直流伺服系统的控制原理以及优缺点

直流伺服系统的控制原理以及优缺点
直流伺服系统的控制原理以及优缺点

本文主要介绍的是直流伺服系统的优缺点及控制原理,具体的跟随小编一起来了解一下。

伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控

制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)

的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与

调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。在很多情况下,伺服

系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作

用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角),其结构组成和其他形

式的反馈控制系统没有原则上的区别。伺服系统最初用于国防军工如火炮的控制船舰、飞

机的自动驾驶导弹发射等后来逐渐推广到国民经济的许多部门如自动机床、无线跟踪控制等。

直流伺服系统的优缺点

1、优点

精确的速度控制

转矩速度特性很硬

原理简单、使用方便

价格优势

2、缺点

电刷换向

速度限制

附加阻力

产生磨损微粒(对于无尘室)

直流伺服系统原理框图

直流伺服系统的控制原理

直流伺服和交流伺服相似,可以采用控制器开环控制方式,控制器半闭环控制和全闭环控制系统。

直流伺服系统控制面板结构如下,面板右侧为与直流伺服电机接口板的接口,包括电机驱动接口和编码器接口;左侧为与运动控制器面板的接口,包括位置控制模式接口和速度控制模式接口。

M+,M-信号为直流无刷伺服电机的电源线,用于驱动电机的运动。

A+,A-,B+,B-,C+,C-,5+,0V信号为编码器信号,用于反馈电机轴的实际位置。

A,/A,B,/B,C,/C,+5V,PUL+,DIR+,OGND,OVCC,GND,DAC,RESET,ALM,ENABLE为与控制器相连的控制信号。

其含义为:

A,/A,B,/B,C,/C为驱动器反馈给运动器控制器的编码器信号。

+5V为电源。

PUL+,PUL-为脉冲信号,用于位置模式下的电机控制。

DIR+,DIR-为方向信号,用于位置模式下的电机控制。

OGND,OVCC,GND分别为模拟地,模拟电源和数字地。

DAC为驱动器接受的模拟控制信号,范围一般为-10V-10V。

RESET,ALM,ENABLE为控制信号,分别表示驱动器的复位,报警以及使能功能。

直流伺服驱动器通常具有速度控制模式和位置控制模式。

采用位置模式时,输入控制信号为脉冲和方向(或是正负脉冲),采用速度模式时,输入控制信号为模拟量。驱动器将输入信号转化为速度控制信号,经过速度控制器转化为电流控制信号,电流信号通过PWM回路作用于功率扩大模块的输出模块,最后施加给电机。

直流伺服驱动器采用IDM只能伺服驱动器。

IDM240/640是嵌入式智能、高精密、全数字化的伺服驱动器,可驱动方波或正弦波无刷伺服电机(PMSM),直流有伺服电机,通过CAN或RS-485接口可组成多达256个轴的分布式智能网络运动系统,嵌入的高级可编程运动语言(TML)提供各种高级运动控制和plc 专用功能。

主要特点如下:

分布式智能,单轴主控运行或从动轴模式

控制模式:位置,速度,转矩,电压,外部变量

运动模式:脉冲+方向,电子齿轮,Profiling,Contouring

可编程保护:位置误差,过流,过压或欠压,I2t,

DSP控制技术:基于MotionChipTM 技术

RS232/485串行接口,波特率可达115KB

CAN2.0局域总线,兼容CANopen,波特率可达1MHz

输出电流:连续电流5A/8A,峰值电流16A,

电源电压:12-48VDC(IDM240),12-48VDC(逻辑电源)/80V(电机)(IDM640)紧凑结构设计:136 x 84.5 x 26 mm

控制软件采用Easy Motion Studio,控制软件特点如下:

高级图形化评估分析编程工具EasyMotion Studio平台快速设置电机、驱动器参数及编程运动程序,TML_LIB函数库是智能化伺服驱动器在 PC上执行运动控制应用的一个函数库,在C/C++、Basic、Delphi、Labview开发的应用程序中调用库中的.DLL文件执行后,能直接与驱动器通信、设置参数、查询状态、传送命令、定义运动事件,测试输入输出口状态等。

Starter Kit for IDM640:包含驱动器的完整组件,包括一个IDM640驱动器,一个电机,一个I/O板,EasyMotion Studio软件,以及应用程序的帮助和完整文件。是测试您的运动控制程序的理想实验平台。如上所述均包含在一个可立即运行、即插即用的组件中。

控制系统与直流保护介绍

龙泉换流站控制系统与直流保护介绍 一、高压直流输电系统的基本介绍 1、高压直流输电工程的组成部分:交流开关场、换流变、换流阀、直流开关场及直流输电 线路。 2、特点 适合大功率、远距离输电;输电线路相对于交流输电线路要经济的多;为全国大范围联网提供了便利的条件;填补了我国直流输电技术的空白。直流设备对环境的要求较高;我国在直流输电方面起步较晚,主要依靠国外技术支持,因此现阶段直流输电设备较昂贵。 3、前景 随着我国充分利用丰富的水利资源,大力发展水电建设,直流输电将发挥其重大的经济及社会效益。 二、控制与保护系统设备介绍(按位置及控制区域) 1、盘柜介绍: PCP pole control and protection BCP bipole control and protection ACP ac control and protection AFP ac filter control and protection DFT dc field termination BFT bipole field termination AFT ac field termination ASI Auxiliary system interface TFT Transformer Field Termination ATI auto transformer interface CP control pulse CRC cyclic redundancy check DCOCT dc optical current transducer DPM digital signal processor GWS gate workstation OWS operator workstation EWS ENGINERRING WORKSTA TION ERCS electronic reactive control system FP fire pulse I/O input/output LAN local area network CAN Control Area Network TDM Time Division Multiplex LFL line fault recorder MACH2 Modular Advanced Control HVDC(High V oltage Direct Current) and SVC(Static Reactive Power Compensation) 2nd edition DOCT digital optical current transducer OIB optical interface board

电子控制系统的组成和工作过程

电子控制系统的组成和工作过程 一、教学分析 1.教材分析 本课是第一章第二节“电子控制系统的组成和工作过程”。从对比分析两种路灯控制系统的基本组成入手,再通过搭接一个路灯自动控制的电子模型,来学习电子控制系统的基本组成和工作过程,从而为学生学习后面各章提供了一把钥匙。 2.学情分析 学生在通用技术必修2的学习中,已学过关于控制系统的一些概念,例如输入、控制、输出,以及功能模拟方法的含义,但对电子控制系统内部电子元件,例如发光二极管、光敏电阻、三极管等的工作原理不太了解,教师可用通俗的语言补充解释其作用,以利于学生的学习。 二、教学目标 1.知识与技能目标 (1)知道电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.过程与方法目标 (1)通过对两种路灯控制系统方框图的对照,知道电子控制系统的基本组成。 (2)通过搭接一个路灯自动控制的电子模型,加深对电子控制系统组成的理解。 3.情感态度和价值观目标 (1)激发学生动手尝试的兴趣和热爱技术的情感。 (2)提高学生比较及分析电子控制系统的能力。 三、教学重难点 1.重点 (1)电子控制系统的基本组成。 (2)能用方框图分析生活中常见电子控制系统的工作过程。 2.难点 电子控制系统内部常见电子元件的工作原理。 四、教学策略 本节课程以多媒体技术为辅助教学手段,通过观察、基本知识讲授、小组探究、分析表达、技术试验、能力展示等教学方法和策略,在教师指导下,通过学生自主探究建构知识和技能。 五、教学准备 通用技术专用教室、多媒体、课件、路灯自动控制模型。 六、课时安排 共1课时 七、教学过程 (一)新课导入 教师展示:路灯自动控制模型 板书:第一章电子控制系统概述 第二节电子控制系统的组成和工作过程

直流输电原理题库

《直流输电原理》题库 一、填空题 1.直流输电工程的系统可分为两端(或端对端)直流输电系统和多端直流输电系统两大类。 2.两端直流输电系统的构成主要有整流站、逆变站和直流输电线路三部分。 3.两端直流输电系统可分为单极系统、双极系统和背靠背直流输电系统三种类型。 4.单极系统的接线方式有单极大地回线方式和单极金属回线方式两种。 5.双极系统的接线方式可分为双极两端中性点接地接线方式、双极一端中性点接地接线方 式和双极金属中线接线方式三种类型。 6.背靠背直流系统是输电线路长度为零的两端直流输电系统。 7.直流输电不存在交流输电的稳定性问题,有利于远距离大容量送电。 8.目前工程上所采用的基本换流单元有6脉动换流单元和12脉动换流单元两种。 9.12脉动换流器由两个交流侧电压相位差30°的6脉动换流器所组成。 10.6脉动换流器在交流侧和直流侧分别产生6K±1次和6K次特征谐波。12脉动换流器在 交流侧和直流侧分别产生12K±1次和12K次特征谐波。 11.为了得到换流变压器阀侧绕组的电压相位差30°,其阀侧绕组的接线方式必须一个为 星形接线,另一个为三角形接线。 12.中国第一项直流输电工程是舟山直流输电工程。 13.整流器α角可能的工作范围是0<α<90°,α角的最小值为5°。 14.α<90°时,直流输出电压为正值,换流器工作在整流工况; α=90°时, 直流输出电为 零,称为零功率工况; α>90°时,直流输出电压为负值,换流器则工作在逆变工况。15.直流输电控制系统的六个等级是:换流阀控制级、单独控制级、换流器控制级、极控制 级、双极控制级和系统控制级。 16.换流器触发相位控制有等触发角控制和等相位间隔控制两种控制方式。 17.直流输电的换流器是采用一个或多个三相桥式换流电路(也称6脉动换流器)串联构 成。其中,6脉动换流器的直流电压,在一个工频周期内有6段正弦波电压,每段60°。

液压伺服系统工作原理

液压伺服系统工作原理 1.1 液压伺服系统工作原理 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值x i。对应给定值x i,有一定的电压输给放大器7,放大器将电压信号转换为电流信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v。阀开口x v使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸活塞杆也带动电位器6的触点下移x p。当x p所对应的电压与x i所对应的电压相等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服 阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反馈控制。反馈信号与给定信号符号相反,即总是形成差值,这种反馈称之为负反馈。用负反馈产生的偏差信号进行调节,是反馈控制的基本特征。而对图1所示的实例中,电位器6就是反馈装置,偏差信号就是给定信号电压与反馈信号电压在放大器输入端产生的△u。 图2 给出对应图1实例的方框图。控制系统常用方框图表示系统各元件之间的联系。上图方框中用文字表示了各元件,后面将介绍方框图采用数学公式的表达形式。 液压伺服系统的组成 液压伺服系统的组成 由上面举例可见,液压伺服系统是由以下一些基本元件组成;

浅析直流输电控制保护系统

浅析直流输电控制保护系统 摘要:直流输电是电力系统近年来迅速发展的一项新技术,直流输电克服了电 感损耗,只有导线电阻损耗,主要应用于远距离大容量输电、电力系统联网、远 距离海底电缆、大城市地下电缆送电、配电网络轻型直流输电等方面。直流输电 与交流输电相互配合,构成现代电力传输系统。随着电力系统技术经济需求的不 断增长和提高,直流输电受到广泛的注意并得到不断的发展。 关键词:电力系统;直流输出;保护层面;控制保护 一、直流输电概况 (一)直流输电系统概念 直流输电系统由直流线路、逆变站、整流站、交流侧电力滤波器、直流侧电 力滤波器、换流变压器、无功补偿装置、直流电抗器以及保护、控制装置等构成,通常是两端直流输电系统,其中整流站和逆变站属于换流站,通过整流站和逆变 站能够实现交流电力和直流电力的转换,换流站是直流输电系统比较重要的组成 部分。首先由交流系统的送电端将交流功率通过换流变压器送到整流器,完成交 流功率到直流功率的转化,然后将直流功率通过线路传输到逆变器,逆变器又会 将直流功率转化为交流功率,最终传输到交流电力系统的受电端。 (二)换流站的换流技术 整流站和逆变站都属于换流站,他们的核心元件都是换流器,通常由一个或 者是多个基本换流单元组成的,多采取串联模式,其中电路一般应用三相换流桥,较为常用的材料为可控硅阀,即常说的晶闸阀。当换流器进行工作的时候,控制 桥阀能够触发控制调节装置,改变了触发相位,从而达到直流输送功率、流经电 阻的直流电流、直流电压的瞬时值等的调整。与此同时,同样的触发脉冲能够控 制所有桥阀的每一个可控硅元件,在三相电源的波为对称正弦波的时候,线电压 从负到正,经过零点时脉冲会触发桥阀,使得阀两端的电压均变为正电压,完成 阀开通的动作。六个脉冲发生器能够各自独立的完成对位于单桥换流器中六个桥 阀的触发,使得交流正弦波刚好能够经过第一个周期,在线电压行进到下一个零 点的时候,交流弦电源开始触发第二个周期,但是在工程上所应用的多为十二脉 的双桥换流器,因为十二脉双桥换流器能够产生更小脉波的直流输电电压。 二、直流输电控制保护层 直流输电系统的控制根据层级的不同可以分为三个层面,即现场控制层、过 程控制层、运行人员控制层。 (一)现场控制层 现场控制层使得交直流主设备能够在就地进行控制,通过硬线将交直流主设 备与较近距离的设备接口进行连接,通过现场总线将交直流主设备与较远距离的 设备接口进行连接。通过分布式的I/O控制单元实现现场控制,包括高压装置的 联锁、输出控制命令、控制命令的监控、SER事件的产生、自诊断、二进制模拟 量的预处理等功能。通过现场控制层面能够实现控制系统的分层式、分布式,来 自调度中心的控制命令经由高速LAN和现场总线进行传达,监控系统的实时数据 在逐层反馈,保证主系统、从系统的循环数据传输过程。 (二)过程控制层 过程控制层包括交流/直流站控制系统和极控系统,是直流输电控制系统的核 心组成。交流/直流站控制系统的任务是顺序控制交流场和换流站直流系统,为了

柴油发电机组控制系统工作原理

柴油发电机组控系统工作原理 LIXISE 作者: 作者:LIXISE 柴油发电机组控制系统工作原理和算法是相当的复杂,每个电路的设计都有其特定的算法来予以实现。柴油发电机组的控制器系统犹如发电机组的心脏,智能控制系统的使用大大提高了柴油发电机组的运行,保障了柴油发电机组的稳定工作,那么控制系统是通过何种原理和算法来实现呢?柴油发电机组的控制部分,数字式励磁控制器较传统的模拟电路励磁控制器具有精度高,反应快,控制算法适应性强,对于不同特性的电机只要通过调整程序参数就能适应,甚至可以实现更高端的自适应智能控制算法等优点。 一、数字励磁控制器软件实现与算法研究 主要是对数字式励磁控制器的软件和所采用的控制算法进行论述。首先对数字励磁控制器的主程序进行设计,然后对电量参数采集算法和智能励磁控制算法进行研究,并在CPU上进行实现。为了实现精确的数字励磁控制,需要得到实时、精确的电量数据,而要获得实时、精确的电量数据,则需要采用交

流采样方法,并推导出交流采样下各个电量的计算公式,最终编写计算出电量数据的算法程序。交流采样是按一定的规律对被测信号的瞬时值进行采样,再按照一定的数学算法求出被测电量参数的测量方法。下面给出交流电压,交流电流,有功功率,无功功率,功率因素的各种算法中的离散公式。 二、数字式励磁控制器总体设计方案 工作电源:由于微处理器的工作电源要求,我们需要一个5V的稳定直流电源,信号调理电路的运算电路的供电需要一组±12V的直流电源,另外,开关量输出需要驱动继电器,所以需要一个+24V的直流电源,为此我们需要设计一个电源转化模块得到系统正常工作所需的三组DC电源。 三、交流采样锁相环电路 要进行交流采样,通常需要进行同步采样,目前交流采样方式主要有硬件同步采样、软件同步采样和异步采样三种。硬件同步由硬件同步电路向CPU提出中断实现同步。硬件同步电路有多种形式,常见的如锁相环同步电路等。硬件同步采样法是由专门的硬件电路产生同步于被测信号的采样脉冲。它能克服软件同步采样法存在截断误差等缺点,测量精度高。利用锁相频率跟踪原理实

柔性直流输电系统的改进型相对控制策略

柔性直流输电系统的改进型相对控制策略 摘要:电压源换流器(VSC)中交流滤波器可滤除交流网络侧谐波,交流侧换流电 抗器或换流变压器有助于交流网络和VSC的能量交换,直流侧电容器可减小换流 桥切换时的冲击电流,同时也可滤除直流网络侧谐波。 关键词:柔性直流输电;控制策略;应用 前言 在柔性直流输电系统(VSC-HVDC)中电压源换流器采用全控型可关断器件,可实现对交流无源网络供电,同时对有功功率、无功功率进行控制。笔者采用外环 电压控制和内环电流控制,外环电压控制中送端VSC系统采用相对控制策略,通 过分别控制输出电压相对发电机端电压的相位角和幅值,进而控制其与送端系统 交换的有功功率和无功功率。受端VSC系统采用定交流电压和定直流电压控制方法,通过调制比和移相角信号产生器件的驱动脉冲,内环控制采用空间矢量控制 策略,PI控制器实现对d、q轴电流的解耦控制,运用PSCAD/EMTDC暂态仿真软 件建立相应的内外环控制模型,验证所设计控制方案的有效性和可靠性。 1柔性直流输电技术的概述 1.1柔性直流输电技术概念 柔性直流输电技术是由加拿大的科学家开发出来的。这是一种由电压源换流器、自关断器和脉宽调制器所共同构成的直流输电技术。作为一种新型的输电技术,该技术不仅可以向无源网络进行供电,还不会在供电的过程中出现换相失败 的现象。在实际使用的过程中,换相站之间不会直接依赖于多端直流系统进行运作。柔性直流输电技术属于一类新型的直流输电技术。虽然在结构上和高压输电 技术相类似。但是整体结构仍然是由换流站和直流输电线路构成的。 1.2柔性直流输电的特点 柔性直流输电是由高压直流输电改造而来的。应该说在技术性和经济性方面 都有很大的改善。具体来说,柔性直流输电技术内部的特点可以表现为如下几个 方面: (1)在运用柔性直流输电技术的过程中,如果能够有效地采用模块化设计的技术,其生产和安装调试的周期都会最大限度地缩短。与换流站有关的设备都能 够在安装和使用的过程中完成各项试验。 (2)柔性直流输电技术内部的VSC换流器是以无源逆变的方式存在的。在使用的过程中可以向容量较小的系统或者不含旋转机电的系统内部进行供电。 (3)柔性直流输电技术在使用的过程中都伴随有有功潮流和无功潮流 (4)整个柔性直流输电系统可以有效地实现自动调节。换流器不需要经常实现通信联络。这也就在很大程度上减少了投资、运行和维护的费用。 (5)整个柔性直流输电技术内部的VSC换流器可以有效地减弱产生的谐波,并减少大家对功率的要求。一般情况下,只需要在交流母线上先安装一组高质量 的滤波器,就可以有效地满足谐波的要求。目前,多数无功补偿装置内部的容量 也不断地减少。即便不装换流变压器,内部的开关也可以更好地被简化。 2柔性直流输电技术的战略意义 目前,柔性直流输电技术在智能电网中一直都发挥着重要的作用。一般来说,柔性直流输电技术可以有效地助力于城市电网的增容改造和交流系统内的互联措施。目前,多数柔性直流输电技术也在大规模风电场建设的过程中发挥出了较好 的技术优势。如果大面积地选择柔性直流输电技术,将会在很大程度上改变电网

直流输电工程控制系统与阀控接口分析及优化措施研究

直流输电工程控制系统与阀控接口分析及优化措施研究 摘要换流阀与控制保护设备接口技术的应用,使得不同技术路线的控制保护技术与不同技术路线的换流阀之间实现了连接。本文首先对目前直流输电工程中应用的不同技术路线阀控接口进行了全面比较分析,总结出存在的差异,并根据实际运维经验指出存在的问题和隐患,提出了针对性改进意见,为设备功能完善和优化设备选型奠定了良好的基础。 关键词控制保护设备;阀控;接口 前言 高压直流系统传输容量的快速增长使得换流阀技术和控制保护技术得到了飞速的改进和提高,而换流阀与控制保护接口技术的应用,使得不同技术路线控制保护技术与不同技术路线的换流阀之间实现了连接,并在特高压直流输电工程中得到了应用。控制保护系统与阀控之间的接口,主要用于接收控制保护系统下发的控制命令,产生点火脉冲触发换流阀以及监视换流阀中晶闸管的状态信息。控制保护系统与阀控系统之间信号的有效、可靠传递是直流工程高效稳定的保证,因此,有必要对直流控制保护系统与阀控接口进行研究,优化二次回路设计,使直流控制保护系统的性能得到最有效的发挥,为技术方案的制定与设备选型提供技术支持。 1 阀控系统运行状况分析 目前直流输电控制系统一般分为5个层级,从高层次至低层次等级分别为:系统控制级、双极控制级、极控制级、换流器控制级和换流阀控制级。从目前在运的直流系统来看,一般将前4个层级置于直流控制保护系统(以下简称“极控”)中,其可靠运行对提高整个直流输电系统的可用率具有重要作用。而换流阀控制级设有单独的阀控系统(以下简称“阀控”),主要包括阀基电子设备、门级单元以及阀冷却泄露监视器等,负责将极控发出的控制脉冲通过光纤发送至晶闸管,同时负责接收来自晶闸管的监控信号,将其代表的晶闸管状态传递给极控,监视换流阀运行。换流站正常运行时,换流阀每一次触发均需要极控与阀基电子设备之间配合正确,才能保证系统正常工作,否则必然导致阀报警或跳闸,从而导致阀组停运乃至直流闭锁,对系统造成巨大的冲击,威胁到整个电力系统的稳定。 由于各阀和控保厂家采用不同技术路线,使得各厂家阀控与极控间的接口信号不尽相同。目前国内的主流直流控制保护系统有2种技术路线:第一种基于ABB技术路线,主要厂家有ABB和南瑞继保;第二种基于Siemens技术路线,主要厂家有西门子和许继。而换流阀技术路线多达4种,阀控与极控的接口更是多种多样,均已应用于特高压直流输电工程。极控与阀控之间接口的好坏,直接决定了直流输电系统运行的稳定性。因此针对目前形势各样的接口设计,有必要进行分析比较[1]。

液压伺服工作原理

液压伺服工作原理 1.1 液压伺服系统以其响应速度快、负载刚度大、控制功率大等独特的优点在工业控制中得到了广泛的应用。 电液伺服系统通过使用电液伺服阀,将小功率的电信号转换为大功率的液压动力,从而实现了一些重型机械设备的伺服控制。 液压伺服系统是使系统的输出量,如位移、速度或力等,能自动地、快速而准确地跟随输入量的变化而变化,与此同时,输出功率被大幅度地放大。液压伺服系统的工作原理可由图1来说明。 图1所示为一个对管道流量进行连续控制的电液伺服系统。在大口径流体管道1中,阀板2的转角θ变化会产生节流作用而起到调节流量qT的作用。阀板转动由液压缸带动齿轮、齿条来实现。这个系统的输入量是电位器5的给定值 x i 。对应给定值x i ,有一定的电压输给放大器7,放大器将电压信号转换为电流 信号加到伺服阀的电磁线圈上,使阀芯相应地产生一定的开口量x v 。阀开口x v 使液压油进入液压缸上腔,推动液压缸向下移动。液压缸下腔的油液则经伺服阀流回油箱。液压缸的向下移动,使齿轮、齿条带动阀板产生偏转。同时,液压缸 活塞杆也带动电位器6的触点下移x p 。当x p 所对应的电压与x i 所对应的电压相 等时,两电压之差为零。这时,放大器的输出电流亦为零,伺服阀关闭,液压缸带动的阀板停在相应的qT位置。 图1 管道流量(或静压力)的电液伺服系统 1—流体管道;2—阀板;3—齿轮、齿条;4—液压缸;5—给定电位器;6—流量传感电位器;7—放大器;8—电液伺服阀 在控制系统中,将被控制对象的输出信号回输到系统的输入端,并与给定值进行比较而形成偏差信号以产生对被控对象的控制作用,这种控制形式称之为反

电液伺服控制系统的应用研究

电液伺服控制系统的应用研究 【摘要】电液伺服控制是液压技术领域的重要分支。多年来,许多工业部门和技术领域对高响应、高精度、高功率—重量比和大功率液压控制系统的需要不断扩大,促使液压控制技术迅速发展。特别是控制理论在液压系统中的应用、计算及电子技术与液压技术的结合,使这门技术不论在元件和系统方面、理论与应用方面都日趋完善和成熟,并形成一门学科。目前液压技术已经在许多部门得到广泛应用,诸如冶金、机械等工业部门及飞机、船舶部门等。我国于50年代开始液压伺服元件和系统的研究工作,现已生产几种系列电液伺服产品,电液伺服控制系统的研究工作也取得很大进展。 【关键词】电液伺服控制应用 1、电液控制系统的特点、构成及分类 电液控制系统是一门比较年轻的技术,它的发展和普遍应用还不到50年,然而,凭借它的优点却形成了流体传动与控制的一个重要分支,并成为现代控制工程的基本技术构成之一。 1.1电液控制系统的特点 1) 液压执行元件的功率--重量比和转矩--惯性矩比(或力--质量比)大,具有很大的功率传递密度,可以构成体积小、重量轻、响应速度快的大功率控制单元。 2) 液压系统的负载刚度大,精度高。由于液压杠、执行元件的泄漏很少,液体介质的体积弹性模量又很大,故具有较大的速度--负载刚性,即速度--力或转速--力矩曲线斜率的倒数很大,因此有可能用于开环系统。用于闭环系统时则表现为位置刚度大,其定位精度受负载变化的影响小。 3) 液压控制系统可以安全,可靠并迅速地实现频繁的带负载启动和制动,进行正反向直线或回转运动和动力控制,而且具有很大的调速范围。 电气或电子技术和液压传动及控制相结合的产物--电液控制系统兼备了电气和液压的双重优势,形成了具有竞争力和自身技术特点。 当然,在某些场合下,指令和反馈元件也可全部采用机械、气动或液压元件,此时,即称为机械--液压控制系统和气动--液压控制系统。 1.2 电液控制系统的构成 工程实际中系统的指令及放大单元多采用电子设备。电机械转换器往往是动圈式或动铁式电磁元件和伺服电机、步进电机等。液压转换及放大器件可以是各类开关式,伺服式和比例式器件实际上是一功率放大单元。液压执行元件通常是液压缸和液压马达,其输出参数只能是位移、速度、加速度和力或者转角、角速

电控系统工作原理

电控系统工作原理 一、电控系统工作原理 随着科技进步和电子工业的发展,国产轿车采用电子控制燃油喷射系统的比率逐年增加,早在2000年,一汽—大众就宣布停止化油器式发动机的生产,产品全部采用电子控制燃油喷射系统。最早研究和开发汽油喷射式发动机的是德国博世(Bosch)公司,汽油喷射技术首先应用于飞机发动机,随着对汽车节能降耗、降低排放和提高舒适性、增加动力性的要求,这一技术被应用于汽车发动机上。目前,博世公司在这一领域的技术和产品仍处于世界领先地位。捷达王轿车就采用了博世公司最新开发的Motronic M3.8.2发动机电控管理系统,并根据中国的国情做了改进和匹配。Motronic M3.8.2发动机电控管理系统为电子控制多点燃油顺序喷射系统,闭环控制,其突出特点是喷油量及点火时刻综合控制。该系统由电子控制单元、传感器、执行器等组成,传感器为燃油喷射系统和点火系统所共用。 1.Motronic M3.8.2发动机电控管理系统的组成及工作原理 Motronic M3.8.2电控系统由电控单元(即ECU,俗称电脑)、发动机转速传感器(也称曲轴位置传感器)、空气流量传感器、节流阀体、进气温度传感器、冷却液温度传感器(发动机水温传感器)、k传感器(即氧传感器)、爆震传感器、相位传感器(也称凸轮轴位置传感器或霍尔传感器)、双点火线圈、油压调节器和喷油器等组成。 驾驶员通过节气门(俗称油门)控制发动机进气量,控制单元通过节气门位置传感器得知节气门开度,再综合发动机转速、空气流量、进气温度、λ探测值等各传感器及电子开关提供的信息,经分析、计算,确定出最佳喷油量和点火时刻,向喷油器和点火线圈发出喷油和点火指令。发动机转速和空气流量信号是ECU计算基本喷油量的主信号,ECU再根据进气温度传感器、冷却液温度传感器、A传感器、爆震传感器和节气门位置等信号对喷油量进行必要的修正,确定出实际喷油量,然后根据转速传感器得到的曲轴位置信号和相位传感器检测到的1缸压缩上止点信号,适时地向喷油器和点火线圈发出动作指令。 发动机工作可分为如下工况: (1)起动工况 发动机被起动机带动运转,当转速低于某值时,ECU识别出发动机处于起动工况,根据转速传感器、凸轮轴位置传感器、节流阀位置传感器、冷却液温度传感器、进气温度传感器等提供的信号,以及ECU中存储的最佳控制参数,计算出起动喷油量、点火角度和怠速直流电机的位置,并驱动喷油器和点火动力组件动作,使节气门处于起动位置,保证发动机顺利起动。发动机起动后,当转速超过某值时,则起动工况结束。捷达王轿车起动时,司机无需踏油门踏板、节气门会自动处于最佳起动位置。 (2)怠速工况 发动机起动后,怠速运转时,节流阀体内的怠速开关触点闭合,ECU根据此信号得知发动机处于怠速工况,同时根据冷却液温度传感器信号计算出目标转速(存储在ECU中的理论转速,温度越低,理论转速越高,以保证发动机在低温时稳定运转并快速暖机),并与实际转速进行比较,根据转速差的正负和大小,使节气门处于目标位置,以保证发动机怠速转速达到目标值。KCU同时还通过改变点火提前角来稳定发动机怠速。捷达王发动机热车后怠速转速理论值设置为840r/mjn,怠速点火提前角设置为上止点前12°,这些值存储在ECU中,人工不能调整。 (3)运行工况 运行工况又包括部分负荷、全负荷、加减速过渡及被拖动等工况。ECU根据转

控制系统的工作过程及方式

控制系统的工作过程与方式 一、教学目标 1.通过案例分析,归纳控制系统的基本特征; 2.了解开环控制和闭环控制的特点; 3.分析典型案例,熟悉简单的开环控制系统的基本组成和简单的工作过程 4.学会用框图来归纳控制系统实例的基本特征,逐步形成理解和分析简单开环和闭环控制系统的一般方法 二、教学内容分析 本节是“控制与设计”第二节的内容,其内容包括“控制系统”、“开环控制系统与闭环控制系统的组成及其工作过程”是学生在学习控制在我们的生活和生产中的应用后,进一步学习有关控制系统的组成、工作方式以及两种重要的控制系统:开环控制和闭环控制,并熟悉它们工作原理和作用。 生活中不乏简单控制系统的应用,人们对此往往象看待日出日落一类自然景色般的习以为常。本部分内容的学习,正是要引导学生,从技术的角度、用控制的思维看周围的存在,分析其道理,理解其基本的组成和工作过程。 本课教学内容,从学生生活经验出发,从实例分析入手,归纳出对控制系统的一般认识,以及根据控制系统方式分类的开环控制系统和闭环控制系统两类,并侧重对开环控制系统的工作过程、方框图、重要参数进行分析。本课要解决的重点是:开环控制系统的工作过程分析,用方框图描述开环控制系统的工作过程。 三、学习者分析 学生在前面的学习中已经学习和分析了控制在生活生产中的应用,获得了有关控制及其应用的初步感性认识和体验,但是对控制的基本工作方式和工作机理还缺乏了解,他们对进一步了解控制系统的知识是有探究的欲望的。结合前面的应用案例分析,进一步分析案例中控制是如何工作的,以及有怎样的工作方式,是学生学习的最近发展区。 四、教学策略: 1. 教法: 本章的教学结合具体的教学内容和目标我们采用“案例情景—机理分析—总结归纳-认识提升”的模式展开。在教学中把知识点的教与学置于具体的案例情景当中,通过丰富而贴近生活的案例使学生从生活体验到理性分析的思维升华过程。同时关注学生能否用不同的语言表达、交流自己的体验和想法。通过富有吸引力的现实生活中的问题,使学生回想和体会控制系统的工作过程,激发学生的好奇心和主动学习的欲望。让学生本着“回想—分析—联想—猜想”的思维过程,对教学内容进行步步展开,使学生亲历自主探索和思维升华的过程。 2. 学法: 鼓励学生自主探究和合作交流,引导学生自主观察、总结,在与他人的交流中丰富自己的思维方式,获得不同的体验和不同的发展。注意引导学生体会控制系统的工作过程和方式,特别是引导学生会学用系统框图来抽象概括控制系统、帮助分析和理解控制系统的组成及其工作过程的方法 五、教学资源准备 多媒体设备、相关图片资料、技术试验工具、材料等

欧洲总线EI控制系统的工作原理及应用

欧洲总线EIB控制系统的工作原理及应用 一、EIB 系统工作原理 1、EIB 总线系统的发展进程 20 世纪80 年代中期,随着微电子技术和通讯技术的迅猛发展,自动控制领域尤其是工业界的过程控制领域对现场底层设备之间的通讯和控制问题提出了越来越高的要求,促使了控制技术的又一次大变革,即现场总线技术的产生。现场总线技术从出现开始,就以其在性能和结构上的巨大优势吸引了专家和用户的注意,众多知名的自动化集团公司纷纷独自或联合推出了各有特色的现场总线协议标准。这些优秀的总线标准在全世界得到了广泛的应用。 相对于对实时性、精确性及通讯效率等要求极高的工业自动化领域而言,建筑自动化领域的要求相对要低一些,从经济成本角度考虑,上面那些造价昂贵的现场总线技术并不非常适合于建筑领域。但是作为建筑本身的发展而言,随着用户对建筑提出的功能要求越来越高,满足这些功能而使用的现代化技术也日益复杂,在所谓的智能建筑中就集成了现代的通讯技术、微电子技术等多项尖端技术。这些技术的应用,不仅给建筑带来了较重的建设成本压力,其运行和维护的管理成本也越来越高,正是建筑对安全性、经济性、舒适性、应变性等各方面的不断提高的要求成为建筑领域的现场总线技术标准――欧洲安装总线(European Installation Bus)技术产生和发展的基础。 1990 年,欧洲著名的电气产品制造商为核心组成联盟,制定了

EIB 技术标准并成立了中立的非商业性组织EIBA(EIB Associate,欧洲安装总线协会),总部设在比利时的布鲁塞尔。这个协会的成立极大的推动了EIB 标准的发展,迄今为止,已有一百多家制造厂商成为了EIBA 的会员,按照开放的EIB 标准生产能够相互兼容和交互操作的各种元器件,各类产品品种多达4000 多种,几乎覆盖了建筑中各个行业和各种用途的需要。经过十多年的发展,EIB 不仅成为事实上的欧洲标准,也被成功地引入世界各地,2000 年时在IEC 国际现场总线标准大会上被作为提名国际标准之一。 1999 年,EIB 技术开始被引入中国,在短短的三年多时间内,以其优越的性能和质量获得了很大的成功,2001 年 3 月,为配合EIB 技术的推广,在同济大学建立了亚洲规模最大的EIB 认证技术培训中心。 2、EIB 总线系统基本原理 现代的建筑离开电是无法想象的。无论是传统的照明和插座,还是现代化的通讯、安保等技术,都离不开电源的供应。EIB 技术本身在传统电气安装技术基础上引入现场总线概念而发展起来的,它对传统电气安装技术而言是一次突破性的革命,它具有现场总线技术的核心优点如系统结构简单,设计、安装和维护方便,全分散控制等,解决了建筑由于涉及工种和功能过多而导致系统过于独立和操作复杂的问题,是当今技术领域非常优秀的技术标准。 2.1 总线传输介质

±800kV特高压直流输电控制保护系统分析

±800kV特高压直流输电控制保护系统分析 摘要:电力应用于社会十分普遍,而社会对于电力的依赖性也在增加,电力输 送过程会受到多项因素的影响,因此需要应用输电保护系统,确保电力稳定正常 供应。本文就±800kV特高压直流输电控制保护系统分析作简要阐述。 关键词:特高压;直流输电;控制保护系统 物高压输电的特点体现在大容量,低损耗,远距离,是能源配置优化的有效 途径,能够带来良好的社会效益。特高压输电对于电力企业而言提出了新的技术 要求。控制与保护系统需要从其整体结构,控制策略,分层与冗余等方面进行全 面分析,从而使系统稳定安全可靠。 一、特高压直流控制系统 (一)特高压直流控制策略 相比于常规直流系统,特高压控制系统在策略方面没有体现出过大的变化, 直流系统电源控制主要利用的是整流侧快速闭环来实现的,换流变抽头则控制触 发角保持在一定范围内。你变一侧的快速闭环控制作用在于使熄弧角保持为定值,直流电压控制则是由换流变抽头来完成的。由于抽头控制自身存在的非连续性, 采用此种控制策略并应用于逆变一侧时,直流电压控制偏差会由两个部分构成, 分别是抽头步长与测量误差。对于逆变一侧的电压进行控制,还可以利用快速闭环,通过抽头将熄弧角控制在一定范围内,而此种情况下,电流偏差只受到测量 误差的影响,无功补偿设备与交流滤波器总体容量会增加,在经济性方面表现不佳。 (二)控制系统功能划分与结构 控制系统在分层与配置方面,直流系统保护应该保持与控制系统的相对独立,直流控制结构保护系统分层需要保证保护控制以12个脉动单元作为基本配置。 并且基于上述前提,保护功能实现与保护配置需要最大程度保持独立,利于退出 而不会使其它设备运行受到影响,并且保护系统之间的物理连接要简单而不要复杂。控制保护系统如果单一元件出现了故障,12动脉控制单元依然需要保持良好 运行。而高层控制单元出现故障时,控制单元同样能够保持当前工作状态并且依 据人工指令操作。 特高压直流输电需要实现双重化,其范围开始于二次线圈测量,并包括了测 量回路。内容包括了输出回路,信号输入,主机,通信回路,与之相关直流控制 装置等。从功能上划分,直流控制系统可以划分为极控制层,双极控制层,换流 器控制层等。 特高压直流控制层功能划分内容包括双极控制层,极控制层,细分又包括了,低压限流控制,极电流与电压协调控制,直流开路试验,电流裕度补偿等功能。 换流器控制层细分内容又包括点火肪冲控制,电压与电流、熄弧角控制等。 二、DCC800特高压直流控制保护系统介绍 DCC800是某企业研制的控制保护系统,特高压直流控制保护系统采用了拥 有较高性能并产生较低热量的CPU以及新的传导冷却计算机,此散热技术是专 为提高UHVDC的可靠性而设计的。DCC80主机采用自然对流方式来散热,这样 可大幅度减少主机上的积灰。特高压直流控制保护系统采用了冗余的增强型时分 多路复用总线来传输二进制信号和模拟信号。二进制信号包括断路器命令、报警、指令、缓慢变化的模拟信号(如温度等);模拟信号包括电流、电压等测量量。 每根光纤都可处理控制器局域网总线信息、同步信号以及像MACH2TDM母线一

前馈控制系统的基本原理

前馈控制系统 前馈控制系统的基本原理 前馈控制的基本概念是测取进入过程的干扰(包括外界干扰和设定值变化),并按其信号产生合适的控制作用去改变操纵变量,使受控变量维持在设定值上。图2.4-1物料出口温度θ需要维持恒定,选用反馈控制系统。若考虑干扰仅是物料流量Q ,则可组成图2.4-2前馈控制方案。方案中选择加热蒸汽量s G 为操纵变量。 图2.4-1 反馈控制 图2.4-2 前馈控制 前馈控制的方块图,如图2.4-3。 系统的传递函数可表示为: )()()()()(1S G S G S G S Q S Q PC ff PD += (2.4-1) 式中)(s G PD 、)(s G PC 分别表示对象干扰 道和控制通道的传递函数; )(s G ff 为前馈控 图2.4-3 前馈控制方块图 制器的传递函数。 系统对扰动Q 实现全补偿的条件是:

0)(≠s Q 时,要求0)(=s θ (2.4-2) 将(1-2)式代入(1-1)式,可得 )(s G ff =) ()(S G S G PC PD - (2.4-3) 满足(1-3)式的前馈补偿装置使受控变量θ不 受扰动量Q 变化的影响。图2-4-4表示了这 种全补偿过程。 在Q 阶跃干扰下,调节作用c θ和干扰作用d θ的响应曲线方向相 反,幅值相同。所以它们的合成结果,可使θ达到 图2.4-4 前馈控制全补偿示意图 理想的控制连续地维持在恒定的设定值上。显然,这种理想的控制性能,反馈控制系统是做不到的。这是因为反馈控制是按被控变量的偏差动作的。在干扰作用下,受控变量总要经历一个偏离设定值的过渡过程。前馈控制的另一突出优点是,本身不形成闭合反馈回路,不存在闭环稳定性问题,因而也就不存在控制精度与稳定性矛盾。 1.前馈控制与反馈控制的比较 图 2.4-5 反馈控制方块图 图 2.4-6 前馈控制方块图

液压伺服系统

第十章液压伺服系统 一、名词解释 1、伺服控制 2、液压伺服控制系统 3、滑阀的压力-流量特性 4、滑阀的流量放大系数 5、滑阀的压力放大系数 二、问答题 1、液压伺服系统有由哪几部分组成?各部分的功能是什么? 2、伺服系统的基本类型有哪些? 3、为什么说伺服阀是液压伺服系统的最关键元件? 4、液压伺服阀有哪几种?滑阀式液压伺服阀与换向滑阀有什么本质区别? 5、滑阀式液压伺服阀的阀口与换向阀的阀口有什么不同? 6、电液伺服阀由哪几部分组成(以二级放大式为例)?各部分的作用是什么 7、液压仿形刀架的液压伺服系统为何将伺服滑阀的阀体和液压缸的缸体固连成一体?若将它们分成 两部分,仿形刀架能否工作?为什么? 8、何为伺服阀的零位特性?为什么零位阀系数对液压伺服系统的稳定性是至关重要的? 9、在力反馈电液伺服阀中,什么叫力反馈?力反馈是通过什么元件实现的? 三、计算题 1、已知一电液伺服阀在线性区内工作,当输入电流为20mA、伺服阀的压降为5Mpa时,输出的负载流量为60L/min,则当输入电流为100mA、伺服阀的压降为10Mpa时,其输出流量为多少? 2、如图所示的电液位置控制系统为轧机辊缝调节控制系统,它由辊缝调节螺钉1、支撑辊2、轧辊 3、板材 4、电液伺服阀 5、调整油缸 6、伺服放大器 7、同位素测厚仪8等组成。板材经轧机连轧后由厚板变为薄板,轧后板材的厚度由测厚仪检测出来,若加工后板材的厚度与要求不符,则由电液伺服阀控制调整油缸驱动支撑辊和轧辊,调节轧辊间的距离。写出其控制原理方块图,标明控制信号的传递过程,并说明系统工作原理。如图所示的电液位置控制系统为轧机辊缝调节控制系统,它由辊缝调节螺钉1、支撑辊2、轧辊3、板材4、电液伺服阀5、调整油缸6、伺服放大器7、同位素测厚仪8等组成。板材经轧机连轧后由厚板变为薄板,轧后板材厚度由测厚仪检测出来,若加工后板材的厚度与要求不符,则由电液伺服阀控制调整油缸驱动支撑辊和轧辊,调节轧辊间的距离。写出 其控制原理方块图,标明控制信号的传递过程,并说明系统工作原理。速度均为0.075m/s,工作进 - 1 -

控制系统工作原理

一、控制系统工作原理 1、控制系统原理:(控制面板图如下) (1)、“电源”按钮:按下该按钮,控制系统通电,再次按该按钮,控制器断电; (2)、“操作方式”选择开关:用于选择“手动”和“自动”两种工作状态,“手动”状态下,调整电机旋转方向、速度、焊枪高度及起弧位置等,为正常焊接做准备;“自动”状态下,进行正常焊接流程。 (3)、“正转/停/反转”开关:“手动”状态下,将该旋钮旋转到“正转”位置,电机正向旋转;在“停”位置时,电机停止旋转;反知,当旋钮指向“反向”位置时,电机作反向旋转。 (4)、“旋转速度”旋钮用于调节电机转动速度,用户根据工件直径大小及焊接工艺调整电机速度。 (5)、“顶紧”按钮:电动该按钮,尾座升出,将工件顶紧;再次点动该按钮,尾座缩回,将工件松开。 (6)、“焊枪升降”按钮:“手动”状态下点动该按钮,焊枪下降;再次点动该按钮,焊枪上升。 (7)、“启动”按钮:再“自动”状态下,点动该按钮,进入自动焊接程序。 (8)、“急停”按钮,在正常焊接工程中出现紧急情况时,按下该开关,将系统停止。

2、参数设置

文本开机画面,点“↓”键,叶面跳转到 该叶面中, “电机采样脉冲”用于设置电机旋转角度,该脉冲数目与电机旋转的实际角度成正比。 “电机启动延时”:该参数指焊接工程中,从焊枪下降到位到电机开始旋转的那段时间; “焊机启动延时”:该参数指焊接工程中,从焊枪下降到位到焊机开始起弧的那段时间; 再次点击文本面板上的“↓”键,页面跳转到下图: “填丝延时”:在用到自动氩弧焊填丝的情况下,该参数指从焊枪下降到位到自动填丝机开始送丝的那段时间; “停丝延时”:即在焊接工程中,电机工作至设定角度到自动填丝机停止送丝的那段时间。

高压直流输电的故障保护

高压直流输电系统的保护 XX班程思锦 摘要:简单介绍高压直流输电组成,重点阐述高压直流系统故障及保护功能配置。 关键词:高压直流输电;直流输电优缺点;直流故障;保护原理;0 引言 我国地势辽阔,地形复杂,主要的电力资源分布在西部,而东部沿海地区却是用电大省,如何让西部的电以最小的损耗输送到东部成为我国电力行业的课题。直流输电线路相对交流几乎无无功损耗,输送距离更远等众多优点,因此,高压直流输电就很值得研究。 1 高压直流系统组成 高压直流系统组成部分:三相电源,换流站,输电电缆或者架空线,换流站,交流电网。三相电源是向电网输出电能。电源端的换流站的功能是将交流电变成直流电。输电电缆或者架空线是将直流电进行远距离输送。交流电端的换流站的作用是将直流电变成交流电并输送到交流电网上去。交流电网的作用是将交流电输送到个电力用户。换流站主要设备包括换流器、换流变压器、平波电抗器、交流滤波器、直流避雷器及控制保护设备等。

2 直流系统故障 直流输电系统发生的典型故障及其基本特点描述见下表。 3 保护原理及方法 3.1 故障原理 直流线路故障发生时,由于线路电容放电,短路点的故障电流会陡然升高,出过冲。初始故障电流与线路波阻抗有关,比稳态电流值大很多,直流电流过冲的大小与平抗、电流调节器增益和时间常数、故

障点距离、直流电压和故障发生的时刻都有关系。定电流调节器的作用会将稳态短路电流限制在一个较小的数值。直流线路故障一般通过电流的暂态分量和电压变化量进行检测。 直流线路保护是以电压导数法为主保护、线路纵差保护、直流欠压保护作为后备保护;目前,许多工程的主保护也采用行波保护。 3.2 直流线路保护策略 直流线路保护策略应考虑:①直流线路保护只在整流侧有效。②为了区分站内故障和直流线路故障,可以测量直流电流的时问变化率dl/dt。正的dl/dt(正向电流增加)表明故障点在IDL测量互感器线路侧;负的dl/dt值表明故障点在直流场内。③应考虑防止保护在下述情况下误动:整流、逆变侧发生交流故障;极起/停;逆变侧换相失败。④通信异常时,电压水平部分将延时820 ms动作,以与交流系统后备保护时间进行配合。 3.3 直流线路保护动作顺序 直流线路保护出口信号会起动再起动逻辑。再起动逻辑起动后,向控制系统发出移相去游离命令,系统将移相到164,并保持一段时间,这段时间是系统的去游离时间(大约200~500 ms),使闪络故障经过充分去游离,线路绝缘性能恢复到能够承受正常电压。移相去游离命令之后立即形成再起动命令,将角度拉到60。左右,进行线路再起动,这种状态维持一个较短的时间(4 ms),防止线路开路引起峰值整流过电压。如果再起动成功,恢复正常送电;如果不成功,可以进行多次再起动,甚至降压再起动,试图将直流电压降低水平运行,这

相关文档
最新文档