苏教版五年级上学期数学概念汇总
(完整版)苏教版书数学五年级上册知识点归纳
五年级(上册)数学知识要点第一单元:负数的初步认识1、像+4、19、+8844.48这样的数都是正数,正数都大于0.像-4、-11、-7这样的数都是负数,负数都小于0。
正数一定大于负数。
2、0是正数和负数的分界线,因此0即不是正数也不是负数.3、日常生活中的一组相反的量中,如果一个用正数表示,那么另一个可用负数表示;如:盈亏,收支,方向,增减等,盈利用正数表示,则亏本用负数表示;收入用正数表示,则支出用负数表示;增加用正数表示,则减少用负数表示……4、两个正数或两个负数相差多少,只要去掉正号或负号后用大数减去小数;一个正数和一个负数相差多少,只要去掉正号和负号后把两个数相加。
第二单元:多边形的面积1.长度单位:毫米(mm)厘米(cm)分米(dm)米(m)千米(km)1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米2.面积单位:测量和计算土地面积,通常用公顷作单位。
边长是100米的正方形土地,面积是1公顷(ha)。
测量和计算大面积土地,通常用平方千米作单位。
边长是1000米的正方形土地,面积是1平方千米(k )。
平方厘米(cm2)平方分米(dm2)平方米(m2)公顷(ha)平方千米(km2)1平方千米 = 100公顷 = 1000000平方米1公顷 = 10000平方米 1平方米=100平方分米1平方分米 = 100平方厘米 1平方厘米=100平方毫米3。
重量单位:克(g)千克(kg)吨(t)1吨 = 1000千克 1千克 = 1000克4。
容积单位:毫升(ml)升(L)1升 = 1000毫升5、(1)平行四边形的面积 = 底×高 S = a h平行四边形的底=平行四边形的面积÷高平行四边形的高=平行四边形的面积÷底(2)三角形的面积 = 底×高÷2 S = a h÷ 2三角形的底=面积×2÷高三角形的高=面积×2÷底(3)梯形的面积 = (上底+ 下底)×高÷2 S = (a + b ) h ÷2梯形的高 = 梯形的面积×2÷(上底+ 下底)6、(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形。
苏教版五年级数学上册知识点汇总(经典)
五年级上册(数学)知识要点第一单元认识负数一、知识点:1.零上4摄氏度记作+4℃;零下4摄氏度记作-4℃;“+4”读作正四,“-4”读作负四。
+4也可以写成4。
2.像+4、19、+8844这样的数都是正数;像-4、-11、-7这样的数都是负数。
3.0即不是正数也不是负数,正数都大于0,负数都小于0。
4.具有相反意义的量我们可以分别用正数和负数来表示。
有些是约定俗成的,比如:盈利为正,亏损为负;上升为正,下降为负;零上为正,零下为负;海平面以上为正,海平面以下为负……—有些是相对的,比如:如果向东为正,那么向西就为负……5.在日常生活中,我们经常会先定一个基准,然后用正数和负数分别表示高于或低于基准的那一部分。
比如:把某次考试成绩90分作为基准,超过的分数用正数表示,不足的分数用负数表示……第二单元多边形面积的计算一、知识点:1.面积计算公式一个平行四边形能分割成两个完全相同的梯形;两个完全相同的梯形可能拼成一个平行四边形。
两个不同....的梯形也可能拼成一个平行四边形。
等底等高的三角形的面积一定相等,形状不一定相同。
等底等高的平行四边形的面积相等,周长不等;等底等高的三角形的面积相等,周长不等;一个三角形的面积是与它等底等高的平行四边形面积的一半。
3.如果一个三角形和一个平行四边形的面积相等,底也相等,那么三角形的高是平行四边形的高的2倍;如果一个三角形和一个平行四边形的面积相等,高也相等,那么三角形的底是平行四边形的底的2倍;4.把一个长方形框拉成..平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大。
(5.把一个平行四边形拼成..长方形,面积不变,宽变小了,周长也变小。
6.要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边形的底,这样剪去才能最大。
7.面积计算的步骤:(1)看清图形;(2)用对公式;(3)细心计算;(4)注意单位。
完整版)苏教版五年级数学上册知识点归纳总结
完整版)苏教版五年级数学上册知识点归纳总结五年级数学上册知识点总结一、负数的初步认识在数学中,像+20、+8848、+3260这样的数都是正数,而像-20、-155、-422这样的数都是负数。
0是正数和负数的分界线。
我们可以用正负数来表示生活中具有相反意义的量,比如零℃以上和零℃以下、海平面以上和海平面以下等等。
同时,我们可以通过数轴初步认识负数,右边的数都是正数,左边的数都是负数,-2和2到的距离相等,正数都大于,负数都小于。
二、多边形的面积1.平行四边形的面积我们可以通过沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,将平行四边形转化成长方形。
通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高。
因此,平行四边形的面积公式为:S=a×h,其中a和h分别表示平行四边形的底和高。
我们还可以通过拉伸和平移来改变平行四边形的面积,把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;把平行四边形框拉成长方形,周长不变,高变大了,面积也变大。
同时,等底等高的两平行四边形面积一定相等,但面积相等的两个平行四边形形状不一定相同。
2.三角形的面积我们可以用两个完全相同的三角形拼成一个平行四边形,三角形的面积等于拼成的平行四边形的一半。
观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同。
因此,三角形的面积公式为:S=a×h÷2,其中a和h分别表示三角形的底和高。
等底等高的两三角形面积一定相等,但面积相等的两个三角形形状不一定相同。
同时,一个平行四边形能分割成两个完全相同的三角形,两个完全相同的三角形能拼成一个平行四边形。
等底等高的三角形面积是平行四边形面积的一半。
等面积、等底(高)的三角形和平行四边形具有相同的面积,其中三角形的高(底)是平行四边形的2倍。
梯形的面积可以通过拼成的平行四边形面积的一半来求得。
苏教版五年级数学知识点总结
苏教版五年级数学知识点总结一、数的认识与应用1. 数的认识与数的读法- 了解整数的概念,正数、负数的定义及相互关系- 掌握数码读法和数词读法,能熟练读写整数、小数和分数- 熟悉百、十、个位的读法和表示方法- 能将数按大小顺序排列- 能够在数线上表示数的位置2. 数中的奇偶性- 理解奇数和偶数的概念- 能判断一个数是奇数还是偶数3. 数的性质- 了解数的相反数和绝对值的概念- 能够判断数的大小关系- 理解数的分数形式和小数形式的相互转化- 能够对数进行估算和近似4. 数的应用- 能将数应用到日常生活中,如身高、体重等的测量二、小数1. 小数的定义与认识- 理解小数的概念,了解小数的意义- 会读写小数,熟悉小数点的位置和使用方法2. 小数的比较与排序- 掌握小数的大小比较方法- 能够将一组小数按大小排序3. 小数的加减运算- 掌握小数的加减法运算方法- 能够进行简单的小数加减法运算4. 小数的乘除运算- 理解小数的乘法运算- 熟悉小数的乘法运算规则- 了解小数的除法运算,能够进行小数的除法运算5. 小数与百分数之间的转化- 掌握小数与百分数之间的转化方法- 能够将小数转化为百分数,或将百分数转化为小数6. 学会使用小数进行实际问题解答- 能够运用小数解决生活中的实际问题三、分数1. 分数的认识- 理解分数的含义,了解分数的意义和表示方法- 能够将物体的部分与整体、图形的部分与整体用分数表示2. 分数的简化与扩展- 掌握分数的简化和扩展方法- 能够将一个分数化为最简形式,或将最简分数扩展为相等的分数3. 分数的比较与排序- 掌握分数的大小比较方法- 能够将一组分数按大小排序4. 分数的加法与减法- 掌握分数的加减法运算方法- 能够进行简单的分数加减法运算5. 分数的乘法与除法- 理解分数的乘法运算- 熟悉分数的乘法运算规则- 了解分数的除法运算,能够进行分数的除法运算6. 学会使用分数进行实际问题解答- 能够运用分数解决生活中的实际问题四、整数1. 整数的认识与应用- 理解整数的概念和意义- 能够在数线上表示整数的位置- 掌握整数的读法和书写方法2. 整数间的加法与减法运算- 理解整数的加法和减法运算规则,掌握运算法则- 能够进行整数的加减法运算,包括正数相加、负数相加、正数相减、负数相减等情况3. 整数的乘法与除法运算- 掌握整数的乘法和除法运算规则- 能够进行整数的乘除法运算,包括正数相乘、负数相乘、正数相除、负数相除等情况4. 整数的应用- 能够将整数应用到生活中的实际问题中,如温度变化、海拔高度等五、图形的认识与应用1. 图形与常见物体形状的关系- 理解图形与物体形状之间的对应关系,能够根据图形名称画出相应形状2. 直角、直线- 了解直角和直线的概念,能够根据题意画出具有直角的图形- 能够根据给定直线段的长度判断两点间是否垂直或平行3. 角的认识与度量- 了解角的概念,掌握角的命名和记号方法- 能够判断角的大小,如锐角、直角、钝角4. 三角形- 了解三角形的概念,掌握三角形的分类和命名方法- 能够根据给定条件画出特殊的三角形,如等边三角形、等腰三角形和直角三角形等5. 四边形- 了解四边形的概念,掌握四边形的分类和命名方法- 能够根据给定条件画出特殊的四边形,如矩形、正方形、菱形和平行四边形等6. 园的认识与运用- 了解圆的概念,掌握圆的性质和命名方法- 能够计算圆的面积和周长7. 体的认识与应用- 了解各种常见的几何体,如立方体、长方体、球体等- 掌握这些几何体的性质、面积和体积的计算方法。
五年级上册数学苏教版知识点归纳
五年级上册数学苏教版知识点归纳五年级数学上册知识点:第一单元《小数乘法》知识点、第二单元《小数除法》知识点、第三单元《观察物体》知识点、第四单元《简易方程》知识点、第五单元《多边形面积》知识点、第六单元《统计与可能性》知识点第一单元《小数乘法》知识点一、小数乘坐整数 (利用因数的变化引发内积的变化规律去排序小数乘法)知识点一:1、排序小数乘法先把小数点对齐,再把相同数位上的数相乘2、计算小数乘法末尾对齐,按整数乘法法则进行计算。
知识点二:积中小数末尾有0的乘法。
先计算出小数乘整数的乘积后,积的小数末尾出现0 ,要再根据小数的性质去掉小数末尾的0。
如:3.60 “0” 应划去知识点三:如果乘得的积的小数位数不够要在前面用0补足,再点上小数点。
如0.02×2=0.04知识点四:计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数的末尾对齐。
思索:小数乘整数与整数乘整数有什么不同?1、小数乘坐整数中存有一个因数就是小数,所以内积一般来说也就是小数。
2 小数乘法中积的小暑部分末尾如有0可以根据小数的基本性质去掉小数末尾的0而整数乘法中是不能去掉的。
二、小数乘坐小数知识点一:因数与内积的小数位数的关系:因数中共存有几位小数,内积中就存有几位小数。
知识点二:小数乘法的通常计算方法:先按整数乘法算出积,再给积点上小数点(看因数中一共有几位小数,就从积的右边起输出几位,点上小数点。
)乘得的积的小数位数不够要在积的前面用0补足,在点小数点。
知识点三:小数乘法的验算方法1、把因数的`边线互换相加2、用计算器来验算三、内积的对数数知识点一:先算出积,然后看要留存数位的之下一位,再按四舍五入法求出来结果,用约等号则表示。
知识点二:如果求出的对数数所求数位的数字就是9而后一位数字又大于5须要入1,这就是就要依次进一用0转义。
如6. 留存两位为6.60四、连乘、乘加、乘减知识点一:小数乘法要按照从左到右的顺序计算知识点二:小数的乘加运算与整数的乘加运算顺序相同。
(完整版)苏教版五年级数学上册知识点归纳总结
苏教版五年级数学上册知识点总结(一)负数的初步认识负数的初步认识(一)正负数及零的意义:像+20,+8848,+3260 这样的数都是正数(正数前面的“+”可以省略不写),像-20,-155,-422 这样的数都是负数。
0 是正数和负数的分界线,0 既不是正数也不是负数。
负数的初步认识(二)1.生活中具有相反意义的数量:像零℃以上与零℃以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示。
2.初步认识数轴:(1)0右边的数都是正数,0左边的数都是负数。
(2)-2和2到0的距离相等。
(3)正数都大于0,负数都小于0。
(二)多边形的面积平行四边形的面积1.公式推导:沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形。
通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高。
通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h。
2.平行四边形拉伸和平移问题:(1)把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大。
(2)把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小。
3.两平行四边形之间的关系:等底等高的两平行四边形面积一定相等,但面积相等的两个平行四边形形状不一定相同;三角形的面积:1.公式推导:用两个完全相同的三角形,可以拼成一个平行四边形。
三角形的面积等于拼成的平行四边形的一半。
观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同。
通过平行四边形的面积公式,可以推导出三角形的面积公式。
如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2。
【新】苏教版五年级上册数学重点知识归纳总结(精华版)
【新】苏教版五年级上册数学重点知识归纳总结(精华版)(新)苏教版五年级上册数学知识点总结第一单元负数的初步认识1、正数都大于,负数都小于。
2、既不是正数,也不是负数,它是正数和负数的分界点。
3、正数、负数的读写方法:(1)写正数时,加“+”或省略“+”两种形式都可以,但是读正数时,加“+”的一定要读出“正”字,省略“+”的“正”字也要省略不读。
(2)写负数时,一定要写出“-”,读负数时,也一定要读出“负”字。
4、在数轴上,以“”为分界点,的左边是负数,的右边是正数,越往左边的负数越小,越往右边的正数越大。
左边的数都比右边的数小。
5、在生活中,正数和负数常常用来表示具有相反意义的量。
如:零上温度(+),零下温度(-);南(+),北(-);海平面以上(+),海平面以下(-);盈利(+),亏损(-);收入(+),支出(-);上升(+),下降(-)。
6、求一个正数与一个负数相差多少,可以先把正数和负数前面的正号和负号去掉,再把两个数相加,和是多少,这两个数就相差多少。
7、求两个正数之间相差多少,可以用大的数减去小的数,差是多少,这两个数就相差多少。
8、求两个负数之间相差多少,可以先把负数的负号去掉,再用大的数减去小的数,差是多少,这两个数就相差多少。
第二单位多边形的面积1、平行四边形面积的计算及推导公式平行四边形的面积=底×高平行四边形的底=面积÷高用字母表示为:S=a×h平行四边形的高=面积÷底2、三角形面积的计算及推导公式三角形的面积=底×高÷2三角形的底=面积×2÷高用字母表示为:S=a×h÷2三角形的高=面积×2÷底3、三角形的面积是与它等底等高的平行四边形面积的一半,平行四边形的面积是与它等底等高的三角形面积的2倍。
三角形与平行四边形的面积相等,高也相等时,平行四边形的底是三角形的一半(三角形的底是平行四边形底的2倍)。
苏教版五年级上册数学知识点整理
苏教版五年级上册数学知识点整理1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
1.5×1.8就是求1.5的1.8倍是多少。
计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。
注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。
4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分。
保留一位小数,表示计算到角。
6、(P11)小数四则运算顺序跟整数是一样的。
7、运算定律和性质:加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。
如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。
苏教版五年级数学上册知识点归纳
五年级(上册)数学知识要点第一单元:负数的初步认识1、像+4、19、+这样的数都是正数,正数都大于0。
像-4、-11、-7这样的数都是负数,负数都小于0。
正数一定大于负数。
2、0是正数和负数的分界线,因此0即不是正数也不是负数。
3、日常生活中的一组相反的量中,如果一个用正数表示,那么另一个可用负数表示;如:盈亏,收支,方向,增减等,盈利用正数表示,则亏本用负数表示;收入用正数表示,则支出用负数表示;增加用正数表示,则减少用负数表示……易错题型:【1】如果小东向北走50米记作+50米,那么-60米表示他向()走了()米。
【2】甲,乙两个冷库,甲冷库的温度是—9℃,乙冷库的温度是—12℃。
()冷库温度高一些。
【3】一瓶橙汁饮料的“净含量是500±5克”。
那么这瓶饮料的净含量在()克— ( )克之间。
【4】海拔—200米和海拔+100米相差()米。
【5】在一次数学测试中,五(1)班的平均分是95分。
如果把高于平均分的部分记为正数,低于平均分的部分记作负数,那么乐乐得了98分,应记作()分;聪聪得了90分,应记作()分。
第二单元:多边形的面积1.长度单位:毫米(mm)厘米(cm)分米(dm)米(m)千米(km)1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米2.面积单位:测量和计算土地面积,通常用公顷作单位。
边长是100米的正方形土地,面积是1公顷。
测量和计算大面积土地,通常用平方千米作单位。
边长是1000米的正方形土地,面积是1平方千米。
平方厘米(cm2)平方分米(dm2)平方米(m2)公顷(ha)平方千米(km2)1平方千米 = 100公顷 = 1000000平方米1公顷 = 10000平方米 1平方米=100平方分米1平方分米 = 100平方厘米 1平方厘米=100平方毫米3.重量单位:克(g)千克(kg)吨(t)1吨 = 1000千克 1千克 = 1000克4.容积单位:毫升(ml)升(L)1升 = 1000毫升5、(1)平行四边形的面积 = 底×高 S = a× h平行四边形的底=平行四边形的面积÷高 a=S÷h平行四边形的高=平行四边形的面积÷底 h=S÷a(2)三角形的面积 = 底×高÷2 S = a ×h÷ 2三角形的底=面积×2÷高 a=S×2÷h三角形的高=面积×2÷底 h=S×2÷a(3)梯形的面积 = (上底+ 下底)×高÷2 S = (a + b ) × h ÷2梯形的高 = 梯形的面积×2÷(上底+ 下底)6、(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形。
苏教版五年级上册数学知识点汇总
苏教版五年级上册数学知识点汇总第一单元:负数的初步认识•认识负数:•理解负数的概念,知道负数表示比0小的数。
•能在数轴上表示正数、0和负数,理解它们之间的顺序关系。
•负数的加减法:•掌握负数加减法的计算方法,理解其算理。
•能用负数加减法解决简单的实际问题。
第二单元:多边形的面积•平行四边形的面积:•掌握平行四边形面积的计算公式(底×高),并能正确计算。
•理解平行四边形面积计算公式的推导过程。
•三角形的面积:•掌握三角形面积的计算公式(底×高÷2),并能正确计算。
•理解三角形面积计算公式的推导过程,以及不同底和高的选择对面积的影响。
•梯形的面积:•掌握梯形面积的计算公式(上底+下底)×高÷2,并能正确计算。
•理解梯形面积计算公式的推导过程。
•组合图形的面积:•学习将组合图形分割成基本图形来计算面积的方法。
•掌握利用平移、旋转等方法将复杂图形转化为简单图形来计算面积的技巧。
第三单元:小数的意义和性质•小数的意义:•理解小数的概念,知道小数表示的是十分之几、百分之几等。
•能将小数与分数进行互化。
•小数的性质:•掌握小数的性质(小数的末尾添上0或去掉0,小数的大小不变)。
•能利用小数的性质进行小数的化简和改写。
•小数的大小比较:•掌握小数的大小比较方法,能正确比较两个或多个小数的大小。
第四单元:小数加法和减法•小数加减法:•掌握小数加减法的计算方法,理解其算理。
•能正确进行小数加减法的笔算和简便计算。
•小数加减法的应用:•运用小数加减法解决简单的实际问题,如购物、测量等。
第五单元:小数乘法和除法•小数乘法:•掌握小数乘法的计算方法,理解其算理。
•能正确进行小数乘法的笔算和简便计算。
•小数除法:•掌握小数除法的计算方法,包括除数是整数和小数的情况。
•理解商的变化规律,能进行商的估算和验算。
•小数四则混合运算:•掌握小数四则混合运算的运算顺序,能正确进行小数四则混合运算。
(完整版)苏教版书数学五年级上册知识点归纳
五年级(上册)数学知识要点第一单元:负数的初步认识1、像+4、19、+8844.48这样的数都是正数,正数都大于0。
像-4、-11、-7这样的数都是负数,负数都小于0。
正数一定大于负数。
2、0是正数和负数的分界线,因此0即不是正数也不是负数。
3、日常生活中的一组相反的量中,如果一个用正数表示,那么另一个可用负数表示;如:盈亏,收支,方向,增减等,盈利用正数表示,则亏本用负数表示;收入用正数表示,则支出用负数表示;增加用正数表示,则减少用负数表示……4、两个正数或两个负数相差多少,只要去掉正号或负号后用大数减去小数;一个正数和一个负数相差多少,只要去掉正号和负号后把两个数相加。
第二单元:多边形的面积1.长度单位:毫米(mm)厘米(cm)分米(dm)米(m)千米(km)1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米2.面积单位:测量和计算土地面积,通常用公顷作单位。
边长是100米的正方形土地,面积是1公顷(ha)。
测量和计算大面积土地,通常用平方千米作单位。
边长是1000米的正方形土地,面积是1平方千米(k )。
平方厘米(cm2)平方分米(dm2)平方米(m2)公顷(ha)平方千米(km2)1平方千米 = 100公顷 = 1000000平方米1公顷 = 10000平方米 1平方米=100平方分米1平方分米 = 100平方厘米 1平方厘米=100平方毫米3.重量单位:克(g)千克(kg)吨(t)1吨 = 1000千克 1千克 = 1000克4.容积单位:毫升(ml)升(L)1升 = 1000毫升5、(1)平行四边形的面积 = 底×高 S = a h平行四边形的底=平行四边形的面积÷高平行四边形的高=平行四边形的面积÷底(2)三角形的面积 = 底×高÷2 S = a h÷ 2三角形的底=面积×2÷高三角形的高=面积×2÷底(3)梯形的面积 = (上底+ 下底)×高÷2 S = (a + b ) h ÷2梯形的高 = 梯形的面积×2÷(上底+ 下底)6、(1)一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形。
(全)苏教版五年级上册数学知识要点
(全)苏教版五年级上册数学知识要点苏教版五年级上册数学知识要点一、整数概念及其运算1. 整数的概念:整数是正整数、0和负整数的统称。
2. 整数的比较:比较整数的大小,可以利用数轴和大小关系符号进行比较。
3. 整数的绝对值:一个整数的绝对值是它到0的距离,表示为|a|,其中a为整数。
4. 整数的加法和减法:整数的加法是指将整数按照相对应的正负情况进行相加;整数的减法是将两个整数的相反数相加。
5. 整数的乘法和除法:整数的乘法是按照正、负数相乘的规则进行计算;整数的除法是按照正、负数相除的规则进行计算。
二、数的因子与倍数1. 因子的概念:一个数能够整除另一个数,则前者称为后者的因子。
2. 因数的判定:通过试除法可以确定一个数的因子。
3. 最大公因数与最小公倍数:最大公因数是指两个或多个数共同的因数中最大的一个;最小公倍数是指两个或多个数的公倍数中最小的一个。
三、小数的认识与计算1. 小数的概念:小数是整数与单位等分的部分共同诠释的一种数。
2. 十分位、百分位及千分位的理解:小数点后第一位、第二位和第三位数字的位置及相对应的意义。
3. 小数的读法和写法:小数的读法可以通过数的读法规则进行准确的表达,小数的写法通过小数点后的数字进行书写。
4. 小数与分数的关系:小数和分数可以互相转化,通过将小数转化为分数可以更直观地理解小数的大小。
四、面积和周长1. 平方米和平方厘米的认识和转化:平方米是面积的单位,平方厘米是面积的单位,两者之间可以通过相应的换算进行转化。
2. 长方形的面积和周长:计算长方形的面积可以通过长度与宽度的乘积得出,计算长方形的周长是指计算长方形四边的长度之和。
3. 正方形的面积和周长:正方形的面积是指正方形边长的平方,正方形的周长是指正方形四边的长度之和。
4. 三角形的面积:计算三角形的面积可以通过底边长度与高的乘积再除以2得出。
五、容积与质量1. 容积的认识与计算:容积是指物体所占的空间大小,可以通过测量物体的尺寸并进行相应计算得出。
(苏教版)小学五年级数学上册全册各单元重要知识点梳理详解汇总
(苏教版)小学五年级数学上册全册各单元重要知识点梳理详解汇总第一章负数的初步认识1.0既不是正数,也不是负数。
正数都大于0,负数都小于0。
2.在数轴上,以“0”为分界点,越往左边的负数越小,左边的数都比右边的数小。
3.在生活中,O作为正、负数的分界点,常常用来表示具有相反关系的量。
如零上温度(+)、零下温度(-);海平面以上(+)、海平面以下(-);盈利(+)、亏损(一);收入(+)、支出(一);南( +)、北(一);上升(+)、下降(—)……4.水沸腾时的温度是100℃,水结冰时的温度是0℃;-10℃比-5℃低5℃,6℃比-6℃高12℃。
第二章多边形的面积1.一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形。
2.一个平行四边形可以分割成两个完全相同的梯形;两个不同的梯形也可能拼成一个平行四边形。
如图:3.等底等高的平行四边形的面积相等,周长不等;等底等高的三角形的面积相等,周长不等;一个三角形的面积是与它等底等高的平行四边形面积的一半。
如下图:△ADE、△BDE、△BCE面积相等,都是平行四边形BDEC的一半;△AOD与△BOE的面积相等。
想想为什么?4.把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大。
5.把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小。
6.要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边形的底,这样剪去才能最大。
7.平行四边形的面积公式的推导(转化法:等积变形):沿平行四边形的任意一条高剪开,移动拼成长方形。
长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。
8.三角形的面积公式的推导:将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。
苏教版五年级上数学知识点pdf
一、四则运算
1、加法:
(1)计算不超过100的整数的和;
(2)计算两位数及以下的小数的和;
(3)正负数的和;
(4)式子中带有正负数的和;
(5)结合律:将加法运算中的加数计算结合为一组,再求和;
2、减法:
(1)计算不超过100的整数的差;
(2)计算两位数及以下的小数的差;
(3)正负数的差;
(4)式子中带有正负数的差;
(5)结合律:将加法运算中的减数计算结合为一组,再求差;
3、乘法:
(1)计算两位数以内的整数的乘积;
(2)计算小数乘以整数的乘积;
(3)正负数的乘积;
(4)式子中带有正负数的乘积;
(5)结合律:将乘法运算中的乘数结合为一组,再求乘积;
4、除法:
(1)计算两位数以内的整数的商;
(2)计算小数除以整数的商;
(3)正负数的除法;
(4)式子中带有正负数的商;
(5)结合律:将除法运算中的被除数结合为一组,再求商;
二、分数
1、概念:分数是一种在数学中表示分割整数的表达形式,常用来表示非整数量;
2、分数的比较:加法分数用大于、等于或小于符号表示大小关系,要比较两个分数大小,可以先求出两分数的分子和分母的商,然后比较;
3、分数的加减法:
(1)分子相加。
苏教版五年级数学上册全册知识点汇总
苏教版五年级数学上册知识手册学校________________班级________________姓名________________重点提示:在标准大气压下,冰水混合物的温度是0℃,水沸腾时的温度是100℃。
易错点:0是正数。
0既不是正数,也不是负数,是正数与负数的分界点易错题:上升一定用正数表示,下降一定用负数表示。
(√)错因分析:上升和5.正、负数的读法和写法。
(1)写正数时,加“+”或省略“+”两种形式都可以,但是读正数时,带“+”的一定要读出“正”字,省略“+”的“正”字也要省略不读;写负数时,一定要写出“-”,读时也一定要读出“负”字。
(2)0既不是正数,也不是负数。
二、用正、负数表示日常生活中具有相反意义的量1.用正、负数表示盈亏情况,一般用正数表示盈利,负数表示亏损。
2.用正、负数表示相反方向走的路程。
例:小明向东走40米,记作+40米;向西走40米,记作-40米。
3.通常,我们规定海平面的平均海拔高度为0米,比海平面高的用正数表示..............,.比海平面低的用负数表示........。
三、借助直线上的点比较正、负数的大小1.理解表示正、负数的直线。
(1)直线上标有表示0的点。
二多边形的面积一、平行四边形的面积1.运用转化法求图形的面积。
把不规则的图形通过切割、平移等方法转化成学过的规则的基本图形。
2.把平行四边形转化成长方形。
(1)通过观察可知:转化成的长方形的面积与平行四边形的面积相等;长方形的长等于.......重点提示:图形通过转化,其本身的大小是不变的。
知识巧记:图形转化真有趣,剪拼平移显神奇;平行四边形的底.......,.长方形的宽等于平行四边形............的高..。
(2)长方形的面积=长×宽↓↓↓平行四边形的面积=底×高(3)用字母表示平行四边形的面积公式。
用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,得S=a×h。
苏教版五年级数学上册(全册)知识点汇总
苏教版五年级数学上册(全册)知识点汇总第一章负数的初步认识1. 0 既不是正数,也不是负数。
正数都大于0,负数都小于0。
2. 在数轴上,以“0”为分界点,越往左边的负数越小,左边的数都比右边的数小。
3. 在生活中,0 作为正、负数的分界点,常常用来表示具有相反关系的量。
如零上温度(+)、零下温度(—);海平面以上(+)、海平面以下(—);盈利(+)、亏损(—);收入(+)、支出(—);南(+)、北(—);上升(+)、下降(—)……4. 水沸腾时的温度是100℃,水结冰时的温度是0℃;-10℃比-5℃低5℃,6℃比-6 ℃高12℃。
第二章多边形的面积1. 一个平行四边形能分割成两个完全相同的三角形;两个完全相同的三角形能拼成一个平行四边形。
2. 一个平行四边形可以分割成两个完全相同的梯形;两个不同的梯形也可能拼成一个平行四边形。
如图:3. 等底等高的平行四边形的面积相等,周长不等;等底等高的三角形的面积相等,周长不等;一个三角形的面积是与它等底等高的平行四边形面积的一半。
如下图:△ADE、△BDE、△BCE 面积相等,都是平行四边形BDEC 的一半;△AOD 与△BOE 的面积相等。
想想为什么?4. 把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大。
5. 把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小。
6. 要从梯形中剪去一个最大的平行四边形,那么应把梯形的上底作为平行四边形的底,这样剪去才能最大。
7. 平行四边形的面积公式的推导(转化法:等积变形):沿平行四边形的任意一条高剪开,移动拼成长方形。
长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。
8. 三角形的面积公式的推导:将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2 倍,每个三角形的面积是拼成的平行四边形面积的一半。
苏教版五年级数学上册知识点归纳总结
苏教版五年级数学上册知识点总结(一)负数的初步认识负数的初步认识(一)正负数及零的意义:像+20,+8848,+3260 这样的数都是正数(正数前面的“+”可以省略不写),像-20,-155,-422 这样的数都是负数。
0 是正数和负数的分界线,0 既不是正数也不是负数。
负数的初步认识(二)1.生活中具有相反意义的数量:像零℃以上与零℃以下,海平面以上和海平面以下,地面以上和地面以下,存入和取出,比赛的得分和失分,股价的上涨和下跌等等都是由相反意义的量,都可以用正负数来表示。
2.初步认识数轴:(1)0右边的数都是正数,0左边的数都是负数。
(2)-2和2到0的距离相等。
(3)正数都大于0,负数都小于0。
(二)多边形的面积平行四边形的面积1.公式推导:沿着平行四边形任意一条边上的高,将平行四边形分成两部分,再经过平移或者旋转,可以将平行四边形转化成长方形。
通过观察发现,长方形的长是原平行四边形的底,长方形的宽是原平行四边形的高。
通过长方形的面积公式,我们可以得到平行四边形的面积公式,如果用S表示平行四边形的面积,用a和h分别表示平行四边形的底和高,可以得到平行四边形的面积为:S=a×h。
2.平行四边形拉伸和平移问题:(1)把一个长方形框拉成平行四边形,周长不变,高变小,面积也变小;同理,把平行四边形框拉成长方形,周长不变,高变大了,面积也变大。
(2)把一个平行四边形拼成长方形,面积不变,宽变小了,周长也变小。
3.两平行四边形之间的关系:等底等高的两平行四边形面积一定相等,但面积相等的两个平行四边形形状不一定相同;三角形的面积:1.公式推导:用两个完全相同的三角形,可以拼成一个平行四边形。
三角形的面积等于拼成的平行四边形的一半。
观察可以发现,平行四边形的底和三角形的底相同,平行四边形的高和三角形的高相同。
通过平行四边形的面积公式,可以推导出三角形的面积公式。
如果S表示三角形的面积,用a和h分别表示三角形的底和高,三角形的面积公式为:S=a×h÷2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级第一学期数学概念综合第一单元认识负数、面积是多少1、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
在数轴上,以“0”为分界点,越往左边的负数越小,左边的数都比右边的小。
举例:-234<-1<0<+12、在生活中,常把0作为正负数的分界,呈相反关系的量用正负数表示:比如零上温度(+)、零下温度(—);海平面以上(+)、海平面以下(其中海平面高度为0),(—);盈利(+)、亏损(—);收入(+)、支出(—);东北(+)、西南(—)……,所以说:正负数是一对相反的数。
2、在数不规则图形的面积时不满一格的看作半格。
先数满格,再数半格。
不规则图形的面积=满格数+半格数÷23、毕克公式(通过数格点来计算由边线是线段围成封闭的不规则图形的面积)=N+L÷2-1(N表示图形内的格点数,L表示图形四周边上的格点数)第二单元多边形面积的计算1、长方形的周长=(长+宽)×2 长方形的面积=长×宽=底×高正方形的周长=边长×4 正方形的面积=边长×边长长方形的长可以看作“底”,宽可以看作“高”。
2、分割思想:把一个复杂图形分割成几个简单的图形。
(认识,可以不读)转化思想:把一个不规则图形通过分割、平移等方法转化成一个规则图形(前后图形的形状变了,但前后图形的面积不变,也叫做“等积变形”)转化思想在图形面积中运用非常广泛。
(认识,可以不读)3、沿着平行四边形的任意一条高剪开,然后通过移动拼成(转化成)一个长方形。
长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。
长方形的面积和拼成的平行四边形的面积相等(等积变形),因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
4、等底等高的长方形和平行四边形的面积一定相等5、形状不同的平行四边形的面积可能相等,也可能不相等。
关键是看“底×高”后的乘积是否相等。
如果是同一个数的两个相对应的因数做底和高,面积就一定相等。
比如12的因数有:1、2、3、4、6、12,则底×高=1×12=12×1=2×6=6×2=3×4=4×3,可以有6种形状不同而面积相等的平行四边形。
6、把长方形方框拉成平行四边形,周长不变,但高变小了,所以面积变小了;同理,长方形,周长不变,高变大了,7、将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。
因为平行四边形的面积等于底×高,所以三角形的面积等于底×高÷2。
用字母表示S=a×h÷2。
8、等底等高的两个三角形的面积一定相等,但形状不同。
因此面积相等的两个三角形不一定能拼成一个平行四边形图形(要抓住“完全一样”的关键词)面积相等的三角形也不一定是等底等高。
(如一个三角形的底是3,高是2,另一个三角形的底是2,高是3,它们虽然不等底等高,但面积相等。
9、与平行四边形等底等高的三角形的面积是这个平行四边形面积的一半。
反过来,与三角形等底等高的平行四边形的面积是三角形面积的2倍。
10、两个完全相同的三角形才能拼成一个平行四边形,因此计算时一定不能忘记“除以2”。
11、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。
(课本第18页第10题)可以在上下(或左右)两条平行线之间画无数个面积最大的三角形。
12、将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。
因为平行四边形的面积=底×高,所以梯形的面积=(上底+下底)×高÷2字母表示S=(a+b)×h÷2. 梯形可以剪出两个完全一样的平行四边形,但不能说梯形的面积就一定是平行四边形面积的一半。
13、钢管堆成梯形的形状,要算钢管的根数,就按梯形的面积公式计算,其中最上层是上底,最下层是下底,中间层数就是高。
(课本25页第10题)第二单元提示:(1)在完成这一单元的相关计算时,一定要先观察是什么图形?(2)熟练理解和背熟长方形、正方形、平行四边形、三角形、梯形图形面积公式,再根据题目中的图形面积公式来计算;(3)要注意题目单位名称是否统一。
(课本第21页第4题);(4)计算三角形和梯形面积时,不能忘记公式中的“除以2”;(5)长方形面积=长×宽。
长方形周长=(长+宽)×2。
正方形面积=边长×边长。
正方形周长=边长×4。
14、右图梯形中阴影部分甲的面积和阴影部分乙的面积相等15、在格子上画不同形状但面积相等的图形的方法:画平行四边形:(1)尽量与长方形等底等高(全部过关);(2)底和高正好和长方形的底和高的长度调换过来。
如长方形的长是5,宽是3,则平行四边形的底是3,高是5。
画三角形:如果取三角形的高和长方形的高一样,则三角形的底是长方形的底的2倍;如果取三角形的底和长方形的底一样,则三角形的高是长方形的高的2倍。
画梯形:最好是定好梯形的高是2,那么梯形的上底+下底的和就是图形面积的数字。
举例:画一个与面积是6平方厘米平行四边形的梯形,取梯形的高是2厘米,那么根据梯形面积公式(上底+下底)×2÷2=6可以得出,(上底+下底)=6,就可以画了(理解,不读)。
如果取梯形的高和长方形的高一样,则梯形的上底加下底的和必须是长方形的底的2倍;反之,当梯形的上底加下底的和与长方形的底一样时,梯形的高就必须是长方形的高的2倍。
三角形和梯形的就要结合面积公式中为什么要“除以2”来互相理解。
16、平行四边形面积÷底=平行四边形的高;平行四边形面积÷高=平行四边形的底17、三角形面积×2÷高=三角形的底;三角形面积×2÷底=三角形的高18、梯形面积×2÷(上底+下底)=高;梯形面积×2÷高—上底=下底;梯形面积×2÷高—下底=上底。
第三单元认识小数1、分母是10、100、1000……的分数都可以用小数表示。
分母是10的分数写成一位小数,表示十分之几。
(条)分母是100的分数写成两位小数,表示百分之几。
(格)分母是1000的分数写成三位小数,表示千分之几。
(立方体)2、判断一个小数是几位小数,可以通过数小数点后面的数,小数点后面有几个数,就是几位小数。
注意:写几位小数要大写,如:4.032,小数点后面有3个数字,是(三)位小数。
3、小数点左边第一位是个位,计数单位个(1)小数点左边第二位是十位,计数单位十(10)小数点右边第一位是十分位,计数单位十分之一(0.1)小数点右边第二位是百分位,计数单位百分之一(0.01)小数点右边第三位是千分位,计数单位千分之一(0.001)小数部分最高位是十分位,最大的计数单位是十分之一。
整数部分没有最高数位。
相邻两个计数单位之间的进率都是10。
5、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一)0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。
6、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。
7、比较小数的大小方法:先比较小数的整数部分,整数部分大的小数大;如果整数部分相同,再比较小数部分。
先比较十分位,十分位上的数大,这个小数就大;十分位相同的,再比较百分位,百分位上的数大,这个小数就大;百分为相同的,再比较千分位……8、数的改写:(1)改写用“万”作单位:<1>从右边开始向左数四位,在万位和千位之间画“┆”,在“┆”下方点上小数点;<2>把小数点末尾的“0”去掉,添个“万”字;<3>用“=”号连接。
(2)改写用“亿”作单位:<1>从右边开始向左数八位,在亿位和千万位之间画“┆”,在“┆”下方点上小数点;<2>把小数点末尾的“0”去掉,添个“亿”字;<3>用“=”号连接。
注意事项:(1)改写不能改变原数的大小;(2)位数不够的用“0”补上(先写上虚写的“0”,=后面就改为实写的“0”。
举例:4309→0┆.4309=0.4309 309→0┆.0309=0.0309)(3)它是准确数,前后数必须用“=”连接。
9、求整数的近似数:省略万后面的尾数:要看“千”位上的数,用四舍五入法取近似值。
用“≈”号连接。
省略亿后面的尾数:要看“千万”位上的数,用四舍五入法取近似值。
用“≈”号连接。
10、求小数的近似数:保留整数,就是精确到个位,要看小数部分第一位(十分位)上的数来决定四舍五入。
保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)上的数来决定四舍五入。
保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)上的数来决定四舍五入。
注意事项:(1)在表示近似值时末尾的“0”一定不能去掉。
(例如,一个小数保留两位小数是1.50,末尾的“0”不能去掉。
虽然1.50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。
)(2)向前一位数字五入进一时,满十要向前进一,再满十继续向前进一(举例:19.97保留一位小数,19.97≈20.0,百分位上数字是7,比5大,舍去7,向十分位上的9进1,9+1=10,继续向个位上的9进1,19+1=20)第四单元小数的加减法1、计算小数加减法时,要把小数点对齐,也就是相同数位对齐。
2、被减数是整数时,要添上小数点和根据减数的小数部分补上“0”后再减。
3、竖式计算小数时,小数点末尾的“0”不能去掉,把得数写在横式时,小数点末尾的“0”要去掉。
4、加法交换律:a+b=b+a加法结合律:(a+b)+c= a+(b+c)减法运算性质:a-b-c=a-(b+c)a-(b+c)= a-b-c(最容易错)5、整数加减法的运算律,对小数加减法也同样适用。
6、填写运算律时,要填完整,比如加法交换律、加法结合律,不能只填“交换律或结合律”。
7、减法运算性质的逆向运用a-(b+c)= a-b-c(最容易错)第五单元找规律1、找规律方法:(1)找到周期;(2)将个数÷周期;(3)余数是几就是第几个,没有余数的就是最后一个。