高中数学必修一函数练习题及答案
高中数学必修一第四章指数函数与对数函数必练题总结(带答案)
高中数学必修一第四章指数函数与对数函数必练题总结单选题1、函数①y =a x ;②y =b x ;③y =c x ;④y =d x 的图象如图所示,a ,b ,c ,d 分别是下列四个数:54,√3,13,12中的一个,则a ,b ,c ,d 的值分别是( )A .54,√3,13,12B .√3,54,13,12 C .12,13,√3,54,D .13,12,54,√3,答案:C分析:根据指数函数的性质,结合函数图象判断底数的大小关系.由题图,直线x =1与函数图象的交点的纵坐标从上到下依次为c ,d ,a ,b ,而√3>54>12>13.故选:C .2、基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) ( ) A .1.2天B .1.8天 C .2.5天D .3.5天答案:B分析:根据题意可得I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,根据e 0.38(t+t 1)=2e 0.38t ,解得t 1即可得结果. 因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天, 则e 0.38(t+t 1)=2e 0.38t ,所以e 0.38t 1=2,所以0.38t 1=ln2, 所以t 1=ln20.38≈0.690.38≈1.8天.故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题. 3、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.4、已知函数f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞) ,若函数g(x)=f(x)−m 恰有两个零点,则实数m 不可能...是( )A .−1B .0C .1D .2 答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m 的零点,转化为函数y =f(x)与函数y =m 的交点,数形结合即可求出参数m 的取值范围;解:因为f(x)={x −2,x ∈(−∞,0)lnx,x ∈(0,1)−x 2+4x −3,x ∈[1,+∞),画出函数图象如下所示, 函数g(x)=f(x)−m 的有两个零点,即方程g(x)=f(x)−m =0有两个实数根,即f(x)=m ,即函数y =f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 5、化简√−a 3·√a 6的结果为( ) A .−√a B .−√−a C .√−a D .√a 答案:A分析:结合指数幂的运算性质,可求出答案. 由题意,可知a ≥0,∴√−a3·√a6=(−a)13⋅a16=−a13⋅a16=−a13+16=−a12=−√a.故选:A.6、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.7、下列说法正确的个数是()(1)49的平方根为7;(2)√a nn=a(a≥0);(3)(ab )5=a5b15;(4)√(−3)26=(−3)13.A.1B.2C.3D.4答案:A分析:(1)结合指数运算法则判断,49平方根应有两个;(2)正确;(3)应为a5b−5;(4)符号错误49的平方根是±7,(1)错;(2)显然正确;(ab )5=a5b−5,(3)错;√(−3)26=313,(4)错,正确个数为1个, 故选:A8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、已知函数f (x )=log 3(x 2−1),g (x )=x 2−2x +a ,∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2),则实数a 的可能取值是( )A .12B .1C .52D .3 答案:CD分析:将问题转化为当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min ,然后分别求出两函数的最小值,从而可求出a 的取值范围,进而可得答案∃x 1∈[2,+∞),∀x 2∈[13,3]有f (x 1)≤g (x 2)等价于当x 1∈[2,+∞),x 2∈[13,3]时,f (x 1)min ≤g (x 2)min .当x ∈[2,+∞)时,令t =x 2−1,则y =log 3t ,因为t =x 2−1在[2,+∞)上为增函数,y =log 3t 在定义域内为增函数,所以函数f (x )=log 3(x 2−1)在[2,+∞)上单调递增,所以f (x )min =f (2)=1. g (x )=x 2−2x +a 的图象开口向上且对称轴为x =1, ∴当x ∈[13,3]时,g (x )min =g (1)=a −1,∴1≤a −1,解得a ≥2. 故选:CD .10、已知x 1+log 3x1=0,x 2+log 2x2=0,则( )A.0<x2<x1<1B.0<x1<x2<1C.x2lgx1−x1lgx2<0D.x2lgx1−x1lgx2>0答案:BC分析:根据对数函数的性质可判断AB正误,由不等式的基本性质可判断CD正误.由x1=−log3x1>0可得0<x1<1,同理可得0<x2<1,因为x∈(0,1)时,恒有log2x<log3x所以x1−x2=log2x2−log3x1<0,即x1<x2,故A错误B正确;因为0<x1<x2<1,所以lgx1<lgx2<0,即0<−lgx2<−lgx1,由不等式性质可得−x1lgx2<−x2lgx1,即x2lgx1−x1lgx2<0,故C正确D错误.故选:BC小提示:关键点点睛:利用对数函数的真数大于零及对数函数的图象与性质可得0<x1<x2<1是解题的关键,根据不等式的基本性质可判断CD,属于中档题.11、已知函数f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),则()A.函数f(x)+g(x)的定义域为(−1,1)B.函数f(x)+g(x)的图象关于y轴对称C.函数f(x)+g(x)在定义域上有最小值0D.函数f(x)−g(x)在区间(0,1)上是减函数答案:AB解析:求出函数f(x)+g(x)和f(x)−g(x)的解析式,再判断函数的定义域、奇偶性、借助复合函数的单调性与最值即可得出结论.解:∵f(x)=log a(x+1),g(x)=log a(1−x)(a>0,a≠1),∴f(x)+g(x)=log a(x+1)+log a(1−x),由x+1>0且1−x>0得−1<x<1,故A对;由f(−x)+g(−x)=log a(−x+1)+log a(1+x)=f(x)+g(x)得函数f(x)+g(x)是偶函数,其图象关于y轴对称,B对;∵−1<x<1,∴f(x)+g(x)=log a(1−x2),∵y=1−x2在[0,1)上单调递减,由复合函数的单调性可知,当0<a<1时,函数f(x)+g(x)在[0,1)上单调递增,有最小值f(0)+g(0)=log a(1−0)=0;当a>1时,函数f(x)+g(x)在[0,1)上单调递减,无最小值;故 C错;∵f(x)−g(x)=log a(x+1)−log a(1−x),当0<a<1时,f(x)=log a(x+1)在(0,1)上单调递减,g(x)=log a(1−x)在(0,1)上单调递增,函数f(x)−g(x)在(0,1)上单调递减;当a>1时,f(x)=log a(x+1)在(0,1)上单调递增,g(x)=log a(1−x)在(0,1)上单调递减,函数f(x)−g(x)在(0,1)上单调递增;故D错;故选:AB.小提示:本题主要考查函数奇偶性与单调性的性质应用,考查逻辑推理能力,属于中档题.填空题12、若f(x)=1+a3x+1(x∈R)是奇函数,则实数a=___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.13、心理学家有时用函数L(t)=A(1−e−kt)测定在时间t(单位:min)内能够记忆的量L,其中A表示需要记忆的量,k表示记忆率.假设一个学生需要记忆的量为200个单词,此时L表示在时间t内该生能够记忆的单词个数.已知该生在5min内能够记忆20个单词,则k的值约为(ln0.9≈−0.105,ln0.1≈−2.303)______.答案:0.021分析:该生在5min内能够记忆20个单词,将A=200,L(5)=20带入即可得出结论. 由题意可知200(1−e−5k)=20,所以,e−5k=0.9,所以ln e−5k=ln0.9≈−0.105,解得k≈0.021.所以答案是:0.021.14、已知函数f(x)={e x−1,x≥0,ax2+x+a,x<0恰有2个零点,则a=__________.答案:12##0.5分析:先求得f(x)在[0,+∞)上恰有1个零点,则方程ax2+x+a=0有1个负根,a=0时不成立,a≠0时,由一元二次方程的性质分Δ=0和Δ>0讨论求解即可.当x≥0时,令f(x)=e x−1=0,解得x=0,故f(x)在[0,+∞)上恰有1个零点,即方程ax2+x+a=0有1个负根.当a=0时,解得x=0,显然不满足题意;当a≠0时,因为方程ax2+x+a=0有1个负根,所以Δ=1−4a2≥0.当Δ=1−4a2=0,即a=±12时,其中当a=12时,12x2+x+12=0,解得x=−1,符合题意;当a=−12时,−12x2+x−12=0,解得x=1,不符合题意;当Δ=1−4a2>0时,设方程ax2+x+a=0有2个根x1,x2,因为x1x2=1>0,所以x1,x2同号,即方程ax2+x+a=0有2个负根或2个正根,不符合题意.综上,a=12.所以答案是:0.5.解答题15、已知函数f(x)=log2(2x+1).(1)求不等式f(x)>1的解集;(2)若函数g(x)=log2(2x−1)(x>0),若关于x的方程g(x)=m+f(x)在[1,2]有解,求m的取值范围.答案:(1){x|x>0};(2)[log213,log235].分析:(1)由f(x)>1可得2x+1>2,从而可求出不等式的解集,(2)由g(x)=m+f(x),得m=g(x)−f(x)=log2(1−22x+1),再由x∈[1,2]可得log2(1−22x+1)的范围,从而可求出m的取值范围(1)原不等式可化为2x+1>2,即2x>1,∴x>0,所以原不等式的解集为{x|x>0}(2)由g(x)=m+f(x),∴m=g(x)−f(x)=log2(1−22x+1),当1≤x≤2时,25≤22x+1≤23,13≤1−22x+1≤35,m∈[log213,log235]。
高中数学必修一练习题(二)函数(含详细答案)
高中数学必修一复习练习(二)函数函数的概念班号姓名1.设集合 M= { x|0≤ x≤ 2} ,N={ y|0≤ y≤2} ,给出如下四个图形,其中能表示从集合M 到集合 N 的函数关系的是 ()2的定义域是 ()2. f(x)=x-xA .( -∞, 1]B . (0, 1)∪ (1,+∞ )C. (-∞, 0)∪ (0, 1] D .(0,+∞ )3.函数 y= x2-2x的定义域为 {0 , 1, 2, 3} ,那么其值域为 ()A .{ - 1,0, 3}B. {0 , 1, 2,3}C. { y|- 1≤ y≤3}D. { y|0≤ y≤ 3}4.若函数 f(x)= ax2- 1, a 为一个正常数,且f[f( -1)] =- 1,那么 a 的值是 ()A .1B . 0C.- 1D. 2x25.函数 y=x2+1(x∈R )的值域是 ________.16.设 f( x)=1-x,则 f[f( x)] = ________.7.求下列函数的定义域:4- x2(1) f(x)=2x-1- 3- x+ 1;(2) f(x)=x+1 .8.已知函数 f(x)=x21112 ,(1)求 f(2) + f(), f(3)+ f( )的值;(2) 求证 f(x)+ f( ) 是定值。
1+x23x函数的三种表示法1.已知函数 f ( x) 由下表给出,则A.1 B.2 C.3 2.下列图形中,不可能作为函数f( f(3)) 等于 (D . 4y= f(x) 图象的是())3.已知函数f(2x+ 1)= 3x+ 2,且f(a)=2,则 a 的值等于()A .8B.1C. 5D.-14.某航空公司规定,乘客所携带行李的重量(kg) 与其运费(元 )由右图所示的函数图象确定,那么乘客免费可携带行李的最大重量为A .50 kgB . 30 kg C. 19 kg D .40 kg5.如图,函数 f(x)的图象是曲线OAB,其中点 O, A,B 的坐标分别为1(0, 0), (1, 2), (3, 1),则 f(f(3)) 的值等于 ________.6.已知函数 f(x), g(x)分别由下表给出:x123x123f(x)131g(x)321则f( g(1)) = ________;满足 f(g(x))> g(f(x))的 x 的值是 ________.7. 2010年,广州成功举办了第17 届亚运会,在全部可售票中,定价等于或低于100 元的票数占58%.同时为鼓励中国青少年到现场观看比赛,特殊定价门票最低则只需 5 元.有些比赛项目则无需持票观看,如公路自行车、公路竞走和马拉松比赛均向观众免票开放.某同学打算购买x 张价格为20 元的门票,( x∈ {1 ,2,3,4,5}) ,需要y 元.试用函数的三种表示方法将y 表示成x 的函数.★★分段函数及映射1.设 f : x → x 2是集合 A 到集合 B 的映射,如果B ={1 ,2} ,则 A ∩B 一定是 ()A .?B .? 或{1}C . {1}D . {1}2.已知映射 f :A → B ,即对任意 a ∈ A , f : a → |a|.其中集合 A = { - 3,- 2,- 1, 2,3, 4} ,集合 B 中的元素都是 A 中元素在映射 f 下的对应元素,则集合 B 中元素的个数是 ()A .4B . 5C .6D .7x - 1(x>0),3.已知 f(x)= 0( x =0),则 f ( f (- 2) ) = ()x + 5(x<0),A .-2B . 0C . 2D .-14.已知 f(x)= x - 5(x ≥ 6)),则 f(3) = (f ( x + 2) ( x < 6)A .2B . 3C . 4D . 55.已知集合 A =R , B = {( x , y)|x , y ∈R } , f :A → B 是从 A 到 B 的映射,f : x → (x + 1, x 2+ 1),求 B 中元素 (3,5)与 A 中 ________对应.2 4x 2, x ≤ 0, 则 f(4)= ________.6.已知函数 f(x)=f ( x - 2), x > 0,7.如图所示,函数 f(x)的图象是折线段 ABC ,其中 A 、 B 、C 的坐标分别为 (0, 4), (2, 0),(6,4). (1) 求 f(f(0)) 的值; (2) 求函数 f(x)的解析式.8.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内车距d 是车速 v(公里 /小时 )的平方与车身长S(米 )的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50 公里 /小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(S 为常数).高中数学必修一练习题(二)函数第4页,共8 页函数的单调性1.若函数 f(x)= 4x 2- kx - 8 在 [5, 8]上是单调函数,则 k 的取值范围是 ()A .( -∞, 40)B .[40 , 64]C . (-∞, 40]∪ [64,+∞ )D . [64 ,+∞ )2.已知函数 f(x)是 (-∞,+∞ )上的增函数,若 a ∈ R ,则 ()A .f(a)>f(2a)B .f(a 2)<f(a)C .f(a + 3)> f(a - 2)D . f(6)> f(a)3.函数 y = x 2+x + 1(x ∈ R )的递减区间是 ()A. - 1,+∞B .[- 1,+∞ )C. -∞,-1D . (-∞,+∞ )224.函数 f(x)在 (a , b)和 (c , d)都是增函数,若 x 1∈( a , b), x 2∈ (c , d),且 x 1<x 2 那么 ()A .f(x 1)<f(x 2)B .f(x 1)>f(x 2)C . f(x 1)= f(x 2)D .无法确定x 2+ 1( x ≥ 0)5.函数f(x)=- x 2+ 1的单调递增区间是 ________.( x<0)6.若 f( x)= 2x 2-mx + 3 在 (-∞ ,- 2]上为减函数,在 [- 2,+∞ ) 上为增函数,则 f(1) =.7.求证:函数 f(x)=-1- 1 在区间 (0,+∞ )上是单调增函数.x8.定义在 (-1, 1)上的函数 f(x) 满足 f(- x)=- f(x),且 f(1- a)+ f(1- 2a)<0.若 f(x)是 (-1, 1)上的减函数,求实数a 的取值范围.参考答案函数的概念1.选 D由函数的定义可以判断只有 D 正确.2.选 B由函数 f(x) 的解析式可知,x- x≠0x≥0,解得: x>0 且 x≠1.3.选 A由对应关系 y= x2- 2x 得, 0→0,1→ - 1, 2→0, 3→ 3,所以值域为 { - 1,0, 3} .4.选 A f( - 1)= a- 1, f[f( - 1)] =f(a - 1)=a(a-1)2- 1=- 1,所以 a=1.x2= 1-1,∴ y 的值域为 [0, 1).答案: [0, 1)5.解析: y=x2+1x2+11=1=x- 1x- 16.解析: f[f(x)] =1x .答案:x (x ≠0,且 x≠ 1)1- x- 1 1-1- x1- x2x- 1≥0,?17.解: (1)要使函数 f(x) 有意义,应有x≥2,?1≤x≤3. 3- x≥02x≤3∴f(x) 的定义域是1, 3 . 2(2)函数 f( x)的定义域是4- x2≥ 0,-2≤ x≤2,x? x? { x|- 2≤ x≤ 2,且 x≠ - 1} .x+ 1≠ 0x≠ - 1∴f(x) 的定义域是 [ - 2,- 1)∪ (- 1,2] .x2122( 1)28.解: (1)∵ f(x) =2+2= 1.1+ x2,∴f(2)+f( )=1+ 21)221+(2132(1)231)2= 1.f(3) + f(3)=1+32+1+(31x2+(1)22+12+ 1x=x=x= 1.(2)证明: f(x)+ f(x)=1+x21 2 1+x2x2+ 1x2+ 11+(x)函数的三种表示法1.选 A∵ f(3) = 4,∴ f(f(3)) = f(4)= 1.2.选 C从 y 与 x 的一一对应上来分析,C 项中,当 x ≤ 0 时,对应的 y 值有两个,不符合函数定义.t - 1t - 13.选 B 由 f(2x + 1)= 3x + 2,令 2x + 1= t ,∴ x = 2,∴ f(t) = 3· 2 + 2,∴ f(x) =3( x - 1)+ 2,∴ f(a)= 3( a -1)+ 2=2, ∴ a =1.224.选 C 由题图可知函数的图象是一条直线,所以可用一次函数表示,设其为y = kx + b ,将点 (30, 330)和 (40, 630)代入,可求得 k = 30, b =- 570, 所以 y = 30x -570,令 y =0,得 x =19.1= 1,∴ f( 15.解析:∵ f(3) = 1, f ( 3) f ( 3) )= f(1) =2. 答案: 26.解析:∵ g(1) =3,∴ f(g(1)) =f(3) = 1.x 1 2 3∴ f(g(x))> g(f( x))的解为 x = 2.答案:1 2f(g(x)) 1 3 17.解:解析法: y = 20x , x ∈ {1 , 2, 3, 4,5} .g(f(x))313列表法:x(张 )12 3 4 5 y(元 )2040 6080100图象法:8.解:因为函数 f(x) =- x2+ 2x + 3 的定义域为 R ,列表:x⋯ - 2 - 10 1 2 3 4 ⋯ y⋯- 5343- 5⋯描点,连线,得函数图象如图:(1)根据图象,容易发现f(0) = 3,f(1)= 4, f(3) = 0,所以 f(3)< f(0)< f(1) .(2)根据图象,容易发现当x 1<x 2<1 时,有 f(x 1)<f(x 2 ).★★分段函数及映射1.选 B当 x 2= 1 时, x = ±1;当 x 2= 2 时, x = ± 2.∴当 1∈ A 时, A ∩ B = {1} ;当 1?A 时, A ∩ B = ?,当 x = ± 2时,显然 A ∩B = ?. 2.选 A |- 3|= |3|, |-2|=|2|, |- 1|= 1, |4|= 4,且集合元素具有互异性,故 B 中共有 4 个元素,∴ B = {1,2, 3,4}.3.选 C f( -2) =- 2+ 5= 3, f(f( - 2))= f(3) = 3- 1=2.4.选 Af(3) =f(3 +2) = f(5) , f(5) = f(5 +2)= f(7) ,∴ f(7) = 7- 5= 2.故 f(3) = 2.3,11 x + 1= 2答案:5.解析:由题意知解得 x = .2x 2+ 1=5.246.解析: f(4) = f(2)= f(0) = 0. 答案: 07.解: (1)直接由图中观察,可得f(f(0)) = f(4)= 2.(2)设线段 AB 所对应的函数解析式为 y = kx + b , 将x =0, x = 2,4= b , ∴ b = 4,与代入,得∴ y =- 2x +4(0≤ x ≤ 2).y = 4y = 00= 2k + b. k =- 2. 同理,线段BC 所对应的函数解析式为y = x - 2 (2≤x ≤6).- 2x +4, 0≤x ≤ 2,∴ f(x) =x - 2, 2<x ≤6.8.解:根据题意可得d = kv2S. ∵ v = 50 时, d = S ,代入 d = kv2S 中,解得 k =1. ∴ d = 1v 2S.2500 2500S当 d =S时,可解得 v = 25 2( 0≤ v < 25 2)2. ∴ d =21 v 2S ( v ≥ 25 2)2500高中数学必修一练习题(二)函数第8页,共 8页函数的单调性k k k1.选 C 对称轴 x = 8,则 8≤ 5 或 8≥8,解得 k ≤40或 k ≥64.2.选 C因为函数 f(x) 是增函数,且 a + 3>a - 2,所以 f(a + 3)>f(a - 2).3.选 C1 31,在对称轴左侧单调递减,y = x2 +x + 1= (x +2)2+ 4.其对称轴为 x =- 2∴ x ≤ -1时单调递减.24.选 D 因为无法确定区间的位置关系.5.解析:作出函数 f(x) 的图象 (如图 ).由图象可知 f(x) 的增区间为 (- ∞ ,+ ∞ ).答案: (-∞,+∞ )6.解析: f(x) 的图象的对称轴为 m=- 2,∴ m =- 8.x = 4∴ f(x)= 2x 2+ 8x +3.∴ f(1) =2+ 8+ 3=13.答案: 137.证明:设 x 1, x 2 为区间 (0,+ ∞)上的任意两个值,且x 1<x 2,则 x 1-x 2<0, x 1x 2>0.因为 f(x 1)- f(x 2)= (- 1 - 1)- (- 1 - 1)= 1 - 1 =x 1 - x 2<0,即 f(x 1)<f(x 2).x 1 x 2 x 2 x 1 x 1x 21 故 f(x)=- x -1 在区间 (0 ,+ ∞ )上是单调增函数.8.解:由 f(1- a)+ f(1- 2a)<0,得 f(1 - a)<- f(1- 2a).∵ f(- x)=- f(x), x ∈ (- 1, 1),∴ f(1- a)<f(2a - 1),- 1<1- a<1,又 ∵ f(x)是 (-1, 1)上的减函数,∴ - 1<1 -2a<1,解得 0<a<2.31- a>2a - 1,2故实数 a 的取值范围是 (0, 3)。
高中数学必修一第五章三角函数必须掌握的典型题(带答案)
高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。
高中数学函数必修一习题含答案
第2卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1)D .(-1,1)2.若2lg(x -2y )=lg x +lg y (x >0,y >0)则yx 的值为( ) A .4 B .1或14 C .1或4 D.143.下列函数中与函数y =x 相等的函数是( ) A .y =(x )2 B .y =x 2 C .y =2log 2xD .y =log 22x4.函数y =lg ⎝ ⎛⎭⎪⎫21+x -1的图象关于( )A .原点对称B .y 轴对称C .x 轴对称D .直线y =x 对称5.下列关系中正确的是( ) A .log 76<ln 12<log 3π B .log 3π<ln 12<log 76 C .ln 12<log 76<log 3πD .ln 12<log 3π<log 76 6.已知函数f (x )=⎩⎨⎧log 3x ,x >0,2x ,x ≤0.则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫127的值为( )A.18 B .4 C .2 D.147.函数y =ax 2+bx 与y =log ba x (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )8.若函数y =(m 2+2m -2)x m 为幂函数且在第一象限为增函数,则m 的值为( )A .1B .-3C .-1D .39.若函数y =f (x )是函数y =a x (a >0且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )A .log 2xB .log 12x C.12x D .x 210.函数f (x )=log 12(x 2-3x +2)的递减区间为( ) A.⎝ ⎛⎭⎪⎫-∞,32 B .(1,2) C.⎝ ⎛⎭⎪⎫32,+∞ D .(2,+∞)11.函数f (x )=lg(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,34 B.⎣⎢⎡⎭⎪⎫0,34 C.⎣⎢⎡⎦⎥⎤0,34 D .(-∞,0]∪⎝ ⎛⎭⎪⎫34,+∞12.设a >0且a ≠1,函数f (x )=log a |ax 2-x |在[3,4]上是增函数,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫16,14∪(1,+∞) B.⎣⎢⎡⎦⎥⎤18,14∪(1,+∞) C.⎣⎢⎡⎭⎪⎫18,16∪(1,+∞) D.⎝ ⎛⎭⎪⎫0,14∪(1,+∞) 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,请把正确答案填在题中横线上) 13.计算27- 13+lg 0.01-ln e +3log 32=________.14.函数f (x )=lg(x -1)+5-x 的定义域为________.15.已知函数f (x )=log 3(x 2+ax +a +5),f (x )在区间(-∞,1)上是递减函数,则实数a 的取值范围为________.16.已知下列四个命题:①函数f (x )=2x 满足:对任意x 1,x 2∈R 且x 1≠x 2都有f ⎝ ⎛⎭⎪⎫x 1+x 22<12[f (x 1)+f (x 2)];②函数f (x )=log 2(x +1+x 2),g (x )=1+22x -1不都是奇函数;③若函数f (x )满足f (x -1)=-f (x +1),且f (1)=2,则f (7)=-2;④设x 1,x 2是关于x 的方程|log a x |=k (a >0且a ≠1)的两根,则x 1x 2=1.其中正确命题的序号是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)计算lg 25+lg 2×lg 500-12lg 125-log 29×log 32; (2)已知lg 2=a ,lg 3=b ,试用a ,b 表示log 125. 18.(本小题满分12分) 已知函数f (x )=lg(3x -3). (1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x +3),若不等式h (x )>t 无解,求实数t 的取值范围.19.(本小题满分12分)已知函数f (x )=x-2m 2+m +3(m ∈Z )为偶函数,且f (3)<f (5).(1)求m 的值,并确定f (x )的解析式;(2)若g (x )=log a [f (x )-2x ](a >0且a ≠1),求g (x )在(2,3]上的值域. 20.(本小题满分12分) 已知函数f (x )=lg kx -1x -1(k ∈R ).(1)若y =f (x )是奇函数,求k 的值,并求该函数的定义域; (2)若函数y =f (x )在[10,+∞)上是增函数,求k 的取值范围. 21.(本小题满分12分) 已知函数f (x )=log 31-x1-mx(m ≠1)是奇函数. (1)求函数y =f (x )的解析式;(2)设g (x )=1-x1-mx,用函数单调性的定义证明:函数y =g (x )在区间(-1,1)上单调递减;(3)解不等式f (t +3)<0. 22.(本小题满分12分)已知函数f (x )=log 4(4x +1)+kx (k ∈R )是偶函数. (1)求实数k 的值;(2)设g (x )=log 4(a ·2x +a ),若f (x )=g (x )有且只有一个实数解,求实数a 的取值范围.详解答案1.D 解析:由对数函数恒过定点(1,0)知,函数y =log a (x +2)+1的图象过定点(-1,1).2.B 解析:由对数的性质及运算知,2lg(x -2y )=lg x +lg y 化简为lg(x -2y )2=lg xy ,即(x -2y )2=xy ,解得x =y 或x =4y .所以y x 的值为1或14.故选B.3.D 解析:函数y =x 的定义域为R .A 中,y =(x )2定义域为[0,+∞);B 中,y =x 2=|x |;C 中,y =2log 2x =x ,定义域为(0,+∞);D 中,y =log 22x =x ,定义域为R .所以与函数y =x 相等的函数为y =log 22x .4.A 解析:函数y =lg ⎝ ⎛⎭⎪⎫21+x -1的定义域为(-1,1).又设f (x )=y =lg ⎝ ⎛⎭⎪⎫21+x -1=lg 1-x 1+x ,所以f (-x )=lg ⎝⎛⎭⎪⎫1+x 1-x =-lg ⎝ ⎛⎭⎪⎫1-x 1+x =-f (x ), 所以函数为奇函数,故关于原点对称.5.C 解析:由对数函数图象和性质,得0<log 76<1,ln 12<0,log 3π>1.所以ln 12<log 76<log 3π.故选C.6.A 解析:∵127>0∴f ⎝ ⎛⎭⎪⎫127=log 3127=-3,∵-3<0,f (-3)=2-3=18.故选A.7.D 解析:A 中,由y =ax 2+bx 的图象知,a >0,ba <0,由y =logb ax 知,ba >0,所以A 错;B 中,由y =ax 2+bx 的图象知,a <0,b a <0,由y =log b ax 知,ba >0,所以B错;C 中,由y =ax 2+bx 的图象知,a <0,-b a <-1,∴b a >1,由y =log b ax 知0<ba<1,所以C 错.故选D.8.A 解析:因为函数y =(m 2+2m -2)x m 为幂函数且在第一象限为增函数,所以⎩⎨⎧m 2+2m -2=1,m >0,解得m =1.故选A.9.B 解析:因为函数y =f (x )图象经过点(a ,a ),所以函数y =a x (a >0且a ≠1)过点(a ,a ),所以a =a a 即a =12,故f (x )=log 12x .10.D 解析:令t =x 2-3x +2,则当t =x 2-3x +2>0时,解得x ∈(-∞,1)∪(2,+∞).且t =x 2-3x +2在区间(-∞,1)上单调递减,在区间(2,+∞)上单调递增;又y =log 12t 在其定义域上为单调递减的,所以由复合函数的单调性知,f (x )=log 12(x 2-3x +2)单调递减区间是(2,+∞).11.B 解析:因为函数f (x )=lg(kx 2+4kx +3)的定义域为R ,所以kx 2+4kx +3>0,x ∈R 恒成立.①当k =0时,3>0恒成立,所以k =0适合题意.②⎩⎨⎧k >0,Δ<0,即0<k <34.由①②得0≤k <34.故选B.解题技巧:本题实际上考查了恒成立问题,解决本题的关键是让真数kx 2+4kx +3>0,x ∈R 恒成立.12.A 解析:令u (x )=|ax 2-x |,则y =log a u ,所以u (x )的图象如图所示.当a >1时,由复合函数的单调性可知,区间[3,4]落在⎝ ⎛⎦⎥⎤0,12a 或⎝ ⎛⎭⎪⎫1a ,+∞上,所以4≤12a 或1a <3,故有a >1;当0<a <1时,由复合函数的单调性可知,[3,4]⊆⎣⎢⎡⎭⎪⎫12a ,1a ,所以12a ≤3且1a >4,解得16≤a <14.综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫16,14∪(1,+∞).13.-16 解析:原式=13-2-12+2=-16.14.(1,5] 解析:要使函数f (x )=lg(x -1)+5-x 有意义,只需满足⎩⎨⎧x -1>0,5-x ≥0即可.解得1<x ≤5,所以函数f (x )=lg(x -1)+5-x 的定义域为(1,5]. 15.[-3,-2] 解析:令g (x )=x 2+ax +a +5,g (x )在x ∈⎝ ⎛⎦⎥⎤-∞,-a 2是减函数,x ∈⎣⎢⎡⎭⎪⎫-a 2,+∞是增函数.而f (x )=log 3t ,t ∈(0,+∞)是增函数.由复合函数的单调性,得⎩⎪⎨⎪⎧-a 2≥1,g (1)≥0,解得-3≤a ≤-2.解题技巧:本题主要考查了复合函数的单调性,解决本题的关键是在保证真数g (x )>0的条件下,求出g (x )的单调增区间.16.①③④ 解析:①∵指数函数的图象为凹函数,∴①正确;②函数f (x )=log 2(x +1+x 2)定义域为R ,且f (x )+f (-x )=log 2(x +1+x 2)+log 2(-x +1+x 2)=log 21=0,∴f (x )=-f (-x ),∴f (x )为奇函数.g (x )的定义域为(-∞,0)∪(0,+∞),且g (x )=1+22x -1=2x +12x -1,g (-x )=2-x +12-x -1=1+2x1-2x=-g (x ),∴g (x )是奇函数.②错误;③∵f (x -1)=-f (x +1),∴f (7)=f (6+1)=-f (6-1)=-f (5),f (5)=f (4+1)=-f (4-1)=-f (3),f (3)=-f (1),∴f (7)=-f (1),③正确;④|log a x |=k (a >0且a ≠1)的两根,则log a x 1=-log a x 2,∴log a x 1+log a x 2=0,∴x 1·x 2=1.∴④正确.17.解:(1)原式=lg 25+lg 5·lg 2+2lg 2+lg 5-log 39 =lg 5(lg 5+lg 2)+2lg 2+lg 5-2 =2(lg 5+lg 2)-2 =0.(2)log 125=lg 5lg 12=lg 102lg 3×4=lg 10-lg 2lg 3+lg 4=1-lg 2lg 3+2lg 2,lg 2=a ,lg 3=b ,log 125=1-lg 2lg 3+2lg 2=1-ab +2a.18.解:(1)由3x -3>0解得x >1,所以函数f (x )的定义域为(1,+∞). 因为(3x -3)∈(0,+∞),所以函数f (x )的值域为R .(2)因为h (x )=lg(3x -3)-lg(3x+3)=lg ⎝ ⎛⎭⎪⎫3x -33x+3 =lg ⎝ ⎛⎭⎪⎫1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数,所以函数的值域为(-∞,0).所以若不等式h (x )>t 无解,则t 的取值范围为[0,+∞).19.解:(1)因为f (3)<f (5),所以由幂函数的性质得,-2m 2+m +3>0,解得-1<m <32.因为m ∈Z ,所以m =0或m =1. 当m =0时,f (x )=x 3它不是偶函数. 当m =1时,f (x )=x 2是偶函数. 所以m =1,f (x )=x 2.(2)由(1)知g (x )=log a (x 2-2x ), 设t =x 2-2x ,x ∈(2,3],则t ∈(0,3],此时g (x )在(2,3]上的值域就是函数y =log a t 在t ∈(0,3]上的值域.当a >1时,y =log a t 在区间(0,3]上是增函数,所以y ∈(-∞,log a 3]; 当0<a <1时,y =log a t 在区间(0,3]上是减函数,所以y ∈[log a 3,+∞). 所以当a >1时,函数g (x )的值域为(-∞,log a 3];当0<a <1时,g (x )的值域为[log a 3,+∞).20.解:(1)因为f (x )是奇函数, ∴f (-x )=-f (x ),即lg -kx -1-x -1=-lg kx -1x -1,∴-kx -1-x -1=x -1kx -1,1-k 2x 2=1-x 2,∴k 2=1,k =±1, 而k =1不合题意舍去, ∴k =-1. 由-x -1x -1>0,得函数y =f (x )的定义域为(-1,1). (2)∵f (x )在[10,+∞)上是增函数,∴10k -110-1>0,∴k >110. 又f (x )=lgkx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1, 故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2), 即lg ⎝ ⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1, ∴k -1x 1-1<k -1x 2-1,∴(k -1)·⎝ ⎛⎭⎪⎫1x 1-1-1x 2-1<0, 又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1. 综上可知k ∈⎝ ⎛⎭⎪⎫110,1.解题技巧:本题主要考查了对数型函数的性质,解决本题的关键是充分利用好奇偶性和单调性.21.(1)解:由题意得f (-x )+f (x )=0对定义域中的x 都成立, 所以log 31+x 1+mx +log 31-x 1-mx =0,即1+x 1+mx ·1-x1-mx =1,所以1-x 2=1-m 2x 2对定义域中的x 都成立,所以m 2=1,又m ≠1,所以m =-1, 所以f (x )=log 31-x1+x.(2)证明:由(1)知,g (x )=1-x1+x,设x 1,x 2∈(-1,1),且x 1<x 2,则x 1+1>0,x 2+1>0,x 2-x 1>0. 因为g (x 1)-g (x 2)=2(x 2-x 1)(1+x 1)(1+x 2)>0,所以g (x 1)>g (x 2),所以函数y =g (x )在区间(-1,1)上单调递减. (3)解:函数y =f (x )的定义域为(-1,1),设x 1,x 2∈(-1,1),且x 1<x 2,由(2)得g (x 1)>g (x 2), 所以log 3g (x 1)>log 3g (x 2),即f (x 1)>f (x 2), 所以y =f (x )在区间(-1,1)上单调递减.因为f (t +3)<0=f (0),所以⎩⎪⎨⎪⎧-1<t +3<1,t +3>0,解得-3<t <-2.故不等式的解集为(-3,-2). 22.解:(1)由函数f (x )是偶函数可知f (x )=f (-x ), ∴log 4(4x +1)+kx =log 4(4-x +1)-kx , 化简得log 44x +14-x +1=-2kx ,即x =-2kx 对一切x ∈R 恒成立,∴k =-12.(2)函数f (x )与g (x )的图象有且只有一个公共点,即方程log 4(4x +1)-12x =log 4(a ·2x +a )有且只有一个实根,化简得方程2x +12x =a ·2x +a 有且只有一个实根,且a ·2x +a >0成立,则a >0.令t =2x >0,则(a -1)t 2+at -1=0有且只有一个正根. 设g (t )=(a -1)t 2+at -1,注意到g (0)=-1<0,所以 ①当a =1时,有t =1,符合题意;②当0<a <1时,g (t )图象开口向下,且g (0)=-1<0,则需满足⎩⎪⎨⎪⎧t 对称轴=-a 2(a -1)>0,Δ=0,此时有a =-2+22或a =-2-22(舍去);③当a >1时,又g (0)=-1,方程恒有一个正根与一个负根,符合题意.综上可知,a 的取值范围是{-2+22}∪[1,+∞).。
高中数学必修一函数大题(含详细解答)
高中函数大题专练1、已知关于x 的不等式2(4)(4)0kx k x --->,其中k R ∈。
⑴试求不等式的解集A ;⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。
试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合B ;若不能,请说明理由。
2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。
① 对任意的[0,1]x ∈,总有()0f x ≥;② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。
已知函数2()g x x =与()21xh x a =⋅-是定义在[0,1]上的函数。
(1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值;(3)在(2)的条件下,讨论方程(21)()xg h x m -+=()m R ∈解的个数情况。
3.已知函数||212)(x x x f -=. (1)若2)(=x f ,求x 的值;(2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围.4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x⎧-⎪=⎨⎪⎩0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像.(3)当0a b <<时,若()()f a f b =,求ab 的取值范围.(4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件.5.已知函数()(0)||bf x a x x =-≠。
(1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围;(2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围;(3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是[,]m n ,则称()g x 是[,]m n 上的闭函数。
(典型题)高中数学必修一第二单元《函数》检测卷(有答案解析)
一、选择题1.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -2.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞3.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个4.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,45.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >6.如果函数()()()2121f x a x b x =-+++(其中2b a -≥)在[]1,2上单调递减,则32a b +的最大值为( )A .4B .1-C .23D .67.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( )A .52B .1C .0D .-18.定义,min(,),a a ba b b a b≤⎧=⎨>⎩,例如:min(1,2)2--=-,min(2,2)2=,若2()f x x =,2()46g x x x =--+,则()min((),())F x f x g x =的最大值为( )A .1B .8C .9D .109.已知函数()3221x f x x =-+,且()()20f a f b ++<,则( ) A .0a b +<B .0a b +>C .10a b -+>D .20a b ++<10.函数sin y x x =的图象可能是( )A .B .C .D .11.已知定义在R 上的函数()2||·x f x x e =, (5a f log =, 312b f log ⎛=⎫ ⎪⎝⎭,()ln3c f = ,则a ,b ,c 的大小关系是( )A .c a b >>B .b c a >>C .a b c >>D .c b a >>12.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭二、填空题13.已知函数(3)5,1()2,1a x x f x a x x--≤⎧⎪=⎨->⎪⎩是R 上的增函数,则a 的取值范围是________.14.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.15.已知实数0a ≠,函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,若()()11f a f a -=+,则a 的取值范围是___________.16.已知二次函数()()22,f x x ax b a b R =++∈,,M m 分别是函数()f x 在区间[]0,2的最大值和最小值,则M m -的最小值是________ 17.已知函数2123y kx kx =++的定义域为R ,则实数k 的取值范围是__________.18.设函数f (x )满足:对任意的x 1,x 2∈R 都有(x 1-x 2)[f (x 1)-f (x 2)]>0,则f (-3)与f (-π)的大小关系是________. 19.函数()f x =的单调递增区间为__________.20.已知函数22, 1()+1, 1x ax x f x ax x ⎧-+≤=⎨>⎩,若()f x 在定义域上不是单调函数,则实数a 的取值范围是_______. 三、解答题21.已知函数()221x f x x=+. (1)求()122f f ⎛⎫+⎪⎝⎭,()133f f ⎛⎫+ ⎪⎝⎭的值; (2)求证:()1f x f x ⎛⎫+ ⎪⎝⎭是定值; (3)求()()11120202320202f f f f f ⎛⎫⎛⎫⎛⎫+++⋅⋅⋅++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值. 22.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.23.已知函数()y f x =是[]1,1-上的奇函数,当10x ≤<时,()2112x f x x =-+. (1)判断并证明()y f x =在[)1,0-上的单调性; (2)求()y f x =的值域. 24.已知函数()()210f x x x a=-+>.(1)判断()f x 在()0,∞+上的增减性,并用单调性定义证明. (2)若()20f x x +≥在()0,∞+上恒成立,求a 的取值范围. 25.已知函数()2x x f x e ke -=--为偶函数. (1)求k 的值及函数()f x 的最小值;(2)设()(2)2(()2)g x f x m f x =-+,当0x >时,()0>g x ,求m 的取值范围.26.已知函数21.2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,(1)求(5)f -,(3)f-,5(())2f f -的值; (2)若()3f a =,求实数a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.2.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.3.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=, 所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.4.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数,当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤,故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.5.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x 在[],x a b ∈时的值域.6.C解析:C 【分析】分10a -=、10a -<、10a ->,根据题意可得出关于a 、b 的不等式组,由此可解得32a b +的最大值.【详解】分以下几种情况讨论:(1)当10a -=时,即当1a =时,()()21f x b x =++在[]1,2上单调递减,可得20b +<,解得2b <-,12b a b -=-≥,可得3b ≥,不合乎题意;(2)当10a -<时,即当1a <时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2121b a +-≤-,可得222b a +≤-,即20a b +≤,可得2b a ≤-,由2b a -≥,可得2a b ≤-, 所以,()()323222436a b b a a b +≤-+⨯-=-+-,当且仅当22b a a b =-⎧⎨=-⎩时,即当2343a b ⎧=-⎪⎪⎨⎪=⎪⎩时,等号成立,则2423232333a b ⎛⎫+≤⨯-+⨯= ⎪⎝⎭; (3)当10a ->时,即当1a >时,由于函数()()()2121f x a x b x =-+++在[]1,2上单调递减,则()2221b a +-≥-,可得42a b +≤,即24b a ≤-,2b a -≥,即2b a ≥+,224a b a ∴+≤≤-,解得0a ≤,不合乎题意.综上所述,32a b +的最大值为23. 故选:C. 【点睛】关键点点睛:根据首项系数为变数的二次函数在区间上的单调性求参数,要对首项系数的符号进行分类讨论,在首项系数不为零的前提下,要根据函数的单调性确定对称轴与区间的位置关系,构建不等式(组)求解.7.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 8.C解析:C根据定义确定()F x 的解析式及单调性后可得最大值. 【详解】由2246x x x <--+得2230x x +-<,31x -<<,所以()22,3146,31x x F x x x x x ⎧-<<=⎨--+≤-≥⎩或,所以()F x 在(,3)-∞-和(0,1)上都是增函数,在(3,0)-和(1,)+∞上都是减函数,(3)9F -=,(1)1F =,所以max ()9F x =. 故选:C . 【点睛】关键点点睛:本题考查求函数的最大值.解题关键是根据新函数定义确定新函数的解析式,单调性.结合单调性易得最值.9.A解析:A 【分析】求得函数的单调性,构造奇函数利用单调性得解 【详解】由函数单调性性质得:3y x =,21x y =+在R 上单调递增 所以()3221x f x x =-+在R 上单调递增, 令函数()()321121x x g x f x x -=+=-+,()()0g x g x +-=则函数()g x 为奇函数,且在R 上单调递增,故()()20f a f b ++<()()g a g b ⇔<-0a b a b ⇔<-⇔+<. 故选:A 【点睛】构造奇函数利用单调性是解题关键.10.A解析:A 【分析】先判断函数奇偶性,排除CD ,再结合函数在()0,π的正负选出正确答案 【详解】设()sin y f x x x ==,求得()sin f x x x -=,故函数为偶函数,排除CD ,由三角函数图像特征可知在()0,π时sin 0x >,故在()0,π时()0f x >,故A 正确 故选:A思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.11.A解析:A 【分析】可看出()f x 在(0,)+∞上单调递增,且得出3(log 2)b f =,并且可得出33ln3log log 2>>,根据增函数的定义即可得出a ,b ,c 的大小关系. 【详解】0x >时,2()x f x x e =是增函数,且()()f x f x -=,33(log 2)(log 2)b f f ∴=-=,33330log 1log 2log log 31=<<=,ln 3ln 1e >=,∴33ln3log log 2>,∴33(ln3)(log (log 2)f f f >>,c a b ∴>>.故选:A . 【点睛】解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.12.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.二、填空题13.【分析】函数是增函数可得且即可求解【详解】因为函数为上的增函数所以当时递增即当时递增即且解得∴综上可知实数的取值范围是故答案为:【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围需满足分段函数 解析:(]0,2【分析】函数是增函数可得30a ->,0a >且2(3)151aa -⨯-≤-,即可求解. 【详解】因为函数()f x 为R 上的增函数,所以当1x ≤时,()f x 递增,即30a ->,当1x >时,()f x 递增,即0a >, 且2(3)151aa -⨯-≤-,解得2a ≤,∴02a <≤, 综上可知实数a 的取值范围是(]0,2. 故答案为:(]0,2. 【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围,需满足分段函数每部分分别单调,还应注意在分段处的函数值大小问题,这是容易漏掉的地方.14.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞ 【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可. 【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立,即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x =-+,[1,)x ∈+∞,问题转化为求()f x 的最大值, 而2117()2()48f x x=-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>; ()f x m <有解min ()f x m ⇔<.15.【分析】本题首先可讨论的情况此时然后根据函数的解析式求出和通过即可求出的值最后讨论的情况此时通过得出此时无解即可得出结果【详解】若则因为函数所以因为所以解得若则因为函数所以因为所以无解综上所述的取值解析:32⎧⎫⎨⎬⎩⎭【分析】本题首先可讨论0a >的情况,此时11a -<、11a +>,然后根据函数()f x 的解析式求出()1f a -和()1f a +,通过()()11f a f a -=+即可求出a 的值,最后讨论0a <的情况,此时11a ->、11a +<,通过()()11f a f a -=+得出此时a 无解,即可得出结果. 【详解】若0a >,则11a -<,11a +>, 因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以1212f aa a a ,1121f a a aa ,因为()()11f a f a -=+,所以21a a ,解得32a =, 若0a <,则11a ->,11a +<,因为函数()2,12,1x a x f x x a x +<⎧=⎨-+≥⎩,所以11213f aa a a ,12123f a a a a ,因为()()11f a f a -=+,所以1323a a ,无解,综上所述,32a =,a 的取值范围是32⎧⎫⎨⎬⎩⎭, 故答案为:32⎧⎫⎨⎬⎩⎭.【点睛】本题考查分段函数的相关问题的求解,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,考查分类讨论思想,考查计算能力,是中档题.16.【分析】求出函数的对称轴通过讨论的范围求出函数的单调区间求出的最小值即可【详解】由题意二次函数其对称轴为当即时在区间上为增函数当即时在区间上为减函数当即时在区间上为减函数在区间上为增函数;当即时在区 解析:2【分析】求出函数的对称轴,通过讨论a 的范围,求出函数的单调区间,求出M m -的最小值即可. 【详解】由题意,二次函数()2222248a a f x x ax b x b ⎛⎫=++=++- ⎪⎝⎭,其对称轴为4a x =-,当04a-≤,即0a ≥时,()f x 在区间[]0,2上为增函数, ∴()228M f a b ==++,()0m f b ==,∴288M m a -=+≥,当24a-≥,即8a ≤-时,()f x 在区间[]0,2上为减函数, ∴()0M f b ==,()282m f a b ==++, ∴828M m a -=--≥,当014a <-≤,即40a -≤<时,()f x 在区间0,4a ⎡⎤-⎢⎥⎣⎦上为减函数,在区间,24a ⎡⎤-⎢⎥⎣⎦上为增函数,∴()228M f a b ==++,248a a m f b ⎛⎫=-=- ⎪⎝⎭,∴()21828M m a -=+≥;当124a <-<,即84a -<<-时,()f x 在区间0,4a ⎡⎤-⎢⎥⎣⎦上为减函数,在区间,24a ⎡⎤-⎢⎥⎣⎦上为增函数,∴()0M f b ==,248a a m f b ⎛⎫=-=- ⎪⎝⎭,∴228a M m -=>.综上所述:M m -的最小值是2. 故答案为:2. 【点睛】本题考查了二次函数的性质,函数的单调性,最值问题,分类讨论思想,转化思想,属于中档题.17.【解析】解:当k=0时满足条件当时综上:点睛:定义域为分母在上都不为0注意分母不一定为二次所以先考虑二次项系数为零解析:0k ≤<3. 【解析】 解: 当k=0时,13y =,满足条件 当k 0≠时,24120k k -< 综上:0k 3≤<.点睛:定义域为R ,分母在R 上都不为0,注意分母不一定为二次,所以先考虑二次项系数为零.18.f(-3)>f(-π)【解析】由得是上的单调递增函数又解析:f (-3)>f (-π)【解析】由()()1212()[]0x x f x f x >-- 得()f x 是R 上的单调递增函数,又3(3)()f f ππ>∴>--,-- .19.【分析】先求出函数的定义域在利用复合函数单调性得解【详解】因为或所以函数的定义域为由在上单减在单增由复合函数单调性质得函数在单增故答案为:【点睛】复合函数单调性同增异减注意定义域属于基础题 解析:(,1)-∞-【分析】先求出函数的定义域,在利用复合函数单调性得解. 【详解】因为22303x x x -->⇒>或1x <- 所以函数的定义域为(,1)(3,)-∞-+∞由223t x x =--在(,1)-∞-上单减,在(3,)+∞单增 由复合函数单调性质得函数()f x =在(,1)-∞-单增故答案为:(,1)-∞- 【点睛】复合函数单调性“同增异减”,注意定义域.属于基础题20.【分析】结合二次函数的图象与性质按照分类再由分段函数的单调性即可得解【详解】因为函数的图象开口朝下对称轴为且所以当时函数在上不单调符合题意;当时函数在上均单调递增若要使在定义域上不是单调函数则解得故 解析:(),1(2,)-∞+∞【分析】结合二次函数的图象与性质,按照1a <、1a ≥分类,再由分段函数的单调性即可得解. 【详解】因为函数22y x ax =-+的图象开口朝下,对称轴为x a =,且22,?1()+1,?1x ax x f x ax x ⎧-+≤=⎨>⎩,所以当1a <时,函数()f x 在(],1-∞上不单调,符合题意; 当1a ≥时,函数()f x 在(],1-∞,()1,+∞上均单调递增, 若要使()f x 在定义域上不是单调函数,则2121a a -+>+,解得2a >,故2a >符合题意; 综上,实数a 的取值范围是(),1(,)2-∞⋃+∞. 故答案为:(),1(,)2-∞⋃+∞. 【点睛】解决本题的关键是将分段函数不单调转化为两种情况,分类求解.三、解答题21.(1)()1212f f ⎛⎫+= ⎪⎝⎭,()1313f f ⎛⎫+= ⎪⎝⎭;(2)证明见解析;(3)2019. 【分析】(1)根据函数解析式,直接计算,即可得出结果; (2)根据函数解析式,计算1f x ⎛⎫⎪⎝⎭,得出()12f x f x ⎛⎫+= ⎪⎝⎭即可; (3)根据(2)的结论,可直接得出结果. 【详解】 (1)()221x f x x =+ ()22221124122121255112f f ⎛⎫ ⎪⎛⎫⎝⎭∴+=+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,()222113913313131010113f f ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+⎝⎭⎛⎫+ ⎪⎝⎭; (2)证明:()22222222211111111111x x x x f f x x x x x xx ⎛⎫ ⎪+⎛⎫⎝⎭+=+=+== ⎪++++⎝⎭⎛⎫+ ⎪⎝⎭, ()1f x f x ⎛⎫+ ⎪⎝⎭∴是定值;(3)()()()111232020232020f f f f f f ⎛⎫⎛⎫⎛⎫++++⋅⋅⋅++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()()()111232020232020f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦111=++⋅⋅⋅+2019=.22.(1)证明见解析;(2)12x <<. 【分析】(1)计算出(1)f 后由单调性可证;(2)求得(2)2f =,利用定义不等式可化为([(32)(1)](2)f x x f x --<,然后由单调性求解. 【详解】解(1)令1a b ==,代入条件式子得(1)1f =;()f x 在R +上单调递增∴当1x >时,()(1)1f x f >=,得证. (2)令1,22a b ==,代入①式得1(1)()(2)1(2)22f f f f =+-⇒= (32)(1)()2f x f x f x ∴-+-<+ (32)(1)()(2)f x f x f x f ⇔-+-<+320,10,0,[(32)(1)]1(2)1x x x f x x f x ->⎧⎪->⎪⇔⎨>⎪⎪--+<+⎩11121(32)(1)223x x x x x x x ⎧>⎧>⎪⎪⇔⇔⇔<<⎨⎨--<<<⎪⎪⎩⎩.【点睛】关键点点睛:本题考查抽象函数的单调性的应用,解关于抽象函数的不等式,关键是利用函数的定义,把不等式转化为12()()f x f x <形式,然后由单调性求解.转化时注意函数的定义域.23.(1)单调递增,证明见解析;(2){}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦.【分析】(1)利用定义设1210-≤<<x x ,计算()()12f x f x -判断正负即可得出单调性; (2)先利用单调性求出()f x 在[)1,0-的取值范围,再根据奇函数的对称性可求出. 【详解】(1)设1210-≤<<x x ,()()()()()()122112122222*********x x x x x x f x f x x x x x ---=-=++++,因为1210-≤<<x x ,所以121x x <,210x x ->, 则()()120f x f x -<,()()12f x f x <, 所以()f x 在[)1,0-上单调递增; (2)函数()f x 在[)1,0-上是增函数,∴()()()10f f x f -≤<,()11f -=-,()102f =-,∴()11,2f x ⎡⎫∈--⎪⎢⎣⎭∴当10x -≤<时,()f x 的取值范围11,2⎡⎫--⎪⎢⎣⎭∴而函数()f x 为奇函数,由对称性可知,函数()y f x =在(]0,1上的取值范围为1,12⎛⎤ ⎥⎝⎦又()00f =,故()y f x =的值域{}111,0,122⎡⎫⎛⎤--⋃⋃⎪ ⎢⎥⎣⎭⎝⎦. 【点睛】思路点睛:利用定义判断函数单调性的步骤: (1)在定义域内任取12x x <; (2)计算()()12f x f x -并化简整理; (3)判断()()12f x f x -的正负;(4)得出结论,若()()120f x f x -<,则()f x 单调递增;若()()120f x f x ->,则()f x 单调递减.24.(1)答案见详解;(2)0a <. 【分析】(1)根据定义法证明函数单调性即可; (2)先分离参数,即转化为212x x a≤+在()0,∞+上恒成立,只需求二次函数值域,即得结果. 【详解】解:(1)任取120x x <<,则12120,0x x x x +>-<,()1f x ()()()222212*********=1x x x x x x x x f a x a ⎛⎫⎛⎫-+--+=-=+-< ⎪ ⎭-⎪⎝⎝⎭故()()12f x f x <,故()f x 在()0,∞+上单调递增; (2)()20f x x +≥,即2120x x a -++≥,即212x x a≤+在()0,∞+上恒成立, 而二次函数()()22211,0y x x x x =+=+->的值域为()0+∞,,故10a≤,故0a <. 所以a 的取值范围为0a <. 【点睛】对于函数恒成立或者有解求参的问题,常用方法有: (1)分离参数法:参变分离,转化为函数最值问题;(2)构造函数法:直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数.(3)数形结合法:画出函数图像,结合图象,根据关键点处的大小关系得到结果. 25.(1)1k =-,()f x 的最小值为0;(2)[0,)+∞ 【分析】(1)根据函数()2x x f x e ke -=--为偶函数.由()()f x f x -=恒成立求解.进而得到()2x x f x e e -=+-,再利用对勾函数的性质求最小值.(2)由(1)得到()()2()24x xx x g x e em e e --=+-+-,根据0x >时,()0>g x ,由()()42,0x x x xm e e x e e --<+->+恒成立求解. 【详解】(1)因为函数()2x x f x e ke -=--为偶函数.所以()()f x f x -=恒成立,即22x x x x e ke e ke ----=--恒成立,即()()10x xk e e --+=恒成立,解得1k =-, 所以1()22xxx x f x e ee e-=+-=+-,令0x m e =>, 由对勾函数的性质得:12y m m=+≥,所以函数()f x 的最小值为0; (2)()()()222()2224xxxxxx x x g x eem e eeem e e ----=+--+=+-+-,因为当0x >时,()0>g x , 所以()()2240,0xx x x e em e e x --+-+->>恒成立,即()()42,0x xx xm e e x e e --<+->+恒成立, 令()()()4x xx x h x e e e e --=+-+,令2x xt e e-+>=, 因为4y t t=-,在()2,+∞上递增, 所以()0h x >, 所以20m ≤,即0m ≤, 所以m 的取值范围是[0,)+∞. 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.26.(1)(5)4f -=-,(3f =-53(())24f f -=-;(2)1a =或2a =. 【分析】(1)本题首先可以根据题意明确函数()f x 在各段的解析式,然后代入值进行计算即可; (2)本题可分为2a ≤-、22a -<<、2a ≥三种情况进行讨论,依次求解()3f a =,即可得出结果. 【详解】(1)因为函数21,2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,所以()5514f -=-+=-,(((223f =+⨯=-5531222f ⎛⎫-=-+=- ⎪⎝⎭,253339323222244f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=-+⨯-=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (2)当2a ≤-时,(13)f a a +==,解得2a =,不合题意,舍去;当22a -<<时,2(3)2f a a a ,即()()130a a -+=,解得1a =或3a=-(舍去),故此时1a =;当2a ≥时,()213f a a =-=,即2a =, 综上所述,1a =或2a =. 【点睛】本题考查分段函数值的求法以及根据分段函数值求自变量,能否明确分段函数在各段的解析式是解决本题的关键,根据分段函数值求自变量时要注意求出的自变量是否在取值范围内,考查分类讨论思想,是中档题.。
新高中数学必修1求函数值域训练题(含详解)
1.函数()21,11,1x x x f x x x ⎧-+<⎪=⎨>⎪⎩的值域为( )A .3,4⎡⎫+∞⎪⎢⎣⎭B .()0,1C .3,14⎡⎫⎪⎢⎣⎭D .()0,∞+第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题 2.函数211()313x f x x x +⎛⎫=> ⎪-⎝⎭的值域为________.3.2211x x y x x -+=++的值域为________.4.函数2211x y x -=+的值域为________.5.函数y ________.三、解答题6.求下列函数值域: (1)y =2x 2-2x +3; (2)y =372x x ++; (3)y =2x ; (4)y =2.7.作出下列函数图象,并指出其值域. (1)y =x 2+x (-1≤x ≤1); (2)y =2x(-2≤x <1且x ≠0). 8.求下列函数的值域(1)1y x =+,{}1,2,3,4,5x ∈;(2)2211x y x -=+;(4)y x =+.9.求下列函数的值域:(1)322x y x +=-; (2)y =(3)2211x x y x ++=+.参考答案1.D 【解析】 【分析】分别求出当1,1x x <>时的值域,再取并集即可. 【详解】当1x <时,2213()1()24f x x x x =-+=-+,故3(),,(1)4f x x ⎡⎫∈+∞<⎪⎢⎣⎭. 当1x >时,1()(0,1)f x x =∈,故()21,11,1x x x f x x x⎧-+<⎪=⎨>⎪⎩的值域为()0,∞+.故选D. 【点睛】分段函数的值域只需每段函数单独求解值域再求并集即可.2.2,3⎛⎫+∞ ⎪⎝⎭【解析】 【分析】令2131x y x +=-,通过变形可得11323y x y +=>-,即可求出值域. 【详解】 解:令2131x y x +=-,则()321y x y -=+,当320y -=时,()321y x y -=+不成立, 则11323y x y +=>-,即()50332y >-,解得23>y , 故答案为: 2,3⎛⎫+∞ ⎪⎝⎭. 【点睛】本题考查了函数值域的求解,属于基础题.3.1,33⎡⎤⎢⎥⎣⎦【解析】 【分析】利用判别式法求得函数的值域. 【详解】由于22131024x x x ⎛⎫++=++> ⎪⎝⎭,所以函数2211x x y x x -+=++的定义域为R ,由2211x x y x x -+=++化简得221yx yx y x x ++=-+,即()()21110y x y x y -+++-=,关于x 的一元二次方程有解,所以()()221410y y ∆=+--≥,即231030y y -+≤,即()()3310y y --≤,解得133y ≤≤, 所以2211x x y x x -+=++的值域为1,33⎡⎤⎢⎥⎣⎦.故答案为:1,33⎡⎤⎢⎥⎣⎦【点睛】本小题主要考查分式型函数值域的求法,属于中档题. 4.(]1,1- 【解析】 【分析】化简函数22212111x y x x -==-++,根据211x +≥,得到22021x <≤+,即可求解. 【详解】由题意,函数222221(1)221111x x y x x x --++===-+++,因为211x +≥,所以22021x <≤+,所以22111x -<≤+, 即函数2211x y x-=+的值域为(]1,1-. 故答案为:(]1,1-. 【点睛】本题主要考查了函数的值域的求解,其中解答中合理化简函数的解析式,结合基本初等函数的性质求解是解答的关键,着重考查推理与运算能力. 5.[0,4] 【解析】 【分析】由题意结合二次函数、二次根式的性质可得04≤,即可得解. 【详解】因为20x ≥,所以21616x -≤,又要使函数有意义,则2160x -≥,所以261610x ≤≤-, 所以04≤,故函数y [0,4]. 故答案为:[0,4]. 【点睛】本题考查了具体函数值域的求解,考查了运算求解能力,属于基础题. 6.(1)5,2⎡⎫+∞⎪⎢⎣⎭;(2)()(),33,-∞+∞;(3)15,8⎡⎫+∞⎪⎢⎣⎭;(4)[]0,2. 【解析】 【分析】(1)由题意结合二次函数的性质即可得解;(2)由题意转化条件为132y x =++,再结合反比例函数的性质即可得解; (3)令0t =,转化条件为()21152,048y t t ⎛⎫=-+≥ ⎪⎝⎭,结合二次函数的性质即可得解;(4)由题意结合二次函数、二次根式的性质可得022≤≤,即可得解. 【详解】(1)由题意2215223222y x x x ⎛⎫=-+=-+ ⎪⎝⎭,所以函数2223y x x =-+的值域为5,2⎡⎫+∞⎪⎢⎣⎭;(2)由题意()3213713222x x y x x x +++===++++, 由102x ≠+可得函数372x y x +=+的值域为()(),33,-∞+∞;(3)令0t =,则21x t =+,所以()()221152212,048y x t t t t ⎛⎫==+-=-+≥ ⎪⎝⎭,所以当14t =时,函数取最小值158, 所以函数2y x =-15,8⎡⎫+∞⎪⎢⎣⎭; (4)由题意()22424x x x -+=--+,所以2044x x ≤-+≤, 所以02≤≤,022≤≤, 所以函数2y =的值域为[]0,2. 【点睛】本题考查了具体函数值域的求解,考查了换元法的应用及运算求解能力,属于基础题. 7.(1)图象见解析,值域为1,24⎡⎤-⎢⎥⎣⎦;(2)图象见解析,值域为(](),12,-∞-+∞.……装…………○…………订_______姓名:___________班级:___________……装…………○…………订【解析】 【分析】(1)由题意结合二次函数的图象与性质可得函数图象,数形结合即可得函数的值域; (2)由题意结合反比例函数的图象与性质可得函数图象,数形结合即可得函数的值域. 【详解】(1)由题意()2211,1124y x x x x ⎛⎫=+=+--≤≤ ⎪⎝⎭, 当1x =-时,211024y x ⎛⎫=+-= ⎪⎝⎭;当12x =-时,2111244y x ⎛⎫=+-=- ⎪⎝⎭;当1x =时,211224y x ⎛⎫=+-= ⎪⎝⎭;函数2y x x =+的图象为抛物线的一部分,如图:由图象可知,函数()2,11y x x x =+-≤≤的值域为1,24⎡⎤-⎢⎥⎣⎦;(2)由题意函数2y x = (-2≤x <1且x ≠0)的图象为反比例函数图象的一部分, 当2x =-时,21y x ==-;当1x =时,22y x==;所以该函数图象如图:…订…………○…………线…………○…____考号:___________…订…………○…………线…………○…由图象可知,函数2y x= (-2≤x <1且x ≠0)的值域为(](),12,-∞-+∞.【点睛】本题考查了常见函数图象的绘制及利用函数图象求函数的值域,考查了数形结合思想,属于基础题.8.(1){}2,3,4,5,6;(2)[)1,1-;(3)(]2,2-;(4)1,2⎡⎫-+∞⎪⎢⎣⎭. 【解析】 【分析】(1)直接计算函数值可得结果;(2)分离常数,利用不等式的性质可得结果; (3)画出函数图象,观察图像可得结果;(4)换元后,变为二次函数,根据二次函数的单调性可得结果. 【详解】(1)由于(1)2f =,(2)3f =,(3)4f =,(4)5f =,(5)6f =, 故值域为{}2,3,4,5,6.装…………○…………订………_姓名:___________班级:___________考号:______装…………○…………订………(2)y =2211x x -+=22121x x +-+=1-221x +, ∵x 2+1≥1,∴0<221x +≤2, ∴-1≤1-221x +<1, 故值域为[)1,1-.(3)因为2(1)2y x =-++,[)2,1x ∈-,画出其图象如图:观察图象可知值域为(]2,2-.(4)设t 0t ≥且x =212t -,∴y =212t -+t =()21112t +-,在[)0,+∞上为单调递增函数,所以12y ≥-, 所以函数的值域为1,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】本题考查了利用换元法、图象法、函数单调性法求函数值域,属于基础题.9.(1){3}y y ≠∣;(2)[0,3];(3)13,22⎡⎤⎢⎥⎣⎦.【解析】 【分析】(1)原函数可变成832y x =+-,这样即可看出802x ≠-,从而得出3y ≠,这便得出了原函数的值域;(2)将根号里面的配成顶点式,根据二次函数的性质即可求出函数的值域;(3)原函数可化为关于x 的方程2(1)10y x x y --+-=,再根据方程有解,求出y 的取值范围,即可得到函数的值域; 【详解】 解:(1)∵323(2)883222x x y x x x +-+===+---,且802x ≠-, ∴3y ≠,∴函数的值域是{|3}y y ≠. (2)∵y ==2(2)99x --+,∴3y 0≥,∴函数的值域是[0,3].(3)原函数可化为关于x 的方程2(1)10y x x y --+-=.当1y =时,0x =,满足题意;当1y ≠时,2(1)4(1)(1)0y y ∆=----,解得1322y . 综上所述,函数的值域为13,22⎡⎤⎢⎥⎣⎦.【点睛】考查函数值域的概念,分离常数求函数值域的方法,根据不等式的性质求函数的值域,以及配方法求二次函数的值域,属于基础题。
高中数学必修一《对数函数》经典习题(含详细解析)
高中数学必修一《对数函数》经典习题(含详细解析)一、选择题1.已知f=log3x,则f,f,f(2)的大小是( )A.f>f>f(2)B.f<f<f(2)C.f>f(2)>fD.f(2)>f>f2若log a2<log b2<0,则下列结论正确的是( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>13函数y=2+log2x(x≥1)的值域为( )A.(2,+∞)B.(-∞,2)C.[2,+∞)D.[3,+∞)4函数y=lo x,x∈(0,8]的值域是( )A.[-3,+∞)B.[3,+∞)C.(-∞,-3]D.(-∞,3]5.不等式log2(2x+3)>log2(5x-6)的解集为( )A.(-∞,3)B.C. D.6函数f(x)=lg是( )A.奇函数B.偶函数C.既奇又偶函数D.非奇非偶函数7设a=log32,b=log52,c=log23,则( )A.a>c>bB.b>c>aC.c>b>aD.c>a>b8设a=log54,b=(log53)2,c=log45,则( )A.a<c<bB.b<c<aC.a<b<cD.b<a<c9.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.410.若log a=log a,且|log b a|=-log b a,则a,b满足的关系式是( )A.a>1,且b>1B.a>1,且0<b<1C.0<a<1,且b>1D.0<a<1,且0<b<1二、填空题11若函数y=log3x的定义域是[1,27],则值域是.12已知实数a,b满足lo a=lo b,下列五个关系式:①a>b>1,②0<b<a<1,③b>a>1,④0<a<b<1,⑤a=b.其中可能成立的关系式序号为.13log a<1,则a的取值范围是.14不等式12log xx<的解集是.15函数y=log0.8(-x2+4x)的递减区间是.三、解答题16.比较下列各组值的大小.(1)log3π,log20.8.(2)1.10.9,log1.10.9,log0.70.8.(3)log53,log63,log73.17已知函数f(x)=+的定义域为A.(1)求集合A.(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.18已知函数f=log2(2+x2).(1)判断f的奇偶性.(2)求函数f的值域.19已知函数f(x)=log a(1-x)+log a(x+3),其中0<a<1.(1)求函数f(x)的定义域.(2)若函数f(x)的最小值为-4,求a的值.参考答案与解析1【解析】选 B.由函数f=log3x在(0,+∞)是单调增函数,且<<2,知f()<f()<f(2).2【解析】选B.log a2<log b2<0,如图所示,所以0<b<a<1.6【解析】选A.因为f(-x)=lg=lg=lg=lg=-lg=-f(x),所以f(-x)=-f(x),又函数的定义域为R,故该函数为奇函数.7【解析】选D.因为log32=<1,log52=<1,又log23>1,所以c最大.又1<log23<log25,所以>,即a>b,所以c>a>b.8【解析】选D.a=log54<1,log53<log54<1,b=(log53)2<log53<a,c=log45>1,故b<a<c.9【解析】选 B.无论a>1还是0<a<1,f(x)在[0,1]上都是单调函数,所以a=(a0+log a1)+(a+log a2),所以a=1+a+log a2,所以log a2=-1,所以a=.10【解析】选C.因为log a=log a,所以log a>0,所以0<a<1.因为|log b a|=-log b a,所以log b a<0,b>1.11【解析】因为1≤x≤27,所以log31≤log3x≤log327=3.所以值域为[0,3].答案:[0,3]12【解析】当a=b=1或a=,b=或a=2,b=3时,都有lo a=lo b.故②③⑤均可能成立.答案:②③⑤13【解析】①当a>1时,log a<0,故满足log a<1;②当0<a<1时,log a>0,所以log a<log a a,所以0<a<,综上①②,a∈∪(1,+∞).答案:∪(1,+∞)14【解析】因为<=x-1,且x>0.①当0<x<1时,由原不等式可得,lo x>-1,所以x<2,所以0<x<1;②当x>1时,由原不等式可得,lo x<-1,x>2,综上可得,不等式的解集为{x|0<x<1或x>2}.答案:(0,1)∪(2,+∞)15【解析】因为t=-x2+4x的递增区间为(-∞,2].但当x≤0时,t≤0.故只能取(0,2],即为f(x)的递减区间.答案:(0,2]16【解析】(1)因为log3π>log31=0,log20.8<log21=0,所以log3π>log20.8.(2)因为1.10.9>1.10=1,log1.10.9<log1.11=0,0=log0.71<log0.70.8<log0.70.7=1,所以1.10.9>log0.70.8>log1.10.9.(3)因为0<log35<log36<log37,所以log53>log63>log73.17【解析】(1)所以所以≤x≤4,所以集合A=.(2)设t=log2x,因为x∈,所以t∈[-1,2],所以y=t2-2t-1,t∈[-1,2].因为y=t2-2t-1的对称轴为t=1∈[-1,2],所以当t=1时,y有最小值-2.所以当t=-1时,y有最大值2.所以当x=2时,g(x)的最小值为-2.当x=时,g(x)的最大值为2.18【解析】(1)因为2+x2>0对任意x∈R都成立,所以函数f=log2(2+x2)的定义域是R.因为f(-x)=log2[2+(-x)2]=log2(2+x2)=f(x),所以函数f(x)是偶函数.(2)由x∈R得2+x2≥2,所以log2(2+x2)≥log22=1,即函数f=log2(2+x2)的值域为[1,+∞).19【解析】(1)要使函数有意义,则有解之得-3<x<1,所以函数的定义域为(-3,1).(2)函数可化为:f(x)=log a[(1-x)(x+3)]=log a(-x2-2x+3)=log a[-(x+1)2+4],因为-3<x<1,所以0<-(x+1)2+4≤4.因为0<a<1,所以log a[-(x+1)2+4]≥log a4,即f(x)min=log a4,由log a4=-4得a-4=4,所以a==.3【解析】选C.设y=2+t,t=log2x(x≥1),因为t=log2x在[1,+∞)上是单调增函数,所以t≥log21=0.所以y=2+log2x(x≥1)的值域为[2,+∞).4【解析】选A.因为0<x≤8,所以lo x≥-3,故选A.5【解析】选D.原不等式等价于解得<x<3,所以原不等式的解集为.。
高中数学必修一练习题(4)函数(含详细答案)
• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。
高中数学必修1函数单调性和奇偶性专项练习(含答案)
高中数学必修1函数单调性和奇偶性专项练习(含答案)高中数学必修1 第二章函数单调性和奇偶性专项练一、函数单调性相关练题1、(1)函数f(x)=x-2,x∈{1,2,4}的最大值为3.在区间[1,5]上的最大值为9,最小值为-1.2、利用单调性的定义证明函数f(x)=(2/x)在(-∞,0)上是减函数。
证明:对于x1<x2.由于x1和x2都小于0,所以有x1<x2<0,因此有f(x2)-f(x1)=2/x1-2/x2=2(x2-x1)/x1x2<0.因此,f(x)在(-∞,0)上是减函数.3、函数f(x)=|x|+1的图像是一条V型曲线,单调区间为(-∞,0]和[0,∞).4、函数y=-x+2的图像是一条斜率为-1的直线,单调区间为(-∞,+∞).5、已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,比较大小:(1)f(6)与f(4);(2)f(2)与f(15).1) 因为f(x)是开口向下的抛物线,所以对于x>3,f(x)是减函数,对于x<3,f(x)是增函数。
因此,f(6)<f(4).2) 因为f(x)是开口向下的抛物线,所以对于x3,f(x)是增函数。
因此,f(2)>f(15).6、已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)<f(3a-2),求实数a的取值范围.因为f(x)在(-1,1)上是减函数,所以对于0f(3a-2)。
因此,实数a的取值范围为0<a<1.7、求下列函数的增区间与减区间:1) y=|x^2+2x-3|的图像是一条开口向上的抛物线,单调区间为(-∞,-3]和[1,+∞).2) y=1-|x-1|的图像是一条V型曲线,单调区间为(-∞,1]和[1,+∞).3) y=-x^2-2x+3的图像是一条开口向下的抛物线,单调区间为(-∞,-1]和[1,+∞).4) y=1/(x^2-x-20)的图像是一条双曲线,单调区间为(-∞,-4]和[-1,1]和[5,+∞).8、函数f(x)=ax^2-(3a-1)x+a^2在[1,+∞)上是增函数,求实数a的取值范围.因为f(x)在[1,+∞)上是增函数,所以对于x>1,有f(x)>f(1)。
高中数学必修一函数练习题及答案
高中数学必修一函数试题一、选择题: 1、若()f x =(3)f = ( )A 、2B 、4 C、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个B 、2个C 、3个D 、4个 3、下列各组函数是同一函数的是( )①()f x =与()g x =;②()f x x =与2()g x =;③0()f x x =与01()g x x =;④2()21f x x x =--与2()21g t t t =--。
A 、①②B 、①③C 、③④D 、①④4、二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5、函数y =( )A 、[]0,2B 、[]0,4C 、(],4-∞D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )A 、(1)B 、(1)、(3)、(4)C 、(1)、(2)、(3)D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -≤ D 、()1()f x f x =-- 8、如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )(1)(2)(3)(4)A 、12a >B 、12a <C 、12a ≥D 、12a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
高中数学必修一练习题函数含详细答案
✍✍✍高中数学必修一练习题(三)函数班号姓名✍✍奇偶性1.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的是() A.f(x)=x B.f(x)=|x| C.f(x)=-x2D.f(x)=1 x2.函数f(x)=x2+x的奇偶性为()A.奇函数B.偶函数C.既是奇函数又是偶函数D.非奇非偶函数3.已知f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为() A.5 B.10 C.8 D.不确定4.(2011·潍坊高一检测)已知函数f(x)在[-5,5]上是偶函数,f(x)在[0,5]上是单调函数,且f(-3)<f(-1),则下列不等式一定成立的是() A.f(-1)<f(3) B.f(2)<f(3) C.f(-3)<f(5)D.f(0)>f(1)5.函数y=ax2+bx+c为偶函数的条件是________.6.函数f(x)=x3+ax,若f(1)=3,则f(-1)的值为________.7.已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.8.设函数f(x)在R上是偶函数,在区间(-∞,0)上递增,且f(2a2+a+1)<f(2a2-2a+3),求a的取值范围.✍✍函数的最大(小)值1.函数y=1x2在区间[12,2]上的最大值是()A. 14B.-1 C.4 D.-42.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9B .9(1-a )C .9-aD .9-a 23.函数f (x )=⎩⎨⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1),则f (x )的最大值、最小值分别为( )A .10,6B .10,8C .8,6D .以上都不对4.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元D .120.25万元5.若一次函数y =f (x )在区间[-1,2]上的最小值为1,最大值为3,则y =f (x )的解析式为_____.6.(2011·合肥高一检测)函数y =-x 2-4x +1在区间[a ,b ](b >a >-2)上的最大值为4,最小值为-4,则a =__________,b =________.7.画出函数f (x )=⎩⎨⎧-2x ,x ∈(-∞,0)x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数最小值.8.已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数.✍✍指数与指数幂的运算1.下列等式一定成立的是( ) A .a 13·a 32=a B .a12-·a 12=0 C .(a 3)2=a 9D .a 12÷a 13=a 162.4a -2+(a -4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43.(112)0-(1-0.5-2)÷(278)23 的值为( )A .-13B. 13C. 43D. 734.设a 12-a12-=m ,则a 2+1a=( )A .m 2-2B .2-m 2C .m 2+2D .m 25.计算:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=________.6.若102x =25,则10-x 等于________.7.根据条件进行计算:已知x =12,y =13,求x +y x -y -x -y x +y 的值.8.计算或化简下列各式: (1)[(0.02723)-1.5]13+[810.25-(-32)0.6-0.02×(110)-2]12;(2)(a 23·b -1)12-·a12-·b136a ·b 5.幂函数1.幂函数y =x n 的图象一定经过(0,0),(1,1),(-1,1),(-1,-1)中的( ) A .一点B .两点C .三点D .四点2.下列幂函数中过点(0,0),(1,1)的偶函数是( ) A .y =x 12B .y =x4C .y =x -2D .y =x 133.如图,函数y =x 23的图象是( ) 4.幂函数f (x )=x α满足x >1时f (x )>1,则α满足的条件是( )A .α>1B .0<α<1C .α>0D .α>0且α≠15.函数y=(2m-1)x2m是一个幂函数,则m的值是________.6.下列六个函数①y=x 53,②y=x34,③y=x-13,④y=x23,⑤y=x-2,⑥y=x2中,定义域为R的函数有________(填序号).7.比较下列各组数的大小:(1)352-和3.152-;(2)-878-和-(19)78;(3)(-23)23-和(-π6)23-.8.已知幂函数y=x3m-9(m∈N*)的图象关于y轴对称,且在(0,+∞)上函数值随x的增大而减小,求该函数的解析式.参考答案函数的奇偶性1.选C f(x)=|x|及f(x)=-x2为偶函数,而f(x)=|x|在(0,+∞)上单调递增,故选C.2.选D函数的定义域为[0,+∞),不关于原点对称,∴f(x)为非奇非偶函数.3.选B f(4)+f(-4)=2f(4)=10.4.选D函数f(x)在[-5,5]上是偶函数,因此f(x)=f(-x),于是f(-3)=f(3),f(-1)=f(1),则f(3)<f(1).又f(x)在[0,5]上是单调函数,从而函数f(x)在[0,5]上是减函数,观察四个选项,并注意到f(x)=f(-x),易得只有D正确.5.解析:根据偶函数的性质,得ax2+bx+c=a·(-x)2+b(-x)+c,∴b =0.答案:b=06.解析:∵f(-x)=-f(x),∴f(x)为奇函数,∴f(-1)=-f(1)=-3. 答案:-37.解:∵f(x)是定义在(-1,1)上的奇函数,∴f(0)=0,即b1+02=0,∴b =0, 又f (12)=12a 1+14=25,∴a =1,∴f (x )=x 1+x 2. 8.解:由f(x)在R 上是偶函数,在区间(-∞,0)上递增,可知f(x)在(0,+∞)上递减.∵2a 2+a +1=2(a +14)2+78>0,2a 2-2a +3=2(a -12)2+52>0,且f (2a 2+a +1)<f (2a 2-2a +3),∴2a 2+a +1>2a 2-2a +3,即3a -2>0,解得a >23.函数的最大(小)值1.C2.选A f(x)=-ax2+9开口向下,在[0,3]上单调递减,所以在[0,3]上最大值为9.3.选A f(x)在[-1,2]上单调递增,∴最大值为f(2)=10,最小值为f(-1)=6.4.选C 设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.5.解析:设f(x)=ax +b ,易知a≠0. 当a>0时,f(x)单调递增,则有⎩⎨⎧f (2)=3f (-1)=1,∴⎩⎨⎧2a +b =3-a +b =1,即⎩⎪⎨⎪⎧a =23b =53,∴f (x )=23x +53;当a <0时,f (x )单调递减,则有⎩⎨⎧f (2)=1,f (-1)=3,∴⎩⎨⎧2a +b =1-a +b =3,即⎩⎪⎨⎪⎧a =-23b =73, ∴f (x )=-23x +73. 综上,y =f (x )的解析式为f (x )=23x +53或f (x )=-23x+73. 答案:f (x )=23x +53或f (x )=-23x +736.解析:∵y =-(x +2)2+5,∴函数图象对称轴是x =-2. 故在[-2,+∞)上是减函数.又∵b >a >-2,∴y =-x 2-4x +1在[a ,b ]上单调递减.∴f (a )=4,f (b )=-4.由f (a )=4,得-a 2-4a +1=4,∴a 2+4a +3=0,即(a +1)(a +3)=0.∴a =-1或a =-3(舍去),∴a =-1. 由f (b )=-4,得-b 2-4b +1=-4,b =1或b =-5(舍去),∴b =1. 答案:-1 1 7.解:f(x)的图象如图所示,f (x )的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f (0)=-1.8.解:(1)当a =-1时,f(x)=x2-2x +2=(x -1)2+1,x ∈[-5,5],当x =1时,有f (x )min =1,当x =-5时,有f (x )max =37.(2)∵函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a ,f (x )在区间[-5,5]上是单调函数,∴-a ≤-5或-a ≥5,即a ≥5或a ≤-5.✍✍指数与指数幂的运算1.选D a 13·a 32=a 1332+=a 116;a 12-·a 12=a0=1;(a3)2=a6;a 12÷a 13=a1123-=a 16,故D 正确.2.选B 要使原式有意义,应满足⎩⎨⎧a -2≥0a -4≠0,得a≥2且a≠4.3.选D 原式=1-(1-4)÷3(278)2=1+3×49=73. 4.选C 将a 12-a 12-=m 平方得(a 12-a 12-)2=m2,即a -2+a -1=m 2,所以a +a -1=m 2+2,即a +1a =m 2+2?a 2+1a=m 2+2.5.解析:(π)0+2-2×⎝ ⎛⎭⎪⎫21412=1+122×⎝ ⎛⎭⎪⎫9412=1+14×32=118. 答案:1186.解析:由102x =25得:(10x)2=25,∴10x 是25的平方根.由于10x>0,∴10x=5,∴10-x=110x =15. 答案:157.解:∵x +y x -y -x -y x +y=(x +y )2x -y -(x -y )2x -y =4xyx -y ,把x =12,y =13代入得,原式=412×1312-13=4 6.8.解:(1)原式=(310)3×23×(-32)×13+(8114+3235-2100×100)12=103+912=193. (2)原式=a 13-·b 12·a12-·b13a 16·b56=a111326---·b115236+-=1a. 幂函数1.选A 当n≥0时,一定过(1,1)点,当n<0时,也一定过(1,1)点. 2.选B y =x 12不是偶函数;y =x -2不过(0,0);y =x 13是奇函数. 3.选D 幂函数y =x 23是偶函数,图象关于y 轴对称.4.选C 因为x>1时x α>1=1α,所以y =x α单调递增,故α>0. 5.解析:令2m -1=1得m =1,该函数为y =x. 答案:16.解析:函数①④⑥的定义域为R ,函数②定义域为[0,+∞),③⑤的定义域为{x|x≠0}. 答案:①④⑥ 7.解:(1)函数y =x52-在(0,+∞)上为减函数,因为3<3.1,所以352->3.152-.(2)-878-=-(18)78,函数y =x 78在(0,+∞)上为增函数,因为18>19,则(18)78>(19)78, 从而-8-78<-(19)78.(3)(-23)23-=(23)23-,(-π6)23-=(π6)23-,函数y =x 23-在(0,+∞)上为减函数,因为23>π6,所以(23)23-<(π6)23-,即(-23)23-<(-π6)23-.8.解:∵函数在(0,+∞)上递减,∴3m -9<0,解得m<3.又m ∈N *,∴m =1,2. 又函数图象关于y 轴对称,∴3m -9为偶数,故m =1. 即幂函数y =x 3m -9的解析式为y =x -6.。
(典型题)高中数学必修一第二单元《函数》测试题(包含答案解析)
一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.函数25,1(),1x ax x f x a x x⎧---≤⎪=⎨>⎪⎩满足对任意12x x ≠都有()()12120f x f x x x ->-,则a 的取值范围是( ) A .30a -≤<B .32a --≤≤C .2a ≤-D .0a <3.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -4.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞5.函数()()1ln 24f x x x =-+-的定义域是( ) A .[)2,4B .()2,+∞C .()()2,44,⋃+∞D .[)()2,44,+∞6.对于每个实数x ,设()f x 取24y x =-+,41y x =+,2y x =+三个函数值中的最小值,则()f x ( ) A .无最大值,无最小值 B .有最大值83,最小值1 C .有最大值3,无最小值D .有最大值83,无最小值 7.已知函数2()(3)1f x mx m x =--+,()g x mx =,若对于任意实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( ) A .(1,9)B .(3,+)∞C .(,9)-∞D .(0,9)8.已知2()2af x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为( ) A .0B .12C .1D .29.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .410.如果()()211f x mx m x =+-+在区间(]1-∞,上为减函数,则m 的取值范围( ) A .103⎛⎤ ⎥⎝⎦, B .103⎡⎤⎢⎥⎣⎦,C .103⎡⎫⎪⎢⎣⎭,D .103⎛⎫ ⎪⎝⎭,11.函数sin sin 122xxy =+的部分图象大致是( )A .B .C .D .12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.函数()()2325f x kx k x =+--在[)1+∞,上单调递增,则k 的取值范围是________. 14.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.15.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________.16.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.17.已知函数()f x 的定义域为(1,1)-,则函数()()(1)2xg x f f x =+-的定义域是________.18.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).19.已知函数()f x 是R 上的奇函数,()()2g x af x bx =++,若(2)16g =,则(2)g -=______.20.已知函数2262()2x ax x f x a x x⎧-+⎪=⎨>⎪⎩,≤,,是R 上的减函数,则a 的取值范围为______.三、解答题21.定义:满足()f x x =的实数x 为函数()f x 的“不动点”,已知二次函数()()20f x ax bx a =+≠,()1f x +为偶函数,且()f x 有且仅有一个“不动点”.(1)求()f x 的解析式;(2)若函数()()2g x f x kx =+在()0,4上单调递增,求实数k 的取值范围;(3)是否存在区间[](),m n m n <,使得()f x 在区间[],m n 上的值域为[]3,3m n ?若存在,请求出m ,n 的值;若不存在,请说明理由.22.已知函数()f x 为二次函数,满足()()139f f -==,且()03f =.(1)求函数()f x 的解析式;(2)设()()g x f x mx =-在[]1,3上是单调函数,求实数m 的取值范围. 23.定义在()0,∞+的函数()f x ,满足()()()f mn f m f n =+,且当1x >时,()0f x >.(1)求证:()()m f f m f n n ⎛⎫=- ⎪⎝⎭(2)讨论函数()f x 的单调性,并说明理由; (3)若()21f =,解不等式()()333f x f x +->. 24.已知函数()x af x x+=(a 为常数),其中()0f x <的解集为()4,0-. (1)求实数a 的值;(2)设()()g x x f x =+,当()0x x >为何值时,()g x 取得最小值,并求出其最小值. 25.已知二次函数()2()f x ax bx a b R =+∈、满足:①()()11f x f x +=-;②对一切x ∈R ,都有()f x x ≤.(1)求()f x ;(2)是否存在实数(),m n m n <使得()f x 的定义域为[],m n 、值域为[]3,3m n ,如果存在,求出m ,n 的值;如果不存在,说明理由. 26.已知11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭. (1)求()f x 的表达式;(2)判断()f x 在其定义域内的单调性,并证明.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩;④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.B解析:B 【分析】由题得函数在定义域上单增,列出不等式组得解. 【详解】因为对任意12x x ≠都有()()12120f x f x x x ->-,所以函数在定义域R 上单增,01215a a a a <⎧⎪⎪-≥⎨⎪≥---⎪⎩ 解得32a --≤≤ 故选:B 【点睛】分段函数在R 上单增,关键抓住函数在端点处右侧的函数值大于等于左侧的函数值是解题关键.3.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.4.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题5.C解析:C 【分析】先根据函数的解析式建立不等式组,再解不等式组求定义域即可. 【详解】解:因为函数的解析式:()()1ln 24f x x x =-+- 所以2040x x ->⎧⎨-≠⎩,解得24x x >⎧⎨≠⎩故函数的定义域为:()(2,4)4,+∞故选:C 【点睛】数学常见基本初等函数定义域是解题关键.6.D解析:D 【分析】作出函数()f x 的图象,结合图象可得出结论. 【详解】由已知可得(){}min 24,41,2f x x x x =-+++,作出函数()f x 的图象如下图所示:函数()f x 的图象如上图中的实线部分,联立224y x y x =+⎧⎨=-+⎩,解得2383x y ⎧=⎪⎪⎨⎪=⎪⎩,由图象可知,函数()f x 有最大值83,无最小值. 故选:D. 【点睛】关键点点睛:本题考查函数最值的求解,解题的关键就是结合函数()f x 的定义,进而作出函数()f x 的图象,利用图象得出结论.7.D解析:D 【分析】根据所给条件,结合二次函数的图像与性质,分类讨论,即可得解. 【详解】当0m <时,二次函数2()(3)1f x mx m x =--+的图像开口向下,()g x mx =单调递减,故存在x 使得()f x 与()g x 同时为负,不符题意; 当0m =时,()31f x x =-+,()0g x =显然不成立; 当0m >时,2109m m ∆=-+, 若∆<0,即19m <<时,显然成立,0∆=,1m =或9m =,则1m =时成立,9m =时,13x =-时不成立,若0∆>,即01m <<或9m >,由(0)1f =可得:若要()f x 与()g x 的值至少有一个为正数,如图,则必须有302mm->,解得01m <<, 综上可得:09m <<, 故答案为:D. 【点睛】本题考查了二次函数和一次函数的图像与性质,考查了分类讨论思想和计算能力,属于中档题.解决此类问题的关键主要是讨论,涉及二次函数的讨论有: (1)如果平方项有参数,则先讨论; (2)再讨论根的判别式; (3)最后讨论根的分布.8.B解析:B 【分析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求.【详解】解:因为2()2af x x ax =-+的开口向上,对称轴2a x =, ①122a即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02ag a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩,故当1a =时,()g a 取得最小值12. 故选:B . 【点睛】本题主要考查了二次函数闭区间上最值的求解,体现了分类讨论思想的应用,属于中档题.9.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.10.B解析:B 【分析】当m =0时,()f x =1x -,符合题意.当0m ≠时,由题意可得0112m m m>⎧⎪-⎨≥⎪⎩,求得m 的范围.综合可得m 的取值范围. 【详解】当0m =时,()1f x x =-+,满足在区间(]1-∞,上为减函数; 当0m ≠时,由于()()211f x mx m x =+-+的对称轴为12mx m-=,且函数在区间(]1-∞,上为减函数, 则0112m m m>⎧⎪-⎨≥⎪⎩,解得103m <≤.综上可得,103m ≤≤. 故选:B 【点睛】要研究二次型函数单调区间有关问题,首先要注意二次项系数是否为零.当二次项系数不为零时,利用二次函数的对称轴来研究单调区间.11.D解析:D 【解析】因为()sin()sin sin()sin 11()2222x x x xf x y f x ---=+==+=,所以函数sin sin 122xxy =+是定义在R 上的偶函数,排除A 、B 项;又sin2sin2115()222222f πππ=+=+=,排除C ,综上,函数sin sin 122xxy =+大致的图象应为D 项,故选D.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】根据函数的解析式分和两种情况讨论利用一次二次函数的性质即可求解【详解】由已知函数在上单调递增可得当时函数在上单调递减不满足题意;当时则满足解得综上所述实数的取值范围是故答案为:【点睛】本题主解析:25⎡⎫+∞⎪⎢⎣⎭, 【分析】根据函数的解析式,分0k =和0k ≠两种情况讨论,利用一次、二次函数的性质,即可求解. 【详解】由已知函数()()2325f x kx k x =+--在[)1+∞,上单调递增可得, 当0k =时,函数()25f x x =--在[)1+∞,上单调递减,不满足题意; 当0k ≠时,则满足03212k k k >⎧⎪-⎨-≤⎪⎩,解得25k ≥,综上所述,实数k 的取值范围是25⎡⎫+∞⎪⎢⎣⎭,. 故答案为:25⎡⎫+∞⎪⎢⎣⎭,. 【点睛】本题主要考查了函数单调性的应用,其中解答中熟记一次函数、二次函数的图象与性质是解答的关键,着重考查了分类讨论思想,以及推理与计算能力,属于基础题.14.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f(x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.15.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.16.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+, 所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.17.【分析】根据题意得到函数满足即可求解【详解】由题意函数的定义域为则函数满足即解得即函数的定义域为故答案为:【点睛】本题主要考查了抽象函数的定义域的求解其中解答中熟记抽象函数的定义域的求解方法是解答的 解析:()0,2【分析】根据题意,得到函数()g x 满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即可求解. 【详解】由题意,函数()f x 的定义域为(1,1)-,则函数()()(1)2x g x f f x =+-满足112111x x ⎧-<<⎪⎨⎪-<-<⎩,即2202x x -<<⎧⎨<<⎩,解得02x <<, 即函数()g x 的定义域为()0,2. 故答案为:()0,2. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考查推理与运算能力,属于基础题.18.【分析】先根据是幂函数求出的值再根据且有得出为增函数进而得到函数解析式再根据函数的奇偶性即可求解【详解】解:是幂函数解得:或当时当时又对且时都有在上单调递增易知的定义域为且为上的奇函数且在上单调递增 解析:<【分析】先根据()()21353m f x m m x+=++是幂函数,求出m 的值,再根据12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,得出()f x 为增函数,进而得到函数解析式,再根据函数的奇偶性即可求解. 【详解】 解:()()21353m f x m m x +=++是幂函数,23531m m +∴+=,解得:23m =-或1m =-, 当23m =-时,()13f x x =,当1m =-时,()01f x x ==,又对12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-,()f x ∴在(0,)+∞上单调递增, ()13f x x∴=,易知()f x 的定义域为R ,且()()()1133f x x x f x -=-=-=-,()f x ∴为R 上的奇函数,且在R 上单调递增,0a b <+,a b ∴<-,()()()f a f b f b ∴<-=-,()()0f a f b ∴+<.故答案为:<. 【点睛】关键点点睛:本题解题的关键是利用幂函数以及单调性得出函数的解析式.19.【分析】分析的奇偶性根据的结果求解出的值【详解】令因为为上的奇函数且也为上的奇函数所以为上的奇函数所以所以且所以故答案为:【点睛】结论点睛:已知(1)当为奇数时且此时为奇函数;(2)当为偶数时为偶函数 解析:12-【分析】分析()()2h x g x =-的奇偶性,根据()()22h h +-的结果求解出()2g -的值. 【详解】令()()()2h x g x af x bx =-=+,因为()f x 为R 上的奇函数,且y bx =也为R 上的奇函数,所以()()2h x g x =-为R 上的奇函数,所以()()220h h +-=, 所以()()22220g g -+--=,且()216g =,所以()212g -=-, 故答案为:12-. 【点睛】结论点睛:已知()(),0nf x x a n Z n =+∈≠,(1)当n 为奇数时,且0a =,此时()f x 为奇函数; (2)当n 为偶数时,()f x 为偶函数.20.2【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求【详解】解;是上的减函数解可得故答案为:【点睛】本题主要考查了分段函数的单调性的应用二次函数及反比例函数性质的应用是求解问题的关键解析:[2,209] 【分析】由已知利用分段函数的性质及二次函数与反比例函数的单调性可求. 【详解】 解;226,2(),2x ax x f x a x x⎧-+⎪=⎨>⎪⎩是R 上的减函数,∴204462a a a a ⎧⎪⎪>⎨⎪⎪-+⎩, 解可得,2029a. 故答案为:202,9⎡⎤⎢⎥⎣⎦【点睛】本题主要考查了分段函数的单调性的应用,二次函数及反比例函数性质的应用是求解问题的关键,属于中档题.三、解答题21.(1)21()2f x x x =-+(2)3,8⎡⎫+∞⎪⎢⎣⎭(3)4,0m n =-=,证明见解析 【分析】(1)根据二次函数的对称性求出2b a =-,再将()f x 有且仅有一个“不动点转化为方程()f x x =有且仅有一个解,从而得出()f x 的解析式;(2)当102k -=时,由一次含函数的性质得出12k =满足题意,当102k -≠时,讨论二次函数()g x 的开口方向,根据单调性确定112x k=-与区间()0,4端点的大小关系得出实数k 的取值范围; (3)由2111()(1)222f x x =--+得出16m n <,结合二次函数的单调性确定()f x 在区间[],m n 上是增函数,从而得出()3()3f m m f n n=⎧⎨=⎩,再解方程2132x x x -+=得出m ,n 的值.【详解】(1)22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++为偶函数20,22a bb a a+∴=∴=-- 2()2f x ax ax ∴=-f x 有且仅有一个“不动点”∴方程()f x x =有且仅有一个解,即[](21)0ax x a -+=有且仅有一个解211210,,()22a a f x x x ∴+==-=-+(2)221()()2g x f x kx k x x ⎛⎫=+=-+ ⎪⎝⎭,其对称轴为112x k=- 函数()()2g x f x kx =+在()0,4上单调递增∴当12k <时,1412k -,解得3182k < 当12k =时,()g x x =符合题意 当12k >时,1012k<-恒成立综上,3,8k ⎡⎫∈+∞⎪⎢⎣⎭(3)221111()(1)2222f x x x x =-+=--+ f x 在区间[],m n 上的值域为[]3,3m n ,113,26nn ∴,故16m n < ()f x ∴在区间[],m n 上是增函数()3()3f m m f n n =⎧∴⎨=⎩,即22132132m m m n n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩∴,m n 是方程2132x x x -+=的两根,解得0x =或4x =-4,0m n ∴=-=【点睛】关键点睛:已知函数21()2g x k x x ⎛⎫=-+ ⎪⎝⎭在具体区间上的单调性求参数k 的范围时,关键是讨论二次项系数的值,结合二次函数的单调性确定参数k 的范围. 22.(1)()2243f x x x =-+;(2)8m ≥或0m ≤.【分析】(1)设函数()2f x ax bx c =++(0a ≠),代入已知条件解得,,a b c ,得解析式;(2)由对称轴不在区间内可得. 【详解】(1)设函数()2f x ax bx c =++(0a ≠)∵()()139f f -==,且()03f = ∴99313a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得243a b c =⎧⎪=-⎨⎪=⎩∴()2243f x x x =-+.(2)由(1)()()2243g x x m x =-++,其对称轴为4144m mx +==+ ∵()()g x f x mx =-在[]1,3上单调函数,∴134m +≥,或114m+≤,解得:8m ≥或0m ≤. 【点睛】方法点睛:本题考查求二次函数的解析式,二次函数的单调性.二次函数解析式有三种形式:(1)一般式:2()f x ax bx c =++;(2)顶点式:2()()f x a x h m =-+;(3)交点式(两根式):12()()()f x a x x x x =--. 23.(1)见解析;(2)见解析;(3)3023x x ⎧⎫<<⎨⎬⎩⎭【分析】(1)由()m f m f n n ⎛⎫=⋅⎪⎝⎭,结合题意即可得结果; (2)利用函数单调性的定义证明即可;(3)将原不等式等价转化为()()324f x f x +>,结合定义域和单调性即可得结果. 【详解】解:(1)由题可得()()m m f m f n f f n n n ⎛⎫⎛⎫=⋅=+ ⎪ ⎪⎝⎭⎝⎭, 即()()m f f m f n n ⎛⎫=- ⎪⎝⎭;(2)任取1x ,()20,x ∈+∞,且12x x <,则211x x >, 由(1)得:()()22110x f x f x f x ⎛⎫-=>⎪⎝⎭,即()()21f x f x >, ()f x ∴在()0,∞+上是增函数;(3)()21f =,()()()2224f f f ∴=+=,()()()3428f f f =+=,()()333f x f x +->, ()()()338f x f x f +>+,()()324f x f x +>,又()f x 在()0,∞+上为增函数,30,240,324,x x x x +>⎧⎪∴>⎨⎪+>⎩, 解得:0323x <<, 故不等式()()333f x f x +->的解集为3023x x ⎧⎫<<⎨⎬⎩⎭. 【点睛】关键点点睛:本题解题的关键是利用()m f m f n n ⎛⎫=⋅ ⎪⎝⎭,再结合题意,即可判断函数单调性和解不等式.24.(1)4a =;(2)当2x =时,()g x 取得最小值为5. 【分析】(1)利用不等式的解集,推出对应方程的根,然后求解a . (2)化简函数的解析式,利用基本不等式转化求解函数的最值即可. 【详解】(1)因为()00x af x x+<⇔<的解集为()4,0-, 故()0x af x x+==一个根为-4, 404a-+=- 得4a =(2)()()441x g x x f x x x x x+=+=+=++因为0x >,所以4115x x ++≥=, 当且仅当4x x=,即2x =时取等号; 所以当2x =时,()g x 取得最小值为5. 【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.25.(1)21()2f x x x =-+;(2)存在,40m n =-⎧⎨=⎩.【分析】(1)由(1)(1)f x f x +=-,得到20b a +=,再由()f x x ≤恒成立,列出方程组,求得,a b 的值,得到函数的解析式;(2)假设存在()m n m n <、,根据题意得到[],m n 必在对称轴的左侧,且()f x 在[],m n 单调递增,列出方程组,即可求解. 【详解】(1)因为22(1)(1)(1)(2)f x a x b x ax a b x a b +=+++=++++,22(1)(1)(1)(2)f x a x b x ax a b x a b -=-+-=-+++,由()()11f x f x +=-可知,20a b +=,由于对一切x ∈R ,都有()f x x ≤即2()(1)0f x x ax b x -=+-≤,于是由二次函数的性质可得()()21400*a b a <⎧⎪⎨∆=--⨯≤⎪⎩由()*知()210b -≤,而()210b -≥,所以()210b -=即1b =,将1b =代入20a b +=得12a =-, 所以21()2f x x x =-+; (2)因为221111()(1)2222f x x x x =-+=--+≤, 若存在满足条件的实数(),m n m n <则必有132n ≤,解得16n ≤, 又因为()f x 在(],1-∞上单调递增,所以()f x 在[],m n 上单调递增.所以()()33fm m fn n ⎧=⎪⎨=⎪⎩,22132132m m mn n n ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得40m n =-⎧⎨=⎩或04m n =⎧⎨=-⎩,因为m n <,所以40m n =-⎧⎨=⎩,故存在40m n =-⎧⎨=⎩满足条件.【点睛】关键点点睛:本题主要考查了二次函数的图象与性质的应用,其中解答中熟记二次函数的图象与性质,以及根据函数的值域判断出函数在[,]m n 上的单调性是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 26.(1)()1(2)1f x x x =≥-;(2)()f x 在[)2,+∞上递减,证明见解析. 【分析】 (1)令1(2)t t x =≥,则1x t=,求得()1(2)1f t t t =≥-,从而可得答案. (2)()f x 在[)2,+∞上递减,证任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,可证明()()120f x f x -<,从而可得结论.【详解】 (1)令1(2)t t x =≥,则1x t= 因为11012x f x x x ⎛⎫⎛⎫=<≤⎪ ⎪-⎝⎭⎝⎭所以()111(2)11t tf t t t ==≥--, 所以()1(2)1f x x x =≥-; (2)()f x 在[)2,+∞上递减,证明如下:任取122x x >≥,则210x x -<,1110x ->>,2110x -≥>,因为()()12121111f x f x x x -=--- ()()()()21121111x x x x ---=-- ()()2112011x x x x -=<--所以()()12f x f x <,则()f x 在[)2,+∞上递减.【点睛】方法点睛:利用定义法判断函数的单调性的一般步骤是:(1)在已知区间上任取21x x >;(2)作差()()21f x f x -;(3)判断()()21f x f x -的符号(往往先分解因式,再判断各因式的符号),()()210f x f x -> 可得()f x 在已知区间上是增函数,()()210f x f x -< 可得()f x 在已知区间上是减函数.。
高中数学必修一练习题及答案详解
一、选择题1.函数 f ( x ) =x|x+a|+b 是奇函数的充要条件是( )A . ab=0B . a+b=0C . a=bD . a 2+b 2 =01 x 1(x 0)12.设函数 f (x)2若f ( f (a))则实数 a ( )1,( x 0)2xA.4B.-2C.4或1 D.4或 -223.已知集合 A { y | yln( x 2 1), x R} ,则 C R A()A.B.(,0]C.( ,0)D.[0, )4.已知集合 M{ x |x1 1} ,集合 N { x | 2x 3 0} ,则 (C R M )N ( )x 1A . (3,1) B . (3,1] C .[3,1) D . [3,1]22225.设 a log 2.8 3.1,b log e, c log e ,则()A . a c bB . c a bC . b a cD . b c a6.函数 f ( x)1 x log2 x 的零点所在区间是()A .(1,1)B. (1 ,1)C. (1,2) D. (2,3)4 22A( 1 , 1) ,则它在 A 点处的切线方程为7.若幂函数f (x) 的图象经过点4 2( A ) 4 x 4y 1 0( B ) 4x 4 y 1 0( C ) 2x y 0( D ) 2x y 08. y= ( 1) x - 3x 在区间 [-1,1] 上的最大值等于()51416A.3B.C.5D.339.已知幂函数 f ( x)x m 的图象经过点( 4, 2),则 f (16)( )A. 22B.4C.4 2D.810.设 f ( x) 是定义在 R 上的奇函数,当 x0时 f( x)2x 2x ,则 f (1) = ()A.—3B. — 1C.1D.311.已知125 ()log 2 5 a,log 2 7b, 则 log 2 7A . a3b B . 3a b C . a 3D .3abb12.设集合 M22 x3 0,Nx 2 x2 ,则 MC R N 等于(x x)A .1,1B. ( 1,0) C . 1,3 D. (0,1)13.若 x log 3 4 1 ,则 4x 4 x()A. 1B. 2C. 8D.1033二、填空题14.若 f (x)3x sinx ,则满足不等式 f (2m1)f (3 m)0 的m的取值范围为.115. lg 4 lg 254 2 (4.16.已知函数 f ( x) ( 1) x , x 4log 2 3) 的值为2,则 f (2f ( x 1), x 417.函数 f ( x) sin( x) 的图象为 C , 有如下结论 : ①图象 C5 3 关于直线 x对称 ;②图象C 关于点 (4, 56,0) 对称 ; ③函数 f ( x) 在区间 [ ] 内是增函数。
人教A版高中数学必修一《函数的基本性质》试题
人教A版高中数学必修一《函数的基本性质》试题【夯实基础】一、单选题1.(2022·全国·高一课时练习)函数的单调递增区间是()A. B.C. D.【答案】B【分析】直接由二次函数的单调性求解即可.【详解】由知,函数为开口向上,对称轴为的二次函数,则单调递增区间是.故选:B.2.(2022·全国·高一课时练习)定义在区间上的函数的图象如图所示,则的单调递减区间为()A. B. C. D.【答案】B【分析】根据函数图象直接确定单调递减区间即可.【详解】由题图知:在上的单调递减,在上的单调递增,所以的单调递减区间为.故选:B3.(2022·全国·高一课时练习)已知函数在上是增函数,则实数的取值范围为()A. B. C. D.【答案】D【分析】利用二次函数单调性,列式求解作答.【详解】函数的单调递增区间是,依题意,,所以,即实数的取值范围是.故选:D4.(2022·全国·高一)已知在为单调函数,则a的取值范围为()A. B. C. D.【答案】D【分析】求出的单调性,从而得到.【详解】在上单调递减,在上单调递增,故要想在为单调函数,需满足,故选:D5.(2022·湖北武汉·高一期末)已知二次函数在区间内是单调函数,则实数a的取值范围是()A. B.C. D.【答案】A【分析】结合图像讨论对称轴位置可得.【详解】由题知,当或,即或时,满足题意.故选:A6.(2022·甘肃庆阳·高一期末)若函数在上单调递增,且,则实数的取值范围是()A. B. C. D.【答案】C【分析】由单调性可直接得到,解不等式即可求得结果.【详解】在上单调递增,,,解得:,实数的取值范围为.故选:C.7.(2022·全国·高一课时练习)下列四个函数在是增函数的为()A. B.C. D.【答案】D【分析】根据各个函数的性质逐个判断即可【详解】对A,二次函数开口向上,对称轴为轴,在是减函数,故A不对.对B,为一次函数,,在是减函数,故B不对.对C,,二次函数,开口向下,对称轴为,在是增函数,故C不对.对D,为反比例类型,,在是增函数,故D对.故选:D8.(2021·河南南阳·高一阶段练习)已知函数,对于任意的恒成立,则实数的最小值是()A.0B.1C.2D.3【答案】D【分析】利用换元法将函数的最值转化为二次函数的最值,即可求得实数的最小值.【详解】对于任意的使恒成立,令(),则,即,设,则,故,即实数m的最小值是.故选:.二、多选题9.(2022·全国·高一课时练习)下列函数中,在上单调递增的是()A. B. C. D.【答案】AD【分析】画出各选项的函数图像,利用函数的图象来研究函数的单调性判断即可.【详解】画出函数图象如图所示,由图可得A,D中的函数在上单调递增,B,C中的函数在上不单调.故选:AD.10.(2021·江西·高一期中)如图是函数的图象,则函数在下列区间单调递增的是( )A. B. C. D.【答案】BC【分析】根据单调性的定义即可由图知道f(x)的增区间﹒【详解】图像从左往右上升的区间有:(-6,-4),(-1,2),(5,8),∴f(x)在(-6,-4),(-1,2),(5,8)上单调递增﹒故选:BC﹒三、填空题11.(2022·全国·高一课时练习)写出一个同时具有性质①对任意,都有;②的函数___________.【答案】(答案不唯一)【分析】根据题意可得函数在为减函数,且再写出即可.【详解】因为对任意,都有,所以函数在上减函数.又,故函数可以为.(注:满足题目条件的函数表达式均可.)故答案为:(答案不唯一)12.(2022·浙江丽水·高一开学考试)设函数,其中,.若在上不单调,则实数的一个可能的值为______.【答案】内的任意一个数.【分析】由对勾函数的性质判断出函数的单调区间,假设在上单调,即可求出的取值范围,其补集即为在上不单调时实数的取值范围.【详解】函数的定义域为,由对勾函数的性质可得函数在和上是单调递增,在和上是单调递减,若在上单调,则或,解得或,则在上不单调,实数的范围是,故答案为:内的任意一个数.13.(2022·全国·高一课时练习)函数的单调减区间为__________.【答案】##【分析】优先考虑定义域,在研究复合函数的单调性时,要弄清楚它由什么函数复合而成的,再根据“同增异减”可求解.【详解】函数是由函数和组成的复合函数,,解得或,函数的定义域是或,因为函数在单调递减,在单调递增,而在上单调递增,由复合函数单调性的“同增异减”,可得函数的单调减区间.故答案为:.四、解答题14.(2022·全国·高一)已知,函数.(1)指出在上的单调性(不需说明理由);(2)若在上的值域是,求的值.【答案】(1)在上是增函数(2)2【分析】(1)由于,利用反比例函数的性质,即可得到结果;(2)根据(1)的函数单调性,可知,,解方程即可求出结果.(1)解:因为,所以在上是增函数.(2)解:易知,由(1)可知在上为增函数.,解得,由得,解得.15.(2022·湖南·高一课时练习)设函数的定义域为,如果在上是减函数,在上也是减函数,能不能断定它在上是减函数?如果在上是增函数,在上也是增函数,能不能断定它在上是增函数?【分析】根据反例可判断两个结论的正误.【详解】取,则在上是减函数,在上也是减函数,但,,因此不能断定在上是减函数.若取,则在上是增函数,在上也是增函数,但,,因此不能断定在上是增函数.16.(2022·全国·高一专题练习)已知函数的定义域为.(1)求的定义域;(2)对于(1)中的集合,若,使得成立,求实数的取值范围.【答案】(1)(2)【分析】(1)的定义域可以求出,即的定义域;(2)令,若,使得成立,即可转化为成立,求出即可.(1)∵的定义域为,∴.∴,则.(2)令,,使得成立,即大于在上的最小值.∵,∴在上的最小值为,∴实数的取值范围是.【能力提升】一、单选题1.(2022·全国·高一课时练习)已知函数的定义域为R,满足,且当时,恒成立,设,,(其中),则a,b,c的大小关系为()A. B.C. D.【答案】B【分析】根据函数单调性的定义判断出在上单调递减,再利用把转化为,最后利用的单调性判断即可.【详解】因为,所以,因此,即,所以在上单调递减,又因为,所以,又因为,所以,所以.故选:B.2.(2021·江苏·盐城市大丰区新丰中学高一期中)函数的大致图象是()A. B.C. D.【答案】A【分析】探讨函数的定义域、单调性,再逐一分析各选项判断作答.【详解】函数的定义域为,选项C,D不满足,因,则函数在,上都单调递增,B不满足,则A满足.故选:A【点睛】方法点睛:函数图象的识别途径:(1)由函数的定义域,判断图象的左右位置,由函数的值域,判断图象的上下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性.3.(2022·全国·高一课时练习)设函数的定义域为,满足,且当时,.若对任意,都有,则的取值范围是()A. B. C. D.【答案】B【分析】根据函数关系式可知,由此可确定在上的解析式,并确定每段区间上的最小值;由时,可确定在此区间内的两根,结合函数图象可确定的范围.【详解】由知:,;当时,,则;当时,,,则;当时,,,则;令,解得:或;作出函数的大致图象如图所示.对任意恒成立,,则,即实数的取值范围为.故选:B.二、多选题4.(2021·安徽·高一期中)下列命题正确的是()A.的定义城为,则的定义域为B.函数的值域为C.函数的值域为D.函数的单调增区间为【答案】AB【分析】根据抽象函数的定义域求法,可判断A;利用换元法求得函数值域,可判断B;利用基本不等式可判断C;单调区间之间不能用并集符号,可判断D.【详解】对于A选项,由于函数的定义域为,对于函数,,解得,所以函数的定义域为,A选项正确;对于B选项,令,则,,且时,取得等号,所以函数的值域为,B选项正确;对于C选项,,当且仅当时,即等号取得,但等号取不到,所以C选项错误;对于D选项,,所以函数的单调增区间为和,单调区间之间不能用并集符号,D选项错误,故选:AB.5.(2021·辽宁实验中学高一期中)下列命题,其中正确的命题是()A.函数在上是增函数B.函数在上是减函数C.函数的单调区间是D.已知在上是增函数,若,则有【答案】AD【分析】根据函数单调性的定义和复合函数单调性法则依次讨论各选项即可得答案.【详解】对于A选项,函数的对称轴为,开口向上,所以函数在上单调递增,故A正确;对于B选项,因为当时,,当时,,所以函数在上不是减函数,故B错误;对于C选项,解不等式得,函数的定义域为,故C错误;对于D选项,由得,由于在上是增函数,故,所以,故D正确.故选:AD6.(2022·全国·高一课时练习)已知函数的定义域是,且,当时,,,则下列说法正确的是()A.B.函数在上是减函数C.D.不等式的解集为【答案】ABD【分析】利用赋值法求得,判断A;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用,可求得C中式子的值,判断C;求出,将转化为,即可解不等式组求出其解集,判断D.【详解】对于A,令,得,所以,故A正确;对于B,令,得,所以,任取,且,则,因为,所以,所以,所以在上是减函数,故B正确;对于C,,故C错误;对于D,因为,且,所以,所以,所以等价于,又在上是减函数,且,所以,解得,故D正确,故选:ABD.7.(2022·广东深圳·高一期末)(多选)世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子”美誉的高斯提出了取整函数,表示不超过x的最大整数,例如.已知,,则函数的值可能为()A.0B.1C.2D.3【答案】BCD【分析】利用常数分离法知,根据x的取值范围结合不等式的性质求出的取值范围,进而得到函数的值.【详解】,当时,,,,此时的取值为1;当时,,,,此时的取值为2,3.综上,函数的值可能为.故选:BCD.三、填空题8.(2022·全国·高一专题练习)点、均在抛物线(,a、b为常数)上,若,则t的取值范围为________.【答案】【分析】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,当P、Q 两点关于抛物线对称轴对称时,可求出,根据根据,,即可求出t的取值范围.【详解】根据,可知抛物线开口向下,根据抛物线解析式可知抛物线的对称轴为,则有时,y随x的增大而增大;当P、Q两点关于抛物线对称轴对称时,则有,解得,∵,,又∵时,y随x的增大而增大;∴可知当P、Q在对称轴的左侧是肯定满足要求,P、Q均在对称轴的右侧时肯定不满足要求,当P、Q分别在对称轴x=1的两侧时,随着P、Q向x轴正向移动,P的纵坐标在逐渐增大,Q的纵坐标逐渐减小,当P、Q两点关于抛物线对称轴对称时有,继续正方向移动,则有,∴满足的t的取值范围:,故答案为:.四、解答题9.(2022·全国·高一课时练习)已知函数,判断并证明在区间上的单调性.【答案】单调递增,证明见解析【分析】利用单调性的定义证明,先任取,,且,然后作差,变形,判断符号,即可得结论. 【详解】在区间上单调递增,理由如下:任取,,且,.因为,所以,,,所以所以,所以,即,所以函数在区间上单调递增.10.(2022·全国·高一课时练习)已知函数的定义域为,对任意正实数、都有,且当时,.求证:函数是上的增函数.【分析】任取、,且,可得出,结合已知条件可出、的大小关系,即可证得结论成立.【详解】证明:任取、,且,则.因为,所以,所以,即,所以函数是上的增函数.11.(2022·全国·高一课时练习)画出下列函数的图象,并写出单调区间:(1);(2).【答案】(1)图象见解析;单调递增区间为和,无单调递减区间(2)图象见解析;单调递增区间为,单调递减区间为和【分析】(1)根据函数的解析式可作出其图象,即可得单调区间;(2)化简函数的解析式为,结合二次函数性质可作出其图象,即可得单调区间.(1)画出的图象如图所示,可得其单调递增区间为和,无单调递减区间.(2),作出该函数的图象如图所示,观察图象,知该函数的单调递增区间为,单调递减区间为和.12.(2020·陕西·榆林市第十中学高一阶段练习)已知函数.(1)求证:在上是增函数;(2)当时,求不等式的解集.【答案】(1)证明见解析;(2)【分析】(1)利用函数单调性的定义与作差法即可证明;(2)将代入,然后求解不等式即可(1)任取,且,则,所以,所以,所以在区间上单调递增;(2)当时,,由可得,解得,故不等式的解集为13.(2021·广东广雅中学花都校区高一期中)设函数.(1)当时,求函数的单调递减区间;(2)若函数在R上单调递增,求a的取值范围;(3)若对,不等式恒成立,求a的取值范围.【答案】(1);(2);(3).【解析】(1)去掉绝对值符号后根据一次函数、二次函数的单调性可得所求的单调减区间. (2)去掉绝对值符号可得,根据函数在R上单调递增可得关于的不等式组,从而可得其取值范围.(3)等价于且恒成立,前者可分类讨论,后者可结合一次函数的图象和性质,两者结合可得a的取值范围.【详解】(1)时,,故在上为增函数,在上为减函数,在为增函数,故函数的单调递减区间为.(2)因为函数在R上单调递增,故,解得.(3)等价于且恒成立,先考虑恒成立,则,故.再考虑恒成立,又,故,故,解得,综上,的取值范围为.【点睛】方法点睛:对于含绝对值符号的函数,可先去掉绝对值符号,从而把问题题转化为常见的一次函数、二次函数在给定范围上的恒成立问题,注意先讨论简单的一次函数的性质,从而参数的初步范围后再讨论二次函数的性质.14.(2021·重庆市清华中学校高一阶段练习)对于定义域为的函数,如果存在区间,同时满足下列两个条件:①在区间上是单调的;②当定义域是时,的值域也是.则称是函数的一个“黄金区间”.(1)请证明:函数不存在“黄金区间”.(2)已知函数在上存在“黄金区间”,请求出它的“黄金区间”.(3)如果是函数的一个“黄金区间”,请求出的最大值.【答案】(1)证明见解析;(2);(3).【分析】(1)由为上的增函数和方程的解的情况可得证;(2)由可得出,再由二次函数的对称轴和方程,可求出函数的“黄金区间”;(3)化简得函数的单调性,由已知是方程的两个同号的实数根,再由根的判别式和根与系数的关系可表示,由或,可得的最大值.【详解】解:(1)证明:由为上的增函数,则有,∴,无解,∴不存在“黄金区间”;(2)记是函数的一个“黄金区间”,由及此时函数值域为,可知而其对称轴为,∴在上必为增函数,令,∴,∴故该函数有唯一一个“黄金区间”;(3)由在和上均为增函数,已知在“黄金区间”上单调,所以或,且在上为单调递增,则同理可得,,即是方程的两个同号的实数根,等价于方程有两个同号的实数根,又,则只要,∴或,而由韦达定理知,,所以,其中或,所以当时,取得最大值.【点睛】关键点点睛:本题考查函数的新定义,对于解决此类问题的关键在于紧扣函数的新定义,注意将值域问题转化为方程的根的情况得以解决.15.(2022·广东·普宁市第二中学高一期中)已知函数,,. 若不等式的解集为(1)求的值及;(2)判断函数在区间上的单调性,并利用定义证明你的结论.(3)已知且,若.试证:.【答案】(1);(2)函数在区间上的单调递增,证明见解析(3)见解析【分析】(1)根据二次不等式的解集可以得到二次函数的零点,回代即可求出参数的值(2)定义法证明单调性,假设,若,则单调递增,若,则单调递减(3)单调性的逆应用,可以通过证明函数值的大小,反推变量的大小,难度较大(1),即,因为不等式解集为,所以,解得:,所以(2)函数在区间上的单调递增,证明如下:假设,则因为,所以,所以,即当时,,所以函数在区间上的单调递增(3)由(2)可得:函数在区间上的单调递增,在区间上的单调递减,因为,且,,所以,,证明,即证明,即证明,因为,所以即证明,代入解析式得:,即,令,因为在区间上的单调递增,根据复合函数同增异减的性质可知,在区间上的单调递减,所以单调递增,即,所以在区间上恒成立,即,得证:【点睛】小问1求解析式,较易;小问2考察定义法证明单调性,按照常规方法求解即可;小问3难度较大,解题过程中应用到以下知识点:(1)可以通过证明函数值的大小,结合函数的单调性,反推出变量的大小,即若,且单减,则;解题过程(2)单调性的性质,复合函数同增异减以及增函数减去减函数为增函数16.(2021·江苏·高一单元测试)已知函数,(1)对任意的,函数在区间上的最大值为,试求实数的取值范围;(2)对任意的,若不等式任意()恒成立,求实数的取值范围.【答案】(1)(2)【分析】(1)由已知可得,结合对勾函数的单调性与最值情况求参数范围;(2)由题意不等式可转化为函数在上单调递增,结合分段函数的单调性,分情况讨论. (1)由,由对勾函数的性质得函数在上单调递减,在上单调递增,所以,又,所以,又函数在区间上的最大值为,所以,即,解得,所以;(2)不等式任意()恒成立,即,设,在上单调递增,即在上单调递增,当时,,①当时,单调递增,成立;②当时,单调递增,成立,③当时,只需,即,当时,,①当时,在上递减,所以不成立;②当时,在上递减,所以不成立;③当时,只需,即,综上所述,.17.(2021·全国·高一专题练习)已知函数对一切实数都有成立,且(1)求的解析式;(2),若存在,使得,有成立,求的取值范围.【答案】(1)(2)【分析】(1)赋值法,令y=1,求出,进而求出;(2)根据题干中的条件,只需,先求出函数的最大值,然后利用二次函数的性质求最值,进而求出a的取值范围.(1)∵函数对一切实数都有成立,且,令y=1,则,(2)由题意,有,则,对于g(x),当x=0时,g(0)=0,当时,,设,则在(0,1)单调递减,在单调递增,在x=1处取到最小值,所以,所以,综上,,当且仅当x=1时取到,所以;设,则h(x)为开口向上的二次函数,其对称轴为x=a,下面通过对称轴的位置对h(x)的最值情况进行分类讨论:当时,对称轴距离区间右侧x=2更远,故,∴,即;2)当时,对称轴距离区间左侧x=-1更远,故,∴,即;综上,.。
(典型题)高中数学必修一第四单元《函数应用》测试题(含答案解析)
一、选择题 1.设()31x f x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( )A .102⎛⎫ ⎪⎝⎭, B .()0,2 C .()0,1 D .(]0,12.关于x 的方程2||10x a x ++=有4个不同的解,则实数a 的取值范围是( ) A .()(),22,-∞-+∞ B .(],2-∞- C .(),2-∞-D .()2,+∞ 3.已知函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩,若()f x 恰有两个零点,则λ的取值范围是( )A .[)[)1,23,-+∞B .[)[)1,23,+∞C .[)()1,22,⋃+∞D .[)1,+∞4.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006 B .1007C .2016D .2017 5.已知函数24,?0()7,?0x f x x x x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a的取值范围是( )A .(﹣4,0]B .(-∞,﹣9)C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]6.如图所示,一隧道内设双行线公路,其截面由长方形的三条边和抛物线的一段构成,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB 为7米,请计算通过隧道的车辆限制高度为( )A .4.25米B .4.5米C .3.9米D .4.05米 7.激光多普勒测速仪(LaserDopplerVelocimetry ,LDV )的工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚后反射,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同;当横向速度不为零时,反射光相对探测光发生频移,频移()2sin 1/h p v f ϕλ=,其中v 为被测物体的横向速度,ϕ为两束探测光线夹角的一半,λ为激光波长.如图,用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,激光测速仪安装在距离高铁1m 处,发出的激光波长为()91560nm 1nm 10m -=,测得这时刻的频移为()98.72101/h ⨯,则该时刻高铁的速度约为( )A .320km/hB .330km/hC .340km/hD .350km/h8.已知函数321()232x f x ax bx c =+++的两个极值分别为1()f x 和2()f x ,若1x 和2x 分别在区间(0,1)与(1,2)内,则21b a --的取值范围是( ) A .(1,14)B .1[,1]4C .1(,)(1,)4-∞+∞D .1(,][1,)4-∞+∞ 9.函数f(x)=2log ,02,0x x x a x >⎧⎨-+≤⎩ 有且只有一个零点的充分不必要条件是( ) A .a<0 B .0<a< C . <a<1 D .a≤0或a>1 10.已知定义在R 上的奇函数()f x 满足()()f x f x π+=- ,当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x x =,则函数()()()1g x x f x π=-- 在区间3-,32ππ⎡⎤⎢⎥⎣⎦上所有零点之和为( ) A .π B .2π C .3π D .4π11.已知定义在R 上的函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-⎪⎩,若函数()()k x f x ax =-恰有2个零点,则实数a 的取值范围是( )A .()1,11,0e ⎛-⎫ ⎪⎝⎭B .()1,1,1e ⎛⎫-∞- ⎪⎝⎭C .(){}1,1,10e ⎛⎫-∞- ⎪⎝⎭D .(){}11,00,1e ⎛⎫- ⎪⎝⎭12.已知函数21,0()log ,0x x f x x x ⎧+≤=⎨>⎩,若123123()()(),(,,f x f x f x x x x ==互不相等),则123x x x ++的取值范围是( ) A .(2,0]-B .(1,0)-C .(1,0]-D .(2,0)- 二、填空题13.设()f x 是定义域在R 上的偶函数,对x R ∀∈,都有()()11f x f x +=-,且当1[]0x ∈-,时,1()12xf x ⎛⎫=- ⎪⎝⎭,若在区间[]1,3-内关于x 的方程2()(1)0f x a x --=有4个不同的实数根,则实数a 的取值范围是_________. 14.已知函数()()21,043,0x e x f x x x x +⎧≤⎪=⎨+->⎪⎩,函数()y f x a =-有四个不同的零点,从小到大依次为1x ,2x ,3x ,4x ,则1234x x x x -++的取值范围为 _________15.已知函数()2,0lg ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,则方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是__________.16.若函数()23x f x x --+=的零点为0x ,满足()01x k k ∈+,且k ∈Z ,则k =_____.17.设函数212,2()1,2x x f x x x lnx x ⎧⎪⎪=⎨⎪-->⎪⎩,若函数()()F x f x a =+恰有2个零点,则实数a 的取值范围是__. 18.若关于x 的方程2220x x m ---=有三个不相等的实数根,则实数m 的值为_______.19.已知函数254,0()22,0x x x f x x x ⎧++≤⎪=⎨->⎪⎩,若函数()y f x a x =-恰有4个零点,则实数a 的取值范围是________.20.密云某商场举办春节优惠酬宾赠券活动,购买百元以上单件商品可以使用优惠劵一张,并且每天购物只能用一张优惠券.一名顾客得到三张优惠券,三张优惠券的具体优惠方式如下:优惠券1:若标价超过50元,则付款时减免标价的10%;优惠券2:若标价超过100元,则付款时减免20元;优惠券3:若标价超过100元,则超过100元的部分减免18%.如果顾客需要先用掉优惠券1,并且使用优惠券1比使用优惠券2、优惠券3减免的都多,那么你建议他购买的商品的标价可以是__________元.三、解答题21.2009年淘宝开始做“双十一”活动,历经11载,每年双十一成交额都会出现惊人的增长,极大拉动消费内需,促进经济发展.已知今年小明在网上买了一部华为手机,据了解手机是从150千米处的地方发出,运货卡车以每小时x 千米的速度匀速行驶,中途不停车.按交通法规限制60120x ≤≤(单位:千米/时).假设汽油的价格是每升5元,而卡车运输过程中每小时耗油25400x ⎛⎫+ ⎪⎝⎭升,司机的工资是每小时20元. (1)求这次行车总费用y (单位:元)关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低?并求出最低费用.22.已知函数()()1f x x x a x R =--+∈.(1)当2a =时,求函数()()g x f x x =-的零点;(2)对于给定的正数,a 有一个最大的正数()M a ,使()0,x M a ∈⎡⎤⎣⎦时,都有()2f x ≤,试求出这个正数()M a ,并求它的取值范围.23.如图所示,河(阴影部分)的两岸分别有生活小区ABC 和DEF ,其中AB BC ⊥,EF DF ⊥,DF AB ⊥,C ,E ,F 三点共线,FD 与BA 的延长线交于点O ,测得3AB FE ==千米,74OD =千米,94DF =千米,32EC =千米,若以OA ,OD 所在直线分别为x ,y 轴建立平面直角坐标系xOy ,则河岸DE 可看成是函数1by x a =--(其中a ,b 是常数)图象的一部分,河岸AC 可看成是函数y kx m =+(其中k ,m 为常数)图象的一部分.(1)写出点A 和点C 的坐标,并求k ,m ,a ,b 的值.(2)现准备建一座桥MN ,其中M 在曲线段DE 上,N 在AC 上,且MN AC ⊥.记M 的横坐标为t .①写出桥MN 的长l 关于t 的函数关系式()l f t =,并标明定义域;(注:若点M 的坐标为0(,)t y ,则桥MN 的长l 可用公式021l k 计算)②当t 为何值时,l 取到最小值?最小值是多少?24.某市出租汽车的收费标准如下:在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费.而出租汽车一次载客的运输成本包含以下三个部分:一是固定费用,约为2.3元;二是燃油费,约为1.6元/km ;三是折旧费,它与路程的平方近似成正比,且当路程为20km 时,折旧费为0.1元.现设一次载客的路程为x km. (1)试将出租汽车一次载客的收费F 与成本C 分别表示为x 的函数;(2)若一次载客的路程不少于2km ,则当x 取何值时,该市出租汽车一次载客每千米的收益y 取得最大值?(每千米收益计算公式为)F C y x-= 25.已知1a >,函数()log (3)log (1)a a f x x x =-++.(1)求函数()f x 的定义域;(2)求函数()f x 的零点;(3)若函数()f x 的最大值为2,求a 的值.26.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点,研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年:当420x ≤≤时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当020x <≤时,求v 关于x 的函数解析式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围.【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解,∴()f x t =必须有两解,由图象知01t <<.故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.C解析:C【分析】由2||10x a x ++=可得1a x x =--,转化为y a =与()1g x x x=--的图象有4个不同的交点,作出()1g x x x=--,数形结合即可求解. 【详解】 由2||10x a x ++=可得22111||||x x a x x x x----===--, 令()1g x x x=-- , 若关于x 的方程2||10x a x ++=有4个不同的解,则y a =与()1g x x x=--的图象有4个不同的交点, ()1g x x x=--是偶函数, 当0x <时()()()111x x x x x x g x --=---=+-=, ()1g x x x=+在(),1-∞-单调递增,在()1,0-单调递减,所以()1g x x x=+的图象如图所示: 当1x =-时()max 1121g x =-+=--,若y a =与()1g x x x=--的图象有4个不同的交点, 由图知2a <-,故选:C【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.A解析:A【分析】分别求出函数223y x x =--和()ln 1y x =-的零点,然后作出函数223y x x =--与函数()ln 1y x =-的图象,结合函数()f x 恰有两个零点,可得出实数λ的取值范围.【详解】解方程2230x x --=,解得11x =-,23x =,解方程()ln 10x -=,解得2x =.作出函数223y x x =--与函数()ln 1y x =-的图象如下图所示:要使得函数()()223,ln 1,x x x f x x x λλ⎧--≤⎪=⎨->⎪⎩恰有两个零点,则12λ-≤<或3λ≥. 因此,实数λ的取值范围是[)[)1,23,-+∞.故选:A.【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.4.D解析:D【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=,故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+,即有()()f x f x -=,1()02f =, 1()02f ∴-=, 再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点,即函数()f x 在每两个整数之间都有一个零点,()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D .【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.5.C解析:C【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,? 0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解.【详解】令()()0g x f x x a =+-=,得24,? 06,?0x x a x x x x ⎧+<⎪=⎨⎪-≥⎩,令24,? 0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩,在同一坐标系中,作出两个函数的图象,如图所示:因为()g x 存在两个零点,由图象可得:a <﹣9或﹣4<a ≤0,故选:C【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.6.D解析:D【分析】可设抛物线的方程为2(0)x ny n =<,将(5,5)-代入可得n ,可得抛物线的方程,再令3.5x =,求得y ,计算70.5y --,可得所求值.【详解】解:如右图,设抛物线的方程为2(0)x ny n =<,将点(5,5)-代入抛物线的方程可得,255n =-,解得5n =-,即抛物线的方程为25x y =-,令 3.5x =,可得23.55y =-,解得 2.45y =-,则通过隧道的车辆限制高度为7 2.450.5 4.05--=(米).故选:D .【点睛】利用坐标法思想,建立适当的直角坐标系,得到抛物线的方程,从而解决问题.7.C解析:C 【分析】先根据图象,求出sin ϕ的值,再根据公式即可计算出v 的值. 【详解】解:3sin ϕ-==,98.7210∴⨯=,即8.72=,8.721560340148.0090.04v ⨯∴=≈米/小时340/km h ≈,故该时刻高铁的速度约为340/km h .故选:C . 【点评】本题主要考查了函数的实际应用,考查了三角函数的实际应用,也考查了学生的计算能力,关键在于将生活中的数据转化为数学公式中的数据,属于中档题.8.A解析:A 【分析】由极值点的所在区间即可知()f x 的导函数2()2f x x ax b '=++的零点区间,应用根的分布可得1310a b ->>-⎧⎨>>⎩,结合目标式的几何意义即可求其范围.【详解】由题意知:2()2f x x ax b '=++,而()f x 两个极值点1x 和2x 分别在区间(0,1)与(1,2)内,∴方程220x ax b ++=两个根在(0,1)与(1,2)内,()'f x 开口向上,∴012020b a b a b >⎧⎪++<⎨⎪++>⎩,可得1310a b ->>-⎧⎨>>⎩,即214122a b ->->-⎧⎨->->-⎩,∴令1,2x a y b =-=-,问题转化为在24,12x y ->>-->>-的可行域内的点与原点所成直线斜率yx的取值范围,如下图示:有1(,1)4y x ∈, 故选:A 【点睛】本题考查了根据函数极值点的所在区间求目标式的范围,应用了极值点与导数关系、根的分布、不等式的性质,结合线性规划及目标式的几何意义求范围,属于中档题.9.A解析:A 【分析】函数y=f (x )只有一个零点,分段函数在0x >时,2log y x = 存在一个零点为1,在0x ≤无零点,所以函数图象向上或向下平移,图像必须在x 轴上方或下方,解题中需要注意的是:题目要求找出充分不必要条件,解题中容易选成充要条件. 【详解】当0x >时,y=2log x ,x=1是函数的一个零点,则当0y 2x x a ≤=-+,无零点,由指数函数图像特征可知:a≤0或a>1 又题目求函数只有一个零点充分不必要条件,即求a≤0或a>1的一个真子集, 故选A 【点睛】本题考查函数零点个数问题,解决问题的关键是确定函数的单调性,利用单调性和特殊点的函数值的正负确定零点的个数;本题还应注意题目要求的是充分不必要条件,D 项是冲要条件,容易疏忽而出错.10.D解析:D 【解析】函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上的零点就是函数()y f x =与函数1()h x x π=-的交点的横坐标. ∵()()f x f x π+=-∴()()2f x f x π+=,即函数()f x 的周期为2π,且函数()f x 的图象关于直线2x π=对称.又可得()()2f x f x π+=--,从而函数()f x 的图象关于点(π,0)对称. 函数1()h x x π=-的图象关于点(π,0)对称. 画出函数f(x),h(x)的图象(如下所示),根据图象可得函数f(x),h(x)的图象共有4个交点,它们关于点(π,0)对称. 所以函数()()()1g x x f x π=--在区间3,32ππ⎡⎤-⎢⎥⎣⎦上所有零点之和为2π+2π=4π. 选D .点睛:解答本题的关键是将函数()()()1g x x f x π=--零点问题转化为两个函数图象交点的横坐标问题,借助函数图象的直观性使得问题得到解答,这是数形结合在解答数学题中的应用,解题中要求正确画出函数的图象.同时本题中还用到了函数的周期性、对称性、奇偶性之间的互相转化,对于这些知识要做到熟练运用.11.C解析:C 【分析】把函数交点有两个零点转化为函数图象与直线有两个交点,作出对应函数图象和直线,利用导数求出相应切线的斜率,由图象观察出a 的范围. 【详解】()0f x ax -=()f x ax ⇒=,所以函数()y f x =的图象与直线y ax =有两个交点,作出函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-≤⎪⎩的图象,如下图,由()ln f x x =得1()f x x'=,设直线y ax =与()ln f x x =图象切点为00(,)P x y ,则00000ln 1y x a x x x ===,0x e =,所以11a x e ==. 由2()f x x x =-得()12f x x '=-,(0)1f '=,y ax =与2yx x 在原点相切时,1a =,由2()f x x x =-得()21f x x '=-,(0)1f '=-,y ax =与2yx x 在原点相切时,1a =-,所以直线y x =,yx =-,1ey x =与曲线()f x 相切,由直线y ax =与曲线()y f x =的位置关系可得:当(){}1,1,10e a ⎛⎫∈-∞- ⎪⎝⎭时有两个交点,即函数()y k x =恰有两个零点.故选:C . 【点睛】本题考查函数零点个数问题,解题方法是把函数零点转化为方程的解的个数,再转化为函数图象与直线交点个数,作出函数图象与直线通过数形结合思想求解.12.C解析:C 【分析】做出函数图像,由图象得出三个交点的横坐标关系,以及交点横坐标的取值范围,即可求解. 【详解】做出函数()f x 的图象如图,设()()()123===f x f x f x a ,则01a <≤, 因此12232(1)2,0log 1+=⨯-=-<≤x x x ,得312<≤x 于是12310-<++≤x x x , 故选:C.【点睛】本题考查分段函数的图象和运用,考查函数的对称性和对数的运算性质,正确画图和通过图象观察是解题关键,属于中档题.二、填空题13.【分析】首先结合已知条件判断函数的周期由已知可得函数的周期作出函数的图象数形结合得答案【详解】由得又是定义域在上的偶函数可得是周期为2的周期函数当时作出函数在区间内的图象如图方程有4个不同的实数根即解析:10,4⎛⎤⎥⎝⎦【分析】首先结合已知条件,判断函数的周期,由已知可得函数的周期,作出函数的图象,数形结合得答案. 【详解】由()()11f x f x -=+,得()()2f x f x -=+,又()1f 是定义域在R 上的偶函数,()()()2f x f x f x ∴+=-=, 可得()f x 是周期为2的周期函数.当[]1,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭, ∴作出函数()f x 在区间[]1,3-内的图象如图,方程()()210f x a x --=有4个不同的实数根,即()y f x =与()21y a x =-的图象在区间[]1,3-内有4个不同交点.当()21y a x =-过()3,1时,解得14a =, 又随着a 的减小抛物线()21y a x =-的开口变大,可得若在区间[]1,3-内关于x 的方程()()210f x a x --=有4个不同的实数根,则实数a 的取值范围是10,4⎛⎤⎥⎝⎦.故答案为:10,4⎛⎤ ⎥⎝⎦.【点睛】方法点睛:本题考查根据方程实数根的个数求参数的取值范围,一般可采用1.直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后观察求解,此时需要根据零点个数合理寻找“临界”情况,特别注意边界值的取舍.14.【分析】先将函数有四个不同的零点转化为函数有四个不同的交点利用数形结合得到a 的范围再根据为方程的两根为方程的两根利用韦达定理建立的函数再利用函数的单调性求解【详解】因为函数有四个不同的零点所以函数有 解析:(]3,3e +【分析】先将函数()y f x a =-有四个不同的零点,转化为函数(),y f x y a ==有四个不同的交点,利用数形结合得到a 的范围,再根据1x ,2x 为方程()21x e a +=的两根,3x ,4x 为方程43x a x+-=的两根,利用韦达定理建立1234x x x x -++的函数,再利用函数的单调性求解.【详解】因为函数()y f x a =-有四个不同的零点, 所以函数(),y f x y a ==有四个不同的交点, 如图所示:由图知:1a e <≤,设1x ,2x 为方程()21x e a +=的两根,即221ln 0x x a ++-=的两根, 所以121ln =-x x a , 设3x ,4x 为方程43x a x+-=的两根,即()2340x a x -++=的两根, 所以343x x a +=+,所以1234ln 13ln 2x x x x a a a a -++=-++=++, 因为ln ,2y a y a ==+在()0,∞+上递增, 所以ln 2y a a =++在()0,∞+上递增, 所以1234(3,3]x x x x e ∈-+++, 故答案为:(]3,3e + 【点睛】关键点点睛:本题关键是利用利用数形结合法确定a 的范围,进而利用函数法求解.15.【分析】解方程可得或然后分和解方程或由此可得出结论【详解】解方程可得或当时由可得解得由可得解得(舍);当时由可得则解得或由可得则解得或综上所述方程实根的个数是故答案为:【点睛】方法点睛:判定函数的零 解析:5【分析】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =,然后分0x ≤和0x >解方程()2f x =或()12f x =,由此可得出结论. 【详解】解方程()()22520f x f x -+=⎡⎤⎣⎦可得()2f x =或()12f x =.当0x ≤时,由()2f x =可得22x -=,解得1x =-,由()12f x =可得122x-=,解得1x =(舍);当0x >时,由()2f x =可得lg 2x =,则lg 2x =±,解得100x =或1100x =,由()12f x =可得1lg 2x =,则1lg 2x =±,解得x =或x =. 综上所述,方程()()22520f x f x -+=⎡⎤⎣⎦实根的个数是5. 故答案为:5. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.16.【分析】根据题意得到函数为减函数进而求得的值利用零点的存在定理即可求解【详解】由题意函数分析可得函数为减函数又由则根据零点的存在定理可得函数的零点在区间上所以故答案为【点睛】本题主要考查了函数与方程 解析:3【分析】根据题意,得到函数()f x 为减函数,进而求得()()3,4f f 的值,利用零点的存在定理,即可求解. 【详解】由题意,函数()23xf x x --+=,分析可得函数()f x 为减函数, 又由()31323308f -=+=>-,()4154243016f --=+=-<, 则()()340f f ⋅<,根据零点的存在定理,可得函数()f x 的零点在区间()3,4上, 所以3k =. 故答案为3. 【点睛】本题主要考查了函数与方程的应用,其中解答中熟记函数零点的概念,以及熟练应用零点的存在定理进行判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.17.【分析】令求出函数的导数判断函数的单调性结合函数的图象推出结果即可【详解】解:令则令得或(舍去)当时;当时所以在上是减函数在上是增函数又(1)而在上是增函数且作出函数的图象如图由得所以当即时函数与的解析:[2-,12]4ln -. 【分析】令2()g x x x lnx =--,12x >,求出函数的导数,判断函数的单调性,结合函数的图象,推出结果即可. 【详解】解:令2()g x x x lnx =--,12x >, 则2121(21)(1)()21x x x x g x x x x x--+-'=--==, 令()0g x '=,得1x =或12x =-(舍去)当112x <<时,()0g x '<;当1x >时,()0g x '>, 所以()g x 在1(,1)2上是减函数,在(1,)+∞上是增函数,又11()224g ln =-+,g (1)0=,而2x y =在1(,)2-∞上是增函数,且022x<,作出函数()f x 的图象如图,由()0F x =得()f x a =-,所以当1224ln a-+-即1224aln --时,函数()y f x =与y a =-的图象有两个交点.故答案为:1[2,2]4ln --.【点睛】本题考查函数的零点与方程的根的关系,函数的导数的应用,考查转化思想以及计算能力,是中档题.18.3【解析】令则由题意可得函数与函数的图象有三个公共点画出函数的图象如图所示结合图象可得要使两函数的图象有三个公共点则答案:3解析:3 【解析】令()222f x x x =--,则由题意可得函数()y f x =与函数y m =的图象有三个公共点.画出函数()222f x x x =--的图象如图所示,结合图象可得,要使两函数的图象有三个公共点,则3m =. 答案:319.【分析】函数恰有4个零点等价于函数与函数的图象有四个不同的交点画出函数图象利用数形结合思想进行求解即可【详解】函数恰有4个零点等价于函数与函数的图象有四个不同的交点画出函数图象如下图所示:由图象可知 解析:(1,3)【分析】函数()y f x a x =-恰有4个零点,等价于函数()f x 与函数y a x =的图象有四个不同的交点,画出函数图象,利用数形结合思想进行求解即可. 【详解】函数()y f x a x =-恰有4个零点,等价于函数()f x 与函数y a x =的图象有四个不同的交点,画出函数图象如下图所示:由图象可知:实数a 的取值范围是13a <<.故答案为:(1,3)【点睛】本题考查了已知函数零点个数求参数取值范围问题,考查了数形结合思想和转化思想. 20.201【分析】根据题意构造函数由函数的值域即可容易求得【详解】设标价为则当时优惠金额;当时优惠券2的优惠金额优惠券3的优惠金额故当标价在之间只能用优惠券1故不满足题意;当标价超过100时若满足题意且 解析:201【分析】根据题意,构造函数,由函数的值域即可容易求得.【详解】设标价为x ,则当50x >时,优惠金额10x y =; 当100x >时,优惠券2的优惠金额20y =,优惠券3的优惠金额()910050y x =-. 故当标价在(]50,100之间,只能用优惠券1,故不满足题意;当标价超过100时,若满足题意,2010x >,且()91001050x x >-, 解得200225x <<. 则答案不唯一,只需在区间()200,225内任取一个元素即可.本题中选取标价为201. 故答案为:201.【点睛】本题考查实际问题中函数模型的应用,属中档题.三、解答题21.(1)y 6750158x x =+,[]60,120x ∈;(2)当x 为60时,这次行车的总费用最低,最低费用是225元.【分析】(1)总费用由油耗、司机工资费用组成,分别用x 表示两部分费用加总即可; (2)由(1)所得函数表达式,利用基本不等式求最小值即可.【详解】解:(1)货车行驶的时间为150x小时,由题意得: 21501505520400x y x x⎛⎫=⨯+⨯+⨯ ⎪⎝⎭6750158x x =+,[]60,120x ∈;(2)6750152258x y x =+≥=当且仅当6750158x x =,即60x =时取等号 所以当x 为60时,这次行车的总费用最低,最低费用是225元.【点睛】易错点睛:利用基本不等式求最值时,必须满足的三个条件--“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件.22.(135;(2)答案见解析. 【分析】(1)可令()0g x =,解含有绝对值的方程,对x 进行讨论,最后得出符合条件的x 的值. (2)因为()0,x ∈+∞时,()max 1f x =,故问题只需在给定的区间内()2f x ≥-恒成立,再按照22a f ⎛⎫<-⎪⎝⎭和22a f ⎛⎫≥- ⎪⎝⎭两种情况分类讨论,即可得到结论. 【详解】(1)令()()0g x f x x =-=,得()21f x x x x =--+=,当2x ≥时,方程化简为:210x x --=,解得:x =(舍)或x =(舍), 当2x <时,方程化简为:2310x x -+=,解得:x =x =,x ∴=. (2)当()0,x ∈+∞时,()max 1f x =,故问题只需要在给定的区间内()2f x ≥-恒成立,由2124a a f ⎛⎫=- ⎪⎝⎭分两种情况讨论:当2124a -<-时,即a >()M a 是方程212x ax -+=-的较小根()2a M a =由于a >a >()(M a ∈当2124a -≥-时,即0a <≤时,()M a 是方程212x ax -++=-的较大根,()M a =由于0a <≤(a 所以()M a ∈综上() 0<a M a a >=≤ ,且()(M a ∈⋃ .【点睛】 分类讨论方法,关键点在于运算时由于不确定性,需要对某个参数进行讨论,进而分类运算.恒成立问题,关键点在对于任意x D ∈,()f x a ≥恒成立,可转化为()min f x a ≥. 23.(1)3,02A ⎛⎫⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭,43k =,2m =-,4a =,3b =;(2)①19()94,[0,3]54f t t t t ⎛⎫=--∈ ⎪-⎝⎭;②52t =,min ()1f t =. 【分析】(1)根据题中给的边长,得到点,A C 的坐标,并代入直线,求,k m ,由点,D E 的坐标代入函数1b y x a =--,求,a b 的值;(2)①由(1)可知点43,1M t t ⎛⎫- ⎪-⎝⎭,利用点到直线的距离求()l f t =,②定义域下利用基本不等式求最值.【详解】(1)由题意得:4OF BC ==,OA EC =,∴3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭, 把3,02A ⎛⎫ ⎪⎝⎭,9,42C ⎛⎫ ⎪⎝⎭代入y kx m =+得302942k m k m ⎧+=⎪⎪⎨⎪+=⎪⎩,解得43k =,2m =-. ∵70,4D ⎛⎫ ⎪⎝⎭,()3,4E ,把70,4D ⎛⎫ ⎪⎝⎭,()3,4E 代入1b y x a =--得3433b a b a ⎧=⎪⎪⎨⎪=⎪-⎩,解得:4a =,3b =.(2)①由(1)得:M 点在314y x =--上,∴43,1M t t ⎛⎫- ⎪-⎝⎭,[0,3]t ∈,∴桥MN 的长l为341219()(94),[0,3]54l f t t t t t --+===--∈-; ②由①得:1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦ 194(4)754t t ⎡⎤=----⎢⎥-⎣⎦, 而40t -<,904t <-,∴94(4)124t t ---≥=-, 当且仅当94(4)4t t --=--时即52t =时,“=”成立,∴min 1()12715f t =-+=. 【点睛】关键点点睛:本题考查函数应用题,函数模型的应用,基本不等式求最值. 本题的关键是最后一问,函数的变形,1919()(94)4(4)75454f t t t t t ⎡⎤=--=----⎢⎥--⎣⎦,只有变形成这种形式,才能用基本不等式求最值.24.(1)7,032.40.2,3x F x x <≤⎧=⎨->⎩,212.3 1.6(0)4000C x x x =++>;(2)100km. 【分析】(1)根据在3km 以内(含3km )的路程统一按起步价7元收费,超过3km 以外的路程按2.4元/km 收费求得F ,设折旧费2z kx =,由路程为20km 时,折旧费为0.1元.代入求得k ,再根据运输成本包含固定费用,二是燃油费和折旧费求得C .(2)根据F C y x -=,结合(1)求得y ,再根据分段函数的最值的求法求解. 【详解】(1)由题意得:7,037 2.4(3),3x F x x <≤⎧=⎨+->⎩,. 即7,032.40.2,3x F x x <≤⎧=⎨->⎩. 设折旧费2z kx =,将(20,0.1)代入, 得0.1400k =,解得14000k =. 所以212.3 1.6(0)4000C x x x =++>. (2)因为F C y x-=,所以 4.7 1.6,234000 2.50.8,34000x x x y x x x ⎧--≤≤⎪⎪=⎨⎛⎫⎪-+> ⎪⎪⎝⎭⎩, 当3x >时,由基本不等式,得0.80.75y ≤-=, 当且仅当100x =时取等号.当23x ≤≤时,由y 在[2,3]上单调递减,当2x =时,得max 10.750.752000y =-<. 综上所述,该市出租汽车一次载客路程为100km 时,每千米的收益y 取得最大值.【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.25.(1)(1,3)-;(2)零点为113)2a =.【分析】(1)由函数的解析式可得3010x x ->⎧⎨+>⎩,解可得x 的取值范围,即可得答案, (2)根据题意,由函数零点的定义可得()log (3)log (1)log [(3)(1)]0a a a f x x x x x =-++=-+=,即(3)(1)1x x -+=,解可得x 的值,即可得答案,(3)根据题意,将函数的解析式变形可得2()log (3)log (1)log [(3)(1)]log (23)a a a a f x x x x x x x =-++=-+=-+-,设223t x x =-++,分析t 的最大值可得()f x 的最大值为log 4a ,则有log 42a =,解可得a 的值,即可得答案.【详解】解:(1)根据题意,()log (3)log (1)a a f x x x =-++,必有3010x x ->⎧⎨+>⎩,解可得13x , 即函数的定义域为(1,3)-,(2)()log (3)log (1)a a f x x x =-++,若()log (3)log (1)0a a f x x x =-++=, 即log [(3)(1)]0a x x -+=,即(3)(1)1x x -+=,解可得:1x =+1x =即函数()f x的零点为11。
高中数学必修一第三章函数的概念与性质知识总结例题(带答案)
高中数学必修一第三章函数的概念与性质知识总结例题单选题1、已知定义在R 上的奇函数f (x )在(0,+∞)上单调递增,且f(1)=0,若实数x 满足xf (x −12)≤0,则x 的取值范围是( )A .[−12,0]∪[12,32]B .[−12,12]∪[32,+∞)C .[−12,0]∪[12,+∞)D .[−32,−12]∪[0,12] 答案:A分析:首先根据函数的奇偶性和单调性得到函数f (x )在R 上单调递增,且f (1)=f (−1)=0,从而得到x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0,再分类讨论解不等式xf (x −12)≤0即可.因为奇函数f (x )在(0,+∞)上单调递增,定义域为R ,f(1)=0,所以函数f (x )在R 上单调递增,且f (1)=f (−1)=0.所以x ∈(−∞,−1),f (x )<0,x ∈(−1,0),f (x )>0,x ∈(0,1),f (x )<0,x ∈(1,+∞),f (x )>0.因为xf (x −12)≤0,当x <0时,f (x −12)≥0,即−1≤x −12≤0或x −12≥1,解得−12≤x <0.当x =0时,符合题意.当x >0时,f (x −12)≤0,x −12≤−1或0≤x −12≤1, 解得12≤x ≤32. 综上:−12≤x ≤0或12≤x ≤32. 故选:A2、若函数f (x )=x α的图象经过点(9,13),则f (19)=( )A .13B .3C .9D .8分析:将(9,13)代入函数解析式,即可求出α,即可得解函数解析式,再代入求值即可. 解:由题意知f (9)=13,所以9α=13,即32α=3−1,所以α=−12,所以f (x )=x −12,所以f (19)=(19)−12=3.故选:B3、若函数f(x)=x 2−mx +10在(−2,1)上是减函数,则实数m 的取值范围是( )A .[2,+∞)B .[−4,+∞)C .(−∞,2]D .(−∞,−4]答案:A分析:结合二次函数的对称轴和单调性求得m 的取值范围.函数f(x)=x 2−mx +10的对称轴为x =m 2,由于f (x )在(−2,1)上是减函数,所以m 2≥1⇒m ≥2. 故选:A4、函数f (x )=x 2−1的单调递增区间是( )A .(−∞,−3)B .[0,+∞)C .(−3,3)D .(−3,+∞)答案:B分析:直接由二次函数的单调性求解即可.由f (x )=x 2−1知,函数为开口向上,对称轴为x =0的二次函数,则单调递增区间是[0,+∞).故选:B.5、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可解:∵函数f(x)=x ln(x+√a+x2)为偶函数,x∈R,∴设g(x)=ln(x+√a+x2)是奇函数,则g(0)=0,即ln√a=0,则√a=1,则a=1.故选:B.6、函数f(x)=log2x−1x的零点所在的区间为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项.f(1)=0−1=−1<0,f(2)=1−12=12>0,且函数f(x)=log2x−1x 的定义域是(0,+∞),定义域内y=log2x是增函数,y=−1x也是增函数,所以f(x)是增函数,且f(1)f(2)<0,所以函数f(x)=log2x−1x的零点所在的区间为(1,2).故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断.7、函数y=√2x+4x−1的定义域为()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)答案:D分析:由题意列不等式组求解由题意得{2x≥0x−1≠0,解得x≥0且x≠1,故选:D8、设a为实数,定义在R上的偶函数f(x)满足:①f(x)在[0,+∞)上为增函数;②f(2a)<f(a+1),则实数a 的取值范围为()A.(−∞,1)B.(−13,1)C.(−1,13)D.(−∞,−13)∪(1,+∞)答案:B分析:利用函数的奇偶性及单调性可得|2a|<|a+1|,进而即得.因为f(x)为定义在R上的偶函数,在[0,+∞)上为增函数,由f(2a)<f(a+1)可得f(|2a|)<f(|a+1|),∴|2a|<|a+1|,解得−13<a<1.故选:B.多选题9、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−20.2×0.5)x≥22.4,解得x的范围,可得答案.依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2×0.5万册,则该杂志销售收入为(10−x−20.2×0.5)x万元,所以(10−x−20.2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x(x>2)元时的发行量是解题关键.10、已知函数f(x)={|x |+2,x <1x +2x,x ≥1 ,下列说法正确的是( ) A .f(f(0))=3B .函数y =f(x)的值域为[2,+∞)C .函数y =f(x)的单调递增区间为[0,+∞)D .设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是[−2,2]答案:ABD解析:作出函数f(x)的图象,先计算f(0),然后计算f(f(0)),判断A ,根据图象判断BC ,而利用参变分离可判断D .画出函数f(x)图象.如图,A 项,f(0)=2,f(f(0))=f(2)=3,B 项,由图象易知,值域为[2,+∞)C 项,有图象易知,[0,+∞)区间内函数不单调D 项,当x ≥1时,x +2x ≥|x 2+a|恒成立,所以−x −2x ≤x 2+a ≤x +2x 即−32x −2x ≤a ≤x 2+2x 在[1,+∞)上恒成立,由基本不等式可得x 2+2x ≥2,当且仅当x =2时等号成立,3x 2+2x ≥2√3,当且仅当x =2√33时等号成立, 所以−2√3≤a ≤2.当x <1时,|x |+2≥|x 2+a|恒成立,所以−|x |−2≤x 2+a ≤|x |+2在(−∞,1)上恒成立,即−|x |−2−x 2≤a ≤|x |+2−x 2在(−∞,1)上恒成立 令g (x )=|x |+2−x 2={−32x +2,x ≤0x 2+2,0<x <1 ,当x ≤0时,g (x )≥2,当0<x <1时,2<g (x )<32,故g (x )min =2;令ℎ(x )=−|x |−2−x 2={12x −2,x ≤0−3x 2−2,0<x <1 ,当x ≤0时,ℎ(x )≤−2,当0<x <1时,−72<ℎ(x )<−2,故ℎ(x )max =−2; 所以−2≤a ≤2.故f(x)≥|x 2+a|在R 上恒成立时,有−2≤a ≤2. 故选:ABD .小提示:关键点点睛:本题考查分段函数的性质,解题方法是数形结合思想,作出函数的图象,由图象观察得出函数的性质,绝对值不等式恒成立,可以去掉绝对值符号,再利用参变分离求参数的取值范围.11、已知函数f (x )={x 2,−2≤x <1−x +2,x ≥1关于函数f (x )的结论正确的是( ) A .f (x )的定义域为RB .f (x )的值域为(−∞,4]C .若f (x )=2,则x 的值是−√2D .f (x )<1的解集为(−1,1)答案:BC分析:求出分段函数的定义域可判断A ;求出分段函数的值域可判断B ;分x ≥1、−2≤x <1两种情况令f (x )=2求出x 可判断C ;分x ≥1、−2≤x <1两种情况解不等式可判断D.函数f (x )={x 2,−2≤x <1−x +2,x ≥1的定义域是[−2,+∞),故A 错误; 当−2≤x <1时,f (x )=x 2,值域为[0,4],当x ≥1时,f (x )=−x +2,值域为(−∞,1],故f (x )的值域为(−∞,4],故B 正确;当x ≥1时,令f (x )=−x +2=2,无解,当−2≤x <1时,令f (x )=x 2=2,得到x =−√2,故C 正确; 当−2≤x <1时,令f (x )=x 2<1,解得x ∈(−1,1),当x ≥1时,令f (x )=−x +2<1,解得x ∈(1,+∞),故f (x )<1的解集为(−1,1)∪(1,+∞),故D 错误.故选:BC.填空题12、写出一个同时具有下列性质的函数f(x)=___________.①f(x)是奇函数;②f(x)在(0,+∞)上为单调递减函数;③f(x1x2)=f(x1)f(x2).答案:x−1(答案不唯一,符合条件即可)分析:根据三个性质结合图象可写出一个符合条件的函数解析式.f(x)是奇函数,指数函数与对数函数不具有奇偶性,幂函数具有奇偶性,又f(x)在(0,+∞)上为单调递减函数,同时f(x1x2)=f(x1)f(x2),故可选,f(x)=xα,α<0,且α为奇数,所以答案是:x−113、已知幂函数f(x)=(m2−3m+3)x m+1的图象关于原点对称,则满足(a+1)m>(3−2a)m成立的实数a 的取值范围为___________.答案:(23,4)分析:利用幂函数的定义及性质求出m值,再解一元二次不等式即可得解.因函数f(x)=(m2−3m+3)x m+1是幂函数,则m2−3m+3=1,解得m=1或m=2,当m=1时,f(x)=x2是偶函数,其图象关于y轴对称,与已知f(x)的图象关于原点对称矛盾,当m=2时,f(x)=x3是奇函数,其图象关于原点对称,于是得m=2,不等式(a+1)m>(3−2a)m化为:(a+1)2>(3−2a)2,即(3a−2)(a−4)<0,解得:23<a<4,所以实数a的取值范围为(23,4).所以答案是:(23,4)14、若幂函数y=f(x)的图像经过点(18,2),则f(−18)的值为_________.答案:−2分析:根据已知求出幂函数的解析式f(x)=x−13,再求出f(−18)的值得解.设幂函数的解析式为f(x)=x a ,由题得2=(18)a =2−3a ,∴−3a =1,∴a =−13,∴f(x)=x −13.所以f(−18)=(−18)−13=(−12)3×(−13)=−2.所以答案是:−2.小提示:本题主要考查幂函数的解析式的求法和函数值的求法,意在考查学生对这些知识的理解掌握水平. 解答题15、美国对中国芯片的技术封锁激发了中国“芯”的研究热潮.某公司研发的A ,B 两种芯片都已经获得成功.该公司研发芯片已经耗费资金2千万元,现在准备投入资金进行生产.经市场调查与预测,生产A 芯片的毛收入与投入的资金成正比,已知每投入1千万元,公司获得毛收入0.25千万元;生产B 芯片的毛收入y (千万元)与投入的资金x (千万元)的函数关系为y =kx a (x >0),其图像如图所示.(1)试分别求出生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式;(2)现在公司准备投入40千万元资金同时生产A ,B 两种芯片,求可以获得的最大利润是多少.答案:(1)生产A ,B 两种芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式分别为y =0.25x ,y =√x (x >0),(2)9千万元分析:(1)根据待定系数法可求出函数解析式,(2)将实际问题转换成二次函数求最值的问题即可求解解:(1)因为生产A 芯片的毛收入与投入的资金成正比,所以设y =mx (m >0),因为当x =1时,y =0.25,所以m =0.25,所以y =0.25x ,即生产A 芯片的毛收入y (千万元)与投入资金x (千万元)的函数关系式为y =0.25x ,对于生产B 芯片的,因为函数y =kx a (x >0)图像过点(1,1),(4,2),所以{1=k k⋅4a=2,解得{k=1a=12,所以y=x12,即生产B芯片的毛收入y(千万元)与投入的资金x(千万元)的函数关系为y=√x(x>0),(2)设投入x千万元生产B芯片,则投入(40−x)千万元生产A芯片,则公司所获利用f(x)=0.25(40−x)+√x−2=−14(√x−2)2+9,所以当√x=2,即x=4千万元时,公司所获利润最大,最大利润为9千万元。
高中数学必修一第三章函数的概念与性质考点专题训练(带答案)
高中数学必修一第三章函数的概念与性质考点专题训练单选题1、函数f(x)=log 2x −1x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项. f (1)=0−1=−1<0,f (2)=1−12=12>0,且函数f (x )=log 2x −1x 的定义域是(0,+∞),定义域内y =log 2x 是增函数,y =−1x 也是增函数,所以f (x )是增函数,且f (1)f (2)<0,所以函数f(x)=log 2x −1x 的零点所在的区间为(1,2). 故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断. 2、函数y =√2x +4x−1的定义域为( )A .[0,1)B .(1,+∞)C .(0,1)∪(1,+∞)D .[0,1)∪(1,+∞) 答案:D分析:由题意列不等式组求解由题意得{2x ≥0x −1≠0,解得x ≥0且x ≠1,故选:D3、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( ) A .1B .2C .3D .4 答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y=x a形式,故y=x3,y=x满足条件,共2个故选:B,则f(x)()4、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),因为函数f(x)=x3−1x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,=x−3在(0,+∞)上单调递减,在(−∞,0)上单调递减,而y=1x3在(0,+∞)上单调递增,在(−∞,0)上单调递增.所以函数f(x)=x3−1x3故选:A.小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题.5、下列函数为奇函数的是()A.y=x2B.y=x3C.y=|x|D.y=√x答案:B分析:根据奇偶函数的定义判断即可;解:对于A:y=f(x)=x2定义域为R,且f(−x)=(−x)2=x2=f(x),所以y=x2为偶函数,故A错误;对于B:y=g(x)=x3定义域为R,且g(−x)=(−x)3=−x3=−g(x),所以y=x3为奇函数,故B正确;对于C:y=ℎ(x)=|x|定义域为R,且ℎ(−x)=|−x|=|x|=ℎ(x),所以y=|x|为偶函数,故C错误;对于D:y=√x定义域为[0,+∞),定义域不关于原点对称,故y=√x为非奇非偶函数,故D错误;故选:B6、已知幂函数y=f(x)的图象过点P(2,4),则f(3)=()A.2B.3C.8D.9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=xα,则2α=4,得α=2,所以f(x)=x2,所以f(3)=32=9,故选:D7、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.8、已知f(x)是一次函数,且f(x−1)=3x−5,则f(x)=()A.3x−2B.2x+3C.3x+2D.2x−3答案:A分析:设一次函数y=ax+b(a≠0),代入已知式,由恒等式知识求解.设一次函数y=ax+b(a≠0),则f(x−1)=a(x−1)+b=ax−a+b,由f(x−1)=3x−5得ax−a+b=3x−5,即{a=3b−a=−5,解得{a=3b=−2,∴f(x)=3x−2.故选:A.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误;设D 的坐标为(t,0),由题得△AOB ∽△CBD ,则有1220=128−20t−20,解可得t =200,所以选项C 正确;当x =128时,y =216,所以y 的最大值是216.所以选项D 正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟, 一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、已知函数f(x)={−x,x <0x 2,x >0,则有( )A .存在x 0>0,使得f (x 0)=−x 0B .存在x 0<0,使得f (x 0)=x 02C .函数f (−x )与f(x)的单调区间和单调性相同D .若f (x 1)=f (x 2)且x 1≠x 2,则x 1+x 2≤0 答案:BC分析:根据函数解析式,分别解AB 选项对应的方程,即可判定A 错,B 正确;求出f (−x )的解析式,判定f (−x )与f(x)的单调区间与单调性,即可得出C 正确;利用特殊值法,即可判断D 错.因为f(x)={−x,x <0x 2,x >0,当x 0>0时,f(x 0)=x 02,由f (x 0)=−x 0可得x 02=−x 0,解得x 0=0或−1,显然都不满足x 0>0,故A错;当x 0<0时,f(x 0)=−x 0,由f (x 0)=x 02可得−x 0=x 02,解得x 0=0或−1,显然x 0=−1满足x 0<0,故B 正确;当x <0时,f(x)=−x 显然单调递减,即f(x)的减区间为(−∞,0);当x >0时,f(x)=x 2显然单调递增,即f(x)的增区间为(0,+∞);又f(−x)={x,−x <0x 2,−x >0 ={x,x >0x 2,x <0 ,因此f (−x )在(−∞,0)上单调递减,在(0,+∞)上单调递增;即函数f (−x )与f(x)的单调区间和单调性相同,故C 正确;D 选项,若不妨令x 1<x 2,f (x 1)=f (x 2)=14,则x 1=−14,x 2=12,此时x 1+x 2=14>0,故D 错; 故选:BC.小提示:关键点点睛:求解本题的关键在于根据解析式判定分段函数的性质,利用分段函数的性质,结合选项即可得解.11、已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )<0,f (2)=−1,则下列说法正确的是( ) A .f (1)=0B .函数f (x )在(0,+∞)上是减函数C .f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022)=2022 D .不等式f (1x )−f (x −3)≥2的解集为[4,+∞) 答案:ABD分析:利用赋值法求得f (1)=0,判断A ;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用f (xy )=f (x )+f (y ),可求得C 中式子的值,判断C ;求出f (14)=f (12)+f (12)=2,将f (1x )−f (x −3)≥2转化为f (1x )+f (1x−3)≥f (14),即可解不等式组求出其解集,判断D. 对于A ,令x =y =1 ,得f (1)=f (1)+f (1)=2f (1),所以f (1)=0,故A 正确;对于B ,令y =1x >0,得f (1)=f (x )+f (1x )=0,所以f (1x )=−f (x ), 任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)−f (x 1)=f (x 2)+f (1x 1)=f (x2x 1),因为x 2x 1>1,所以f (x2x1)<0,所以f (x 2)<f (x 1),所以f (x )在(0,+∞)上是减函数,故B 正确;对于C ,f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022) =f (12022×2022)+f (12021×2021)+⋅⋅⋅+f (13×3)+f (12×2)=f (1)+f (1)+⋅⋅⋅+f (1)+f (1)=0,故C 错误;对于D ,因为f (2)=−1,且f (1x )=−f (x ),所以f (12)=−f (2)=1,所以f (14)=f (12)+f (12)=2,所以f (1x )−f (x −3)≥2等价于f (1x )+f (1x−3)≥f (14), 又f (x )在(0,+∞)上是减函数,且f (xy )=f (x )+f (y ),所以{ 1x (x−3)≤141x>01x−3>0 , 解得x ≥4,故D 正确, 故选:ABD . 填空题12、为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为W =f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.答案:①②③分析:根据定义逐一判断,即可得到结果−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;所以答案是:①②③小提示:本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.13、已知函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,则函数g(x)=f(x)+2x在[−2,2]上的最小值为______.答案:-6分析:先利用题意能得到f(−x)=f(x)和2m+m+3=0,解得n=0和m=−1,代入f(x)中,再代入g(x),再结合二次函数的性质求最小值因为函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,故{f(−x)=f(x)2m+m+3=0,即{mx2−nx+2=mx2+nx+2m=−1,则{2nx=0m=−1解得{n=0m=−1,所以g(x)=f(x)+2x=−x2+2x+2=3−(x−1)2,x∈[−2,2],所以g(−2)=−(−2)2+2×(−2)+2=−6,g(2)=−22+2×2+2=2,则g(x)min=−6,所以答案是:-614、已知y=f(x)是定义在区间(-2,2)上单调递减的函数,若f(m-1)>f(1-2m),则m的取值范围是_______.答案:(−12,23)分析:结合函数定义域和函数的单调性列不等式求解即可.由题意得:{-2<m-1<2,-2<1-2m<2,m-1<1-2m,解得−12<m<23.所以答案是:(−12,23)解答题15、已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=−x2+2x.(1)求x<0时,函数f(x)的解析式;(2)若函数f(x)在区间[−1,a−2]上单调递增,求实数a的取值范围.(3)解不等式f(x)≥x+2.答案:(1)f(x)=x2+2x;(2)(1,3];(3)(−∞,−2]分析:(1)设x<0,计算f(−x),再根据奇函数的性质f(x)=−f(−x),即可得对应解析式;(2)作出函数f(x)的图像,利用数形结合思想,列出关于a的不等式组求解;(3)由(1)知分段函数f(x)的解析式,分类讨论解不等式再取并集即可.(1)设x<0,则−x>0,所以f(−x)=−(−x)2+2(−x)=−x2−2x又f(x)为奇函数,所以f(x)=−f(−x),所以当x<0时,f(x)=x2+2x,(2)作出函数f(x)的图像,如图所示:要使f(x)在[−1,a −2]上单调递增,结合f(x)的图象知{a −2>−1a −2≤1,所以1<a ≤3,所以a 的取值范围是(1,3].(3)由(1)知f(x)={−x 2+2x,x ≥0x 2+2x,x <0,解不等式f(x)≥x +2,等价于{x ≥0−x 2+2x ≥x +2 或{x <0x 2+2x ≥x +2 ,解得:∅或x ≤−2 综上可知,不等式的解集为(−∞,−2]小提示:易错点睛:本题考查利用函数奇偶性求解分段函数解析式、根据函数在区间内的单调性求解参数范围的问题,易错点是忽略区间两个端点之间的大小关系,造成取值范围缺少下限,属于基础题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一函数试题
一、选择题: 1
、若()f x =
(3)f = ( )
A 、2
B 、4 C
、 D 、10 2、对于函数()y f x =,以下说法正确的有 ( )
①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
A 、1个
B 、2个
C 、3个
D 、4个 3、下列各组函数是同一函数的是( )
①()f x =
与()g x =;②()f x x =
与2
()g x =;③0
()f x x =与0
1()g x x =
;④2
()21f x x x =--与2
()21g t t t =--。
A 、①②
B 、①③
C 、③④
D 、①④
4、二次函数2
45y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( ) A 、7- B 、1 C 、17 D 、25 5
、函数y =的值域为 ( )
A 、[]0,2
B 、[]0,4
C 、(],4-∞
D 、[)0,+∞ 6、下列四个图像中,是函数图像的是 ( )
A 、(1)
B 、(1)、(3)、(4)
C 、(1)、(2)、(3)
D 、(3)、(4) 7、)(x f 是定义在R 上的奇函数,下列结论中,不正确...
的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C 、()()0f x f x -g ≤ D 、
()
1()
f x f x =-- 8、如果函数2
()2(1)2f x x a x =+-+在区间(],4-∞上是减少的,那么实数a 的取值范围是( ) A 、3a -≤ B 、3a -≥ C 、a ≤5 D 、a ≥5 9、设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )
(1)
(2)
(3)
(4)
A 、12a >
B 、12a <
C 、12a ≥
D 、12
a ≤ 10、下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )
(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
A 、(1)(2)(4)
B 、(4)(2)(3)
C 、(4)(1)(3)
D 、(4)(1)(2) 二、填空题:
11、已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = 。
12、将二次函数2
2y x =-的顶点移到(3,2)-后,得到的函数的解析式为 。
13、已知()y f x =在定义域(1,1)-上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 。
14、设2
2 (1)() (12)2 (2)x x f x x x x x +-⎧⎪=-<<⎨⎪⎩
≤≥,若()3f x =,则x = 。
15.设有两个命题:①关于x 的方程9(4)340x x
a ++⋅+=有解;②函数22()log a a f x x -=是减函数。
当①
与②至少有一个真命题时,实数a 的取值范围是__
16方程0422
=+-ax x 的两根均大于1,则实数a 的取值范围是_____。
三、解答题:
17、证明:函数2
()1f x x =+是偶函数,且在[)0,+∞上是增加的。
18、对于二次函数2
483y x x =-+-,
(1)指出图像的开口方向、对称轴方程、顶点坐标;
(2)画出它的图像,并说明其图像由2
4y x =-的图像经过怎样平移得来; (3)求函数的最大值或最小值; (4)分析函数的单调性。
19、设函数)(x f y =是定义在R +
上的减函数,并且满足)()()(y f x f xy f +=,131=⎪⎭
⎫ ⎝⎛f ,
(1)求)1(f 的值, (2)如果2)2()(<-+x f x f ,求x 的取值范围。
(1) (2) (3)
(4)
答案
一、选择题:
ABC DAB DABD
二、填空题:
11、24 12'2
2
2(3)221216y x x x =-++=---
13、2
03
a << 14
15、(]11,8,0,122⎛⎫⎛⎫-∞-- ⎪ ⎪⎝⎭⎝⎭
U U 16、52,2⎡⎫
⎪⎢⎣⎭
三、解答题:
17、略
18、(1)开口向下;对称轴为1x =;顶点坐标为(1,1);
(2)其图像由2
4y x =-的图像向右平移一个单位,再向上平移一个单位得到; (3)函数的最大值为1;
(4)函数在(,1)-∞上是增加的,在(1,)+∞上是减少的。
19、解:(1)令1==y x ,则)1()1()1(f f f +=,∴0)1(=f (2)∵131=⎪⎭⎫ ⎝⎛f ∴23131)3
131(91=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⨯=⎪⎭
⎫ ⎝⎛f f f f
∴()()[]⎪⎭
⎫ ⎝⎛<-=-+91)2(2f x x f x f x f ,又由)(x f y =是定义在R +
上的减函数,得:
()⎪⎪⎩
⎪⎪⎨⎧
>->>-0
209
12x x x x 解之得:⎪⎪⎭⎫ ⎝⎛+-∈3221,3221x 。