating and style selecting is also given. The analysis of kinematics anddynamics for object holding manipulator is given in completing the design of mechanical structure and drive system.Current industrial approaches to robot arm control treat each joint of the robot arm as a simple joint servomechanism. The servomechanism approach models the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. These changes in the parameters of the controlled system sometimes are significant enough to render conventional feedback control strategies ineffective. The result is reduced servo response speed and damping, limiting the precision and speed of the end-effecter and making it appropriate only for limited-precision tasks. Manipulators controlled in this manner move at slow speeds with unnecessary vibrations. Any significant performance gain in this and other areas of robot arm control require the consideration of more efficient dynamic models, sophisticated control approaches, and the use of dedicated computer architectures and parallel processing techniques.In the industrial production and other fields, people often endangered by such factors as high temperature, corrode, poisonous gas and so forth at work, which have increased labor intensity and even jeopardized the life sometimes. The corresponding problems are solved since the robot arm comes out. The arms can catch, put and carry objects, and its movements are flexible and diversified. It applies to medium and small-scale automated production in which production varieties can be switched. And it is widely used on soft automatic line. The robot arms are generally made by withstand high temperatures, resist corrosion of materials to adapt to the harsh environment. So they reduced the labor intensity of the workers significantly and raised work efficiency. The robot arm is an importantcomponent of industrial robot, and it can be called industrial robots on many occasions. Industrial robot is set machinery, electronics, control, computers, sensors, artificial intelligence and other advanced technologies in the integration of multidisciplinary important modern manufacturing equipment. Widely using industrial robots, not only can improve product quality and production, but also is of great significance for physical security protection, improvement of the environment for labor, reducing labor intensity, improvement of labor productivity, raw material consumption savings and lowering production costs.There are such mechanical components as ball footbridge, slides, air control mechanical hand and so on in the design. A programmable controller, a programming device, stepping motors, stepping motors drives, direct current motors, sensors, switch power supply, an electromagnetism valve and control desk are used in electrical connection.Robot is the automated production of a kind used in the process of crawling and movin g piece features automatic device, which is mechanized and automated production process d eveloped a new type of device. In recent years, as electronic technology, especially compute r extensive use of robot development and production of hightech fields has become a rapidl y developed a new technology, which further promoted the development of robot, allowing robot to better achieved with the combination of mechanization and automation. Robot can replace humans completed the risk of duplication of boring work, to reduce human labor int ensity and improve labor productivity. Manipulator has been applied more and more widely, in the machinery industry, it can be used for parts assembly, work piece handling, loading a nd unloading, particularly in the automation of CNC machine tools, modular machine toolsmore commonly used. At present, the robot has developed into a FMS flexible manufacturin g systems and flexible manufacturing cell in an important component of the FMC. The mac hine tool equipment and machinery in hand together constitute a flexible manufacturing syst em or a flexible manufacturing cell, it was adapted to small and medium volume production , you can save a huge amount of the work piece conveyor device, compact, and adaptable. When the work piece changes, flexible production system is very easy to change will help e nterprises to continuously update the marketable variety, improve product quality, and better adapt to market competition. At present, China's industrial robot technology and its enginee ring application level and comparable to foreign countries there is a certain distance, applica tion and industrialization of the size of the low level of robot research and development of a direct impact on raising the level of automation in China, from the economy, technical cons iderations are very necessary. Therefore, the study of mechanical hand design is very meani ngful.关于现代工业机械手机器人是典型的机电一体化装置,它综合运用了机械与精密机械、微电子与计算机、自动控制与驱动、传感器与信息处理以及人工智能等多学科的最新研究成果,随着经济技术的开展和各行各业对自动化程度要求的提高,机器人技术得到了迅速开展,出现了各种各样的机器人产品。

传感器技术外文文献及中文翻译

传感器技术外文文献及中文翻译

Sensor technologyA sensor is a device which produces a signal in response to its detecting or measuring a property ,such as position , force , torque ,pressure , temperature ,humidity , speed ,acceleration ,or vibration 。

Traditionally ,sensors (such as actuators and switches )have been used to set limits on the performance of machines .Common examples are (a)stops on machine tools to restrict work table movements ,(b) pressure and temperature gages with automatics shut-off features ,and (c)governors on engines to prevent excessive speed of operation . Sensor technology has become an important aspect of manufacturing processes and systems 。

It is essential for proper data acquisition and for the monitoring ,communication ,and computer control of machines and systems 。

Because they convert one quantity to another , sensors often are referred to as transducers .Analog sensors produce a signal , such as voltage ,which is proportional to the measured quantity .Digital sensors have numeric or digital outputs that can be transferred to computers directly 。

毕业论文外文文献翻译Robots机器人

毕业论文外文文献翻译Robots机器人

毕业设计(论文)外文文献翻译文献、资料中文题目:机器人文献、资料英文题目:Robots文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期:2017.02.14外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need.Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with thefeeling that This feeling with the robot is similar in function of a certain feeling, for instance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now I have a brief account of China's robot development of the basic profiles. As our country there are many other factors that problem. Our country in robotics research of the 20th century the late 1970s. At that time, we organized at the national, a Japanese industrial automation products exhibition. In this meeting, there are two products, is a CNC machine tools, an industrial robot, this time, our country's many scholars see such a direction, has begun to make a robot research But this time, are basically confined to the theory of phase .Then the real robot research, in 7500 August 5, 1995, 15 nearly 20 years of development, The most rapid development, in 1986 we established a national plan of 863 high-technology development plan, As robot technology will be an important theme of the development of The state has invested nearly Jiganyi funds begun to make a robot, We made the robot in the field quickly and rapid development.At present, units like the CAS ShenYng Institute of Automation, the original machinery, automation of the Ministry, as of Harbin Industrial University, Beijing University of Aeronautics and Astronautics, Qinghua University, Chinese Academy of Sciences, also includes automation of some units, and so on have done a very important study, also made a lot of achievements Meanwhile, in recent years, we end up in college, a lot of flats in robot research, Many graduate students and doctoralcandidates are engaged in robotics research, we are more representative national study Industrial robots, underwater robots, space robots, robots in the nuclear industry are on the international level should be taking the lead .On the whole of our country Compared with developed countries, there is still a big gap, primarily manifested in the We in the robot industry, at present there is no fixed maturity product, but in these underwater, space, the nuclear industry, a number of special robots, we have made a lot of achievements characteristics.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wrist posture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization,especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, people would not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote controloperator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.We regard this country excel, it should be said that the United States, Russia and France, in our nation, also to the international forefront, which is the CAS ShenYang Institute of Automation of developing successful, 6,000 meters underwater without cable autonomous underwater robot, the robot to 6,000 meters underwater, can be conducted without cable operations. His is 2000, has been obtained in our country one of the top ten scientific and technological achievements. This indicates that our country in this underwater robot, have reached the advanced international level, 863 in the current plan, the development of 7,000 meters underwater in a manned submersible to the ocean further development and operation, This is a great vote of financial and material resources.In this space robotics research has also been a lot of development. In Europe, including 16 in the United States space program, and the future of this space capsule such a scheme, One thing is for space robots, its main significance lies in the development of the universe and the benefit of mankind and the creation of new human homes, Its main function is to scientific investigation, as production and space scientific experiments, satellites and space vehicles maintenance and repair, and the construction of the space assembly. These applications, indeed necessary, for example, scientific investigation, as if to mock the ground some physical and chemical experiments do not necessarily have people sitting in the edge of space, because the space crew survival in the day the cost is nearly one million dollars. But also very dangerous, in fact, some action is very simple, through the ground, via satellitecontrol robot, and some regularly scheduled completion of the action is actually very simple. Include the capsule as control experiments, some switches, buttons, simple flange repair maintenance, Robot can be used to be performed by robots because of a solar battery, then the robot will be able to survive, we will be able to work, We have just passed the last robot development on the application of the different areas of application, and have seen the robots in industry, medical, underwater, space, mining, construction, service, entertainment and military aspects of the application .Also really see that the application is driven by the development of key technologies, a lack of demand, the robot can not, It is because people in understanding the natural transformation of the natural process, the needs of a wide range of robots, So this will promote the development of key technologies, the robot itself for the development of From another aspect, as key technology solutions, as well as the needs of the application, on the promotion of the robot itself a theme for the development of intelligent, and from teaching reappearance development of the current local perception of the second-generation robot, the ultimate goal, continuously with other disciplines and the development of advanced technology, the robot has become rich, eventually achieve such an intelligent robot mainstream.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。

机器人外文翻译(文献翻译_中英文翻译)

机器人外文翻译(文献翻译_中英文翻译)

外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, forinstance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wristposture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, peoplewould not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。

机器人外文翻译外文文献英文文献采用模糊逻辑控制使自主机器人避障设计

机器人外文翻译外文文献英文文献采用模糊逻辑控制使自主机器人避障设计

Autonomous robot obstacle avoidance using a fuzzy logic control schemeWilliam MartinSubmitted on December 4, 2009CS311 - Final Project1. INTRODUCTIONOne of the considerable hurdles to overcome, when trying to describe areal-world control scheme with first-order logic, is the strong ambiguity found in both semantics and evaluations. Although one option is to utilize probability theory in order to come up with a more realistic model, this still relies on obtaining information about an agent's environment with some amount of precision. However, fuzzy logic allows an agent to exploit inexactness in its collected data by allowing for a level of tolerance. This can be especially important when high precision or accuracy in a measurement is quite costly. For example, ultrasonic and infrared range sensors allow for fast and cost effective distance measurements with varying uncertainty. The proposed applications for fuzzy logic range from controlling robotic hands with six degrees of freedom1 to filtering noise from a digital signal.2 Due to its easy implementation, fuzzy logic control has been popular for industrial applications when advanced differential equations become either computationally expensive or offer no known solution. This project is an attempt to take advantage of these fuzzy logic simplifications in order to implement simple obstacle avoidance for a mobile robot. 2. PHYSICAL ROBOT IMPLEMENTATION2.1. Chassis and sensorsThe robotic vehicle's chassis was constructed from an Excalibur EI-MSD2003 remote control toy tank. The device was stripped of all electronics, gears, and extraneous parts in order to work with just the empty case and two DC motors for the tank treads. However, this left a somewhat uneven surface to work on, so high-density polyethylene (HDPE) rods were used to fill in empty spaces. Since HDPE has a rather low surface energy, which is not ideal for bonding with other materials, a propanetorch was used to raise surface temperature and improve bonding with an epoxy adhesive.Three Sharp GP2D12 infrared sensors, which have a range of 10 to 80 cm, were used for distance measurements. In order to mount these appropriately, a 2.5 by 15 cm piece of aluminum was bent into three even pieces at 135 degree angles. This allows for the IR sensors to take three different measurements at 45 degree angles (right, middle, and left distances). This sensor mount was then attached to an HDPE rod with mounting tape and the rod was glued to the tank base with epoxy. Since the minimum distance that can be reliably measured with these sensors is 10 cm, the sensors were placed about 9 cm from the front of the vehicle. This allowed measurements to be taken very close to the front of the robot.2.2. ElectronicsIn order to control the speed of each motor, pulse-width modulation (PWM) was used to drive two L2722 op amps in open loop mode (Fig. 1). The high input resistance of these ICs allow for the motors to be powered with very little power draw from the PWM circuitry. In order to isolate the motor's power supply from the rest of the electronics, a 9.6 V NiCad battery was used separately from a standard 9 V that demand on the op amps led to a small amount of overheating during continuous operation. This was remedied by adding small heat sinks and a fan to the forcibly disperse heat.Fig. 1. The control circuit used for driving each DC motor. Note that the PWM signal was between 0 and 5 V.2.3. MicrocontrollerComputation was handled by an Arduino Duemilanove board with anATmega328 microcontroller. The board has low power requirements and modifications. In addition, it has a large number of prototyping of the control circuit and based on the Wiring language. This board provided an easy and low-cost platform to build the robot around.3. FUZZY CONTROL SCHEME FORIn order to apply fuzzy logic to the robot to interpret measured distances. While the final algorithm depended critically on the geometry of the robot itself and how it operates, some basic guidelines were followed. Similar research projects provided both simulation results and ideas for implementing fuzzy control.3,4,53.1. Membership functionsThree sets of membership functions were created to express degrees of membership for distances, translational speeds, and rotational speeds. This made for a total of two input membership functions and eight output membership functions (Fig.2). Triangle and trapezoidal functions were used exclusively since they are quick to compute and easy to modify. Keeping computation time to a minimum was essential so that many sets of data could be analyzed every second (approximately one every 40 milliseconds). The distance membership functions allowed the distances from the IR sensors to be quickly "fuzzified," while the eight speed membership functions converted fuzzy values back into crisp values.3.2.Rule baseOnce the input data was fuzzified, the eight defined fuzzy logic rules (Table I) were executed in order to assign fuzzy values for translational speed and rotation. This resulted in multiple values for the each of the fuzzy output components. It was then necessary to take the maximum of these values as the fuzzy value for each component. Finally, these fuzzy output values were "defuzzified" using themax-product technique and the result was used to update each of the motor speeds.(a)(b)(c)rotational speed. These functions were adapted from similar work done in reference 3.4. RESULTSThe fuzzy control scheme allowed for the robot to quickly respond to obstacles itcould detect in its environment. This allowed it to follow walls and bend aroundcorners decently without hitting any obstacles. However, since the IR sensors'measurements depended on the geometry of surrounding objects, there were times when the robot could not detect obstacles. For example, when the IR beam hit a surface with oblique incidence, it would reflect away from the sensor and not register as an object. In addition, the limited number of rules used may have limited the dynamics of the robot's responses. Some articles suggest as many as forty rules6 should be used, while others tend to present between ten and twenty. Since this project did not explore complex kinematics or computational simulations of the robot, it is difficult to determineexactly how many rules should be used. However, for the purposes of testing fuzzy logic as a navigational aide, the eight rules were sufficient. Despite the many problems that IR and similar ultrasonic sensors have with reliably obtaining distances, the robustness of fuzzy logic was frequently able to prevent the robot from running into obstacles.5. CONCLUSIONThere are several easy improvements that could be made to future iterations of this project in order to improve the robot's performance. The most dramatic would be to implement the IR or ultrasonic sensors on a servo so that they could each scan a full 180 degrees. However, this type of overhaul may undermine some of fuzzy logic's helpful simplicity. Another helpful tactic would be to use a few types of sensors so that data could be taken at multiple ranges. The IR sensors used in this experiment had a minimum distance of 10 cm, so anything in front of this could not be reliably detected. Similarly, the sensors had a maximum distance of 80 cm so it was difficult to react to objects far away. Ultrasonic sensors do offer significantly increased ranges at a slightly increased cost and response time. Lastly, defining more membership functions could help improve the rule base by creating more fine tuned responses. However, this would again increase the complexity of the system.Thus, this project has successfully implemented a simple fuzzy control scheme for adjusting the heading and speed of a mobile robot. While it is difficult to determine whether this is a worthwhile application without heavily researching other methods, it is quite apparent that fuzzy logic affords a certain level of simplicity in thedesign of a system. Furthermore, it is a novel approach to dealing with high levels of uncertainty in real-world environments.6. REFERENCES1 Ed. M. Jamshidi, N. Vadiee, and T. Ross, Fuzzy logic and control: software and hardware applications, (Prentice Hall: Englewood Cliffs, NJ) 292-328.2 Ibid, 232-261.3 W. L. Xu, S. K. Tso, and Y. H. Fung, "Fuzzy reactive control of a mobile robot incorporating a real/virtual target switching strategy," Robotics and Autonomous Systems, 23(3), 171-186 (1998).4 V. Peri and D. Simon, “Fuzzy logic control for an autonomous robot,” 2005 Annual Meeting of the North American Fuzzy Information Processing Society, 337-342 (2005).5 A. Martinez, E. Tunstel, and M. Jamshidi, "Fuzzy-logic based collision-avoidance for a mobile robot," Robotica, 12(6) 521–527 (1994).6 W. L. Xu, S. K. Tso, and Y. H. Fung, "Fuzzy reactive control of a mobile robot incorporating a real/virtual target switching strategy," Robotics and Autonomous Systems, 23(3), 171-186 (1998).采用模糊逻辑控制使自主机器人避障设计威廉马丁提交于2009年12月4日CS311 -最终项目1 引言其中一个很大的障碍需要克服,当试图用控制逻辑一阶来描述一个真实世界设计在发现在这两个语义评价中是个强大的模糊区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机器人和机器人传感器中英文资料外文翻译文献机器人和机器人传感器介绍工业机器人以及它的运行是本文的主题。

工业机器人是应用于制造环境下以提高生产率的一种工具。

它可用于承担常规的、冗长乏味的装配线工作,或执行那些对工人也许有危害的工作。

例如,在第一代工业机器人中,曾有一台被用于更换核电厂的核燃料棒。

从事这项工作的工人可能会暴露在有害量的放射线下。

工业机器人也能够在装配线上操作——安装小型元件,例如将电子元件安装在线路板上。

为此,工人可以从这种冗长乏味任务的常规操作中解放出来。

通过编程的机器人还能去掉炸弹的雷管、为残疾者服务以及在我们社会的众多应用中发挥作用。

机器人可被看作将臂端执行工具、传感器以及/或夹爪移动到某个预定位置的一台机器。

当机器人到达该位置,它将执行某个任务。

该任务可能是焊接、密封、机械装载、机械卸载,或许多装配工作。

除了编程以及打开和关闭系统之外,一般情况下,均不需要人们的参与就能完成这类工作。

机器人专业术语机器人是一台可再编程的多功能机械手,它可通过可编程运动移动零件、物料、工具或特殊装置以执行某种不同任务。

由这项定义可导致下面段落中被阐述的其他定义,它们为机器人系统提供了完整的写照。

预编程位置是机器人为了完成工作必须遵循和通过的途径。

在这些位置的某点,机器人会停下来并执行某种操作,例如装配零件,喷漆或焊接。

这些预编程位置被存储在机器人的记忆装置中供以后继续操作时使用。

此外,当工作的要求发生变化时,不仅其他编程数据而且这些预编程位置均可作修改。

因此,正由于这种编程的特点,一台工业机器人与一台可存储数据、以及可回忆及编辑的计算机十分相似。

机械手是机器人的手臂,它允许机器人俯仰、伸缩和转动。

这种动作是由机械手的轴所提供的,机械手的轴又称为机器人的自由度。

一台机器人可以具有3至16根轴。

在本人的后面部分,自由度这个术语总与一台机器人轴的数目相关联。

工具及夹爪并非属于机器人系统的本身,它们是装在机器人手臂端部的附件。

有了与机器人手臂端部相连接的这些附件,机器人就可以提起零件、点焊、喷漆、弧焊、钻孔、去毛刺,还可以根据所提要求指向各种类型的任务。

机器人系统还可以控制操作机器人的工作单元。

机器人工作单元是一种总体环境,在该环境下机器人必须执行赋予它的任务。

该单元可包容控制器、机器人的机械手、工作台、安全装置,或输送机。

机器人开展工作所需要的所有设备均被包括在这个工作单元中。

此外,来自外界装置的信号能够与机器人进行交流,这样就可以告诉机器人什么时候它该装配零件、捡起零件或将零件卸到输送机。

基本部件机器人系统具有3个基本部件:机械手、控制器及动力源。

在某些机器人系统中可以看到第4个部件,端部执行件,有关这些部件将在下面小节描述。

机械手机械手承担机器人系统的体力工作,它由两部分组成:机械部分及被连接的附属物。

机械手还有一个与附属物相连的底座。

机械手的底座通常被固定在工作领域的地面。

有时,底座也可以移动。

在该情况下,底座被安装到导轨上,这样该机械手就可以从一处移动到另一处。

例如,一台机器人可以为几台机床工作,为每台机床装载和卸载。

正如前面所述,附属物从机器人的底座伸出。

该附属物是机器人的手臂。

它既可以是一个直线型的可动臂,也可以是一个铰接臂。

铰接臂也称关节臂。

机器人机械手的附属物可为机械手提供各种运动轴。

这些轴与固定底座相连接,而该底座又被紧固到机架上。

这个机架能确保该机械手被维持在某个位置上。

在手臂的端部连接着一个手腕。

该手腕由附加轴及手腕法兰组成,有了该手腕法兰,机器人用户就可以根据不同的工作在手腕上安装不同的工具。

机械手的轴允许机械手在一定区域内执行工作。

如前所述,该区域被称为机器人的工作单元,它的尺度与机械手的尺寸相对应。

当机器人的物理尺寸增大时,工作单元的尺寸必然也随之增加。

机械手的运动由驱动器,或驱动系统所控制。

驱动器或驱动系统允许各根轴在工作单元内运动,驱动系统可利用电力的、液压的或气压动力。

驱动系统发出的能量由各种机械驱动装置转换成机械动力。

这些驱动装置通过机械联动机构接合在一起。

这些联动机构依次驱动机器人的不同轴。

机械联动机构由链轮机构,齿轮机构及滚珠丝杠所组成。

控制器机器人系统的控制器是运行的心脏。

控制器存储着为以后回忆所用的预编程信息,控制着外围设备,它还与厂内计算机进行交流以使生产不断更新。

控制器用于控制机器人机械手运动以及工作单元中的外围部件。

工作人员可以利用手递示教盒将机械手的动作编程进入控制器。

这种信息可被存储在控制器的记忆装置中以便以后回忆使用。

控制器存储着机器人系统的所有程序数据。

它可以存储几种不同的程序,并且它们中任一程序均可被编辑。

也可要求控制器与工作单元中外围设备进行交流。

例如,控制器具有一根输入线,该输入线可识别某项机械加工什么时候完成。

当该机械循环完成时,输入线被接通,它会吩咐控制器让机械手到位以便机械手能夹起以加工完的零件。

接着,该机械手再捡起一根新的零件并将它安放到机床上,然后,控制器向该机床发出信号让它开始运转。

控制器可由机械操纵的磁鼓构成,这些鼓按工作发生的先后次序操作。

这类控制器用于非常简单的机器人系统。

在大多数机器人系统中见到的控制器是很复杂的装置,它们体现了现代化的电子科学。

换言之,它们由微信息处理器操纵。

这些微信息处理器不是8位、16位就是32位的信息处理器。

这种功能使控制器的运行具有非常好的柔性。

控制器可通过通讯线路发出电子信号,发出能与机械手各轴线进行沟通的电信号,机器人机械手与控制器之间这种双向交流可使系统的位置及运行维持在不断修正及更新得状态下,控制器还可以控制安装在机器人手腕端部的任意工具。

控制器还有与工厂中不同计算机开展交流的任务,这个通讯网络可使机器人成为计算机辅助制造(CAM)系统的一部分。

根据上述基本定义,机器人是一台可再编程序的多功能机械手。

所以,控制器必须包含某种形式的记忆存储器,以微信息处理器为基础的系统常与固态记忆装置连同运行。

这些记忆装置可以是磁泡、随机存取记忆装置、软塑料磁盘或磁带。

每种记忆存储装置均可存储编程信息以便以后回忆使用。

动力源动力源是向控制器及机械手供给动力得装置,有两类动力供给机器人系统。

一类动力是供控制器运行的交流点动力,另一类被用于驱动机械手各轴。

例如,若机器人的机械手由液压或气压装置控制,则控制信号被发送到这些装置才能使机器人运动。

每个机器人系统均需要动力来驱动机械手,这种动力既可由液压动力源、气压动力源,也可以由电力动力源提供,这些动力源是机器人工作单元总的部件及设备中的一部分。

当液压动力源与及机器人机械手底座相连接,液压源产生液压流体,这些流体输送到机械手各控制元件,于是,使轴绕机器人底座旋转。

压力空气被输送到机械手,使轴沿轨道作直线运动,也可将这种气动源连接到钻床,它可为钻头的旋转提供动力。

一般情况下,可从工厂得供给站获取气动源并做调整,然后将它输入机器人机械手的轴。

电动机可以是交流式的,也可以是直流式的。

控制器发出的脉冲信号被发送到机械手得电机。

这些脉冲为电机提供必要的指令信息以使机械手在机器人底座上旋转。

用于机械手轴的三种动力系统任一种均需要使用反馈监督系统,这种系统会不断地将每个轴位置数据反馈给控制器。

每种机器人系统不仅需要动力来开动机械手的轴,还需要动力来驱动控制器,这种动力可由制造环境的动力源提供。

端部执行件在大部分机器人应用的场合见到的端部执行件均是机械手手腕法兰相连接的一个装置,端部执行件可应用于生产领域中许多不同场合,例如,它可用于捡起零件,用于焊接,或用于喷漆,端部执行件为机器人系统提供了机器人运行时必须的柔性。

通常所设计得端部执行件可满足机器人用户的需要。

这些部件可由机器人制造商或机器人系统的物主制造。

端部执行件事机器人系统中唯一可将一种工作变成另一种工作的部件,例如,即日起可与喷水割机相连,它在汽车生产线上被用于切割板边。

也可要求机器人将零件安放到磁盘中,在这简单的过程中,改变了机器人端部执行件,该机器人就可以用于其它应用场合,端部执行件得变更以及机器人的再编程序可使该系统具有很高的柔性。

机器人传感器尽管机器人有巨大的能力,但很多时候却比不过没有经过一点训练的工人。

例如,工人们能够发现零件掉在地上或发现进料机上没有零件,但没有了传感器,机器人就得不到这些信息,及时使用最尖端的传感器,机器人也比不上一个经验丰富的工人,因此,一个好的机器人系统的设计需要使用许多传感器与机器人控制器相接,使其尽可能接近操作工人得感知能力。

机器人技术最经常使用的传感器分为接触式的与非接触式的。

接触式传感器可以进一步分为触觉传感器、力和扭矩传感器。

触觉或接触传感器可以测出受动器端与其他物体间的实际接触,微型开关就是一个简单的触觉传感器,当机器人得受动气端与其他物体接触时,传感器是机器人停止工作,避免物体间的碰撞,告诉机器人已到达目标;或者在检测时用来测量物体尺寸。

力和扭矩传感器位于机器人得抓手与手腕的最后一个关节之间,或者放在机械手得承载部件上,测量反力与力矩。

力和扭矩传感器有压电传感器和装在柔性部件上的应变仪等。

非接触传感器包括接近传感器、视觉传感器、声敏元件及范围探测器等。

接近传感器和标示传感器附近的物体。

例如,可以用涡流传感器精确地保持与钢板之间的固定的距离。

最简单的机器人接近传感器包括一个发光二极管发射机和一个光敏二极管接收器,接收反射面移近时的反射光线,这种传感器的主要缺点是移近物对光线的反射率会影响接收信号。

其他得接近传感器使用的是与电容和电感相关的原理。

视觉传感系统十分复杂,基于电视摄像或激光扫描的工作原理。

摄像信号经过硬件预处理,以30帧至60帧每秒的速度输入计算机。

计算机分析数据并提取所需的信息,例如,物体是否存在以及物体的特征、位置、操作方向,或者检测元件的组装及产品是否完成。

声敏元件用来感应并解释声波,从基本的声波探测到人们连续讲话的逐字识别,各种声敏元件的复杂程序不等,除了人机语音交流外,机器人还可以使用声敏元件控制弧焊,听到碰撞或倒塌的声音时阻止机器人的运动,预测将要发生的机械破损及检测物体内部缺陷。

还有一种非接触系统使用投影仪和成像设备获取物体的表面形状信息或距离信息。

传感器有静态探测与闭环探测两种使用方法。

当机器人系统的探测和操作动作交替进行时,通常就要使用传感器,也就是说探测时机器人不操作,操作时与传感器无关,这种方法被称为静态探测,使用这种方法,视觉传感器先寻找被捕捉物体的位置与方向,然后机器人径直朝那个地点移动。

相反,闭式探测的机器人在操作运动中,始终受传感器的控制,多数视觉传感器都采用闭环模式,它们随时监测机器人的实际位置与理想位置间的偏差,并驱动机器人修正这一偏差。

在闭环探测中,即使物体在运动,例如在传送带上,机器人也能抓住它并把它送到预定位置。

相关文档
最新文档