高考数学知识点复习:函数
高考数学方程与函数知识点
高考数学方程与函数知识点一、一次函数一次函数是指函数的最高次数为1的函数,通常表达为y=ax+b 的形式,其中a称为斜率,b称为截距。
1. 斜率:斜率可以用来表示函数图像的增减趋势,斜率为正表示函数递增,斜率为负表示函数递减。
2. 截距:截距表示函数图像与y轴之间的交点,可以用来确定函数图像的位置。
二、二次函数二次函数是指函数的最高次数为2的函数,通常表达为y=ax^2+bx+c的形式,其中a、b、c均为常数。
1. 抛物线:二次函数的图像是一条抛物线,其开口方向由a的正负决定。
2. 零点:通过解方程y=0,可以求得二次函数的零点,即方程的根。
3. 非负性:当a>0时,二次函数的值大于等于c,当a<0时,二次函数的值小于等于c。
4. 顶点:二次函数的顶点坐标可以通过求得x=-b/(2a)来确定。
三、指数函数指数函数是指函数关系中包含以常数e为底数的指数函数。
1. 指数规律:指数函数的数学规律为a^x=a^y,当x=y时,指数函数取相同的值。
2. 增长与衰减:指数函数具有快速增长或衰减的特点,指数函数的指数为正时,函数递增;指数为负时,函数递减。
3. 自然指数函数:自然指数函数是指以常数e≈2.71828为底的指数函数,形式为f(x)=e^x。
四、对数函数对数函数是指函数关系中包含以常数e为底数的对数函数。
1. 对数规律:对数函数的数学规律为a^loga(x)=x,当x>0时,对数函数取正值。
2. 增长与衰减:对数函数具有递增但增长速度逐渐减小的特点。
3. 自然对数函数:自然对数函数是指以常数e≈2.71828为底的对数函数,形式为f(x)=ln(x)。
五、三角函数三角函数包括正弦函数、余弦函数和正切函数,常用于解决与角度相关的问题。
1. 正弦函数:正弦函数表示一个角的对边与斜边的比值,通常表示为sin(x)。
2. 余弦函数:余弦函数表示一个角的邻边与斜边的比值,通常表示为cos(x)。
数学高考知识点总结函数
数学高考知识点总结函数一、函数的基本概念1.1 函数的定义在数学中,函数是一种对应关系,它描述了一个集合中的每个元素与另一个集合中的唯一元素之间的关系。
如果对于集合X中的每一个元素x,都有集合Y中的唯一元素y与之对应,那么我们就称这种对应关系为函数。
通常用f(x)表示函数,其中x是自变量,f(x)是因变量。
1.2 函数的表示函数可以用不同的形式进行表示,常见的表示形式包括:① 变量关系式表示:y=f(x)或者y=f(x₁,x₂,…,xₙ)。
② 表格表示:将自变量和因变量的对应关系列成表格。
③ 图像表示:通过绘制函数的图像来表示函数的关系。
二、函数的性质2.1 奇函数和偶函数奇函数和偶函数是函数的一种性质,它们的定义如下:① 奇函数:如果对于任意的x,都有f(-x)=-f(x),那么我们称函数f(x)是奇函数。
② 偶函数:如果对于任意的x,都有f(-x)=f(x),那么我们称函数f(x)是偶函数。
奇函数以原点对称,而偶函数以y轴对称。
2.2 周期函数如果函数f(x)满足对于任意的x,都有f(x+T)=f(x),其中T为一个正常数,那么我们称函数f(x)是周期函数,T称为函数的周期。
2.3 单调性函数的单调性是指函数在定义域内的增减性质,可以分为严格单调增、严格单调减、非严格单调增、非严格单调减四种类型。
2.4 凹凸性函数的凹凸性描述了函数图像的凹凸形状,它可以分为凹函数和凸函数两种类型。
2.5 极值函数的极值是指函数在一定区间内取得最大值或最小值的点,可以分为最大值和最小值两种。
三、函数的图像3.1 函数的图像基本性质函数的图像是函数在平面直角坐标系中的几何形象,它具有以下基本性质:① 函数的图像可以用方程y=f(x)来表示。
② 函数的图像关于y轴对称,当且仅当函数f(-x)=f(x)时。
③ 函数的图像可以用表格来表示,通过将自变量和因变量的对应关系列成表格。
3.2 常见函数的图像常见的函数包括一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像形状。
高考数学知识点总结:函数公式知识点总结
高考数学知识点总结:函数公式知识点总结
(1)高考函数公式的变量:因变量,自变量。
在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。
(2)一次函数:①若两个变量
间的关系式可以表示成
(
为常数,
不等于0)的形式,则称
是
的一次函数。
②当
=0时,称
是
的正比例函数。
(3)高考函数的一次函数的图象及性质
①把一个函数的自变量
与对应的因变量
的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数
=
的图象是经过原点的一条直线。
③在一次函数中,当
0,
O,则经2、3、4象限;当
0,
0时,则经1、2、4象限;当
0,
0时,则经1、3、4象限;当 0,
0时,则经1、2、3象限。
④当。
高考常用函数知识点汇总
高考常用函数知识点汇总函数是数学中非常重要的一个概念,也是高考中常常出现的考点。
理解和掌握常用函数的知识点对于高考数学题目的解答非常有帮助。
本文将对高考常用的函数知识点进行汇总,以帮助同学们更好地备考。
一、一次函数一次函数是最基本的函数之一,其定义域为全体实数。
一次函数的一般形式为y = kx + b,其中k和b是常数。
一次函数的图像为一条直线,其斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
二、二次函数二次函数是高中数学中较为复杂的函数之一,其定义域为全体实数。
二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c是常数且a ≠ 0。
二次函数的图像为一条抛物线,其开口方向由二次项系数a的正负决定。
三、指数函数指数函数是以一个正常数为底数的幂函数,其定义域为全体实数。
指数函数的一般形式为y = a^x,其中a是正常数且a ≠ 1。
指数函数的特点是呈现指数递增或递减的趋势,底数a的大小决定了函数的增长速度。
四、对数函数对数函数是指数函数的逆函数,其定义域为x > 0。
对数函数的一般形式为y = loga(x),其中a是正常数且a ≠ 1。
对数函数的特点是呈现递增或递减的趋势,底数a的大小决定了函数的增长速度。
五、三角函数三角函数是研究角及其变化规律的函数,其定义域为全体实数。
常见的三角函数有正弦函数、余弦函数和正切函数。
三角函数的图像为周期性的波动曲线,其周期和振幅由函数的参数决定。
六、反三角函数反三角函数是三角函数的逆函数,其定义域由对应的三角函数确定。
常见的反三角函数有反正弦函数、反余弦函数和反正切函数。
反三角函数的图像可通过对应的三角函数的图像通过y = x镜像得到。
七、指数对数函数指数对数函数是指数函数和对数函数的组合,其定义域由对应的函数确定。
常见的指数对数函数有指数对数函数、指数对数对函数和对数指数函数。
这些函数的图像由对应的指数函数和对数函数的图像组合而成。
数学高考函数的总结知识点
数学高考函数的总结知识点一、函数的定义函数是一个或多个自变量和一个因变量之间的关系。
函数通常用一个字母表示,如f(x)。
其中,x为自变量,f(x)为因变量。
在函数中,自变量的取值范围称为定义域,对应的因变量的取值范围称为值域。
二、函数的性质1. 奇偶性- 奇函数:f(-x)=-f(x),即对任意x,有f(-x)=-f(x)。
满足这个性质的函数称为奇函数。
典型的奇函数有sin(x)和tan(x)。
- 偶函数:f(-x)=f(x),即对任意x,有f(-x)=f(x)。
满足这个性质的函数称为偶函数。
典型的偶函数有cos(x)和e^x。
2. 单调性- 递增函数:对任意x1<x2,有f(x1)≤f(x2)。
满足这个性质的函数称为递增函数。
- 递减函数:对任意x1<x2,有f(x1)≥f(x2)。
满足这个性质的函数称为递减函数。
3. 周期性- 周期函数:对任意x,有f(x+T)=f(x),其中T为正实数。
满足这个性质的函数称为周期函数。
4. 增减性- 函数增减性:f'(x)>0表示函数在区间上是增函数,f'(x)<0表示函数在区间上是减函数。
5. 最值- 最大值和最小值:函数在其定义域上可能存在最大值和最小值。
6. 奇点- 奇点:当函数在某点x0附近没有定义或者不连续时,称这个点为奇点。
7. 极限- 极限:当自变量趋于某个值时,函数的取值趋于某个值,这个趋势是函数的极限。
三、常见函数- 定义:f(x)=kx+b,其中k,b为常数且k≠0,称为一次函数。
- 基本性质:一次函数的图像是一条直线,斜率为k,截距为b。
2. 二次函数- 定义:f(x)=ax^2+bx+c,其中a≠0,称为二次函数。
- 基本性质:二次函数的图像是抛物线,开口方向由a的正负决定,a>0为向上开口,a<0为向下开口。
3. 幂函数- 定义:f(x)=x^a,其中a为常数,称为幂函数。
- 基本性质:幂函数的图像是曲线,a>0时过原点且递增,a<0时在第一象限递减,第四象限递增。
2024年高考数学知识点总结整理
2024年高考数学知识点总结整理一、函数与方程1. 函数的概念和性质- 函数的定义:函数是一个将一个集合的元素(称为自变量)映射到另一个集合的元素(称为因变量)的规则。
- 函数的表示:函数可以用函数式表示、图像表示、数据表格表示等。
- 函数的性质:奇偶性、周期性、单调性、极值、零点等。
2. 平面直角坐标系- 坐标系的建立:确定坐标轴的正方向和原点的位置。
- 直角坐标的表示法:点在平面上的位置可以用有序数对表示。
- 直线的方程:点斜式、两点式、截距式等。
3. 一元二次方程- 一元二次方程的定义:形如ax^2 + bx + c = 0的代数方程,其中a、b、c都是已知的实数,a ≠ 0。
- 一元二次方程的解:实数解、复数解、无解等。
- 一元二次方程的求解方法:配方法、公式法、图解法等。
4. 不等式- 不等式的概念:比大小关系不是等号的代数式。
- 不等式的性质:加减、乘除等运算规则。
- 不等式的解集:解集可以用数轴图、区间表示等。
二、数列与数学归纳法1. 等差数列- 等差数列的定义:数列中相邻两项之差相等。
- 等差数列的通项公式:an = a1 + (n - 1)d,其中an是第n项,a1是首项,d是公差。
- 等差数列的性质:求和公式、前n项和等。
2. 等比数列- 等比数列的定义:数列中相邻两项之比相等。
- 等比数列的通项公式:an = a1 * r^(n - 1),其中an是第n项,a1是首项,r是公比。
- 等比数列的性质:求和公式、前n项和等。
3. 数列的求和- 等差数列的前n项和公式:Sn = n/2 * (a1 + an),其中Sn是前n项和,a1是首项,an是第n项。
- 等比数列的前n项和公式:Sn = (a1 * (1 - r^n))/(1 - r),其中Sn是前n项和,a1是首项,r是公比。
4. 数学归纳法- 数学归纳法的基本思想:证明某个命题对于一切自然数n 都成立,先证明对n=1成立,然后假设对n=k成立,再证明对n=k+1成立。
高考数学函数必考知识点总结
高考数学函数必考知识点总结高考数学中,函数是必考知识点,作为数学的重要基础概念,它是高考中经常涉及的内容之一。
本文将总结高考数学中函数必考知识点,希望对广大考生有所帮助。
一、函数的定义函数是一种特殊的映射,它将一个自变量映射到一个因变量上。
用数学语言来描述,如果有集合A和集合B,让A中的元素x代入函数f,就可以得到一个对应于x的唯一的B中的元素y,表示为y=f(x)。
二、常见函数类型1. 线性函数:y=kx+b,其中k为斜率,b为截距。
2. 幂函数:y=x^a,其中a为实数。
3. 指数函数:y=a^x,其中a为正数。
4. 对数函数:y=log_ax,其中a为正数,且a≠1。
5. 三角函数:包括正弦函数、余弦函数、正切函数等。
三、函数的性质1. 奇偶性:如果f(-x)=-f(x),则函数为奇函数;如果f(-x)=f(x),则函数为偶函数。
2. 单调性:如果在f(x)的定义域内,当x1<x2时,有f(x1)<f(x2),则函数为单调递增函数;如果在f(x)的定义域内,当x1<x2时,有f(x1)>f(x2),则函数为单调递减函数。
3. 周期性:如果对于定义域内任何一个实数x,都有f(x+T)=f(x),其中T为正实数,则称函数具有周期性。
四、函数的图像函数的图像是函数概念的重要表现形式。
在平面直角坐标系中,横轴表示自变量的取值范围,纵轴表示因变量的取值范围,用一条曲线把函数的所有点连起来就形成了函数的图像。
五、高考数学中的典型应用1. 函数与方程:利用函数的定义和性质,求解各种函数方程。
2. 极值问题:求解函数的极值和最值,通常需要用到导数概念和优化算法。
3. 算术与几何平均数的不等关系:用到数学分析中的积分概念。
4. 设计问题:通过构造函数和模型,来解决各种设计问题,如最优化设计、约束条件下的设计等。
总之,函数是数学的一个基础概念,也是高考中必考的知识点之一。
通过深入理解函数的定义和性质,加强对不同函数类型的认识和分析,练习各种函数的应用,能够帮助考生在高考数学中获得更好的成绩。
高中数学函数知识点归纳
高中数学函数知识点归纳高中数学函数知识点归纳如下:1.函数的定义函数是高考数学中的重点内容,学习函数需要首先掌握函数的各个知识点,然后运用函数的各种性质来解决具体的问题。
设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A-B 为从集合A到集合B的一个函数,记作y=f(x),xA2.函数的定义域函数的定义域分为自然定义域和实际定义域两种,如果给定的函数的解析式(不注明定义域),其定义域应指的是使该解析式有意义的自变量的取值范围(称为自然定义域),如果函数是有实际问题确定的,这时应根据自变量的实际意义来确定,函数的值域是由全体函数值组成的集合。
3.求解析式求函数的解析式一般有三种种情况:(1)根据实际问题建立函数关系式,这种情况需引入合适的变量,根据数学的有关知识找出函数关系式。
(2)有时体中给出函数特征,求函数的解析式,可用待定系数法。
(3)换元法求解析式,f[h(x)]=g(x)求f(x)的问题,往往可设h(x)=t,从中解出x,代入g(x)进行换元来解。
掌握求函数解析式的前提是,需要对各种函数的性质了解且熟悉。
目前我们已经学习了常数函数、指数与指数函数、对数与对数函数、幂函数、三角函数、反比例函数、二次函数以及由以上几种函数加减乘除,或者复合的一些相对较复杂的函数,但是这种函数也是初等函数。
更多高中数学函数知识点归纳如下:1. 函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x)=;(2)若f(x)是奇函数,0在其定义域内,则(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2. 复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式ag(x)b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。
高考数学最全知识点
高考数学最全知识点一、代数与函数1. 整式与分式- 整式的定义与性质- 分式的定义与性质- 分式的化简与运算法则2. 方程与不等式- 一元一次方程与不等式- 一元二次方程与不等式- 二元一次方程与不等式- 绝对值方程与不等式3. 函数与图像- 函数的定义与性质- 基本初等函数的性质与图像- 复合函数与反函数- 二次函数与它的图像特征4. 一次、二次函数和分式函数- 一次函数的图像与性质- 二次函数的图像与性质- 分式函数的图像与性质二、解析几何1. 点、直线与圆- 坐标平面、点的坐标与点的表示- 直线的方程与性质- 圆的方程与性质2. 平面与空间图形- 不共面点的坐标与距离- 空间图形的投影与投影性质- 空间几何体的体积计算3. 向量与坐标变换- 向量的定义与性质- 向量的线性运算与数量积- 坐标变换与平移、旋转、对称三、概率与统计1. 排列与组合- 排列的概念与计算- 组合的概念与计算- 排列组合在实际问题中的应用2. 概率与事件- 概率的定义与性质- 事件的概念与运算- 事件的概率计算与应用3. 统计与数据分析- 统计数据的收集与整理- 统计量与频数分布表- 统计图表与数据分析四、数学思维与方法1. 数学思想方法与证明- 数学思维的培养与发展- 数学证明的基本方法与思路2. 推理与逻辑- 数学推理的基本规律与方法- 逻辑关系的分析与判断3. 分析与解决问题- 数学问题的分析与解决思路- 解决问题的数学模型与方法五、高考数学应试技巧1. 命题特点与解题技巧- 高考数学命题特点的认识- 解题技巧与策略的训练2. 考前复习与应试心态- 高考数学的复习计划与安排- 应试心态与考场策略3. 高考数学备考注意事项- 考试要点与考纲的掌握- 考前注意事项与常见错误的避免以上是高考数学的最全知识点,通过系统地学习和掌握这些知识点,相信你能在高考中取得优异的成绩。
祝你成功!。
高考数学函数知识点归纳总结
一、函数的概念与表示1、映射 : 设 A 、B 是两个集合,如果按照某种映射法则 f ,对于集合 A 中的任一个元素,在集合 B 中都有唯一的元素和它对应,则这样的对应(包括集合 A 、B 以及 A 到 B 的对应法则 f )叫做集合 A 到集合 B 的映射,记作 f :A →B 。
注意点 :判断一个对应是映射的方法 : 可多对一,不可一对多,都有象,象唯一 .2、函数 :如果 A,B 都是非空的数集,那么 A 到 B 的映射 f :A B 就叫做 A 到 B 的函数,记作 y f (x ),其中 x A,yB .原像的集合 A 叫做函数 y f (x )的定义域 .由所有象 f (x ) 构成的集合叫做 y f (x )的值域,显 然值域是集合B 的子集 .构成函数概念的三要素 : ①定义域 (x 的取值范围 ) ②对应法则( f )③值域( y 的取值范围) 两个函数是同一个函数的条件:定义域和对应关系完全一致 . 二、函数的定义域、解析式与值域1、求函数定义域的主要依据: (1)整式的定义域是全体实数;( 2)分式的分母不为零;(3)偶次方根的被开方数大于等于零;( 4)零取零次方没有意义(零指数幂的底数不为 0); (5)对数函数的真数必须大于零;( 6)指数函数和对数函数的底数必须大于零且不等于 1;(7)若函数 y f (x ) 是一个多项式,需要求出各单项式的定义域,然后取各部分结果的交集; (8)复合函数的定义域:若已知 f (x )的定义域 [ a,b ] ,求复合函数 f ( g ( x ))的定义域,相当于求使 g (x ) [a,b]时 x 的取值范围;若已知复合函数 f (g (x ))的定义域,求 f (x )的定义域,相当于求 g ( x )的值域 .2 求函数值域的方法① 直接法:从自变量 x 的范围出发,推出 y=f (x ) 的取值范围,适合于简单的复合函数; ②换元法:利用换元法将函数转化为二次函数求值域,适合 y ax b cx d 的形式;y 的取值范围;适合分子或分母为二次且 x ∈ R 的分式;bx 的形式可直接用不等式性质; y 2 bx 可先化简再用均 ax 2 mx n④ 分离常数:适合分子分母皆为一次式( x 有范围限制时要画图) ; ⑤ 单调性法:利用函数的单调性求值域;⑥ 图象法: 1. 二次函数必画草图求其值域;在给定区间上求最值有两类: 闭区间 a,b 上的最值; 求区间动(定) ,对称轴定(动)的最值问题;注意“两看” :一看开口,二看对称轴与给定区间的位置关系 .③判别式法:运用方程思想,依据二次方程有根,求出 此种类型不拘泥于判别式法,如 y 2ba 2k值不等式;2y ax 2 m x n 通常用判别式法; x 2 mx n 2x mx n可用判别式法或均值不等式;mx n2.注意 y ax b (a 0,b 0)型函数的图像在单调性中的应用:增区间为( , b],[ b, ),减区间x a a1⑦ 利用对号函数: y x (如右图) ;x⑧ 几何意义法:由数形结合,转化距离等求值域 三.函数的奇偶性1.定义 : 设 y=f(x) ,x ∈ A ,如果对于任意∈A ,都有 f ( x) f (x) ,则称 y=f(x) 为偶函数 .如果对于任意 x ∈A ,都有 f( x) f(x) ,则称 y=f(x) 为奇函数 .1、函数单调性的定义:如果对于定义域 I 内的某个区间 D 上的任意两个自变量的值② 观察法:根据特殊函数图像特点;(i) 当 f (x)和 g(x) 具有相同的增减性时,①F 1(x) f(x) g(x)的增减性与 f (x),g(x)相同,②F 2(x) f(x) g(x)、F 3(x) f(x) g(x)、F 4(x) f(x)(g(x) 0)的增减性 不能确定 ; g(x)(ii) 当 f(x)和 g(x)具有相异的增减性时,我们假设f ( x)为增函数, g(x)为减函数,那么:2. 性质: ① y=f(x) ②若函数 ③奇±奇=奇 偶±偶=偶 奇×奇=偶 偶×偶=偶 奇×偶=奇[两函数的定义域D 1 ,D 2, 3.奇偶性的判断①看定义域是否关于原点对称 ;②看 f(x) 与 f(-x) 的关系或观察函数图像的对称关系; 4,复合函数的奇偶性:“内偶则偶,内奇同外” 四、函数的单调性作用: 比较大小,解不等式,求最值 . 是偶函数 y=f(x) 的图象关于 y 轴对称 , y=f(x) 是奇函数 y=f(x) f(x) 的定义域关于原点对称,则 f(0)=0; 的图象关于原点对称 ; D 1∩D 2要关于原点对称] f (x 1) f x 2 f(x 1) f x 2 ,那么就称函数 f (x) 在区间 D 上是增函数(减函数) ,区间 D 叫 y f (x) 的单调区间 . 图像特点:增函数:从左到右上升( 从左到右下降( 减函数: 2. 判断单调性方法:①定义法 y 随 x 的增大而增大或减小而减小) y 随 x 的增大而减小或减小而增大) (x1 x2) f(x1) f(x2) 0 f(x1) f (x2) 0 x 1 x 2f(x)在 a,b 上是增函数;(x 1 x 2) f (x 1) f (x 2) 0f (x1) f (x2) 0 f(x)在 a,b上是减函数 .x 1 x 2.主要是含绝对值函数 x 1,x 2,当 x 1 x 2 时,都有③掌握规律:对于两个单调函数 f (x)和g(x),若它们的定义域分别为 I 和 J ,且IJ① F1(x) f (x) g(x) 的增减性不能确定;②F3(x) f(x) g(x)、F4(x) f (x) (g(x) 0)为增函数;F5(x) g(x)(f(x) 0)为减函数.g(x) f(x)3. 奇偶函数的单调性奇函数在其定义域内的对称区间上的单调性相同,偶函数在其定义域内的对称区间上的单调性相反。
高考数学函数必考知识点总结
高考数学函数必考知识点总结高考数学中,函数是一个非常重要的部分。
对于学生来说,理解函数的概念,掌握函数的基本性质和重要公式是必须要掌握的,因为这些内容是高考数学考试的重点。
本文将为大家总结高考数学函数必考知识点,希望能够对大家复习和备考有所帮助。
一、函数的概念函数是一种数学关系,它将每一个自变量与唯一的因变量对应起来。
函数的形式可以用符号表示:y=f(x),其中,x为自变量,y为因变量,f(x)为函数。
二、函数的性质1、奇偶性若对于任意x,f(-x)=f(x),则函数为偶函数;若对于任意x,f(-x)=-f(x),则函数为奇函数。
2、单调性若对于任意的x1<x2,有f(x1)<f(x2),则函数为增函数;若对于任意的x1<x2,有f(x1)>f(x2),则函数为减函数。
3、周期性若存在正数T,对于任意的x,有f(x+T)=f(x),则函数为周期函数。
其中,T为函数的最小正周期。
4、有界性若存在正数M,使得对于所有的x,有|f(x)|≤M,那么函数f(x)是有界函数。
三、常见函数1、幂函数幂函数是函数类型的一种,y=x^n。
2、指数函数指数函数是增长最快的一种函数,y=a^x。
3、对数函数对数函数是指数函数的逆运算,y=loga(x),其中a>0且a≠1。
4、三角函数三角函数包括正弦函数、余弦函数、正切函数和余切函数。
它们的图像都是周期性的。
四、函数的图像1、函数图像的基本类型平移、伸缩、反转、异或等图像变化。
2、将函数图像与坐标轴联系起来比较优秀的方法是将函数图像和坐标轴的交点相互联系并分析它们的位置关系。
五、函数的基本运算1、函数的加减、积、商、合成运算函数与函数的加法、减法、乘法、除法和复合运算是函数的基本运算。
2、函数的反函数对于函数y=f(x),若它在定义域上是单调增加的,则它存在唯一的反函数x=f^(-1)(y),且它是单调增加的。
3、函数的复合函数的复合是指将一个函数作为另一个函数的自变量。
高考数学知识点总结及公式大全(实用)
高考数学知识点总结及公式大全(实用)高考数学必备公式1、函数的单调性(1)设x1、x2[a,b],x1x2那么f(x1)f(x2)0f(x)在[a,b]上是增函数;f(x1)f(x2)0f(x)在[a,b]上是减函数.(2)设函数yf(x)在某个区间内可导,若f(x)0,则f(x)为增函数;若f(x)0,则f(x)为减函数.2、函数的奇偶性对于定义域内任意的x,都有f(-x)=f(x),则f(x)是偶函数; 对于定义域内任意的x,都有f(x)f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于y轴对称。
3、判别式b2-4ac=0 注:方程有两个相等的实根b2-4acgt;0 注:方程有两个不等的实根b2-4aclt;0 注:方程没有实根,有共轭复数根4、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)5、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a6、抛物线1、抛物线:y=ax__+bx+c就是y等于ax的平方加上bx再加上c。
agt;0时,抛物线开口向上;alt;0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。
2、顶点式y=a(x+h)__+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。
新高考数学必考知识点归纳
新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。
以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。
通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。
2025年高考数学必考知识点
2025年高考数学必考知识点一、函数。
1. 函数的概念与性质。
- 定义域、值域的求解。
对于分式函数,要注意分母不为零;对于根式函数,根号下的式子要满足非负条件。
例如,函数y = (1)/(x - 1)的定义域为{xx≠1},函数y=√(x + 2)的定义域为{xx≥ - 2}。
- 函数的单调性。
可以通过定义法(设x_1,比较f(x_1)与f(x_2)的大小)或者导数法(对于可导函数y = f(x),f'(x)>0时函数单调递增,f'(x)<0时函数单调递减)来判断。
如y = x^2在(-∞,0)上单调递减,在(0,+∞)上单调递增。
- 函数的奇偶性。
满足f(-x)=f(x)的函数为偶函数,图象关于y轴对称;满足f(-x)= - f(x)的函数为奇函数,图象关于原点对称。
例如y = x^3是奇函数,y = x^2是偶函数。
2. 基本初等函数。
- 一次函数y = kx + b(k≠0),其图象是一条直线,斜率k决定直线的倾斜程度,截距b是直线与y轴的交点纵坐标。
- 二次函数y = ax^2+bx + c(a≠0),图象是抛物线。
对称轴为x =-(b)/(2a),顶点坐标为(-(b)/(2a),frac{4ac - b^2}{4a})。
当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。
- 指数函数y = a^x(a>0且a≠1),当a > 1时,函数在R上单调递增;当0 < a < 1时,函数在R上单调递减。
- 对数函数y=log_ax(a>0且a≠1),其定义域为(0,+∞)。
当a > 1时,函数在(0,+∞)上单调递增;当0 < a < 1时,函数在(0,+∞)上单调递减。
并且y = a^x与y=log_ax互为反函数,图象关于直线y = x对称。
- 幂函数y = x^α(α∈ R),当α>0时,函数在[0,+∞)上单调递增;当α < 0时,函数在(0,+∞)上单调递减。
高考数学函数必考知识点
高考数学函数必考知识点高考数学中,函数是一个重要的考点,几乎涵盖了整个数学的基础知识。
而对于考生来说,掌握函数的基本概念和常见的题型非常关键。
本文将从函数的定义开始,逐步讲解高考中必考的几个重点知识点。
一、函数的定义及性质函数是数学中的一个基本概念,它描述了两个变量之间的关系。
在数学中,我们通常用字母y来表示函数的值,用字母x来表示自变量。
函数的定义可以简单理解为一个映射关系,输入x值,通过某种规则计算后得到对应的y值。
对于一个函数来说,有三个基本性质需要掌握。
首先是定义域,它表示自变量的取值范围。
其次是值域,它表示函数的所有可能输出值的集合。
最后是奇偶性,奇函数具有对称性,即关于原点对称;偶函数则具有轴对称性,即关于y轴对称。
二、基本函数的特性高考数学中常见的基本函数包括线性函数,二次函数,指数函数和对数函数。
对于每一种函数,我们需要掌握其基本图像、定义域、值域、单调性等重要特性。
线性函数是最简单的一种函数,其图像是一条直线。
线性函数的定义域是全体实数集合,值域也是全体实数集合。
线性函数的单调性取决于斜率的正负。
斜率大于0时,函数递增;斜率小于0时,函数递减。
二次函数的图像是一条抛物线,它的特点是开口向上或向下。
二次函数的定义域是全体实数集合,值域要根据抛物线的开口方向判断。
二次函数的单调性取决于二次项系数的正负,二次项系数大于0时,函数开口向上,递增;二次项系数小于0时,函数开口向下,递减。
指数函数和对数函数是互为反函数的一对函数。
指数函数的图像是以原点为中心的增长趋势逐渐加大的曲线,对数函数则是反向的曲线。
指数函数的定义域是全体实数集合,值域是正数集合;对数函数的定义域是正数集合,值域是全体实数集合。
指数函数是递增函数,对数函数是递减函数。
三、函数的综合运算在高考中,我们经常会遇到需要进行函数的复合、求反函数、函数的平移和缩放等综合运算的题目。
掌握这些运算的方法能够帮助我们解决更复杂的函数题。
高考数学基础函数知识点汇总
高考数学基础函数知识点汇总函数是高考数学中的重要内容,也是数学学习中的基础和核心。
掌握好函数的相关知识,对于解决数学问题、提高数学素养至关重要。
下面为大家详细汇总高考数学中基础函数的知识点。
一、函数的定义函数是一种特殊的对应关系,设集合 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
其中,集合 A 叫做函数的定义域,集合{f(x)|x∈A}叫做函数的值域。
需要注意的是,定义域、值域和对应关系是函数的三要素,当且仅当定义域、对应关系都相同时,两个函数才是相同的函数。
二、函数的表示方法1、解析法:用数学表达式表示两个变量之间的对应关系,如 y =f(x)。
2、列表法:通过列出表格来表示两个变量之间的对应关系。
3、图象法:用图象表示两个变量之间的对应关系,形象直观。
三、常见函数类型1、一次函数形如 y = kx + b(k,b 为常数,k≠0)的函数称为一次函数。
当 b = 0 时,y = kx 是正比例函数,其图象是过原点的直线。
一次函数的图象是一条直线,k 决定直线的倾斜程度,b 决定直线与 y 轴的交点位置。
2、二次函数一般式:y = ax²+ bx + c(a≠0)顶点式:y = a(x h)²+ k(a≠0,顶点坐标为(h, k))交点式:y = a(x x₁)(x x₂)(a≠0,x₁,x₂为函数与 x 轴交点的横坐标)二次函数的图象是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a, (4ac b²)/4a) 。
a 的正负决定抛物线的开口方向,a > 0 时开口向上,a < 0 时开口向下。
3、反比例函数形如 y = k/x(k 为常数,k≠0)的函数称为反比例函数,其图象是双曲线。
当 k > 0 时,图象在一、三象限;当 k < 0 时,图象在二、四象限。
高考数学函数知识点
高考数学函数知识点高考数学中,函数可以说是一个非常重要的知识点,涵盖了较多的相关内容,掌握得好,能够为解题提供很多便利。
因此,在备战高考时,数学函数的学习是不可或缺的。
下面,我将从函数的定义、分类、性质、图形等方面,为大家详细介绍高考数学函数知识点。
一、函数的定义函数是指在数学集合中,对于任意一个自变量,都能够确定一个唯一的因变量。
换句话说,函数是一个数值映射关系。
设有两个数集A和B,如果将A中每一个元素作为自变量,通过一个确定的规律,将A中的元素映射到B中的唯一一个元素上,那么就构成了一个函数,记为y=f(x)。
其中,x为自变量,y为因变量,f(x)为函数,称为表达式。
在阅读函数中的书写形式时,最好先阅读“=”号左边的自变量,再由右往左去逐个进行代入,并进行简单的运算,最后得出结果。
二、函数的分类根据函数的基本特征,可以将函数分为以下几类。
1.初等函数初等函数指带有最基本的函数的基本运算,例如四则运算、指数运算、对数运算、三角函数等。
初等函数在高考数学中占据着非常重要的地位,几乎所有的高考题都有涉及到。
常见的初等函数有:幂函数、指数函数、对数函数、三角函数、反三角函数(这两种函数分别是以角为自变量和以角度比值为自变量的函数)。
2.复合函数复合函数又称复合映射,是将函数中的表达式进行多次嵌套和组合,形成的新的函数类型。
例如f(g(x))就是一个复合函数,一个函数的输出作为另一个函数的输入。
复合函数的基本思想是,将一个已知的函数作为另一个未知函数的自变量,经过简单的推导,找到未知函数的表达式,最后求出复合函数的值。
3.反函数反函数也就是反函数映射,指的是如果一个函数的自变量和因变量互相交换,则得到的新函数称为原函数的反函数,并且该函数也是单调的和可逆的。
反函数常用来解决特定的实际问题,如求反比例函数和求多项式函数的反函数等。
4.隐函数隐函数是指一个变量无法直接用公式表示,但是又和其他变量有一定的联系,需要通过推导来进行求解。
高一数学新高考复习重点知识点
高一数学新高考复习重点知识点一、函数及其应用1. 函数的定义与性质函数的定义、定义域、值域、单调性、奇偶性、周期性等概念及性质。
2. 函数的图像与性质根据函数的定义和性质,绘制函数的图像,了解图像的特点,如零点、极值点、拐点等。
3. 函数的运算函数的四则运算、复合函数的概念及计算方法。
4. 一次函数和二次函数了解一次函数和二次函数的定义、性质、图像、方程等,掌握它们的计算方法及应用。
5. 指数函数和对数函数掌握指数函数和对数函数的定义、性质、图像、方程等,了解常用的指数函数和对数函数变形及应用。
6. 三角函数及其应用理解三角函数的定义、性质、图像,掌握三角函数的计算、方程的解法,了解三角函数在几何、物理等领域的应用。
7. 复数及其运算复数的概念、加减乘除法则、共轭复数、复数的模、辐角等概念及运算。
二、平面几何1. 向量及其运算向量的概念、加减乘除法则、数量积及性质、向量的模和方向角等基础知识。
2. 点、直线和平面点与直线的位置关系、直线的斜率、直线的方程和平面的方程等概念及计算方法。
3. 圆及其相关性质圆的相关概念,如圆心、半径、弦、弧、切线等,掌握圆的方程及性质,以及圆与直线的位置关系。
4. 三角形三角形的内角和、外角和、中线、垂心、重心、外心等概念及性质,掌握三角形的面积计算及重要定理,如正弦定理、余弦定理等。
5. 相似三角形和正方形相似三角形的判定、性质及应用,正方形的性质和计算,如周长、面积等。
三、立体几何1. 空间几何体的认识立体几何体的定义、特点和分类,如三棱柱、四棱柱、棱锥、棱台、球等。
2. 空间几何体的体积和表面积掌握求解空间几何体的体积和表面积的方法,并能灵活运用于实际问题中。
3. 空间中的位置关系掌握点、直线、平面在空间中的位置关系,了解空间几何体的位置关系,如垂直、平行、相交等概念。
四、概率与统计1. 概率的基本概念了解随机事件、样本空间、试验、事件的概率等基本概念,掌握概率的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学知识点复习:函数
1、函数定义域、值域求法综合
2.、函数奇偶性与单调性问题的解题策略
3、恒成立问题的求解策略
4、反函数的几种题型及方法
5、二次函数根的问题——一题多解
&指数函数y=a^x
a^a*a^b=a^a+b(a>0,a、b属于Q)
(a^a)^b=a^ab(a>0,a、b属于Q)
(ab)^a=a^a*b^a(a>0,a、b属于Q)
指数函数对称规律:
1、函数y=a^x与y=a^-x关于y轴对称
2、函数y=a^x与y=-a^x关于x轴对称
3、函数y=a^x与y=-a^-x关于坐标原点对称
&对数函数y=loga^x
如果,且,那么:
○1 ? +;
○2 -;
○3 .
注意:换底公式
(,且;,且;)。
幂函数y=x^a(a属于R)
1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数。
2、幂函数性质归纳。
(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);
(2)时,幂函数的图象通过原点,并且在区间上是增函数。
特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;
(3)时,幂函数的图象在区间上是减函数。
在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴。